1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/slab.h>
67 #include <linux/init.h>
68 
69 #include <net/mac80211.h>
70 
71 #include "iwl-commands.h"
72 #include "iwl-dev.h"
73 #include "iwl-core.h"
74 #include "iwl-debug.h"
75 #include "iwl-agn.h"
76 #include "iwl-eeprom.h"
77 #include "iwl-io.h"
78 #include "iwl-prph.h"
79 
80 /************************** EEPROM BANDS ****************************
81  *
82  * The iwl_eeprom_band definitions below provide the mapping from the
83  * EEPROM contents to the specific channel number supported for each
84  * band.
85  *
86  * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
87  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
88  * The specific geography and calibration information for that channel
89  * is contained in the eeprom map itself.
90  *
91  * During init, we copy the eeprom information and channel map
92  * information into priv->channel_info_24/52 and priv->channel_map_24/52
93  *
94  * channel_map_24/52 provides the index in the channel_info array for a
95  * given channel.  We have to have two separate maps as there is channel
96  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
97  * band_2
98  *
99  * A value of 0xff stored in the channel_map indicates that the channel
100  * is not supported by the hardware at all.
101  *
102  * A value of 0xfe in the channel_map indicates that the channel is not
103  * valid for Tx with the current hardware.  This means that
104  * while the system can tune and receive on a given channel, it may not
105  * be able to associate or transmit any frames on that
106  * channel.  There is no corresponding channel information for that
107  * entry.
108  *
109  *********************************************************************/
110 
111 /* 2.4 GHz */
112 const u8 iwl_eeprom_band_1[14] = {
113 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
114 };
115 
116 /* 5.2 GHz bands */
117 static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
118 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
119 };
120 
121 static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
122 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
123 };
124 
125 static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
126 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
127 };
128 
129 static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
130 	145, 149, 153, 157, 161, 165
131 };
132 
133 static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
134 	1, 2, 3, 4, 5, 6, 7
135 };
136 
137 static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
138 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
139 };
140 
141 /******************************************************************************
142  *
143  * generic NVM functions
144  *
145 ******************************************************************************/
146 
147 /*
148  * The device's EEPROM semaphore prevents conflicts between driver and uCode
149  * when accessing the EEPROM; each access is a series of pulses to/from the
150  * EEPROM chip, not a single event, so even reads could conflict if they
151  * weren't arbitrated by the semaphore.
152  */
153 
154 #define	EEPROM_SEM_TIMEOUT 10		/* milliseconds */
155 #define EEPROM_SEM_RETRY_LIMIT 1000	/* number of attempts (not time) */
156 
iwl_eeprom_acquire_semaphore(struct iwl_trans * trans)157 static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
158 {
159 	u16 count;
160 	int ret;
161 
162 	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
163 		/* Request semaphore */
164 		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
165 			    CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
166 
167 		/* See if we got it */
168 		ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
169 				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
170 				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
171 				EEPROM_SEM_TIMEOUT);
172 		if (ret >= 0) {
173 			IWL_DEBUG_EEPROM(trans,
174 				"Acquired semaphore after %d tries.\n",
175 				count+1);
176 			return ret;
177 		}
178 	}
179 
180 	return ret;
181 }
182 
iwl_eeprom_release_semaphore(struct iwl_trans * trans)183 static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
184 {
185 	iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
186 		CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
187 
188 }
189 
iwl_eeprom_verify_signature(struct iwl_trans * trans)190 static int iwl_eeprom_verify_signature(struct iwl_trans *trans)
191 {
192 	u32 gp = iwl_read32(trans, CSR_EEPROM_GP) &
193 			   CSR_EEPROM_GP_VALID_MSK;
194 	int ret = 0;
195 
196 	IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp);
197 	switch (gp) {
198 	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
199 		if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
200 			IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
201 				gp);
202 			ret = -ENOENT;
203 		}
204 		break;
205 	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
206 	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
207 		if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
208 			IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
