1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
48
49 #define RD_LOCAL_LPI_ENABLED BIT(0)
50 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
51 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
52
53 static u32 lpi_id_bits;
54
55 /*
56 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
57 * deal with (one configuration byte per interrupt). PENDBASE has to
58 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 */
60 #define LPI_NRBITS lpi_id_bits
61 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
62 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63
64 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
65
66 /*
67 * Collection structure - just an ID, and a redistributor address to
68 * ping. We use one per CPU as a bag of interrupts assigned to this
69 * CPU.
70 */
71 struct its_collection {
72 u64 target_address;
73 u16 col_id;
74 };
75
76 /*
77 * The ITS_BASER structure - contains memory information, cached
78 * value of BASER register configuration and ITS page size.
79 */
80 struct its_baser {
81 void *base;
82 u64 val;
83 u32 order;
84 u32 psz;
85 };
86
87 struct its_device;
88
89 /*
90 * The ITS structure - contains most of the infrastructure, with the
91 * top-level MSI domain, the command queue, the collections, and the
92 * list of devices writing to it.
93 *
94 * dev_alloc_lock has to be taken for device allocations, while the
95 * spinlock must be taken to parse data structures such as the device
96 * list.
97 */
98 struct its_node {
99 raw_spinlock_t lock;
100 struct mutex dev_alloc_lock;
101 struct list_head entry;
102 void __iomem *base;
103 void __iomem *sgir_base;
104 phys_addr_t phys_base;
105 struct its_cmd_block *cmd_base;
106 struct its_cmd_block *cmd_write;
107 struct its_baser tables[GITS_BASER_NR_REGS];
108 struct its_collection *collections;
109 struct fwnode_handle *fwnode_handle;
110 u64 (*get_msi_base)(struct its_device *its_dev);
111 u64 typer;
112 u64 cbaser_save;
113 u32 ctlr_save;
114 u32 mpidr;
115 struct list_head its_device_list;
116 u64 flags;
117 unsigned long list_nr;
118 int numa_node;
119 unsigned int msi_domain_flags;
120 u32 pre_its_base; /* for Socionext Synquacer */
121 int vlpi_redist_offset;
122 };
123
124 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
125 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
126 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127
128 #define ITS_ITT_ALIGN SZ_256
129
130 /* The maximum number of VPEID bits supported by VLPI commands */
131 #define ITS_MAX_VPEID_BITS \
132 ({ \
133 int nvpeid = 16; \
134 if (gic_rdists->has_rvpeid && \
135 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
136 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
137 GICD_TYPER2_VID); \
138 \
139 nvpeid; \
140 })
141 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
142
143 /* Convert page order to size in bytes */
144 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
145
146 struct event_lpi_map {
147 unsigned long *lpi_map;
148 u16 *col_map;
149 irq_hw_number_t lpi_base;
150 int nr_lpis;
151 raw_spinlock_t vlpi_lock;
152 struct its_vm *vm;
153 struct its_vlpi_map *vlpi_maps;
154 int nr_vlpis;
155 };
156
157 /*
158 * The ITS view of a device - belongs to an ITS, owns an interrupt
159 * translation table, and a list of interrupts. If it some of its
160 * LPIs are injected into a guest (GICv4), the event_map.vm field
161 * indicates which one.
162 */
163 struct its_device {
164 struct list_head entry;
165 struct its_node *its;
166 struct event_lpi_map event_map;
167 void *itt;
168 u32 nr_ites;
169 u32 device_id;
170 bool shared;
171 };
172
173 static struct {
174 raw_spinlock_t lock;
175 struct its_device *dev;
176 struct its_vpe **vpes;
177 int next_victim;
178 } vpe_proxy;
179
180 struct cpu_lpi_count {
181 atomic_t managed;
182 atomic_t unmanaged;
183 };
184
185 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186
187 static LIST_HEAD(its_nodes);
188 static DEFINE_RAW_SPINLOCK(its_lock);
189 static struct rdists *gic_rdists;
190 static struct irq_domain *its_parent;
191
192 static unsigned long its_list_map;
193 static u16 vmovp_seq_num;
194 static DEFINE_RAW_SPINLOCK(vmovp_lock);
195
196 static DEFINE_IDA(its_vpeid_ida);
197
198 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
199 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
200 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
201 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
202
203 /*
204 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
205 * always have vSGIs mapped.
206 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)207 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208 {
209 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
210 }
211
get_its_list(struct its_vm * vm)212 static u16 get_its_list(struct its_vm *vm)
213 {
214 struct its_node *its;
215 unsigned long its_list = 0;
216
217 list_for_each_entry(its, &its_nodes, entry) {
218 if (!is_v4(its))
219 continue;
220
221 if (require_its_list_vmovp(vm, its))
222 __set_bit(its->list_nr, &its_list);
223 }
224
225 return (u16)its_list;
226 }
227
its_get_event_id(struct irq_data * d)228 static inline u32 its_get_event_id(struct irq_data *d)
229 {
230 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
231 return d->hwirq - its_dev->event_map.lpi_base;
232 }
233
dev_event_to_col(struct its_device * its_dev,u32 event)234 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
235 u32 event)
236 {
237 struct its_node *its = its_dev->its;
238
239 return its->collections + its_dev->event_map.col_map[event];
240 }
241
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)242 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
243 u32 event)
244 {
245 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
246 return NULL;
247
248 return &its_dev->event_map.vlpi_maps[event];
249 }
250
get_vlpi_map(struct irq_data * d)251 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
252 {
253 if (irqd_is_forwarded_to_vcpu(d)) {
254 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
255 u32 event = its_get_event_id(d);
256
257 return dev_event_to_vlpi_map(its_dev, event);
258 }
259
260 return NULL;
261 }
262
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)263 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
264 {
265 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
266 return vpe->col_idx;
267 }
268
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)269 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
270 {
271 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
272 }
273
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276 struct its_vlpi_map *map = get_vlpi_map(d);
277 int cpu;
278
279 if (map) {
280 cpu = vpe_to_cpuid_lock(map->vpe, flags);
281 } else {
282 /* Physical LPIs are already locked via the irq_desc lock */
283 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
284 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
285 /* Keep GCC quiet... */
286 *flags = 0;
287 }
288
289 return cpu;
290 }
291
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)292 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
293 {
294 struct its_vlpi_map *map = get_vlpi_map(d);
295
296 if (map)
297 vpe_to_cpuid_unlock(map->vpe, flags);
298 }
299
valid_col(struct its_collection * col)300 static struct its_collection *valid_col(struct its_collection *col)
301 {
302 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
303 return NULL;
304
305 return col;
306 }
307
valid_vpe(struct its_node * its,struct its_vpe * vpe)308 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
309 {
310 if (valid_col(its->collections + vpe->col_idx))
311 return vpe;
312
313 return NULL;
314 }
315
316 /*
317 * ITS command descriptors - parameters to be encoded in a command
318 * block.
319 */
320 struct its_cmd_desc {
321 union {
322 struct {
323 struct its_device *dev;
324 u32 event_id;
325 } its_inv_cmd;
326
327 struct {
328 struct its_device *dev;
329 u32 event_id;
330 } its_clear_cmd;
331
332 struct {
333 struct its_device *dev;
334 u32 event_id;
335 } its_int_cmd;
336
337 struct {
338 struct its_device *dev;
339 int valid;
340 } its_mapd_cmd;
341
342 struct {
343 struct its_collection *col;
344 int valid;
345 } its_mapc_cmd;
346
347 struct {
348 struct its_device *dev;
349 u32 phys_id;
350 u32 event_id;
351 } its_mapti_cmd;
352
353 struct {
354 struct its_device *dev;
355 struct its_collection *col;
356 u32 event_id;
357 } its_movi_cmd;
358
359 struct {
360 struct its_device *dev;
361 u32 event_id;
362 } its_discard_cmd;
363
364 struct {
365 struct its_collection *col;
366 } its_invall_cmd;
367
368 struct {
369 struct its_vpe *vpe;
370 } its_vinvall_cmd;
371
372 struct {
373 struct its_vpe *vpe;
374 struct its_collection *col;
375 bool valid;
376 } its_vmapp_cmd;
377
378 struct {
379 struct its_vpe *vpe;
380 struct its_device *dev;
381 u32 virt_id;
382 u32 event_id;
383 bool db_enabled;
384 } its_vmapti_cmd;
385
386 struct {
387 struct its_vpe *vpe;
388 struct its_device *dev;
389 u32 event_id;
390 bool db_enabled;
391 } its_vmovi_cmd;
392
393 struct {
394 struct its_vpe *vpe;
395 struct its_collection *col;
396 u16 seq_num;
397 u16 its_list;
398 } its_vmovp_cmd;
399
400 struct {
401 struct its_vpe *vpe;
402 } its_invdb_cmd;
403
404 struct {
405 struct its_vpe *vpe;
406 u8 sgi;
407 u8 priority;
408 bool enable;
409 bool group;
410 bool clear;
411 } its_vsgi_cmd;
412 };
413 };
414
415 /*
416 * The ITS command block, which is what the ITS actually parses.
417 */
418 struct its_cmd_block {
419 union {
420 u64 raw_cmd[4];
421 __le64 raw_cmd_le[4];
422 };
423 };
424
425 #define ITS_CMD_QUEUE_SZ SZ_64K
426 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
427
428 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
429 struct its_cmd_block *,
430 struct its_cmd_desc *);
431
432 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
433 struct its_cmd_block *,
434 struct its_cmd_desc *);
435
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)436 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
437 {
438 u64 mask = GENMASK_ULL(h, l);
439 *raw_cmd &= ~mask;
440 *raw_cmd |= (val << l) & mask;
441 }
442
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)443 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
444 {
445 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
446 }
447
its_encode_devid(struct its_cmd_block * cmd,u32 devid)448 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
449 {
450 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
451 }
452
its_encode_event_id(struct its_cmd_block * cmd,u32 id)453 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
454 {
455 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
456 }
457
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)458 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
459 {
460 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
461 }
462
its_encode_size(struct its_cmd_block * cmd,u8 size)463 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
464 {
465 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
466 }
467
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)468 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
469 {
470 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
471 }
472
its_encode_valid(struct its_cmd_block * cmd,int valid)473 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
474 {
475 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
476 }
477
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)478 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
479 {
480 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
481 }
482
its_encode_collection(struct its_cmd_block * cmd,u16 col)483 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
484 {
485 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
486 }
487
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)488 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
489 {
490 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
491 }
492
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)493 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
494 {
495 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
496 }
497
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)498 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
499 {
500 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
501 }
502
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)503 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
504 {
505 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
506 }
507
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)508 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
509 {
510 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
511 }
512
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)513 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
514 {
515 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
516 }
517
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)518 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
519 {
520 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
521 }
522
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)523 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
524 {
525 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
526 }
527
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)528 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
529 {
530 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
531 }
532
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)533 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
534 {
535 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
536 }
537
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)538 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
539 {
540 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
541 }
542
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)543 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
544 u32 vpe_db_lpi)
545 {
546 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
547 }
548
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)549 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
550 u32 vpe_db_lpi)
551 {
552 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
553 }
554
its_encode_db(struct its_cmd_block * cmd,bool db)555 static void its_encode_db(struct its_cmd_block *cmd, bool db)
556 {
557 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
558 }
559
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)560 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
561 {
562 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
563 }
564
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)565 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
566 {
567 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
568 }
569
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)570 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
571 {
572 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
573 }
574
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)575 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
576 {
577 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
578 }
579
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)580 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
581 {
582 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
583 }
584
its_fixup_cmd(struct its_cmd_block * cmd)585 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
586 {
587 /* Let's fixup BE commands */
588 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
589 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
590 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
591 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
592 }
593
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)594 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
595 struct its_cmd_block *cmd,
596 struct its_cmd_desc *desc)
597 {
598 unsigned long itt_addr;
599 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
600
601 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
602 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
603
604 its_encode_cmd(cmd, GITS_CMD_MAPD);
605 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
606 its_encode_size(cmd, size - 1);
607 its_encode_itt(cmd, itt_addr);
608 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
609
610 its_fixup_cmd(cmd);
611
612 return NULL;
613 }
614
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)615 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
616 struct its_cmd_block *cmd,
617 struct its_cmd_desc *desc)
618 {
619 its_encode_cmd(cmd, GITS_CMD_MAPC);
620 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
621 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
622 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
623
624 its_fixup_cmd(cmd);
625
626 return desc->its_mapc_cmd.col;
627 }
628
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)629 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
630 struct its_cmd_block *cmd,
631 struct its_cmd_desc *desc)
632 {
633 struct its_collection *col;
634
635 col = dev_event_to_col(desc->its_mapti_cmd.dev,
636 desc->its_mapti_cmd.event_id);
637
638 its_encode_cmd(cmd, GITS_CMD_MAPTI);
639 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
640 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
641 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
642 its_encode_collection(cmd, col->col_id);
643
644 its_fixup_cmd(cmd);
645
646 return valid_col(col);
647 }
648
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)649 static struct its_collection *its_build_movi_cmd(struct its_node *its,
650 struct its_cmd_block *cmd,
651 struct its_cmd_desc *desc)
652 {
653 struct its_collection *col;
654
655 col = dev_event_to_col(desc->its_movi_cmd.dev,
656 desc->its_movi_cmd.event_id);
657
658 its_encode_cmd(cmd, GITS_CMD_MOVI);
659 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
660 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
661 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
662
663 its_fixup_cmd(cmd);
664
665 return valid_col(col);
666 }
667
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)668 static struct its_collection *its_build_discard_cmd(struct its_node *its,
669 struct its_cmd_block *cmd,
670 struct its_cmd_desc *desc)
671 {
672 struct its_collection *col;
673
674 col = dev_event_to_col(desc->its_discard_cmd.dev,
675 desc->its_discard_cmd.event_id);
676
677 its_encode_cmd(cmd, GITS_CMD_DISCARD);
678 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
679 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
680
681 its_fixup_cmd(cmd);
682
683 return valid_col(col);
684 }
685
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)686 static struct its_collection *its_build_inv_cmd(struct its_node *its,
687 struct its_cmd_block *cmd,
688 struct its_cmd_desc *desc)
689 {
690 struct its_collection *col;
691
692 col = dev_event_to_col(desc->its_inv_cmd.dev,
693 desc->its_inv_cmd.event_id);
694
695 its_encode_cmd(cmd, GITS_CMD_INV);
696 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
697 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
698
699 its_fixup_cmd(cmd);
700
701 return valid_col(col);
702 }
703
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)704 static struct its_collection *its_build_int_cmd(struct its_node *its,
705 struct its_cmd_block *cmd,
706 struct its_cmd_desc *desc)
707 {
708 struct its_collection *col;
709
710 col = dev_event_to_col(desc->its_int_cmd.dev,
711 desc->its_int_cmd.event_id);
712
713 its_encode_cmd(cmd, GITS_CMD_INT);
714 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
715 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
716
717 its_fixup_cmd(cmd);
718
719 return valid_col(col);
720 }
721
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)722 static struct its_collection *its_build_clear_cmd(struct its_node *its,
723 struct its_cmd_block *cmd,
724 struct its_cmd_desc *desc)
725 {
726 struct its_collection *col;
727
728 col = dev_event_to_col(desc->its_clear_cmd.dev,
729 desc->its_clear_cmd.event_id);
730
731 its_encode_cmd(cmd, GITS_CMD_CLEAR);
732 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
733 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
734
735 its_fixup_cmd(cmd);
736
737 return valid_col(col);
738 }
739
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)740 static struct its_collection *its_build_invall_cmd(struct its_node *its,
741 struct its_cmd_block *cmd,
742 struct its_cmd_desc *desc)
743 {
744 its_encode_cmd(cmd, GITS_CMD_INVALL);
745 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
746
747 its_fixup_cmd(cmd);
748
749 return desc->its_invall_cmd.col;
750 }
751
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)752 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
753 struct its_cmd_block *cmd,
754 struct its_cmd_desc *desc)
755 {
756 its_encode_cmd(cmd, GITS_CMD_VINVALL);
757 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
758
759 its_fixup_cmd(cmd);
760
761 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
762 }
763
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)764 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
765 struct its_cmd_block *cmd,
766 struct its_cmd_desc *desc)
767 {
768 unsigned long vpt_addr, vconf_addr;
769 u64 target;
770 bool alloc;
771
772 its_encode_cmd(cmd, GITS_CMD_VMAPP);
773 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
774 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
775
776 if (!desc->its_vmapp_cmd.valid) {
777 if (is_v4_1(its)) {
778 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
779 its_encode_alloc(cmd, alloc);
780 }
781
782 goto out;
783 }
784
785 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
786 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
787
788 its_encode_target(cmd, target);
789 its_encode_vpt_addr(cmd, vpt_addr);
790 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
791
792 if (!is_v4_1(its))
793 goto out;
794
795 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
796
797 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
798
799 its_encode_alloc(cmd, alloc);
800
801 /*
802 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
803 * to be unmapped first, and in this case, we may remap the vPE
804 * back while the VPT is not empty. So we can't assume that the
805 * VPT is empty on map. This is why we never advertise PTZ.