209 			ret = -ENOENT;
210 		}
211 		break;
212 	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
213 	default:
214 		IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, "
215 			"EEPROM_GP=0x%08x\n",
216 			(trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
217 			? "OTP" : "EEPROM", gp);
218 		ret = -ENOENT;
219 		break;
220 	}
221 	return ret;
222 }
223 
iwl_eeprom_query16(const struct iwl_shared * shrd,size_t offset)224 u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset)
225 {
226 	if (!shrd->eeprom)
227 		return 0;
228 	return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8);
229 }
230 
iwl_eeprom_check_version(struct iwl_priv * priv)231 int iwl_eeprom_check_version(struct iwl_priv *priv)
232 {
233 	u16 eeprom_ver;
234 	u16 calib_ver;
235 
236 	eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION);
237 	calib_ver = iwl_eeprom_calib_version(priv->shrd);
238 
239 	if (eeprom_ver < cfg(priv)->eeprom_ver ||
240 	    calib_ver < cfg(priv)->eeprom_calib_ver)
241 		goto err;
242 
243 	IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
244 		 eeprom_ver, calib_ver);
245 
246 	return 0;
247 err:
248 	IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
249 		  "CALIB=0x%x < 0x%x\n",
250 		  eeprom_ver, cfg(priv)->eeprom_ver,
251 		  calib_ver,  cfg(priv)->eeprom_calib_ver);
252 	return -EINVAL;
253 
254 }
255 
iwl_eeprom_init_hw_params(struct iwl_priv * priv)256 int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
257 {
258 	struct iwl_shared *shrd = priv->shrd;
259 	u16 radio_cfg;
260 
261 	hw_params(priv).sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP);
262 	if (hw_params(priv).sku & EEPROM_SKU_CAP_11N_ENABLE &&
263 	    !cfg(priv)->ht_params) {
264 		IWL_ERR(priv, "Invalid 11n configuration\n");
265 		return -EINVAL;
266 	}
267 
268 	if (!hw_params(priv).sku) {
269 		IWL_ERR(priv, "Invalid device sku\n");
270 		return -EINVAL;
271 	}
272 
273 	IWL_INFO(priv, "Device SKU: 0x%X\n", hw_params(priv).sku);
274 
275 	radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG);
276 
277 	hw_params(priv).valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
278 	hw_params(priv).valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
279 
280 	/* check overrides (some devices have wrong EEPROM) */
281 	if (cfg(priv)->valid_tx_ant)
282 		hw_params(priv).valid_tx_ant = cfg(priv)->valid_tx_ant;
283 	if (cfg(priv)->valid_rx_ant)
284 		hw_params(priv).valid_rx_ant = cfg(priv)->valid_rx_ant;
285 
286 	if (!hw_params(priv).valid_tx_ant || !hw_params(priv).valid_rx_ant) {
287 		IWL_ERR(priv, "Invalid chain (0x%X, 0x%X)\n",
288 			hw_params(priv).valid_tx_ant,
289 			hw_params(priv).valid_rx_ant);
290 		return -EINVAL;
291 	}
292 
293 	IWL_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
294 		 hw_params(priv).valid_tx_ant, hw_params(priv).valid_rx_ant);
295 
296 	return 0;
297 }
298 
iwl_eeprom_get_mac(const struct iwl_shared * shrd,u8 * mac)299 void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac)
300 {
301 	const u8 *addr = iwl_eeprom_query_addr(shrd,
302 					EEPROM_MAC_ADDRESS);
303 	memcpy(mac, addr, ETH_ALEN);
304 }
305 
306 /******************************************************************************
307  *
308  * OTP related functions
309  *
310 ******************************************************************************/
311 
iwl_set_otp_access(struct iwl_trans * trans,enum iwl_access_mode mode)312 static void iwl_set_otp_access(struct iwl_trans *trans,
313 			       enum iwl_access_mode mode)
314 {
315 	iwl_read32(trans, CSR_OTP_GP_REG);
316 
317 	if (mode == IWL_OTP_ACCESS_ABSOLUTE)
318 		iwl_clear_bit(trans, CSR_OTP_GP_REG,
319 			      CSR_OTP_GP_REG_OTP_ACCESS_MODE);
320 	else
321 		iwl_set_bit(trans, CSR_OTP_GP_REG,
322 			    CSR_OTP_GP_REG_OTP_ACCESS_MODE);
323 }
324 
iwl_get_nvm_type(struct iwl_trans * trans,u32 hw_rev)325 static int iwl_get_nvm_type(struct iwl_trans *trans, u32 hw_rev)
326 {
327 	u32 otpgp;
328 	int nvm_type;
329 
330 	/* OTP only valid for CP/PP and after */
331 	switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
332 	case CSR_HW_REV_TYPE_NONE:
333 		IWL_ERR(trans, "Unknown hardware type\n");
334 		return -ENOENT;
335 	case CSR_HW_REV_TYPE_5300:
336 	case CSR_HW_REV_TYPE_5350:
337 	case CSR_HW_REV_TYPE_5100:
338 	case CSR_HW_REV_TYPE_5150:
339 		nvm_type = NVM_DEVICE_TYPE_EEPROM;
340 		break;
341 	default:
342 		otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
343 		if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
344 			nvm_type = NVM_DEVICE_TYPE_OTP;
345 		else
346 			nvm_type = NVM_DEVICE_TYPE_EEPROM;
347 		break;
348 	}
349 	return  nvm_type;
350 }
351 
iwl_init_otp_access(struct iwl_trans * trans)352 static int iwl_init_otp_access(struct iwl_trans *trans)
353 {
354 	int ret;
355 
356 	/* Enable 40MHz radio clock */
357 	iwl_write32(trans, CSR_GP_CNTRL,
358 		    iwl_read32(trans, CSR_GP_CNTRL) |
359 		    CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
360 
361 	/* wait for clock to be ready */
362 	ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
363 				 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
364 				 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
365 				 25000);
366 	if (ret < 0)
367 		IWL_ERR(trans, "Time out access OTP\n");
368 	else {
369 		iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
370 				  APMG_PS_CTRL_VAL_RESET_REQ);
371 		udelay(5);
372 		iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
373 				    APMG_PS_CTRL_VAL_RESET_REQ);
374 
375 		/*
376 		 * CSR auto clock gate disable bit -
377 		 * this is only applicable for HW with OTP shadow RAM
378 		 */
379 		if (cfg(trans)->base_params->shadow_ram_support)
380 			iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
381 				CSR_RESET_LINK_PWR_MGMT_DISABLED);
382 	}
383 	return ret;
384 }
385 
iwl_read_otp_word(struct iwl_trans * trans,u16 addr,__le16 * eeprom_data)386 static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
387 			     __le16 *eeprom_data)
388 {
389 	int ret = 0;
390 	u32 r;
391 	u32 otpgp;
392 
393 	iwl_write32(trans, CSR_EEPROM_REG,
394 		    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
395 	ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
396 				 CSR_EEPROM_REG_READ_VALID_MSK,
397 				 CSR_EEPROM_REG_READ_VALID_MSK,
398 				 IWL_EEPROM_ACCESS_TIMEOUT);
399 	if (ret < 0) {
400 		IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
401 		return ret;
402 	}
403 	r = iwl_read32(trans, CSR_EEPROM_REG);
404 	/* check for ECC errors: */
405 	otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
406 	if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
407 		/* stop in this case */
408 		/* set the uncorrectable OTP ECC bit for acknowledgement */
409 		iwl_set_bit(trans, CSR_OTP_GP_REG,
410 			CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
411 		IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
412 		return -EINVAL;
413 	}
414 	if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
415 		/* continue in this case */
416 		/* set the correctable OTP ECC bit for acknowledgement */
417 		iwl_set_bit(trans, CSR_OTP_GP_REG,
418 				CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
419 		IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
420 	}
421 	*eeprom_data = cpu_to_le16(r >> 16);
422 	return 0;
423 }
424 
425 /*
426  * iwl_is_otp_empty: check for empty OTP
427  */
iwl_is_otp_empty(struct iwl_trans * trans)428 static bool iwl_is_otp_empty(struct iwl_trans *trans)
429 {
430 	u16 next_link_addr = 0;
431 	__le16 link_value;
432 	bool is_empty = false;
433 
434 	/* locate the beginning of OTP link list */
435 	if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
436 		if (!link_value) {
437 			IWL_ERR(trans, "OTP is empty\n");
438 			is_empty = true;
439 		}
440 	} else {
441 		IWL_ERR(trans, "Unable to read first block of OTP list.\n");
442 		is_empty = true;
443 	}
444 
445 	return is_empty;
446 }
447 
448 
449 /*
450  * iwl_find_otp_image: find EEPROM image in OTP
451  *   finding the OTP block that contains the EEPROM image.
452  *   the last valid block on the link list (the block _before_ the last block)
453  *   is the block we should read and used to configure the device.
454  *   If all the available OTP blocks are full, the last block will be the block
455  *   we should read and used to configure the device.
456  *   only perform this operation if shadow RAM is disabled
457  */
iwl_find_otp_image(struct iwl_trans * trans,u16 * validblockaddr)458 static int iwl_find_otp_image(struct iwl_trans *trans,
459 					u16 *validblockaddr)
460 {
461 	u16 next_link_addr = 0, valid_addr;
462 	__le16 link_value = 0;
463 	int usedblocks = 0;
464 
465 	/* set addressing mode to absolute to traverse the link list */
466 	iwl_set_otp_access(trans, IWL_OTP_ACCESS_ABSOLUTE);
467 
468 	/* checking for empty OTP or error */
469 	if (iwl_is_otp_empty(trans))
470 		return -EINVAL;
471 
472 	/*
473 	 * start traverse link list
474 	 * until reach the max number of OTP blocks
475 	 * different devices have different number of OTP blocks
476 	 */
477 	do {
478 		/* save current valid block address
479 		 * check for more block on the link list
480 		 */
481 		valid_addr = next_link_addr;
482 		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
483 		IWL_DEBUG_EEPROM(trans, "OTP blocks %d addr 0x%x\n",
484 			       usedblocks, next_link_addr);
485 		if (iwl_read_otp_word(trans, next_link_addr, &link_value))
486 			return -EINVAL;
487 		if (!link_value) {
488 			/*
489 			 * reach the end of link list, return success and
490 			 * set address point to the starting address
491 			 * of the image
492 			 */
493 			*validblockaddr = valid_addr;
494 			/* skip first 2 bytes (link list pointer) */
495 			*validblockaddr += 2;
496 			return 0;
497 		}
498 		/* more in the link list, continue */
499 		usedblocks++;
500 	} while (usedblocks <= cfg(trans)->base_params->max_ll_items);
501 
502 	/* OTP has no valid blocks */
503 	IWL_DEBUG_EEPROM(trans, "OTP has no valid blocks\n");
504 	return -EINVAL;
505 }
506 
507 /******************************************************************************
508  *
509  * Tx Power related functions
510  *
511 ******************************************************************************/
512 /**
513  * iwl_get_max_txpower_avg - get the highest tx power from all chains.