806 */
807 its_encode_ptz(cmd, false);
808 its_encode_vconf_addr(cmd, vconf_addr);
809 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
810
811 out:
812 its_fixup_cmd(cmd);
813
814 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
815 }
816
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)817 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
818 struct its_cmd_block *cmd,
819 struct its_cmd_desc *desc)
820 {
821 u32 db;
822
823 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
824 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
825 else
826 db = 1023;
827
828 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
829 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
830 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
831 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
832 its_encode_db_phys_id(cmd, db);
833 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
834
835 its_fixup_cmd(cmd);
836
837 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
838 }
839
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)840 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
841 struct its_cmd_block *cmd,
842 struct its_cmd_desc *desc)
843 {
844 u32 db;
845
846 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
847 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
848 else
849 db = 1023;
850
851 its_encode_cmd(cmd, GITS_CMD_VMOVI);
852 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
853 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
854 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
855 its_encode_db_phys_id(cmd, db);
856 its_encode_db_valid(cmd, true);
857
858 its_fixup_cmd(cmd);
859
860 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
861 }
862
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)863 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
864 struct its_cmd_block *cmd,
865 struct its_cmd_desc *desc)
866 {
867 u64 target;
868
869 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
870 its_encode_cmd(cmd, GITS_CMD_VMOVP);
871 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
872 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
873 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
874 its_encode_target(cmd, target);
875
876 if (is_v4_1(its)) {
877 its_encode_db(cmd, true);
878 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
879 }
880
881 its_fixup_cmd(cmd);
882
883 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
884 }
885
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)886 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
887 struct its_cmd_block *cmd,
888 struct its_cmd_desc *desc)
889 {
890 struct its_vlpi_map *map;
891
892 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
893 desc->its_inv_cmd.event_id);
894
895 its_encode_cmd(cmd, GITS_CMD_INV);
896 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
897 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
898
899 its_fixup_cmd(cmd);
900
901 return valid_vpe(its, map->vpe);
902 }
903
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)904 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
905 struct its_cmd_block *cmd,
906 struct its_cmd_desc *desc)
907 {
908 struct its_vlpi_map *map;
909
910 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
911 desc->its_int_cmd.event_id);
912
913 its_encode_cmd(cmd, GITS_CMD_INT);
914 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
915 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
916
917 its_fixup_cmd(cmd);
918
919 return valid_vpe(its, map->vpe);
920 }
921
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)922 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
923 struct its_cmd_block *cmd,
924 struct its_cmd_desc *desc)
925 {
926 struct its_vlpi_map *map;
927
928 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
929 desc->its_clear_cmd.event_id);
930
931 its_encode_cmd(cmd, GITS_CMD_CLEAR);
932 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
933 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
934
935 its_fixup_cmd(cmd);
936
937 return valid_vpe(its, map->vpe);
938 }
939
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)940 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
941 struct its_cmd_block *cmd,
942 struct its_cmd_desc *desc)
943 {
944 if (WARN_ON(!is_v4_1(its)))
945 return NULL;
946
947 its_encode_cmd(cmd, GITS_CMD_INVDB);
948 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
949
950 its_fixup_cmd(cmd);
951
952 return valid_vpe(its, desc->its_invdb_cmd.vpe);
953 }
954
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)955 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
956 struct its_cmd_block *cmd,
957 struct its_cmd_desc *desc)
958 {
959 if (WARN_ON(!is_v4_1(its)))
960 return NULL;
961
962 its_encode_cmd(cmd, GITS_CMD_VSGI);
963 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
964 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
965 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
966 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
967 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
968 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
969
970 its_fixup_cmd(cmd);
971
972 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
973 }
974
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)975 static u64 its_cmd_ptr_to_offset(struct its_node *its,
976 struct its_cmd_block *ptr)
977 {
978 return (ptr - its->cmd_base) * sizeof(*ptr);
979 }
980
its_queue_full(struct its_node * its)981 static int its_queue_full(struct its_node *its)
982 {
983 int widx;
984 int ridx;
985
986 widx = its->cmd_write - its->cmd_base;
987 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
988
989 /* This is incredibly unlikely to happen, unless the ITS locks up. */
990 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
991 return 1;
992
993 return 0;
994 }
995
its_allocate_entry(struct its_node * its)996 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
997 {
998 struct its_cmd_block *cmd;
999 u32 count = 1000000; /* 1s! */
1000
1001 while (its_queue_full(its)) {
1002 count--;
1003 if (!count) {
1004 pr_err_ratelimited("ITS queue not draining\n");
1005 return NULL;
1006 }
1007 cpu_relax();
1008 udelay(1);
1009 }
1010
1011 cmd = its->cmd_write++;
1012
1013 /* Handle queue wrapping */
1014 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015 its->cmd_write = its->cmd_base;
1016
1017 /* Clear command */
1018 cmd->raw_cmd[0] = 0;
1019 cmd->raw_cmd[1] = 0;
1020 cmd->raw_cmd[2] = 0;
1021 cmd->raw_cmd[3] = 0;
1022
1023 return cmd;
1024 }
1025
its_post_commands(struct its_node * its)1026 static struct its_cmd_block *its_post_commands(struct its_node *its)
1027 {
1028 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029
1030 writel_relaxed(wr, its->base + GITS_CWRITER);
1031
1032 return its->cmd_write;
1033 }
1034
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1035 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036 {
1037 /*
1038 * Make sure the commands written to memory are observable by
1039 * the ITS.
1040 */
1041 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043 else
1044 dsb(ishst);
1045 }
1046
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1047 static int its_wait_for_range_completion(struct its_node *its,
1048 u64 prev_idx,
1049 struct its_cmd_block *to)
1050 {
1051 u64 rd_idx, to_idx, linear_idx;
1052 u32 count = 1000000; /* 1s! */
1053
1054 /* Linearize to_idx if the command set has wrapped around */
1055 to_idx = its_cmd_ptr_to_offset(its, to);
1056 if (to_idx < prev_idx)
1057 to_idx += ITS_CMD_QUEUE_SZ;
1058
1059 linear_idx = prev_idx;
1060
1061 while (1) {
1062 s64 delta;
1063
1064 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065
1066 /*
1067 * Compute the read pointer progress, taking the
1068 * potential wrap-around into account.
1069 */
1070 delta = rd_idx - prev_idx;
1071 if (rd_idx < prev_idx)
1072 delta += ITS_CMD_QUEUE_SZ;
1073
1074 linear_idx += delta;
1075 if (linear_idx >= to_idx)
1076 break;
1077
1078 count--;
1079 if (!count) {
1080 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081 to_idx, linear_idx);
1082 return -1;
1083 }
1084 prev_idx = rd_idx;
1085 cpu_relax();
1086 udelay(1);
1087 }
1088
1089 return 0;
1090 }
1091
1092 /* Warning, macro hell follows */
1093 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1094 void name(struct its_node *its, \
1095 buildtype builder, \
1096 struct its_cmd_desc *desc) \
1097 { \
1098 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1099 synctype *sync_obj; \
1100 unsigned long flags; \
1101 u64 rd_idx; \
1102 \
1103 raw_spin_lock_irqsave(&its->lock, flags); \
1104 \
1105 cmd = its_allocate_entry(its); \
1106 if (!cmd) { /* We're soooooo screewed... */ \
1107 raw_spin_unlock_irqrestore(&its->lock, flags); \
1108 return; \
1109 } \
1110 sync_obj = builder(its, cmd, desc); \
1111 its_flush_cmd(its, cmd); \
1112 \
1113 if (sync_obj) { \
1114 sync_cmd = its_allocate_entry(its); \
1115 if (!sync_cmd) \
1116 goto post; \
1117 \
1118 buildfn(its, sync_cmd, sync_obj); \
1119 its_flush_cmd(its, sync_cmd); \
1120 } \
1121 \
1122 post: \
1123 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1124 next_cmd = its_post_commands(its); \
1125 raw_spin_unlock_irqrestore(&its->lock, flags); \
1126 \
1127 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1128 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1129 }
1130
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1131 static void its_build_sync_cmd(struct its_node *its,
1132 struct its_cmd_block *sync_cmd,
1133 struct its_collection *sync_col)
1134 {
1135 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136 its_encode_target(sync_cmd, sync_col->target_address);
1137
1138 its_fixup_cmd(sync_cmd);
1139 }
1140
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1141 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142 struct its_collection, its_build_sync_cmd)
1143
1144 static void its_build_vsync_cmd(struct its_node *its,
1145 struct its_cmd_block *sync_cmd,
1146 struct its_vpe *sync_vpe)
1147 {
1148 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150
1151 its_fixup_cmd(sync_cmd);
1152 }
1153
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1154 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155 struct its_vpe, its_build_vsync_cmd)
1156
1157 static void its_send_int(struct its_device *dev, u32 event_id)
1158 {
1159 struct its_cmd_desc desc;
1160
1161 desc.its_int_cmd.dev = dev;
1162 desc.its_int_cmd.event_id = event_id;
1163
1164 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165 }
1166
its_send_clear(struct its_device * dev,u32 event_id)1167 static void its_send_clear(struct its_device *dev, u32 event_id)
1168 {
1169 struct its_cmd_desc desc;
1170
1171 desc.its_clear_cmd.dev = dev;
1172 desc.its_clear_cmd.event_id = event_id;
1173
1174 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175 }
1176
its_send_inv(struct its_device * dev,u32 event_id)1177 static void its_send_inv(struct its_device *dev, u32 event_id)
1178 {
1179 struct its_cmd_desc desc;
1180
1181 desc.its_inv_cmd.dev = dev;
1182 desc.its_inv_cmd.event_id = event_id;
1183
1184 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185 }
1186
its_send_mapd(struct its_device * dev,int valid)1187 static void its_send_mapd(struct its_device *dev, int valid)
1188 {
1189 struct its_cmd_desc desc;
1190
1191 desc.its_mapd_cmd.dev = dev;
1192 desc.its_mapd_cmd.valid = !!valid;
1193
1194 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195 }
1196
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1197 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198 int valid)
1199 {
1200 struct its_cmd_desc desc;
1201
1202 desc.its_mapc_cmd.col = col;
1203 desc.its_mapc_cmd.valid = !!valid;
1204
1205 its_send_single_command(its, its_build_mapc_cmd, &desc);
1206 }
1207
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1208 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209 {
1210 struct its_cmd_desc desc;
1211
1212 desc.its_mapti_cmd.dev = dev;
1213 desc.its_mapti_cmd.phys_id = irq_id;
1214 desc.its_mapti_cmd.event_id = id;
1215
1216 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217 }
1218
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1219 static void its_send_movi(struct its_device *dev,
1220 struct its_collection *col, u32 id)
1221 {
1222 struct its_cmd_desc desc;
1223
1224 desc.its_movi_cmd.dev = dev;
1225 desc.its_movi_cmd.col = col;
1226 desc.its_movi_cmd.event_id = id;
1227
1228 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229 }
1230
its_send_discard(struct its_device * dev,u32 id)1231 static void its_send_discard(struct its_device *dev, u32 id)
1232 {
1233 struct its_cmd_desc desc;
1234
1235 desc.its_discard_cmd.dev = dev;
1236 desc.its_discard_cmd.event_id = id;
1237
1238 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239 }
1240
its_send_invall(struct its_node * its,struct its_collection * col)1241 static void its_send_invall(struct its_node *its, struct its_collection *col)
1242 {
1243 struct its_cmd_desc desc;
1244
1245 desc.its_invall_cmd.col = col;
1246
1247 its_send_single_command(its, its_build_invall_cmd, &desc);
1248 }
1249
its_send_vmapti(struct its_device * dev,u32 id)1250 static void its_send_vmapti(struct its_device *dev, u32 id)
1251 {
1252 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253 struct its_cmd_desc desc;
1254
1255 desc.its_vmapti_cmd.vpe = map->vpe;
1256 desc.its_vmapti_cmd.dev = dev;
1257 desc.its_vmapti_cmd.virt_id = map->vintid;
1258 desc.its_vmapti_cmd.event_id = id;
1259 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260
1261 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262 }
1263
its_send_vmovi(struct its_device * dev,u32 id)1264 static void its_send_vmovi(struct its_device *dev, u32 id)
1265 {
1266 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267 struct its_cmd_desc desc;
1268
1269 desc.its_vmovi_cmd.vpe = map->vpe;
1270 desc.its_vmovi_cmd.dev = dev;
1271 desc.its_vmovi_cmd.event_id = id;
1272 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273
1274 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275 }
1276
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1277 static void its_send_vmapp(struct its_node *its,
1278 struct its_vpe *vpe, bool valid)
1279 {
1280 struct its_cmd_desc desc;
1281
1282 desc.its_vmapp_cmd.vpe = vpe;
1283 desc.its_vmapp_cmd.valid = valid;
1284 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285
1286 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287 }
1288
its_send_vmovp(struct its_vpe * vpe)1289 static void its_send_vmovp(struct its_vpe *vpe)
1290 {
1291 struct its_cmd_desc desc = {};
1292 struct its_node *its;
1293 unsigned long flags;
1294 int col_id = vpe->col_idx;
1295
1296 desc.its_vmovp_cmd.vpe = vpe;
1297
1298 if (!its_list_map) {
1299 its = list_first_entry(&its_nodes, struct its_node, entry);
1300 desc.its_vmovp_cmd.col = &its->collections[col_id];
1301 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302 return;
1303 }
1304
1305 /*
1306 * Yet another marvel of the architecture. If using the
1307 * its_list "feature", we need to make sure that all ITSs
1308 * receive all VMOVP commands in the same order. The only way
1309 * to guarantee this is to make vmovp a serialization point.