514  *     find the highest tx power from all chains for the channel
515  */
iwl_get_max_txpower_avg(struct iwl_priv * priv,struct iwl_eeprom_enhanced_txpwr * enhanced_txpower,int element,s8 * max_txpower_in_half_dbm)516 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
517 		struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
518 		int element, s8 *max_txpower_in_half_dbm)
519 {
520 	s8 max_txpower_avg = 0; /* (dBm) */
521 
522 	/* Take the highest tx power from any valid chains */
523 	if ((hw_params(priv).valid_tx_ant & ANT_A) &&
524 	    (enhanced_txpower[element].chain_a_max > max_txpower_avg))
525 		max_txpower_avg = enhanced_txpower[element].chain_a_max;
526 	if ((hw_params(priv).valid_tx_ant & ANT_B) &&
527 	    (enhanced_txpower[element].chain_b_max > max_txpower_avg))
528 		max_txpower_avg = enhanced_txpower[element].chain_b_max;
529 	if ((hw_params(priv).valid_tx_ant & ANT_C) &&
530 	    (enhanced_txpower[element].chain_c_max > max_txpower_avg))
531 		max_txpower_avg = enhanced_txpower[element].chain_c_max;
532 	if (((hw_params(priv).valid_tx_ant == ANT_AB) |
533 	    (hw_params(priv).valid_tx_ant == ANT_BC) |
534 	    (hw_params(priv).valid_tx_ant == ANT_AC)) &&
535 	    (enhanced_txpower[element].mimo2_max > max_txpower_avg))
536 		max_txpower_avg =  enhanced_txpower[element].mimo2_max;
537 	if ((hw_params(priv).valid_tx_ant == ANT_ABC) &&
538 	    (enhanced_txpower[element].mimo3_max > max_txpower_avg))
539 		max_txpower_avg = enhanced_txpower[element].mimo3_max;
540 
541 	/*
542 	 * max. tx power in EEPROM is in 1/2 dBm format
543 	 * convert from 1/2 dBm to dBm (round-up convert)
544 	 * but we also do not want to loss 1/2 dBm resolution which
545 	 * will impact performance
546 	 */
547 	*max_txpower_in_half_dbm = max_txpower_avg;
548 	return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
549 }
550 
551 static void
iwl_eeprom_enh_txp_read_element(struct iwl_priv * priv,struct iwl_eeprom_enhanced_txpwr * txp,s8 max_txpower_avg)552 iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
553 				    struct iwl_eeprom_enhanced_txpwr *txp,
554 				    s8 max_txpower_avg)
555 {
556 	int ch_idx;
557 	bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
558 	enum ieee80211_band band;
559 
560 	band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
561 		IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
562 
563 	for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
564 		struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];
565 
566 		/* update matching channel or from common data only */
567 		if (txp->channel != 0 && ch_info->channel != txp->channel)
568 			continue;
569 
570 		/* update matching band only */
571 		if (band != ch_info->band)
572 			continue;
573 
574 		if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
575 			ch_info->max_power_avg = max_txpower_avg;
576 			ch_info->curr_txpow = max_txpower_avg;
577 			ch_info->scan_power = max_txpower_avg;
578 		}
579 
580 		if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
581 			ch_info->ht40_max_power_avg = max_txpower_avg;
582 	}
583 }
584 
585 #define EEPROM_TXP_OFFS	(0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
586 #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
587 #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
588 
589 #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
590 			    ? # x " " : "")
591 
iwl_eeprom_enhanced_txpower(struct iwl_priv * priv)592 static void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
593 {
594 	struct iwl_shared *shrd = priv->shrd;
595 	struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
596 	int idx, entries;
597 	__le16 *txp_len;
598 	s8 max_txp_avg, max_txp_avg_halfdbm;
599 
600 	BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
601 
602 	/* the length is in 16-bit words, but we want entries */
603 	txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS);
604 	entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
605 
606 	txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS);
607 
608 	for (idx = 0; idx < entries; idx++) {
609 		txp = &txp_array[idx];
610 		/* skip invalid entries */
611 		if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
612 			continue;
613 
614 		IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
615 				 (txp->channel && (txp->flags &
616 					IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
617 					"Common " : (txp->channel) ?
618 					"Channel" : "Common",
619 				 (txp->channel),
620 				 TXP_CHECK_AND_PRINT(VALID),
621 				 TXP_CHECK_AND_PRINT(BAND_52G),
622 				 TXP_CHECK_AND_PRINT(OFDM),
623 				 TXP_CHECK_AND_PRINT(40MHZ),
624 				 TXP_CHECK_AND_PRINT(HT_AP),
625 				 TXP_CHECK_AND_PRINT(RES1),
626 				 TXP_CHECK_AND_PRINT(RES2),
627 				 TXP_CHECK_AND_PRINT(COMMON_TYPE),
628 				 txp->flags);
629 		IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
630 				 "chain_B: 0X%02x chain_C: 0X%02x\n",
631 				 txp->chain_a_max, txp->chain_b_max,
632 				 txp->chain_c_max);
633 		IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
634 				 "MIMO3: 0x%02x High 20_on_40: 0x%02x "
635 				 "Low 20_on_40: 0x%02x\n",
636 				 txp->mimo2_max, txp->mimo3_max,
637 				 ((txp->delta_20_in_40 & 0xf0) >> 4),
638 				 (txp->delta_20_in_40 & 0x0f));
639 
640 		max_txp_avg = iwl_get_max_txpower_avg(priv, txp_array, idx,
641 						      &max_txp_avg_halfdbm);
642 
643 		/*
644 		 * Update the user limit values values to the highest
645 		 * power supported by any channel
646 		 */
647 		if (max_txp_avg > priv->tx_power_user_lmt)
648 			priv->tx_power_user_lmt = max_txp_avg;
649 		if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
650 			priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;
651 
652 		iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
653 	}
654 }
655 
656 /**
657  * iwl_eeprom_init - read EEPROM contents
658  *
659  * Load the EEPROM contents from adapter into shrd->eeprom
660  *
661  * NOTE:  This routine uses the non-debug IO access functions.
662  */
iwl_eeprom_init(struct iwl_trans * trans,u32 hw_rev)663 int iwl_eeprom_init(struct iwl_trans *trans, u32 hw_rev)
664 {
665 	__le16 *e;
666 	u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
667 	int sz;
668 	int ret;
669 	u16 addr;
670 	u16 validblockaddr = 0;
671 	u16 cache_addr = 0;
672 
673 	trans->nvm_device_type = iwl_get_nvm_type(trans, hw_rev);
674 	if (trans->nvm_device_type == -ENOENT)
675 		return -ENOENT;
676 	/* allocate eeprom */
677 	sz = cfg(trans)->base_params->eeprom_size;
678 	IWL_DEBUG_EEPROM(trans, "NVM size = %d\n", sz);
679 	trans->shrd->eeprom = kzalloc(sz, GFP_KERNEL);
680 	if (!trans->shrd->eeprom) {
681 		ret = -ENOMEM;
682 		goto alloc_err;
683 	}
684 	e = (__le16 *)trans->shrd->eeprom;
685 
686 	ret = iwl_eeprom_verify_signature(trans);
687 	if (ret < 0) {
688 		IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
689 		ret = -ENOENT;
690 		goto err;
691 	}
692 
693 	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
694 	ret = iwl_eeprom_acquire_semaphore(trans);
695 	if (ret < 0) {
696 		IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
697 		ret = -ENOENT;
698 		goto err;
699 	}
700 
701 	if (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
702 
703 		ret = iwl_init_otp_access(trans);
704 		if (ret) {
705 			IWL_ERR(trans, "Failed to initialize OTP access.\n");
706 			ret = -ENOENT;
707 			goto done;
708 		}
709 		iwl_write32(trans, CSR_EEPROM_GP,
710 			    iwl_read32(trans, CSR_EEPROM_GP) &
711 			    ~CSR_EEPROM_GP_IF_OWNER_MSK);
712 
713 		iwl_set_bit(trans, CSR_OTP_GP_REG,
714 			     CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
715 			     CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
716 		/* traversing the linked list if no shadow ram supported */
717 		if (!cfg(trans)->base_params->shadow_ram_support) {
718 			if (iwl_find_otp_image(trans, &validblockaddr)) {
719 				ret = -ENOENT;
720 				goto done;
721 			}
722 		}
723 		for (addr = validblockaddr; addr < validblockaddr + sz;
724 		     addr += sizeof(u16)) {
725 			__le16 eeprom_data;
726 
727 			ret = iwl_read_otp_word(trans, addr, &eeprom_data);
728 			if (ret)
729 				goto done;
730 			e[cache_addr / 2] = eeprom_data;
731 			cache_addr += sizeof(u16);