1310 *
1311 * Wall <-- Head.
1312 */
1313 raw_spin_lock_irqsave(&vmovp_lock, flags);
1314
1315 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317
1318 /* Emit VMOVPs */
1319 list_for_each_entry(its, &its_nodes, entry) {
1320 if (!is_v4(its))
1321 continue;
1322
1323 if (!require_its_list_vmovp(vpe->its_vm, its))
1324 continue;
1325
1326 desc.its_vmovp_cmd.col = &its->collections[col_id];
1327 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328 }
1329
1330 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331 }
1332
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1333 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334 {
1335 struct its_cmd_desc desc;
1336
1337 desc.its_vinvall_cmd.vpe = vpe;
1338 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339 }
1340
its_send_vinv(struct its_device * dev,u32 event_id)1341 static void its_send_vinv(struct its_device *dev, u32 event_id)
1342 {
1343 struct its_cmd_desc desc;
1344
1345 /*
1346 * There is no real VINV command. This is just a normal INV,
1347 * with a VSYNC instead of a SYNC.
1348 */
1349 desc.its_inv_cmd.dev = dev;
1350 desc.its_inv_cmd.event_id = event_id;
1351
1352 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353 }
1354
its_send_vint(struct its_device * dev,u32 event_id)1355 static void its_send_vint(struct its_device *dev, u32 event_id)
1356 {
1357 struct its_cmd_desc desc;
1358
1359 /*
1360 * There is no real VINT command. This is just a normal INT,
1361 * with a VSYNC instead of a SYNC.
1362 */
1363 desc.its_int_cmd.dev = dev;
1364 desc.its_int_cmd.event_id = event_id;
1365
1366 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367 }
1368
its_send_vclear(struct its_device * dev,u32 event_id)1369 static void its_send_vclear(struct its_device *dev, u32 event_id)
1370 {
1371 struct its_cmd_desc desc;
1372
1373 /*
1374 * There is no real VCLEAR command. This is just a normal CLEAR,
1375 * with a VSYNC instead of a SYNC.
1376 */
1377 desc.its_clear_cmd.dev = dev;
1378 desc.its_clear_cmd.event_id = event_id;
1379
1380 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381 }
1382
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1383 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384 {
1385 struct its_cmd_desc desc;
1386
1387 desc.its_invdb_cmd.vpe = vpe;
1388 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389 }
1390
1391 /*
1392 * irqchip functions - assumes MSI, mostly.
1393 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1394 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395 {
1396 struct its_vlpi_map *map = get_vlpi_map(d);
1397 irq_hw_number_t hwirq;
1398 void *va;
1399 u8 *cfg;
1400
1401 if (map) {
1402 va = page_address(map->vm->vprop_page);
1403 hwirq = map->vintid;
1404
1405 /* Remember the updated property */
1406 map->properties &= ~clr;
1407 map->properties |= set | LPI_PROP_GROUP1;
1408 } else {
1409 va = gic_rdists->prop_table_va;
1410 hwirq = d->hwirq;
1411 }
1412
1413 cfg = va + hwirq - 8192;
1414 *cfg &= ~clr;
1415 *cfg |= set | LPI_PROP_GROUP1;
1416
1417 /*
1418 * Make the above write visible to the redistributors.
1419 * And yes, we're flushing exactly: One. Single. Byte.
1420 * Humpf...
1421 */
1422 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424 else
1425 dsb(ishst);
1426 }
1427
wait_for_syncr(void __iomem * rdbase)1428 static void wait_for_syncr(void __iomem *rdbase)
1429 {
1430 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431 cpu_relax();
1432 }
1433
direct_lpi_inv(struct irq_data * d)1434 static void direct_lpi_inv(struct irq_data *d)
1435 {
1436 struct its_vlpi_map *map = get_vlpi_map(d);
1437 void __iomem *rdbase;
1438 unsigned long flags;
1439 u64 val;
1440 int cpu;
1441
1442 if (map) {
1443 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444
1445 WARN_ON(!is_v4_1(its_dev->its));
1446
1447 val = GICR_INVLPIR_V;
1448 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450 } else {
1451 val = d->hwirq;
1452 }
1453
1454 /* Target the redistributor this LPI is currently routed to */
1455 cpu = irq_to_cpuid_lock(d, &flags);
1456 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459
1460 wait_for_syncr(rdbase);
1461 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462 irq_to_cpuid_unlock(d, flags);
1463 }
1464
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1465 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466 {
1467 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469 lpi_write_config(d, clr, set);
1470 if (gic_rdists->has_direct_lpi &&
1471 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472 direct_lpi_inv(d);
1473 else if (!irqd_is_forwarded_to_vcpu(d))
1474 its_send_inv(its_dev, its_get_event_id(d));
1475 else
1476 its_send_vinv(its_dev, its_get_event_id(d));
1477 }
1478
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1479 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480 {
1481 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482 u32 event = its_get_event_id(d);
1483 struct its_vlpi_map *map;
1484
1485 /*
1486 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487 * here.
1488 */
1489 if (is_v4_1(its_dev->its))
1490 return;
1491
1492 map = dev_event_to_vlpi_map(its_dev, event);
1493
1494 if (map->db_enabled == enable)
1495 return;
1496
1497 map->db_enabled = enable;
1498
1499 /*
1500 * More fun with the architecture:
1501 *
1502 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503 * value or to 1023, depending on the enable bit. But that
1504 * would be issuing a mapping for an /existing/ DevID+EventID
1505 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506 * to the /same/ vPE, using this opportunity to adjust the
1507 * doorbell. Mouahahahaha. We loves it, Precious.
1508 */
1509 its_send_vmovi(its_dev, event);
1510 }
1511
its_mask_irq(struct irq_data * d)1512 static void its_mask_irq(struct irq_data *d)
1513 {
1514 if (irqd_is_forwarded_to_vcpu(d))
1515 its_vlpi_set_doorbell(d, false);
1516
1517 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518 }
1519
its_unmask_irq(struct irq_data * d)1520 static void its_unmask_irq(struct irq_data *d)
1521 {
1522 if (irqd_is_forwarded_to_vcpu(d))
1523 its_vlpi_set_doorbell(d, true);
1524
1525 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526 }
1527
its_read_lpi_count(struct irq_data * d,int cpu)1528 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529 {
1530 if (irqd_affinity_is_managed(d))
1531 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532
1533 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535
its_inc_lpi_count(struct irq_data * d,int cpu)1536 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537 {
1538 if (irqd_affinity_is_managed(d))
1539 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 else
1541 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543
its_dec_lpi_count(struct irq_data * d,int cpu)1544 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545 {
1546 if (irqd_affinity_is_managed(d))
1547 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548 else
1549 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550 }
1551
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1552 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553 const struct cpumask *cpu_mask)
1554 {
1555 unsigned int cpu = nr_cpu_ids, tmp;
1556 int count = S32_MAX;
1557
1558 for_each_cpu(tmp, cpu_mask) {
1559 int this_count = its_read_lpi_count(d, tmp);
1560 if (this_count < count) {
1561 cpu = tmp;
1562 count = this_count;
1563 }
1564 }
1565
1566 return cpu;
1567 }
1568
1569 /*
1570 * As suggested by Thomas Gleixner in:
1571 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1573 static int its_select_cpu(struct irq_data *d,
1574 const struct cpumask *aff_mask)
1575 {
1576 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577 cpumask_var_t tmpmask;
1578 int cpu, node;
1579
1580 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1581 return -ENOMEM;
1582
1583 node = its_dev->its->numa_node;
1584
1585 if (!irqd_affinity_is_managed(d)) {
1586 /* First try the NUMA node */
1587 if (node != NUMA_NO_NODE) {
1588 /*
1589 * Try the intersection of the affinity mask and the
1590 * node mask (and the online mask, just to be safe).
1591 */
1592 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1593 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1594
1595 /*
1596 * Ideally, we would check if the mask is empty, and
1597 * try again on the full node here.
1598 *
1599 * But it turns out that the way ACPI describes the
1600 * affinity for ITSs only deals about memory, and
1601 * not target CPUs, so it cannot describe a single
1602 * ITS placed next to two NUMA nodes.
1603 *
1604 * Instead, just fallback on the online mask. This
1605 * diverges from Thomas' suggestion above.
1606 */
1607 cpu = cpumask_pick_least_loaded(d, tmpmask);
1608 if (cpu < nr_cpu_ids)
1609 goto out;
1610
1611 /* If we can't cross sockets, give up */
1612 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1613 goto out;
1614
1615 /* If the above failed, expand the search */
1616 }
1617
1618 /* Try the intersection of the affinity and online masks */
1619 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1620
1621 /* If that doesn't fly, the online mask is the last resort */
1622 if (cpumask_empty(tmpmask))
1623 cpumask_copy(tmpmask, cpu_online_mask);
1624
1625 cpu = cpumask_pick_least_loaded(d, tmpmask);
1626 } else {
1627 cpumask_copy(tmpmask, aff_mask);
1628
1629 /* If we cannot cross sockets, limit the search to that node */
1630 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1631 node != NUMA_NO_NODE)
1632 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1633
1634 cpu = cpumask_pick_least_loaded(d, tmpmask);
1635 }
1636 out:
1637 free_cpumask_var(tmpmask);
1638
1639 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1640 return cpu;
1641 }
1642
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1643 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1644 bool force)
1645 {
1646 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1647 struct its_collection *target_col;
1648 u32 id = its_get_event_id(d);
1649 int cpu, prev_cpu;
1650
1651 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1652 if (irqd_is_forwarded_to_vcpu(d))
1653 return -EINVAL;
1654
1655 prev_cpu = its_dev->event_map.col_map[id];
1656 its_dec_lpi_count(d, prev_cpu);
1657
1658 if (!force)
1659 cpu = its_select_cpu(d, mask_val);
1660 else
1661 cpu = cpumask_pick_least_loaded(d, mask_val);
1662
1663 if (cpu < 0 || cpu >= nr_cpu_ids)
1664 goto err;
1665
1666 /* don't set the affinity when the target cpu is same as current one */
1667 if (cpu != prev_cpu) {
1668 target_col = &its_dev->its->collections[cpu];
1669 its_send_movi(its_dev, target_col, id);
1670 its_dev->event_map.col_map[id] = cpu;
1671 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1672 }
1673
1674 its_inc_lpi_count(d, cpu);
1675
1676 return IRQ_SET_MASK_OK_DONE;
1677
1678 err:
1679 its_inc_lpi_count(d, prev_cpu);
1680 return -EINVAL;
1681 }
1682
its_irq_get_msi_base(struct its_device * its_dev)1683 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1684 {
1685 struct its_node *its = its_dev->its;
1686
1687 return its->phys_base + GITS_TRANSLATER;
1688 }
1689
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1690 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1691 {
1692 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1693 struct its_node *its;
1694 u64 addr;
1695
1696 its = its_dev->its;
1697 addr = its->get_msi_base(its_dev);
1698
1699 msg->address_lo = lower_32_bits(addr);
1700 msg->address_hi = upper_32_bits(addr);
1701 msg->data = its_get_event_id(d);
1702
1703 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1704 }
1705
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1706 static int its_irq_set_irqchip_state(struct irq_data *d,
1707 enum irqchip_irq_state which,
1708 bool state)
1709 {
1710 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1711 u32 event = its_get_event_id(d);
1712
1713 if (which != IRQCHIP_STATE_PENDING)
1714 return -EINVAL;
1715
1716 if (irqd_is_forwarded_to_vcpu(d)) {
1717 if (state)
1718 its_send_vint(its_dev, event);
1719 else
1720 its_send_vclear(its_dev, event);
1721 } else {
1722 if (state)
1723 its_send_int(its_dev, event);
1724 else
1725 its_send_clear(its_dev, event);
1726 }
1727
1728 return 0;
1729 }
1730
its_irq_retrigger(struct irq_data * d)1731 static int its_irq_retrigger(struct irq_data *d)
1732 {
1733 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1734 }
1735
1736 /*
1737 * Two favourable cases:
1738 *
1739 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1740 * for vSGI delivery
1741 *
1742 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1743 * and we're better off mapping all VPEs always
1744 *
1745 * If neither (a) nor (b) is true, then we map vPEs on demand.
1746 *
1747 */
gic_requires_eager_mapping(void)1748 static bool gic_requires_eager_mapping(void)
1749 {
1750 if (!its_list_map || gic_rdists->has_rvpeid)
1751 return true;
1752
1753 return false;
1754 }
1755
its_map_vm(struct its_node * its,struct its_vm * vm)1756 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1757 {
1758 unsigned long flags;
1759
1760 if (gic_requires_eager_mapping())
1761 return;
1762
1763 raw_spin_lock_irqsave(&vmovp_lock, flags);
1764
1765 /*
1766 * If the VM wasn't mapped yet, iterate over the vpes and get
1767 * them mapped now.
1768 */
1769 vm->vlpi_count[its->list_nr]++;
1770
1771 if (vm->vlpi_count[its->list_nr] == 1) {
1772 int i;
1773
1774 for (i = 0; i < vm->nr_vpes; i++) {
1775 struct its_vpe *vpe = vm->vpes[i];
1776 struct irq_data *d = irq_get_irq_data(vpe->irq);
1777
1778 /* Map the VPE to the first possible CPU */
1779 vpe->col_idx = cpumask_first(cpu_online_mask);
1780 its_send_vmapp(its, vpe, true);
1781 its_send_vinvall(its, vpe);
1782 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1783 }
1784 }
1785
1786 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1787 }
1788
its_unmap_vm(struct its_node * its,struct its_vm * vm)1789 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1790 {
1791 unsigned long flags;
1792
1793 /* Not using the ITS list? Everything is always mapped. */
1794 if (gic_requires_eager_mapping())
1795 return;
1796
1797 raw_spin_lock_irqsave(&vmovp_lock, flags);
1798
1799 if (!--vm->vlpi_count[its->list_nr]) {
1800 int i;
1801
1802 for (i = 0; i < vm->nr_vpes; i++)
1803 its_send_vmapp(its, vm->vpes[i], false);
1804 }
1805
1806 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1807 }
1808
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1809 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1810 {
1811 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1812 u32 event = its_get_event_id(d);
1813 int ret = 0;
1814
1815 if (!info->map)
1816 return -EINVAL;
1817
1818 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1819
1820 if (!its_dev->event_map.vm) {
1821 struct its_vlpi_map *maps;
1822
1823 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1824 GFP_ATOMIC);
1825 if (!maps) {
1826 ret = -ENOMEM;
1827 goto out;
1828 }
1829
1830 its_dev->event_map.vm = info->map->vm;
1831 its_dev->event_map.vlpi_maps = maps;
1832 } else if (its_dev->event_map.vm != info->map->vm) {
1833 ret = -EINVAL;
1834 goto out;
1835 }
1836
1837 /* Get our private copy of the mapping information */
1838 its_dev->event_map.vlpi_maps[event] = *info->map;
1839
1840 if (irqd_is_forwarded_to_vcpu(d)) {
1841 /* Already mapped, move it around */
1842 its_send_vmovi(its_dev, event);
1843 } else {
1844 /* Ensure all the VPEs are mapped on this ITS */
1845 its_map_vm(its_dev->its, info->map->vm);
1846
1847 /*
1848 * Flag the interrupt as forwarded so that we can
1849 * start poking the virtual property table.
1850 */
1851 irqd_set_forwarded_to_vcpu(d);
1852
1853 /* Write out the property to the prop table */
1854 lpi_write_config(d, 0xff, info->map->properties);
1855
1856 /* Drop the physical mapping */
1857 its_send_discard(its_dev, event);
1858
1859 /* and install the virtual one */
1860 its_send_vmapti(its_dev, event);
1861
1862 /* Increment the number of VLPIs */
1863 its_dev->event_map.nr_vlpis++;
1864 }
1865
1866 out:
1867 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1868 return ret;
1869 }
1870
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1871 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1872 {
1873 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1874 struct its_vlpi_map *map;
1875 int ret = 0;
1876
1877 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1878
1879 map = get_vlpi_map(d);
1880
1881 if (!its_dev->event_map.vm || !map) {
1882 ret = -EINVAL;
1883 goto out;
1884 }
1885
1886 /* Copy our mapping information to the incoming request */
1887 *info->map = *map;
1888
1889 out:
1890 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1891 return ret;
1892 }
1893
its_vlpi_unmap(struct irq_data * d)1894 static int its_vlpi_unmap(struct irq_data *d)
1895 {
1896 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897 u32 event = its_get_event_id(d);
1898 int ret = 0;
1899
1900 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1901
1902 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1903 ret = -EINVAL;
1904 goto out;
1905 }
1906
1907 /* Drop the virtual mapping */
1908 its_send_discard(its_dev, event);
1909
1910 /* and restore the physical one */
1911 irqd_clr_forwarded_to_vcpu(d);
1912 its_send_mapti(its_dev, d->hwirq, event);
1913 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1914 LPI_PROP_ENABLED |
1915 LPI_PROP_GROUP1));
1916
1917 /* Potentially unmap the VM from this ITS */
1918 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1919
1920 /*
1921 * Drop the refcount and make the device available again if
1922 * this was the last VLPI.
1923 */
1924 if (!--its_dev->event_map.nr_vlpis) {
1925 its_dev->event_map.vm = NULL;
1926 kfree(its_dev->event_map.vlpi_maps);
1927 }
1928
1929 out:
1930 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1931 return ret;
1932 }
1933
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1934 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1935 {
1936 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1937
1938 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1939 return -EINVAL;
1940
1941 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1942 lpi_update_config(d, 0xff, info->config);
1943 else
1944 lpi_write_config(d, 0xff, info->config);
1945 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1946
1947 return 0;
1948 }
1949
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1950 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1951 {
1952 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1953 struct its_cmd_info *info = vcpu_info;
1954
1955 /* Need a v4 ITS */
1956 if (!is_v4(its_dev->its))
1957 return -EINVAL;
1958
1959 /* Unmap request? */
1960 if (!info)
1961 return its_vlpi_unmap(d);
1962
1963 switch (info->cmd_type) {
1964 case MAP_VLPI:
1965 return its_vlpi_map(d, info);
1966
1967 case GET_VLPI:
1968 return its_vlpi_get(d, info);
1969
1970 case PROP_UPDATE_VLPI:
1971 case PROP_UPDATE_AND_INV_VLPI:
1972 return its_vlpi_prop_update(d, info);
1973
1974 default:
1975 return -EINVAL;
1976 }
1977 }
1978
1979 static struct irq_chip its_irq_chip = {
1980 .name = "ITS",
1981 .irq_mask = its_mask_irq,
1982 .irq_unmask = its_unmask_irq,
1983 .irq_eoi = irq_chip_eoi_parent,
1984 .irq_set_affinity = its_set_affinity,
1985 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1986 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1987 .irq_retrigger = its_irq_retrigger,
1988 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1989 };
1990
1991
1992 /*
1993 * How we allocate LPIs:
1994 *
1995 * lpi_range_list contains ranges of LPIs that are to available to
1996 * allocate from. To allocate LPIs, just pick the first range that
1997 * fits the required allocation, and reduce it by the required
1998 * amount. Once empty, remove the range from the list.
1999 *
2000 * To free a range of LPIs, add a free range to the list, sort it and
2001 * merge the result if the new range happens to be adjacent to an
2002 * already free block.
2003 *
2004 * The consequence of the above is that allocation is cost is low, but
2005 * freeing is expensive. We assumes that freeing rarely occurs.
2006 */
2007 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2008
2009 static DEFINE_MUTEX(lpi_range_lock);
2010 static LIST_HEAD(lpi_range_list);
2011
2012 struct lpi_range {
2013 struct list_head entry;
2014 u32 base_id;
2015 u32 span;
2016 };
2017
mk_lpi_range(u32 base,u32 span)2018 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2019 {
2020 struct lpi_range *range;
2021
2022 range = kmalloc(sizeof(*range), GFP_KERNEL);
2023 if (range) {
2024 range->base_id = base;
2025 range->span = span;
2026 }
2027
2028 return range;
2029 }
2030
alloc_lpi_range(u32 nr_lpis,u32 * base)2031 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2032 {
2033 struct lpi_range *range, *tmp;
2034 int err = -ENOSPC;
2035
2036 mutex_lock(&lpi_range_lock);
2037
2038 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2039 if (range->span >= nr_lpis) {
2040 *base = range->base_id;
2041 range->base_id += nr_lpis;
2042 range->span -= nr_lpis;
2043
2044 if (range->span == 0) {
2045 list_del(&range->entry);
2046 kfree(range);
2047 }
2048
2049 err = 0;
2050 break;
2051 }
2052 }
2053
2054 mutex_unlock(&lpi_range_lock);
2055
2056 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2057 return err;
2058 }
2059
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2060 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2061 {
2062 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2063 return;
2064 if (a->base_id + a->span != b->base_id)
2065 return;
2066 b->base_id = a->base_id;
2067 b->span += a->span;
2068 list_del(&a->entry);
2069 kfree(a);
2070 }
2071
free_lpi_range(u32 base,u32 nr_lpis)2072 static int free_lpi_range(u32 base, u32 nr_lpis)
2073 {
2074 struct lpi_range *new, *old;
2075
2076 new = mk_lpi_range(base, nr_lpis);
2077 if (!new)
2078 return -ENOMEM;
2079
2080 mutex_lock(&lpi_range_lock);
2081
2082 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2083 if (old->base_id < base)
2084 break;
2085 }
2086 /*
2087 * old is the last element with ->base_id smaller than base,
2088 * so new goes right after it. If there are no elements with
2089 * ->base_id smaller than base, &old->entry ends up pointing
2090 * at the head of the list, and inserting new it the start of
2091 * the list is the right thing to do in that case as well.
2092 */
2093 list_add(&new->entry, &old->entry);
2094 /*
2095 * Now check if we can merge with the preceding and/or
2096 * following ranges.
2097 */
2098 merge_lpi_ranges(old, new);
2099 merge_lpi_ranges(new, list_next_entry(new, entry));
2100
2101 mutex_unlock(&lpi_range_lock);
2102 return 0;
2103 }
2104
its_lpi_init(u32 id_bits)2105 static int __init its_lpi_init(u32 id_bits)
2106 {
2107 u32 lpis = (1UL << id_bits) - 8192;
2108 u32 numlpis;
2109 int err;
2110
2111 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2112
2113 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2114 lpis = numlpis;
2115 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2116 lpis);
2117 }
2118
2119 /*
2120 * Initializing the allocator is just the same as freeing the
2121 * full range of LPIs.
2122 */
2123 err = free_lpi_range(8192, lpis);
2124 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2125 return err;
2126 }
2127
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2128 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2129 {
2130 unsigned long *bitmap = NULL;
2131 int err = 0;
2132
2133 do {
2134 err = alloc_lpi_range(nr_irqs, base);
2135 if (!err)
2136 break;
2137
2138 nr_irqs /= 2;
2139 } while (nr_irqs > 0);
2140
2141 if (!nr_irqs)
2142 err = -ENOSPC;
2143
2144 if (err)
2145 goto out;
2146
2147 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2148 if (!bitmap)
2149 goto out;
2150
2151 *nr_ids = nr_irqs;
2152
2153 out:
2154 if (!bitmap)
2155 *base = *nr_ids = 0;
2156
2157 return bitmap;
2158 }
2159
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2160 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2161 {
2162 WARN_ON(free_lpi_range(base, nr_ids));
2163 bitmap_free(bitmap);
2164 }
2165
gic_reset_prop_table(void * va)2166 static void gic_reset_prop_table(void *va)
2167 {
2168 /* Priority 0xa0, Group-1, disabled */
2169 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2170
2171 /* Make sure the GIC will observe the written configuration */
2172 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2173 }
2174
its_allocate_prop_table(gfp_t gfp_flags)2175 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2176 {
2177 struct page *prop_page;
2178
2179 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2180 if (!prop_page)
2181 return NULL;
2182
2183 gic_reset_prop_table(page_address(prop_page));
2184
2185 return prop_page;
2186 }
2187
its_free_prop_table(struct page * prop_page)2188 static void its_free_prop_table(struct page *prop_page)
2189 {
2190 free_pages((unsigned long)page_address(prop_page),
2191 get_order(LPI_PROPBASE_SZ));
2192 }
2193
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2194 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2195 {
2196 phys_addr_t start, end, addr_end;
2197 u64 i;
2198
2199 /*
2200 * We don't bother checking for a kdump kernel as by
2201 * construction, the LPI tables are out of this kernel's
2202 * memory map.
2203 */
2204 if (is_kdump_kernel())
2205 return true;
2206
2207 addr_end = addr + size - 1;
2208
2209 for_each_reserved_mem_range(i, &start, &end) {
2210 if (addr >= start && addr_end <= end)
2211 return true;
2212 }
2213
2214 /* Not found, not a good sign... */
2215 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2216 &addr, &addr_end);
2217 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2218 return false;
2219 }
2220
gic_reserve_range(phys_addr_t addr,unsigned long size)2221 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2222 {
2223 if (efi_enabled(EFI_CONFIG_TABLES))
2224 return efi_mem_reserve_persistent(addr, size);
2225
2226 return 0;
2227 }
2228
its_setup_lpi_prop_table(void)2229 static int __init its_setup_lpi_prop_table(void)
2230 {
2231 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2232 u64 val;
2233
2234 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2235 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2236
2237 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2238 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2239 LPI_PROPBASE_SZ,
2240 MEMREMAP_WB);
2241 gic_reset_prop_table(gic_rdists->prop_table_va);
2242 } else {
2243 struct page *page;
2244
2245 lpi_id_bits = min_t(u32,
2246 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2247 ITS_MAX_LPI_NRBITS);
2248 page = its_allocate_prop_table(GFP_NOWAIT);
2249 if (!page) {
2250 pr_err("Failed to allocate PROPBASE\n");
2251 return -ENOMEM;
2252 }
2253
2254 gic_rdists->prop_table_pa = page_to_phys(page);
2255 gic_rdists->prop_table_va = page_address(page);
2256 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2257 LPI_PROPBASE_SZ));
2258 }
2259
2260 pr_info("GICv3: using LPI property table @%pa\n",
2261 &gic_rdists->prop_table_pa);
2262
2263 return its_lpi_init(lpi_id_bits);
2264 }
2265
2266 static const char *its_base_type_string[] = {
2267 [GITS_BASER_TYPE_DEVICE] = "Devices",
2268 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2269 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2270 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2271 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2272 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2273 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2274 };
2275
its_read_baser(struct its_node * its,struct its_baser * baser)2276 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2277 {
2278 u32 idx = baser - its->tables;
2279
2280 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2281 }
2282
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2283 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2284 u64 val)
2285 {
2286 u32 idx = baser - its->tables;
2287
2288 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2289 baser->val = its_read_baser(its, baser);
2290 }
2291
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2292 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2293 u64 cache, u64 shr, u32 order, bool indirect)
2294 {
2295 u64 val = its_read_baser(its, baser);
2296 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2297 u64 type = GITS_BASER_TYPE(val);
2298 u64 baser_phys, tmp;
2299 u32 alloc_pages, psz;
2300 struct page *page;
2301 void *base;
2302
2303 psz = baser->psz;
2304 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2305 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2306 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2307 &its->phys_base, its_base_type_string[type],
2308 alloc_pages, GITS_BASER_PAGES_MAX);
2309 alloc_pages = GITS_BASER_PAGES_MAX;
2310 order = get_order(GITS_BASER_PAGES_MAX * psz);
2311 }
2312
2313 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2314 if (!page)
2315 return -ENOMEM;
2316
2317 base = (void *)page_address(page);
2318 baser_phys = virt_to_phys(base);
2319
2320 /* Check if the physical address of the memory is above 48bits */
2321 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2322
2323 /* 52bit PA is supported only when PageSize=64K */
2324 if (psz != SZ_64K) {
2325 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2326 free_pages((unsigned long)base, order);
2327 return -ENXIO;
2328 }
2329
2330 /* Convert 52bit PA to 48bit field */
2331 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2332 }
2333
2334 retry_baser:
2335 val = (baser_phys |
2336 (type << GITS_BASER_TYPE_SHIFT) |
2337 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2338 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2339 cache |
2340 shr |
2341 GITS_BASER_VALID);
2342
2343 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2344
2345 switch (psz) {
2346 case SZ_4K:
2347 val |= GITS_BASER_PAGE_SIZE_4K;
2348 break;
2349 case SZ_16K:
2350 val |= GITS_BASER_PAGE_SIZE_16K;
2351 break;
2352 case SZ_64K:
2353 val |= GITS_BASER_PAGE_SIZE_64K;
2354 break;
2355 }
2356
2357 its_write_baser(its, baser, val);
2358 tmp = baser->val;
2359
2360 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2361 /*
2362 * Shareability didn't stick. Just use
2363 * whatever the read reported, which is likely
2364 * to be the only thing this redistributor
2365 * supports. If that's zero, make it
2366 * non-cacheable as well.
2367 */
2368 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2369 if (!shr) {
2370 cache = GITS_BASER_nC;
2371 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2372 }
2373 goto retry_baser;
2374 }
2375
2376 if (val != tmp) {
2377 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2378 &its->phys_base, its_base_type_string[type],
2379 val, tmp);
2380 free_pages((unsigned long)base, order);
2381 return -ENXIO;
2382 }
2383
2384 baser->order = order;
2385 baser->base = base;
2386 baser->psz = psz;
2387 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2388
2389 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2390 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2391 its_base_type_string[type],
2392 (unsigned long)virt_to_phys(base),
2393 indirect ? "indirect" : "flat", (int)esz,
2394 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2395
2396 return 0;
2397 }
2398
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2399 static bool its_parse_indirect_baser(struct its_node *its,
2400 struct its_baser *baser,
2401 u32 *order, u32 ids)
2402 {
2403 u64 tmp = its_read_baser(its, baser);
2404 u64 type = GITS_BASER_TYPE(tmp);
2405 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2406 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2407 u32 new_order = *order;
2408 u32 psz = baser->psz;
2409 bool indirect = false;
2410
2411 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2412 if ((esz << ids) > (psz * 2)) {
2413 /*
2414 * Find out whether hw supports a single or two-level table by
2415 * table by reading bit at offset '62' after writing '1' to it.