732 		}
733 	} else {
734 		/* eeprom is an array of 16bit values */
735 		for (addr = 0; addr < sz; addr += sizeof(u16)) {
736 			u32 r;
737 
738 			iwl_write32(trans, CSR_EEPROM_REG,
739 				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
740 
741 			ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
742 						  CSR_EEPROM_REG_READ_VALID_MSK,
743 						  CSR_EEPROM_REG_READ_VALID_MSK,
744 						  IWL_EEPROM_ACCESS_TIMEOUT);
745 			if (ret < 0) {
746 				IWL_ERR(trans,
747 					"Time out reading EEPROM[%d]\n", addr);
748 				goto done;
749 			}
750 			r = iwl_read32(trans, CSR_EEPROM_REG);
751 			e[addr / 2] = cpu_to_le16(r >> 16);
752 		}
753 	}
754 
755 	IWL_DEBUG_EEPROM(trans, "NVM Type: %s, version: 0x%x\n",
756 		       (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
757 		       ? "OTP" : "EEPROM",
758 		       iwl_eeprom_query16(trans->shrd, EEPROM_VERSION));
759 
760 	ret = 0;
761 done:
762 	iwl_eeprom_release_semaphore(trans);
763 
764 err:
765 	if (ret)
766 		iwl_eeprom_free(trans->shrd);
767 alloc_err:
768 	return ret;
769 }
770 
iwl_eeprom_free(struct iwl_shared * shrd)771 void iwl_eeprom_free(struct iwl_shared *shrd)
772 {
773 	kfree(shrd->eeprom);
774 	shrd->eeprom = NULL;
775 }
776 
iwl_init_band_reference(const struct iwl_priv * priv,int eep_band,int * eeprom_ch_count,const struct iwl_eeprom_channel ** eeprom_ch_info,const u8 ** eeprom_ch_index)777 static void iwl_init_band_reference(const struct iwl_priv *priv,
778 			int eep_band, int *eeprom_ch_count,
779 			const struct iwl_eeprom_channel **eeprom_ch_info,
780 			const u8 **eeprom_ch_index)
781 {
782 	struct iwl_shared *shrd = priv->shrd;
783 	u32 offset = cfg(priv)->lib->
784 			eeprom_ops.regulatory_bands[eep_band - 1];
785 	switch (eep_band) {
786 	case 1:		/* 2.4GHz band */
787 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
788 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
789 				iwl_eeprom_query_addr(shrd, offset);
790 		*eeprom_ch_index = iwl_eeprom_band_1;
791 		break;
792 	case 2:		/* 4.9GHz band */
793 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
794 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
795 				iwl_eeprom_query_addr(shrd, offset);
796 		*eeprom_ch_index = iwl_eeprom_band_2;
797 		break;
798 	case 3:		/* 5.2GHz band */
799 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
800 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
801 				iwl_eeprom_query_addr(shrd, offset);
802 		*eeprom_ch_index = iwl_eeprom_band_3;
803 		break;
804 	case 4:		/* 5.5GHz band */
805 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
806 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
807 				iwl_eeprom_query_addr(shrd, offset);
808 		*eeprom_ch_index = iwl_eeprom_band_4;
809 		break;
810 	case 5:		/* 5.7GHz band */
811 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
812 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
813 				iwl_eeprom_query_addr(shrd, offset);
814 		*eeprom_ch_index = iwl_eeprom_band_5;
815 		break;
816 	case 6:		/* 2.4GHz ht40 channels */
817 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
818 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
819 				iwl_eeprom_query_addr(shrd, offset);
820 		*eeprom_ch_index = iwl_eeprom_band_6;
821 		break;
822 	case 7:		/* 5 GHz ht40 channels */
823 		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
824 		*eeprom_ch_info = (struct iwl_eeprom_channel *)
825 				iwl_eeprom_query_addr(shrd, offset);
826 		*eeprom_ch_index = iwl_eeprom_band_7;
827 		break;
828 	default:
829 		BUG();
830 		return;
831 	}
832 }
833 
834 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
835 			    ? # x " " : "")
836 /**
837  * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
838  *
839  * Does not set up a command, or touch hardware.