2416 */
2417 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2418 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2419
2420 if (indirect) {
2421 /*
2422 * The size of the lvl2 table is equal to ITS page size
2423 * which is 'psz'. For computing lvl1 table size,
2424 * subtract ID bits that sparse lvl2 table from 'ids'
2425 * which is reported by ITS hardware times lvl1 table
2426 * entry size.
2427 */
2428 ids -= ilog2(psz / (int)esz);
2429 esz = GITS_LVL1_ENTRY_SIZE;
2430 }
2431 }
2432
2433 /*
2434 * Allocate as many entries as required to fit the
2435 * range of device IDs that the ITS can grok... The ID
2436 * space being incredibly sparse, this results in a
2437 * massive waste of memory if two-level device table
2438 * feature is not supported by hardware.
2439 */
2440 new_order = max_t(u32, get_order(esz << ids), new_order);
2441 if (new_order >= MAX_ORDER) {
2442 new_order = MAX_ORDER - 1;
2443 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2444 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2445 &its->phys_base, its_base_type_string[type],
2446 device_ids(its), ids);
2447 }
2448
2449 *order = new_order;
2450
2451 return indirect;
2452 }
2453
compute_common_aff(u64 val)2454 static u32 compute_common_aff(u64 val)
2455 {
2456 u32 aff, clpiaff;
2457
2458 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2459 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2460
2461 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2462 }
2463
compute_its_aff(struct its_node * its)2464 static u32 compute_its_aff(struct its_node *its)
2465 {
2466 u64 val;
2467 u32 svpet;
2468
2469 /*
2470 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2471 * the resulting affinity. We then use that to see if this match
2472 * our own affinity.
2473 */
2474 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2475 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2476 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2477 return compute_common_aff(val);
2478 }
2479
find_sibling_its(struct its_node * cur_its)2480 static struct its_node *find_sibling_its(struct its_node *cur_its)
2481 {
2482 struct its_node *its;
2483 u32 aff;
2484
2485 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2486 return NULL;
2487
2488 aff = compute_its_aff(cur_its);
2489
2490 list_for_each_entry(its, &its_nodes, entry) {
2491 u64 baser;
2492
2493 if (!is_v4_1(its) || its == cur_its)
2494 continue;
2495
2496 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2497 continue;
2498
2499 if (aff != compute_its_aff(its))
2500 continue;
2501
2502 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2503 baser = its->tables[2].val;
2504 if (!(baser & GITS_BASER_VALID))
2505 continue;
2506
2507 return its;
2508 }
2509
2510 return NULL;
2511 }
2512
its_free_tables(struct its_node * its)2513 static void its_free_tables(struct its_node *its)
2514 {
2515 int i;
2516
2517 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2518 if (its->tables[i].base) {
2519 free_pages((unsigned long)its->tables[i].base,
2520 its->tables[i].order);
2521 its->tables[i].base = NULL;
2522 }
2523 }
2524 }
2525
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2526 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2527 {
2528 u64 psz = SZ_64K;
2529
2530 while (psz) {
2531 u64 val, gpsz;
2532
2533 val = its_read_baser(its, baser);
2534 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2535
2536 switch (psz) {
2537 case SZ_64K:
2538 gpsz = GITS_BASER_PAGE_SIZE_64K;
2539 break;
2540 case SZ_16K:
2541 gpsz = GITS_BASER_PAGE_SIZE_16K;
2542 break;
2543 case SZ_4K:
2544 default:
2545 gpsz = GITS_BASER_PAGE_SIZE_4K;
2546 break;
2547 }
2548
2549 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2550
2551 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2552 its_write_baser(its, baser, val);
2553
2554 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2555 break;
2556
2557 switch (psz) {
2558 case SZ_64K:
2559 psz = SZ_16K;
2560 break;
2561 case SZ_16K:
2562 psz = SZ_4K;
2563 break;
2564 case SZ_4K:
2565 default:
2566 return -1;
2567 }
2568 }
2569
2570 baser->psz = psz;
2571 return 0;
2572 }
2573
its_alloc_tables(struct its_node * its)2574 static int its_alloc_tables(struct its_node *its)
2575 {
2576 u64 shr = GITS_BASER_InnerShareable;
2577 u64 cache = GITS_BASER_RaWaWb;
2578 int err, i;
2579
2580 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2581 /* erratum 24313: ignore memory access type */
2582 cache = GITS_BASER_nCnB;
2583
2584 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2585 struct its_baser *baser = its->tables + i;
2586 u64 val = its_read_baser(its, baser);
2587 u64 type = GITS_BASER_TYPE(val);
2588 bool indirect = false;
2589 u32 order;
2590
2591 if (type == GITS_BASER_TYPE_NONE)
2592 continue;
2593
2594 if (its_probe_baser_psz(its, baser)) {
2595 its_free_tables(its);
2596 return -ENXIO;
2597 }
2598
2599 order = get_order(baser->psz);
2600
2601 switch (type) {
2602 case GITS_BASER_TYPE_DEVICE:
2603 indirect = its_parse_indirect_baser(its, baser, &order,
2604 device_ids(its));
2605 break;
2606
2607 case GITS_BASER_TYPE_VCPU:
2608 if (is_v4_1(its)) {
2609 struct its_node *sibling;
2610
2611 WARN_ON(i != 2);
2612 if ((sibling = find_sibling_its(its))) {
2613 *baser = sibling->tables[2];
2614 its_write_baser(its, baser, baser->val);
2615 continue;
2616 }
2617 }
2618
2619 indirect = its_parse_indirect_baser(its, baser, &order,
2620 ITS_MAX_VPEID_BITS);
2621 break;
2622 }
2623
2624 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2625 if (err < 0) {
2626 its_free_tables(its);
2627 return err;
2628 }
2629
2630 /* Update settings which will be used for next BASERn */
2631 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2632 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2633 }
2634
2635 return 0;
2636 }
2637
inherit_vpe_l1_table_from_its(void)2638 static u64 inherit_vpe_l1_table_from_its(void)
2639 {
2640 struct its_node *its;
2641 u64 val;
2642 u32 aff;
2643
2644 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2645 aff = compute_common_aff(val);
2646
2647 list_for_each_entry(its, &its_nodes, entry) {
2648 u64 baser, addr;
2649
2650 if (!is_v4_1(its))
2651 continue;
2652
2653 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2654 continue;
2655
2656 if (aff != compute_its_aff(its))
2657 continue;
2658
2659 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2660 baser = its->tables[2].val;
2661 if (!(baser & GITS_BASER_VALID))
2662 continue;
2663
2664 /* We have a winner! */
2665 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2666
2667 val = GICR_VPROPBASER_4_1_VALID;
2668 if (baser & GITS_BASER_INDIRECT)
2669 val |= GICR_VPROPBASER_4_1_INDIRECT;
2670 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2671 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2672 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2673 case GIC_PAGE_SIZE_64K:
2674 addr = GITS_BASER_ADDR_48_to_52(baser);
2675 break;
2676 default:
2677 addr = baser & GENMASK_ULL(47, 12);
2678 break;
2679 }
2680 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2681 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2682 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2683 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2684 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2685 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2686
2687 return val;
2688 }
2689
2690 return 0;
2691 }
2692
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2693 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2694 {
2695 u32 aff;
2696 u64 val;
2697 int cpu;
2698
2699 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2700 aff = compute_common_aff(val);
2701
2702 for_each_possible_cpu(cpu) {
2703 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2704
2705 if (!base || cpu == smp_processor_id())
2706 continue;
2707
2708 val = gic_read_typer(base + GICR_TYPER);
2709 if (aff != compute_common_aff(val))
2710 continue;
2711
2712 /*
2713 * At this point, we have a victim. This particular CPU
2714 * has already booted, and has an affinity that matches
2715 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2716 * Make sure we don't write the Z bit in that case.
2717 */
2718 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2719 val &= ~GICR_VPROPBASER_4_1_Z;
2720
2721 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2722 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2723
2724 return val;
2725 }
2726
2727 return 0;
2728 }
2729
allocate_vpe_l2_table(int cpu,u32 id)2730 static bool allocate_vpe_l2_table(int cpu, u32 id)
2731 {
2732 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2733 unsigned int psz, esz, idx, npg, gpsz;
2734 u64 val;
2735 struct page *page;
2736 __le64 *table;
2737
2738 if (!gic_rdists->has_rvpeid)
2739 return true;
2740
2741 /* Skip non-present CPUs */
2742 if (!base)
2743 return true;
2744
2745 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2746
2747 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2748 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2749 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2750
2751 switch (gpsz) {
2752 default:
2753 WARN_ON(1);
2754 fallthrough;
2755 case GIC_PAGE_SIZE_4K:
2756 psz = SZ_4K;
2757 break;
2758 case GIC_PAGE_SIZE_16K:
2759 psz = SZ_16K;
2760 break;
2761 case GIC_PAGE_SIZE_64K:
2762 psz = SZ_64K;
2763 break;
2764 }
2765
2766 /* Don't allow vpe_id that exceeds single, flat table limit */
2767 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2768 return (id < (npg * psz / (esz * SZ_8)));
2769
2770 /* Compute 1st level table index & check if that exceeds table limit */
2771 idx = id >> ilog2(psz / (esz * SZ_8));
2772 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2773 return false;
2774
2775 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2776
2777 /* Allocate memory for 2nd level table */
2778 if (!table[idx]) {
2779 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2780 if (!page)
2781 return false;
2782
2783 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2784 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2785 gic_flush_dcache_to_poc(page_address(page), psz);
2786
2787 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2788
2789 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2790 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2791 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2792
2793 /* Ensure updated table contents are visible to RD hardware */
2794 dsb(sy);
2795 }
2796
2797 return true;
2798 }
2799
allocate_vpe_l1_table(void)2800 static int allocate_vpe_l1_table(void)
2801 {
2802 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2803 u64 val, gpsz, npg, pa;
2804 unsigned int psz = SZ_64K;
2805 unsigned int np, epp, esz;
2806 struct page *page;
2807
2808 if (!gic_rdists->has_rvpeid)
2809 return 0;
2810
2811 /*
2812 * if VPENDBASER.Valid is set, disable any previously programmed
2813 * VPE by setting PendingLast while clearing Valid. This has the
2814 * effect of making sure no doorbell will be generated and we can
2815 * then safely clear VPROPBASER.Valid.
2816 */
2817 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2818 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2819 vlpi_base + GICR_VPENDBASER);
2820
2821 /*
2822 * If we can inherit the configuration from another RD, let's do
2823 * so. Otherwise, we have to go through the allocation process. We
2824 * assume that all RDs have the exact same requirements, as
2825 * nothing will work otherwise.
2826 */
2827 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2828 if (val & GICR_VPROPBASER_4_1_VALID)
2829 goto out;
2830
2831 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2832 if (!gic_data_rdist()->vpe_table_mask)
2833 return -ENOMEM;
2834
2835 val = inherit_vpe_l1_table_from_its();
2836 if (val & GICR_VPROPBASER_4_1_VALID)
2837 goto out;
2838
2839 /* First probe the page size */
2840 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2841 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2842 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2843 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2844 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2845
2846 switch (gpsz) {
2847 default:
2848 gpsz = GIC_PAGE_SIZE_4K;
2849 fallthrough;
2850 case GIC_PAGE_SIZE_4K:
2851 psz = SZ_4K;
2852 break;
2853 case GIC_PAGE_SIZE_16K:
2854 psz = SZ_16K;
2855 break;
2856 case GIC_PAGE_SIZE_64K:
2857 psz = SZ_64K;
2858 break;
2859 }
2860
2861 /*
2862 * Start populating the register from scratch, including RO fields
2863 * (which we want to print in debug cases...)
2864 */
2865 val = 0;
2866 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2867 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2868
2869 /* How many entries per GIC page? */
2870 esz++;
2871 epp = psz / (esz * SZ_8);
2872
2873 /*
2874 * If we need more than just a single L1 page, flag the table
2875 * as indirect and compute the number of required L1 pages.
2876 */
2877 if (epp < ITS_MAX_VPEID) {
2878 int nl2;
2879
2880 val |= GICR_VPROPBASER_4_1_INDIRECT;
2881
2882 /* Number of L2 pages required to cover the VPEID space */
2883 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2884
2885 /* Number of L1 pages to point to the L2 pages */
2886 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2887 } else {
2888 npg = 1;
2889 }
2890
2891 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2892
2893 /* Right, that's the number of CPU pages we need for L1 */
2894 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2895
2896 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2897 np, npg, psz, epp, esz);
2898 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2899 if (!page)
2900 return -ENOMEM;
2901
2902 gic_data_rdist()->vpe_l1_base = page_address(page);
2903 pa = virt_to_phys(page_address(page));
2904 WARN_ON(!IS_ALIGNED(pa, psz));
2905
2906 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2907 val |= GICR_VPROPBASER_RaWb;
2908 val |= GICR_VPROPBASER_InnerShareable;
2909 val |= GICR_VPROPBASER_4_1_Z;
2910 val |= GICR_VPROPBASER_4_1_VALID;
2911
2912 out:
2913 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2914 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2915
2916 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2917 smp_processor_id(), val,
2918 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2919
2920 return 0;
2921 }
2922
its_alloc_collections(struct its_node * its)2923 static int its_alloc_collections(struct its_node *its)
2924 {
2925 int i;
2926
2927 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2928 GFP_KERNEL);
2929 if (!its->collections)
2930 return -ENOMEM;
2931
2932 for (i = 0; i < nr_cpu_ids; i++)
2933 its->collections[i].target_address = ~0ULL;
2934
2935 return 0;
2936 }
2937
its_allocate_pending_table(gfp_t gfp_flags)2938 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2939 {
2940 struct page *pend_page;
2941
2942 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2943 get_order(LPI_PENDBASE_SZ));
2944 if (!pend_page)
2945 return NULL;
2946
2947 /* Make sure the GIC will observe the zero-ed page */
2948 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2949
2950 return pend_page;
2951 }
2952
its_free_pending_table(struct page * pt)2953 static void its_free_pending_table(struct page *pt)
2954 {
2955 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2956 }
2957
2958 /*
2959 * Booting with kdump and LPIs enabled is generally fine. Any other
2960 * case is wrong in the absence of firmware/EFI support.
2961 */
enabled_lpis_allowed(void)2962 static bool enabled_lpis_allowed(void)
2963 {
2964 phys_addr_t addr;
2965 u64 val;
2966
2967 /* Check whether the property table is in a reserved region */
2968 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2969 addr = val & GENMASK_ULL(51, 12);
2970
2971 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2972 }
2973
allocate_lpi_tables(void)2974 static int __init allocate_lpi_tables(void)
2975 {
2976 u64 val;
2977 int err, cpu;
2978
2979 /*
2980 * If LPIs are enabled while we run this from the boot CPU,
2981 * flag the RD tables as pre-allocated if the stars do align.
2982 */
2983 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2984 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2985 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2986 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2987 pr_info("GICv3: Using preallocated redistributor tables\n");
2988 }
2989
2990 err = its_setup_lpi_prop_table();
2991 if (err)
2992 return err;
2993
2994 /*
2995 * We allocate all the pending tables anyway, as we may have a
2996 * mix of RDs that have had LPIs enabled, and some that
2997 * don't. We'll free the unused ones as each CPU comes online.
2998 */
2999 for_each_possible_cpu(cpu) {
3000 struct page *pend_page;
3001
3002 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3003 if (!pend_page) {
3004 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3005 return -ENOMEM;
3006 }
3007
3008 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3009 }
3010
3011 return 0;
3012 }
3013
read_vpend_dirty_clear(void __iomem * vlpi_base)3014 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3015 {
3016 u32 count = 1000000; /* 1s! */
3017 bool clean;
3018 u64 val;
3019
3020 do {
3021 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3022 clean = !(val & GICR_VPENDBASER_Dirty);
3023 if (!clean) {
3024 count--;
3025 cpu_relax();
3026 udelay(1);
3027 }
3028 } while (!clean && count);
3029
3030 if (unlikely(!clean))
3031 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3032
3033 return val;
3034 }
3035
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3036 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3037 {
3038 u64 val;
3039
3040 /* Make sure we wait until the RD is done with the initial scan */
3041 val = read_vpend_dirty_clear(vlpi_base);
3042 val &= ~GICR_VPENDBASER_Valid;
3043 val &= ~clr;
3044 val |= set;
3045 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3046
3047 val = read_vpend_dirty_clear(vlpi_base);
3048 if (unlikely(val & GICR_VPENDBASER_Dirty))
3049 val |= GICR_VPENDBASER_PendingLast;
3050
3051 return val;
3052 }
3053
its_cpu_init_lpis(void)3054 static void its_cpu_init_lpis(void)
3055 {
3056 void __iomem *rbase = gic_data_rdist_rd_base();
3057 struct page *pend_page;
3058 phys_addr_t paddr;
3059 u64 val, tmp;
3060
3061 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3062 return;
3063
3064 val = readl_relaxed(rbase + GICR_CTLR);
3065 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3066 (val & GICR_CTLR_ENABLE_LPIS)) {
3067 /*
3068 * Check that we get the same property table on all
3069 * RDs. If we don't, this is hopeless.
3070 */
3071 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3072 paddr &= GENMASK_ULL(51, 12);
3073 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3074 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3075
3076 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3077 paddr &= GENMASK_ULL(51, 16);
3078
3079 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3080 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3081
3082 goto out;
3083 }
3084
3085 pend_page = gic_data_rdist()->pend_page;
3086 paddr = page_to_phys(pend_page);
3087
3088 /* set PROPBASE */
3089 val = (gic_rdists->prop_table_pa |
3090 GICR_PROPBASER_InnerShareable |
3091 GICR_PROPBASER_RaWaWb |
3092 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3093
3094 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3095 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3096
3097 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3098 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3099 /*
3100 * The HW reports non-shareable, we must
3101 * remove the cacheability attributes as
3102 * well.
3103 */
3104 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3105 GICR_PROPBASER_CACHEABILITY_MASK);
3106 val |= GICR_PROPBASER_nC;
3107 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3108 }
3109 pr_info_once("GIC: using cache flushing for LPI property table\n");
3110 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3111 }
3112
3113 /* set PENDBASE */
3114 val = (page_to_phys(pend_page) |
3115 GICR_PENDBASER_InnerShareable |
3116 GICR_PENDBASER_RaWaWb);
3117
3118 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3119 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3120
3121 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3122 /*
3123 * The HW reports non-shareable, we must remove the
3124 * cacheability attributes as well.
3125 */
3126 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3127 GICR_PENDBASER_CACHEABILITY_MASK);
3128 val |= GICR_PENDBASER_nC;
3129 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3130 }
3131
3132 /* Enable LPIs */
3133 val = readl_relaxed(rbase + GICR_CTLR);
3134 val |= GICR_CTLR_ENABLE_LPIS;
3135 writel_relaxed(val, rbase + GICR_CTLR);
3136
3137 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3138 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3139
3140 /*
3141 * It's possible for CPU to receive VLPIs before it is
3142 * scheduled as a vPE, especially for the first CPU, and the
3143 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3144 * as out of range and dropped by GIC.
3145 * So we initialize IDbits to known value to avoid VLPI drop.
3146 */
3147 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3148 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3149 smp_processor_id(), val);
3150 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3151
3152 /*
3153 * Also clear Valid bit of GICR_VPENDBASER, in case some
3154 * ancient programming gets left in and has possibility of
3155 * corrupting memory.
3156 */
3157 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3158 }
3159
3160 if (allocate_vpe_l1_table()) {
3161 /*
3162 * If the allocation has failed, we're in massive trouble.
3163 * Disable direct injection, and pray that no VM was
3164 * already running...
3165 */
3166 gic_rdists->has_rvpeid = false;
3167 gic_rdists->has_vlpis = false;
3168 }
3169
3170 /* Make sure the GIC has seen the above */
3171 dsb(sy);
3172 out:
3173 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3174 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3175 smp_processor_id(),
3176 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3177 "reserved" : "allocated",
3178 &paddr);
3179 }
3180
its_cpu_init_collection(struct its_node * its)3181 static void its_cpu_init_collection(struct its_node *its)
3182 {
3183 int cpu = smp_processor_id();
3184 u64 target;
3185
3186 /* avoid cross node collections and its mapping */
3187 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3188 struct device_node *cpu_node;
3189
3190 cpu_node = of_get_cpu_node(cpu, NULL);
3191 if (its->numa_node != NUMA_NO_NODE &&
3192 its->numa_node != of_node_to_nid(cpu_node))
3193 return;
3194 }
3195
3196 /*
3197 * We now have to bind each collection to its target
3198 * redistributor.
3199 */
3200 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3201 /*
3202 * This ITS wants the physical address of the
3203 * redistributor.
3204 */
3205 target = gic_data_rdist()->phys_base;
3206 } else {
3207 /* This ITS wants a linear CPU number. */
3208 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3209 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3210 }
3211
3212 /* Perform collection mapping */
3213 its->collections[cpu].target_address = target;
3214 its->collections[cpu].col_id = cpu;
3215
3216 its_send_mapc(its, &its->collections[cpu], 1);
3217 its_send_invall(its, &its->collections[cpu]);
3218 }
3219
its_cpu_init_collections(void)3220 static void its_cpu_init_collections(void)
3221 {
3222 struct its_node *its;
3223
3224 raw_spin_lock(&its_lock);
3225
3226 list_for_each_entry(its, &its_nodes, entry)
3227 its_cpu_init_collection(its);
3228
3229 raw_spin_unlock(&its_lock);
3230 }
3231
its_find_device(struct its_node * its,u32 dev_id)3232 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3233 {
3234 struct its_device *its_dev = NULL, *tmp;
3235 unsigned long flags;
3236
3237 raw_spin_lock_irqsave(&its->lock, flags);
3238
3239 list_for_each_entry(tmp, &its->its_device_list, entry) {
3240 if (tmp->device_id == dev_id) {
3241 its_dev = tmp;
3242 break;
3243 }
3244 }
3245
3246 raw_spin_unlock_irqrestore(&its->lock, flags);
3247
3248 return its_dev;
3249 }
3250
its_get_baser(struct its_node * its,u32 type)3251 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3252 {
3253 int i;
3254
3255 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3256 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3257 return &its->tables[i];
3258 }
3259
3260 return NULL;
3261 }
3262
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3263 static bool its_alloc_table_entry(struct its_node *its,
3264 struct its_baser *baser, u32 id)
3265 {
3266 struct page *page;
3267 u32 esz, idx;
3268 __le64 *table;
3269
3270 /* Don't allow device id that exceeds single, flat table limit */
3271 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3272 if (!(baser->val & GITS_BASER_INDIRECT))
3273 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3274
3275 /* Compute 1st level table index & check if that exceeds table limit */
3276 idx = id >> ilog2(baser->psz / esz);
3277 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3278 return false;
3279
3280 table = baser->base;
3281
3282 /* Allocate memory for 2nd level table */
3283 if (!table[idx]) {
3284 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3285 get_order(baser->psz));
3286 if (!page)
3287 return false;
3288
3289 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3290 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3291 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3292
3293 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3294
3295 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3296 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3297 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3298
3299 /* Ensure updated table contents are visible to ITS hardware */
3300 dsb(sy);
3301 }
3302
3303 return true;
3304 }
3305
its_alloc_device_table(struct its_node * its,u32 dev_id)3306 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3307 {
3308 struct its_baser *baser;
3309
3310 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3311
3312 /* Don't allow device id that exceeds ITS hardware limit */
3313 if (!baser)
3314 return (ilog2(dev_id) < device_ids(its));
3315
3316 return its_alloc_table_entry(its, baser, dev_id);
3317 }
3318
its_alloc_vpe_table(u32 vpe_id)3319 static bool its_alloc_vpe_table(u32 vpe_id)
3320 {
3321 struct its_node *its;
3322 int cpu;
3323
3324 /*
3325 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3326 * could try and only do it on ITSs corresponding to devices
3327 * that have interrupts targeted at this VPE, but the
3328 * complexity becomes crazy (and you have tons of memory
3329 * anyway, right?).
3330 */
3331 list_for_each_entry(its, &its_nodes, entry) {
3332 struct its_baser *baser;
3333
3334 if (!is_v4(its))
3335 continue;
3336
3337 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3338 if (!baser)
3339 return false;
3340
3341 if (!its_alloc_table_entry(its, baser, vpe_id))
3342 return false;
3343 }
3344
3345 /* Non v4.1? No need to iterate RDs and go back early. */
3346 if (!gic_rdists->has_rvpeid)
3347 return true;
3348
3349 /*
3350 * Make sure the L2 tables are allocated for all copies of
3351 * the L1 table on *all* v4.1 RDs.
3352 */
3353 for_each_possible_cpu(cpu) {
3354 if (!allocate_vpe_l2_table(cpu, vpe_id))
3355 return false;
3356 }
3357
3358 return true;
3359 }
3360
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3361 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3362 int nvecs, bool alloc_lpis)
3363 {
3364 struct its_device *dev;
3365 unsigned long *lpi_map = NULL;
3366 unsigned long flags;
3367 u16 *col_map = NULL;
3368 void *itt;
3369 int lpi_base;
3370 int nr_lpis;
3371 int nr_ites;
3372 int sz;
3373
3374 if (!its_alloc_device_table(its, dev_id))
3375 return NULL;
3376
3377 if (WARN_ON(!is_power_of_2(nvecs)))
3378 nvecs = roundup_pow_of_two(nvecs);
3379
3380 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3381 /*
3382 * Even if the device wants a single LPI, the ITT must be
3383 * sized as a power of two (and you need at least one bit...).
3384 */
3385 nr_ites = max(2, nvecs);
3386 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3387 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3388 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3389 if (alloc_lpis) {
3390 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3391 if (lpi_map)
3392 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3393 GFP_KERNEL);
3394 } else {
3395 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3396 nr_lpis = 0;
3397 lpi_base = 0;
3398 }
3399
3400 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3401 kfree(dev);
3402 kfree(itt);
3403 bitmap_free(lpi_map);
3404 kfree(col_map);
3405 return NULL;
3406 }
3407
3408 gic_flush_dcache_to_poc(itt, sz);
3409
3410 dev->its = its;
3411 dev->itt = itt;
3412 dev->nr_ites = nr_ites;
3413 dev->event_map.lpi_map = lpi_map;
3414 dev->event_map.col_map = col_map;
3415 dev->event_map.lpi_base = lpi_base;
3416 dev->event_map.nr_lpis = nr_lpis;
3417 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3418 dev->device_id = dev_id;
3419 INIT_LIST_HEAD(&dev->entry);
3420
3421 raw_spin_lock_irqsave(&its->lock, flags);
3422 list_add(&dev->entry, &its->its_device_list);
3423 raw_spin_unlock_irqrestore(&its->lock, flags);
3424
3425 /* Map device to its ITT */
3426 its_send_mapd(dev, 1);
3427
3428 return dev;
3429 }
3430
its_free_device(struct its_device * its_dev)3431 static void its_free_device(struct its_device *its_dev)
3432 {
3433 unsigned long flags;
3434
3435 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3436 list_del(&its_dev->entry);
3437 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3438 kfree(its_dev->event_map.col_map);
3439 kfree(its_dev->itt);
3440 kfree(its_dev);
3441 }
3442
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3443 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3444 {
3445 int idx;
3446
3447 /* Find a free LPI region in lpi_map and allocate them. */
3448 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3449 dev->event_map.nr_lpis,
3450 get_count_order(nvecs));
3451 if (idx < 0)
3452 return -ENOSPC;
3453
3454 *hwirq = dev->event_map.lpi_base + idx;
3455
3456 return 0;
3457 }
3458
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3459 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3460 int nvec, msi_alloc_info_t *info)
3461 {
3462 struct its_node *its;
3463 struct its_device *its_dev;
3464 struct msi_domain_info *msi_info;
3465 u32 dev_id;
3466 int err = 0;
3467
3468 /*
3469 * We ignore "dev" entirely, and rely on the dev_id that has
3470 * been passed via the scratchpad. This limits this domain's
3471 * usefulness to upper layers that definitely know that they
3472 * are built on top of the ITS.
3473 */
3474 dev_id = info->scratchpad[0].ul;
3475
3476 msi_info = msi_get_domain_info(domain);
3477 its = msi_info->data;
3478
3479 if (!gic_rdists->has_direct_lpi &&
3480 vpe_proxy.dev &&
3481 vpe_proxy.dev->its == its &&
3482 dev_id == vpe_proxy.dev->device_id) {
3483 /* Bad luck. Get yourself a better implementation */
3484 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3485 dev_id);
3486 return -EINVAL;
3487 }
3488
3489 mutex_lock(&its->dev_alloc_lock);
3490 its_dev = its_find_device(its, dev_id);
3491 if (its_dev) {
3492 /*
3493 * We already have seen this ID, probably through
3494 * another alias (PCI bridge of some sort). No need to
3495 * create the device.