840  */
iwl_mod_ht40_chan_info(struct iwl_priv * priv,enum ieee80211_band band,u16 channel,const struct iwl_eeprom_channel * eeprom_ch,u8 clear_ht40_extension_channel)841 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
842 			      enum ieee80211_band band, u16 channel,
843 			      const struct iwl_eeprom_channel *eeprom_ch,
844 			      u8 clear_ht40_extension_channel)
845 {
846 	struct iwl_channel_info *ch_info;
847 
848 	ch_info = (struct iwl_channel_info *)
849 			iwl_get_channel_info(priv, band, channel);
850 
851 	if (!is_channel_valid(ch_info))
852 		return -1;
853 
854 	IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
855 			" Ad-Hoc %ssupported\n",
856 			ch_info->channel,
857 			is_channel_a_band(ch_info) ?
858 			"5.2" : "2.4",
859 			CHECK_AND_PRINT(IBSS),
860 			CHECK_AND_PRINT(ACTIVE),
861 			CHECK_AND_PRINT(RADAR),
862 			CHECK_AND_PRINT(WIDE),
863 			CHECK_AND_PRINT(DFS),
864 			eeprom_ch->flags,
865 			eeprom_ch->max_power_avg,
866 			((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
867 			 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
868 			"" : "not ");
869 
870 	ch_info->ht40_eeprom = *eeprom_ch;
871 	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
872 	ch_info->ht40_flags = eeprom_ch->flags;
873 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
874 		ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
875 
876 	return 0;
877 }
878 
879 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
880 			    ? # x " " : "")
881 
882 /**
883  * iwl_init_channel_map - Set up driver's info for all possible channels
884  */
iwl_init_channel_map(struct iwl_priv * priv)885 int iwl_init_channel_map(struct iwl_priv *priv)
886 {
887 	int eeprom_ch_count = 0;
888 	const u8 *eeprom_ch_index = NULL;
889 	const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
890 	int band, ch;
891 	struct iwl_channel_info *ch_info;
892 
893 	if (priv->channel_count) {
894 		IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
895 		return 0;
896 	}
897 
898 	IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
899 
900 	priv->channel_count =
901 	    ARRAY_SIZE(iwl_eeprom_band_1) +
902 	    ARRAY_SIZE(iwl_eeprom_band_2) +
903 	    ARRAY_SIZE(iwl_eeprom_band_3) +
904 	    ARRAY_SIZE(iwl_eeprom_band_4) +
905 	    ARRAY_SIZE(iwl_eeprom_band_5);
906 
907 	IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
908 			priv->channel_count);
909 
910 	priv->channel_info = kcalloc(priv->channel_count,
911 				     sizeof(struct iwl_channel_info),
912 				     GFP_KERNEL);
913 	if (!priv->channel_info) {
914 		IWL_ERR(priv, "Could not allocate channel_info\n");
915 		priv->channel_count = 0;
916 		return -ENOMEM;
917 	}
918 
919 	ch_info = priv->channel_info;
920 
921 	/* Loop through the 5 EEPROM bands adding them in order to the
922 	 * channel map we maintain (that contains additional information than
923 	 * what just in the EEPROM) */
924 	for (band = 1; band <= 5; band++) {
925 
926 		iwl_init_band_reference(priv, band, &eeprom_ch_count,
927 					&eeprom_ch_info, &eeprom_ch_index);
928 
929 		/* Loop through each band adding each of the channels */
930 		for (ch = 0; ch < eeprom_ch_count; ch++) {
931 			ch_info->channel = eeprom_ch_index[ch];
932 			ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
933 			    IEEE80211_BAND_5GHZ;
934 
935 			/* permanently store EEPROM's channel regulatory flags
936 			 *   and max power in channel info database. */
937 			ch_info->eeprom = eeprom_ch_info[ch];
938 
939 			/* Copy the run-time flags so they are there even on
940 			 * invalid channels */
941 			ch_info->flags = eeprom_ch_info[ch].flags;
942 			/* First write that ht40 is not enabled, and then enable
943 			 * one by one */
944 			ch_info->ht40_extension_channel =
945 					IEEE80211_CHAN_NO_HT40;
946 
947 			if (!(is_channel_valid(ch_info))) {
948 				IWL_DEBUG_EEPROM(priv,
949 					       "Ch. %d Flags %x [%sGHz] - "
950 					       "No traffic\n",
951 					       ch_info->channel,
952 					       ch_info->flags,
953 					       is_channel_a_band(ch_info) ?
954 					       "5.2" : "2.4");
955 				ch_info++;
956 				continue;
957 			}
958 
959 			/* Initialize regulatory-based run-time data */
960 			ch_info->max_power_avg = ch_info->curr_txpow =
961 			    eeprom_ch_info[ch].max_power_avg;
962 			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
963 			ch_info->min_power = 0;
964 
965 			IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
966 				       "%s%s%s%s%s%s(0x%02x %ddBm):"
967 				       " Ad-Hoc %ssupported\n",
968 				       ch_info->channel,
969 				       is_channel_a_band(ch_info) ?