3496 */
3497 its_dev->shared = true;
3498 pr_debug("Reusing ITT for devID %x\n", dev_id);
3499 goto out;
3500 }
3501
3502 its_dev = its_create_device(its, dev_id, nvec, true);
3503 if (!its_dev) {
3504 err = -ENOMEM;
3505 goto out;
3506 }
3507
3508 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3509 its_dev->shared = true;
3510
3511 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3512 out:
3513 mutex_unlock(&its->dev_alloc_lock);
3514 info->scratchpad[0].ptr = its_dev;
3515 return err;
3516 }
3517
3518 static struct msi_domain_ops its_msi_domain_ops = {
3519 .msi_prepare = its_msi_prepare,
3520 };
3521
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3522 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3523 unsigned int virq,
3524 irq_hw_number_t hwirq)
3525 {
3526 struct irq_fwspec fwspec;
3527
3528 if (irq_domain_get_of_node(domain->parent)) {
3529 fwspec.fwnode = domain->parent->fwnode;
3530 fwspec.param_count = 3;
3531 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3532 fwspec.param[1] = hwirq;
3533 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3534 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3535 fwspec.fwnode = domain->parent->fwnode;
3536 fwspec.param_count = 2;
3537 fwspec.param[0] = hwirq;
3538 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3539 } else {
3540 return -EINVAL;
3541 }
3542
3543 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3544 }
3545
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3546 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3547 unsigned int nr_irqs, void *args)
3548 {
3549 msi_alloc_info_t *info = args;
3550 struct its_device *its_dev = info->scratchpad[0].ptr;
3551 struct its_node *its = its_dev->its;
3552 struct irq_data *irqd;
3553 irq_hw_number_t hwirq;
3554 int err;
3555 int i;
3556
3557 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3558 if (err)
3559 return err;
3560
3561 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3562 if (err)
3563 return err;
3564
3565 for (i = 0; i < nr_irqs; i++) {
3566 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3567 if (err)
3568 return err;
3569
3570 irq_domain_set_hwirq_and_chip(domain, virq + i,
3571 hwirq + i, &its_irq_chip, its_dev);
3572 irqd = irq_get_irq_data(virq + i);
3573 irqd_set_single_target(irqd);
3574 irqd_set_affinity_on_activate(irqd);
3575 pr_debug("ID:%d pID:%d vID:%d\n",
3576 (int)(hwirq + i - its_dev->event_map.lpi_base),
3577 (int)(hwirq + i), virq + i);
3578 }
3579
3580 return 0;
3581 }
3582
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3583 static int its_irq_domain_activate(struct irq_domain *domain,
3584 struct irq_data *d, bool reserve)
3585 {
3586 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3587 u32 event = its_get_event_id(d);
3588 int cpu;
3589
3590 cpu = its_select_cpu(d, cpu_online_mask);
3591 if (cpu < 0 || cpu >= nr_cpu_ids)
3592 return -EINVAL;
3593
3594 its_inc_lpi_count(d, cpu);
3595 its_dev->event_map.col_map[event] = cpu;
3596 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3597
3598 /* Map the GIC IRQ and event to the device */
3599 its_send_mapti(its_dev, d->hwirq, event);
3600 return 0;
3601 }
3602
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3603 static void its_irq_domain_deactivate(struct irq_domain *domain,
3604 struct irq_data *d)
3605 {
3606 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3607 u32 event = its_get_event_id(d);
3608
3609 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3610 /* Stop the delivery of interrupts */
3611 its_send_discard(its_dev, event);
3612 }
3613
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3614 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3615 unsigned int nr_irqs)
3616 {
3617 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3618 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3619 struct its_node *its = its_dev->its;
3620 int i;
3621
3622 bitmap_release_region(its_dev->event_map.lpi_map,
3623 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3624 get_count_order(nr_irqs));
3625
3626 for (i = 0; i < nr_irqs; i++) {
3627 struct irq_data *data = irq_domain_get_irq_data(domain,
3628 virq + i);
3629 /* Nuke the entry in the domain */
3630 irq_domain_reset_irq_data(data);
3631 }
3632
3633 mutex_lock(&its->dev_alloc_lock);
3634
3635 /*
3636 * If all interrupts have been freed, start mopping the
3637 * floor. This is conditioned on the device not being shared.
3638 */
3639 if (!its_dev->shared &&
3640 bitmap_empty(its_dev->event_map.lpi_map,
3641 its_dev->event_map.nr_lpis)) {
3642 its_lpi_free(its_dev->event_map.lpi_map,
3643 its_dev->event_map.lpi_base,
3644 its_dev->event_map.nr_lpis);
3645
3646 /* Unmap device/itt */
3647 its_send_mapd(its_dev, 0);
3648 its_free_device(its_dev);
3649 }
3650
3651 mutex_unlock(&its->dev_alloc_lock);
3652
3653 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3654 }
3655
3656 static const struct irq_domain_ops its_domain_ops = {
3657 .alloc = its_irq_domain_alloc,
3658 .free = its_irq_domain_free,
3659 .activate = its_irq_domain_activate,
3660 .deactivate = its_irq_domain_deactivate,
3661 };
3662
3663 /*
3664 * This is insane.
3665 *
3666 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3667 * likely), the only way to perform an invalidate is to use a fake
3668 * device to issue an INV command, implying that the LPI has first
3669 * been mapped to some event on that device. Since this is not exactly
3670 * cheap, we try to keep that mapping around as long as possible, and
3671 * only issue an UNMAP if we're short on available slots.
3672 *
3673 * Broken by design(tm).
3674 *
3675 * GICv4.1, on the other hand, mandates that we're able to invalidate
3676 * by writing to a MMIO register. It doesn't implement the whole of
3677 * DirectLPI, but that's good enough. And most of the time, we don't
3678 * even have to invalidate anything, as the redistributor can be told
3679 * whether to generate a doorbell or not (we thus leave it enabled,
3680 * always).
3681 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3682 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3683 {
3684 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3685 if (gic_rdists->has_rvpeid)
3686 return;
3687
3688 /* Already unmapped? */
3689 if (vpe->vpe_proxy_event == -1)
3690 return;
3691
3692 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3693 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3694
3695 /*
3696 * We don't track empty slots at all, so let's move the
3697 * next_victim pointer if we can quickly reuse that slot
3698 * instead of nuking an existing entry. Not clear that this is
3699 * always a win though, and this might just generate a ripple
3700 * effect... Let's just hope VPEs don't migrate too often.
3701 */
3702 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3703 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3704
3705 vpe->vpe_proxy_event = -1;
3706 }
3707
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3708 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3709 {
3710 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3711 if (gic_rdists->has_rvpeid)
3712 return;
3713
3714 if (!gic_rdists->has_direct_lpi) {
3715 unsigned long flags;
3716
3717 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3718 its_vpe_db_proxy_unmap_locked(vpe);
3719 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3720 }
3721 }
3722
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3723 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3724 {
3725 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3726 if (gic_rdists->has_rvpeid)
3727 return;
3728
3729 /* Already mapped? */
3730 if (vpe->vpe_proxy_event != -1)
3731 return;
3732
3733 /* This slot was already allocated. Kick the other VPE out. */
3734 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3735 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3736
3737 /* Map the new VPE instead */
3738 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3739 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3740 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3741
3742 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3743 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3744 }
3745
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3746 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3747 {
3748 unsigned long flags;
3749 struct its_collection *target_col;
3750
3751 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3752 if (gic_rdists->has_rvpeid)
3753 return;
3754
3755 if (gic_rdists->has_direct_lpi) {
3756 void __iomem *rdbase;
3757
3758 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3759 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3760 wait_for_syncr(rdbase);
3761
3762 return;
3763 }
3764
3765 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3766
3767 its_vpe_db_proxy_map_locked(vpe);
3768
3769 target_col = &vpe_proxy.dev->its->collections[to];
3770 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3771 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3772
3773 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3774 }
3775
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3776 static int its_vpe_set_affinity(struct irq_data *d,
3777 const struct cpumask *mask_val,
3778 bool force)
3779 {
3780 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3781 int from, cpu = cpumask_first(mask_val);
3782 unsigned long flags;
3783
3784 /*
3785 * Changing affinity is mega expensive, so let's be as lazy as
3786 * we can and only do it if we really have to. Also, if mapped
3787 * into the proxy device, we need to move the doorbell
3788 * interrupt to its new location.
3789 *
3790 * Another thing is that changing the affinity of a vPE affects
3791 * *other interrupts* such as all the vLPIs that are routed to
3792 * this vPE. This means that the irq_desc lock is not enough to
3793 * protect us, and that we must ensure nobody samples vpe->col_idx
3794 * during the update, hence the lock below which must also be
3795 * taken on any vLPI handling path that evaluates vpe->col_idx.
3796 */
3797 from = vpe_to_cpuid_lock(vpe, &flags);
3798 if (from == cpu)
3799 goto out;
3800
3801 vpe->col_idx = cpu;
3802
3803 /*
3804 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3805 * is sharing its VPE table with the current one.
3806 */
3807 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3808 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3809 goto out;
3810
3811 its_send_vmovp(vpe);
3812 its_vpe_db_proxy_move(vpe, from, cpu);
3813
3814 out:
3815 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3816 vpe_to_cpuid_unlock(vpe, flags);
3817
3818 return IRQ_SET_MASK_OK_DONE;
3819 }
3820
its_wait_vpt_parse_complete(void)3821 static void its_wait_vpt_parse_complete(void)
3822 {
3823 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3824 u64 val;
3825
3826 if (!gic_rdists->has_vpend_valid_dirty)
3827 return;
3828
3829 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3830 val,
3831 !(val & GICR_VPENDBASER_Dirty),
3832 1, 500));
3833 }
3834
its_vpe_schedule(struct its_vpe * vpe)3835 static void its_vpe_schedule(struct its_vpe *vpe)
3836 {
3837 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3838 u64 val;
3839
3840 /* Schedule the VPE */
3841 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3842 GENMASK_ULL(51, 12);
3843 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3844 val |= GICR_VPROPBASER_RaWb;
3845 val |= GICR_VPROPBASER_InnerShareable;
3846 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3847
3848 val = virt_to_phys(page_address(vpe->vpt_page)) &
3849 GENMASK_ULL(51, 16);
3850 val |= GICR_VPENDBASER_RaWaWb;
3851 val |= GICR_VPENDBASER_InnerShareable;
3852 /*
3853 * There is no good way of finding out if the pending table is
3854 * empty as we can race against the doorbell interrupt very
3855 * easily. So in the end, vpe->pending_last is only an
3856 * indication that the vcpu has something pending, not one
3857 * that the pending table is empty. A good implementation
3858 * would be able to read its coarse map pretty quickly anyway,
3859 * making this a tolerable issue.
3860 */
3861 val |= GICR_VPENDBASER_PendingLast;
3862 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3863 val |= GICR_VPENDBASER_Valid;
3864 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3865 }
3866
its_vpe_deschedule(struct its_vpe * vpe)3867 static void its_vpe_deschedule(struct its_vpe *vpe)
3868 {
3869 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3870 u64 val;
3871
3872 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3873
3874 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3875 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3876 }
3877
its_vpe_invall(struct its_vpe * vpe)3878 static void its_vpe_invall(struct its_vpe *vpe)
3879 {
3880 struct its_node *its;
3881
3882 list_for_each_entry(its, &its_nodes, entry) {
3883 if (!is_v4(its))
3884 continue;
3885
3886 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3887 continue;
3888
3889 /*
3890 * Sending a VINVALL to a single ITS is enough, as all
3891 * we need is to reach the redistributors.
3892 */
3893 its_send_vinvall(its, vpe);
3894 return;
3895 }
3896 }
3897
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3898 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3899 {
3900 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3901 struct its_cmd_info *info = vcpu_info;
3902
3903 switch (info->cmd_type) {
3904 case SCHEDULE_VPE:
3905 its_vpe_schedule(vpe);
3906 return 0;
3907
3908 case DESCHEDULE_VPE:
3909 its_vpe_deschedule(vpe);
3910 return 0;
3911
3912 case COMMIT_VPE:
3913 its_wait_vpt_parse_complete();
3914 return 0;
3915
3916 case INVALL_VPE:
3917 its_vpe_invall(vpe);
3918 return 0;
3919
3920 default:
3921 return -EINVAL;
3922 }
3923 }
3924
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3925 static void its_vpe_send_cmd(struct its_vpe *vpe,
3926 void (*cmd)(struct its_device *, u32))
3927 {
3928 unsigned long flags;
3929
3930 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3931
3932 its_vpe_db_proxy_map_locked(vpe);
3933 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3934
3935 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3936 }
3937
its_vpe_send_inv(struct irq_data * d)3938 static void its_vpe_send_inv(struct irq_data *d)
3939 {
3940 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3941
3942 if (gic_rdists->has_direct_lpi) {
3943 void __iomem *rdbase;
3944
3945 /* Target the redistributor this VPE is currently known on */
3946 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3947 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3948 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3949 wait_for_syncr(rdbase);
3950 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3951 } else {
3952 its_vpe_send_cmd(vpe, its_send_inv);
3953 }
3954 }
3955
its_vpe_mask_irq(struct irq_data * d)3956 static void its_vpe_mask_irq(struct irq_data *d)
3957 {
3958 /*
3959 * We need to unmask the LPI, which is described by the parent
3960 * irq_data. Instead of calling into the parent (which won't
3961 * exactly do the right thing, let's simply use the
3962 * parent_data pointer. Yes, I'm naughty.
3963 */
3964 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3965 its_vpe_send_inv(d);
3966 }
3967
its_vpe_unmask_irq(struct irq_data * d)3968 static void its_vpe_unmask_irq(struct irq_data *d)
3969 {
3970 /* Same hack as above... */
3971 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3972 its_vpe_send_inv(d);
3973 }
3974
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3975 static int its_vpe_set_irqchip_state(struct irq_data *d,
3976 enum irqchip_irq_state which,
3977 bool state)
3978 {
3979 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3980
3981 if (which != IRQCHIP_STATE_PENDING)
3982 return -EINVAL;
3983
3984 if (gic_rdists->has_direct_lpi) {
3985 void __iomem *rdbase;
3986
3987 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3988 if (state) {
3989 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3990 } else {
3991 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3992 wait_for_syncr(rdbase);
3993 }
3994 } else {
3995 if (state)
3996 its_vpe_send_cmd(vpe, its_send_int);
3997 else
3998 its_vpe_send_cmd(vpe, its_send_clear);
3999 }
4000
4001 return 0;
4002 }
4003
its_vpe_retrigger(struct irq_data * d)4004 static int its_vpe_retrigger(struct irq_data *d)
4005 {
4006 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4007 }
4008
4009 static struct irq_chip its_vpe_irq_chip = {
4010 .name = "GICv4-vpe",
4011 .irq_mask = its_vpe_mask_irq,
4012 .irq_unmask = its_vpe_unmask_irq,
4013 .irq_eoi = irq_chip_eoi_parent,
4014 .irq_set_affinity = its_vpe_set_affinity,
4015 .irq_retrigger = its_vpe_retrigger,
4016 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4017 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4018 };
4019
find_4_1_its(void)4020 static struct its_node *find_4_1_its(void)
4021 {
4022 static struct its_node *its = NULL;
4023
4024 if (!its) {
4025 list_for_each_entry(its, &its_nodes, entry) {
4026 if (is_v4_1(its))
4027 return its;
4028 }
4029
4030 /* Oops? */
4031 its = NULL;
4032 }
4033
4034 return its;
4035 }
4036
its_vpe_4_1_send_inv(struct irq_data * d)4037 static void its_vpe_4_1_send_inv(struct irq_data *d)
4038 {
4039 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4040 struct its_node *its;
4041
4042 /*
4043 * GICv4.1 wants doorbells to be invalidated using the
4044 * INVDB command in order to be broadcast to all RDs. Send
4045 * it to the first valid ITS, and let the HW do its magic.
4046 */
4047 its = find_4_1_its();
4048 if (its)
4049 its_send_invdb(its, vpe);
4050 }
4051
its_vpe_4_1_mask_irq(struct irq_data * d)4052 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4053 {
4054 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4055 its_vpe_4_1_send_inv(d);
4056 }
4057
its_vpe_4_1_unmask_irq(struct irq_data * d)4058 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4059 {
4060 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4061 its_vpe_4_1_send_inv(d);
4062 }
4063
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4064 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4065 struct its_cmd_info *info)
4066 {
4067 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4068 u64 val = 0;
4069
4070 /* Schedule the VPE */
4071 val |= GICR_VPENDBASER_Valid;
4072 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4073 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4074 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4075
4076 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4077 }
4078
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4079 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4080 struct its_cmd_info *info)
4081 {
4082 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4083 u64 val;
4084
4085 if (info->req_db) {
4086 unsigned long flags;
4087
4088 /*
4089 * vPE is going to block: make the vPE non-resident with
4090 * PendingLast clear and DB set. The GIC guarantees that if
4091 * we read-back PendingLast clear, then a doorbell will be
4092 * delivered when an interrupt comes.