970 				       "5.2" : "2.4",
971 				       CHECK_AND_PRINT_I(VALID),
972 				       CHECK_AND_PRINT_I(IBSS),
973 				       CHECK_AND_PRINT_I(ACTIVE),
974 				       CHECK_AND_PRINT_I(RADAR),
975 				       CHECK_AND_PRINT_I(WIDE),
976 				       CHECK_AND_PRINT_I(DFS),
977 				       eeprom_ch_info[ch].flags,
978 				       eeprom_ch_info[ch].max_power_avg,
979 				       ((eeprom_ch_info[ch].
980 					 flags & EEPROM_CHANNEL_IBSS)
981 					&& !(eeprom_ch_info[ch].
982 					     flags & EEPROM_CHANNEL_RADAR))
983 				       ? "" : "not ");
984 
985 			ch_info++;
986 		}
987 	}
988 
989 	/* Check if we do have HT40 channels */
990 	if (cfg(priv)->lib->eeprom_ops.regulatory_bands[5] ==
991 	    EEPROM_REGULATORY_BAND_NO_HT40 &&
992 	    cfg(priv)->lib->eeprom_ops.regulatory_bands[6] ==
993 	    EEPROM_REGULATORY_BAND_NO_HT40)
994 		return 0;
995 
996 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
997 	for (band = 6; band <= 7; band++) {
998 		enum ieee80211_band ieeeband;
999 
1000 		iwl_init_band_reference(priv, band, &eeprom_ch_count,
1001 					&eeprom_ch_info, &eeprom_ch_index);
1002 
1003 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1004 		ieeeband =
1005 			(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1006 
1007 		/* Loop through each band adding each of the channels */
1008 		for (ch = 0; ch < eeprom_ch_count; ch++) {
1009 			/* Set up driver's info for lower half */
1010 			iwl_mod_ht40_chan_info(priv, ieeeband,
1011 						eeprom_ch_index[ch],
1012 						&eeprom_ch_info[ch],
1013 						IEEE80211_CHAN_NO_HT40PLUS);
1014 
1015 			/* Set up driver's info for upper half */
1016 			iwl_mod_ht40_chan_info(priv, ieeeband,
1017 						eeprom_ch_index[ch] + 4,
1018 						&eeprom_ch_info[ch],
1019 						IEEE80211_CHAN_NO_HT40MINUS);
1020 		}
1021 	}
1022 
1023 	/* for newer device (6000 series and up)
1024 	 * EEPROM contain enhanced tx power information
1025 	 * driver need to process addition information
1026 	 * to determine the max channel tx power limits
1027 	 */
1028 	if (cfg(priv)->lib->eeprom_ops.enhanced_txpower)
1029 		iwl_eeprom_enhanced_txpower(priv);
1030 
1031 	return 0;
1032 }
1033 
1034 /*
1035  * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1036  */
iwl_free_channel_map(struct iwl_priv * priv)1037 void iwl_free_channel_map(struct iwl_priv *priv)
1038 {
1039 	kfree(priv->channel_info);
1040 	priv->channel_count = 0;
1041 }
1042 
1043 /**
1044  * iwl_get_channel_info - Find driver's private channel info
1045  *
1046  * Based on band and channel number.
1047  */
iwl_get_channel_info(const struct iwl_priv * priv,enum ieee80211_band band,u16 channel)1048 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1049 					enum ieee80211_band band, u16 channel)
1050 {
1051 	int i;
1052 
1053 	switch (band) {
1054 	case IEEE80211_BAND_5GHZ:
1055 		for (i = 14; i < priv->channel_count; i++) {
1056 			if (priv->channel_info[i].channel == channel)
1057 				return &priv->channel_info[i];
1058 		}
1059 		break;
1060 	case IEEE80211_BAND_2GHZ:
1061 		if (channel >= 1 && channel <= 14)
1062 			return &priv->channel_info[channel - 1];
1063 		break;
1064 	default:
1065 		BUG();
1066 	}
1067 
1068 	return NULL;
1069 }
1070 
iwl_rf_config(struct iwl_priv * priv)1071 void iwl_rf_config(struct iwl_priv *priv)
1072 {
1073 	u16 radio_cfg;
1074 
1075 	radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG);
1076 
1077 	/* write radio config values to register */
1078 	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
1079 		iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
1080 			    EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
1081 			    EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
1082 			    EEPROM_RF_CFG_DASH_MSK(radio_cfg));
1083 		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
1084 			 EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
1085 			 EEPROM_RF_CFG_STEP_MSK(radio_cfg),
1086 			 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
1087 	} else
1088 		WARN_ON(1);
1089 
1090 	/* set CSR_HW_CONFIG_REG for uCode use */
1091 	iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
1092 		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
1093 		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
1094 }
1095