4093 *
4094 * Note the locking to deal with the concurrent update of
4095 * pending_last from the doorbell interrupt handler that can
4096 * run concurrently.
4097 */
4098 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4099 val = its_clear_vpend_valid(vlpi_base,
4100 GICR_VPENDBASER_PendingLast,
4101 GICR_VPENDBASER_4_1_DB);
4102 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4103 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4104 } else {
4105 /*
4106 * We're not blocking, so just make the vPE non-resident
4107 * with PendingLast set, indicating that we'll be back.
4108 */
4109 val = its_clear_vpend_valid(vlpi_base,
4110 0,
4111 GICR_VPENDBASER_PendingLast);
4112 vpe->pending_last = true;
4113 }
4114 }
4115
its_vpe_4_1_invall(struct its_vpe * vpe)4116 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4117 {
4118 void __iomem *rdbase;
4119 unsigned long flags;
4120 u64 val;
4121 int cpu;
4122
4123 val = GICR_INVALLR_V;
4124 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4125
4126 /* Target the redistributor this vPE is currently known on */
4127 cpu = vpe_to_cpuid_lock(vpe, &flags);
4128 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4129 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4130 gic_write_lpir(val, rdbase + GICR_INVALLR);
4131
4132 wait_for_syncr(rdbase);
4133 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4134 vpe_to_cpuid_unlock(vpe, flags);
4135 }
4136
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4137 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4138 {
4139 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4140 struct its_cmd_info *info = vcpu_info;
4141
4142 switch (info->cmd_type) {
4143 case SCHEDULE_VPE:
4144 its_vpe_4_1_schedule(vpe, info);
4145 return 0;
4146
4147 case DESCHEDULE_VPE:
4148 its_vpe_4_1_deschedule(vpe, info);
4149 return 0;
4150
4151 case COMMIT_VPE:
4152 its_wait_vpt_parse_complete();
4153 return 0;
4154
4155 case INVALL_VPE:
4156 its_vpe_4_1_invall(vpe);
4157 return 0;
4158
4159 default:
4160 return -EINVAL;
4161 }
4162 }
4163
4164 static struct irq_chip its_vpe_4_1_irq_chip = {
4165 .name = "GICv4.1-vpe",
4166 .irq_mask = its_vpe_4_1_mask_irq,
4167 .irq_unmask = its_vpe_4_1_unmask_irq,
4168 .irq_eoi = irq_chip_eoi_parent,
4169 .irq_set_affinity = its_vpe_set_affinity,
4170 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4171 };
4172
its_configure_sgi(struct irq_data * d,bool clear)4173 static void its_configure_sgi(struct irq_data *d, bool clear)
4174 {
4175 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4176 struct its_cmd_desc desc;
4177
4178 desc.its_vsgi_cmd.vpe = vpe;
4179 desc.its_vsgi_cmd.sgi = d->hwirq;
4180 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4181 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4182 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4183 desc.its_vsgi_cmd.clear = clear;
4184
4185 /*
4186 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4187 * destination VPE is mapped there. Since we map them eagerly at
4188 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4189 */
4190 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4191 }
4192
its_sgi_mask_irq(struct irq_data * d)4193 static void its_sgi_mask_irq(struct irq_data *d)
4194 {
4195 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4196
4197 vpe->sgi_config[d->hwirq].enabled = false;
4198 its_configure_sgi(d, false);
4199 }
4200
its_sgi_unmask_irq(struct irq_data * d)4201 static void its_sgi_unmask_irq(struct irq_data *d)
4202 {
4203 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4204
4205 vpe->sgi_config[d->hwirq].enabled = true;
4206 its_configure_sgi(d, false);
4207 }
4208
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4209 static int its_sgi_set_affinity(struct irq_data *d,
4210 const struct cpumask *mask_val,
4211 bool force)
4212 {
4213 /*
4214 * There is no notion of affinity for virtual SGIs, at least
4215 * not on the host (since they can only be targeting a vPE).
4216 * Tell the kernel we've done whatever it asked for.
4217 */
4218 irq_data_update_effective_affinity(d, mask_val);
4219 return IRQ_SET_MASK_OK;
4220 }
4221
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4222 static int its_sgi_set_irqchip_state(struct irq_data *d,
4223 enum irqchip_irq_state which,
4224 bool state)
4225 {
4226 if (which != IRQCHIP_STATE_PENDING)
4227 return -EINVAL;
4228
4229 if (state) {
4230 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4231 struct its_node *its = find_4_1_its();
4232 u64 val;
4233
4234 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4235 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4236 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4237 } else {
4238 its_configure_sgi(d, true);
4239 }
4240
4241 return 0;
4242 }
4243
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4244 static int its_sgi_get_irqchip_state(struct irq_data *d,
4245 enum irqchip_irq_state which, bool *val)
4246 {
4247 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4248 void __iomem *base;
4249 unsigned long flags;
4250 u32 count = 1000000; /* 1s! */
4251 u32 status;
4252 int cpu;
4253
4254 if (which != IRQCHIP_STATE_PENDING)
4255 return -EINVAL;
4256
4257 /*
4258 * Locking galore! We can race against two different events:
4259 *
4260 * - Concurrent vPE affinity change: we must make sure it cannot
4261 * happen, or we'll talk to the wrong redistributor. This is
4262 * identical to what happens with vLPIs.
4263 *
4264 * - Concurrent VSGIPENDR access: As it involves accessing two
4265 * MMIO registers, this must be made atomic one way or another.
4266 */
4267 cpu = vpe_to_cpuid_lock(vpe, &flags);
4268 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4269 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4270 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4271 do {
4272 status = readl_relaxed(base + GICR_VSGIPENDR);
4273 if (!(status & GICR_VSGIPENDR_BUSY))
4274 goto out;
4275
4276 count--;
4277 if (!count) {
4278 pr_err_ratelimited("Unable to get SGI status\n");
4279 goto out;
4280 }
4281 cpu_relax();
4282 udelay(1);
4283 } while (count);
4284
4285 out:
4286 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4287 vpe_to_cpuid_unlock(vpe, flags);
4288
4289 if (!count)
4290 return -ENXIO;
4291
4292 *val = !!(status & (1 << d->hwirq));
4293
4294 return 0;
4295 }
4296
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4297 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4298 {
4299 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4300 struct its_cmd_info *info = vcpu_info;
4301
4302 switch (info->cmd_type) {
4303 case PROP_UPDATE_VSGI:
4304 vpe->sgi_config[d->hwirq].priority = info->priority;
4305 vpe->sgi_config[d->hwirq].group = info->group;
4306 its_configure_sgi(d, false);
4307 return 0;
4308
4309 default:
4310 return -EINVAL;
4311 }
4312 }
4313
4314 static struct irq_chip its_sgi_irq_chip = {
4315 .name = "GICv4.1-sgi",
4316 .irq_mask = its_sgi_mask_irq,
4317 .irq_unmask = its_sgi_unmask_irq,
4318 .irq_set_affinity = its_sgi_set_affinity,
4319 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4320 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4321 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4322 };
4323
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4324 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4325 unsigned int virq, unsigned int nr_irqs,
4326 void *args)
4327 {
4328 struct its_vpe *vpe = args;
4329 int i;
4330
4331 /* Yes, we do want 16 SGIs */
4332 WARN_ON(nr_irqs != 16);
4333
4334 for (i = 0; i < 16; i++) {
4335 vpe->sgi_config[i].priority = 0;
4336 vpe->sgi_config[i].enabled = false;
4337 vpe->sgi_config[i].group = false;
4338
4339 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4340 &its_sgi_irq_chip, vpe);
4341 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4342 }
4343
4344 return 0;
4345 }
4346
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4347 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4348 unsigned int virq,
4349 unsigned int nr_irqs)
4350 {
4351 /* Nothing to do */
4352 }
4353
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4354 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4355 struct irq_data *d, bool reserve)
4356 {
4357 /* Write out the initial SGI configuration */
4358 its_configure_sgi(d, false);
4359 return 0;
4360 }
4361
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4362 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4363 struct irq_data *d)
4364 {
4365 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4366
4367 /*
4368 * The VSGI command is awkward:
4369 *
4370 * - To change the configuration, CLEAR must be set to false,
4371 * leaving the pending bit unchanged.
4372 * - To clear the pending bit, CLEAR must be set to true, leaving
4373 * the configuration unchanged.
4374 *
4375 * You just can't do both at once, hence the two commands below.
4376 */
4377 vpe->sgi_config[d->hwirq].enabled = false;
4378 its_configure_sgi(d, false);
4379 its_configure_sgi(d, true);
4380 }
4381
4382 static const struct irq_domain_ops its_sgi_domain_ops = {
4383 .alloc = its_sgi_irq_domain_alloc,
4384 .free = its_sgi_irq_domain_free,
4385 .activate = its_sgi_irq_domain_activate,
4386 .deactivate = its_sgi_irq_domain_deactivate,
4387 };
4388
its_vpe_id_alloc(void)4389 static int its_vpe_id_alloc(void)
4390 {
4391 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4392 }
4393
its_vpe_id_free(u16 id)4394 static void its_vpe_id_free(u16 id)
4395 {
4396 ida_simple_remove(&its_vpeid_ida, id);
4397 }
4398
its_vpe_init(struct its_vpe * vpe)4399 static int its_vpe_init(struct its_vpe *vpe)
4400 {
4401 struct page *vpt_page;
4402 int vpe_id;
4403
4404 /* Allocate vpe_id */
4405 vpe_id = its_vpe_id_alloc();
4406 if (vpe_id < 0)
4407 return vpe_id;
4408
4409 /* Allocate VPT */
4410 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4411 if (!vpt_page) {
4412 its_vpe_id_free(vpe_id);
4413 return -ENOMEM;
4414 }
4415
4416 if (!its_alloc_vpe_table(vpe_id)) {
4417 its_vpe_id_free(vpe_id);
4418 its_free_pending_table(vpt_page);
4419 return -ENOMEM;
4420 }
4421
4422 raw_spin_lock_init(&vpe->vpe_lock);
4423 vpe->vpe_id = vpe_id;
4424 vpe->vpt_page = vpt_page;
4425 if (gic_rdists->has_rvpeid)
4426 atomic_set(&vpe->vmapp_count, 0);
4427 else
4428 vpe->vpe_proxy_event = -1;
4429
4430 return 0;
4431 }
4432
its_vpe_teardown(struct its_vpe * vpe)4433 static void its_vpe_teardown(struct its_vpe *vpe)
4434 {
4435 its_vpe_db_proxy_unmap(vpe);
4436 its_vpe_id_free(vpe->vpe_id);
4437 its_free_pending_table(vpe->vpt_page);
4438 }
4439
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4440 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4441 unsigned int virq,
4442 unsigned int nr_irqs)
4443 {
4444 struct its_vm *vm = domain->host_data;
4445 int i;
4446
4447 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4448
4449 for (i = 0; i < nr_irqs; i++) {
4450 struct irq_data *data = irq_domain_get_irq_data(domain,
4451 virq + i);
4452 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4453
4454 BUG_ON(vm != vpe->its_vm);
4455
4456 clear_bit(data->hwirq, vm->db_bitmap);
4457 its_vpe_teardown(vpe);
4458 irq_domain_reset_irq_data(data);
4459 }
4460
4461 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4462 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4463 its_free_prop_table(vm->vprop_page);
4464 }
4465 }
4466
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4467 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4468 unsigned int nr_irqs, void *args)
4469 {
4470 struct irq_chip *irqchip = &its_vpe_irq_chip;
4471 struct its_vm *vm = args;
4472 unsigned long *bitmap;
4473 struct page *vprop_page;
4474 int base, nr_ids, i, err = 0;
4475
4476 BUG_ON(!vm);
4477
4478 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4479 if (!bitmap)
4480 return -ENOMEM;
4481
4482 if (nr_ids < nr_irqs) {
4483 its_lpi_free(bitmap, base, nr_ids);
4484 return -ENOMEM;
4485 }
4486
4487 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4488 if (!vprop_page) {
4489 its_lpi_free(bitmap, base, nr_ids);
4490 return -ENOMEM;
4491 }
4492
4493 vm->db_bitmap = bitmap;
4494 vm->db_lpi_base = base;
4495 vm->nr_db_lpis = nr_ids;
4496 vm->vprop_page = vprop_page;
4497
4498 if (gic_rdists->has_rvpeid)
4499 irqchip = &its_vpe_4_1_irq_chip;
4500
4501 for (i = 0; i < nr_irqs; i++) {
4502 vm->vpes[i]->vpe_db_lpi = base + i;
4503 err = its_vpe_init(vm->vpes[i]);
4504 if (err)
4505 break;
4506 err = its_irq_gic_domain_alloc(domain, virq + i,
4507 vm->vpes[i]->vpe_db_lpi);
4508 if (err)
4509 break;
4510 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4511 irqchip, vm->vpes[i]);
4512 set_bit(i, bitmap);
4513 }
4514
4515 if (err) {
4516 if (i > 0)
4517 its_vpe_irq_domain_free(domain, virq, i);
4518
4519 its_lpi_free(bitmap, base, nr_ids);
4520 its_free_prop_table(vprop_page);
4521 }
4522
4523 return err;
4524 }
4525
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4526 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4527 struct irq_data *d, bool reserve)
4528 {
4529 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4530 struct its_node *its;
4531
4532 /*
4533 * If we use the list map, we issue VMAPP on demand... Unless
4534 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4535 * so that VSGIs can work.
4536 */
4537 if (!gic_requires_eager_mapping())
4538 return 0;
4539
4540 /* Map the VPE to the first possible CPU */
4541 vpe->col_idx = cpumask_first(cpu_online_mask);
4542
4543 list_for_each_entry(its, &its_nodes, entry) {
4544 if (!is_v4(its))
4545 continue;
4546
4547 its_send_vmapp(its, vpe, true);
4548 its_send_vinvall(its, vpe);
4549 }
4550
4551 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4552
4553 return 0;
4554 }
4555
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4556 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4557 struct irq_data *d)
4558 {
4559 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4560 struct its_node *its;
4561
4562 /*
4563 * If we use the list map on GICv4.0, we unmap the VPE once no
4564 * VLPIs are associated with the VM.
4565 */
4566 if (!gic_requires_eager_mapping())
4567 return;
4568
4569 list_for_each_entry(its, &its_nodes, entry) {
4570 if (!is_v4(its))
4571 continue;
4572
4573 its_send_vmapp(its, vpe, false);
4574 }
4575
4576 /*
4577 * There may be a direct read to the VPT after unmapping the
4578 * vPE, to guarantee the validity of this, we make the VPT
4579 * memory coherent with the CPU caches here.
4580 */
4581 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4582 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4583 LPI_PENDBASE_SZ);
4584 }
4585
4586 static const struct irq_domain_ops its_vpe_domain_ops = {
4587 .alloc = its_vpe_irq_domain_alloc,
4588 .free = its_vpe_irq_domain_free,
4589 .activate = its_vpe_irq_domain_activate,
4590 .deactivate = its_vpe_irq_domain_deactivate,
4591 };
4592
its_force_quiescent(void __iomem * base)4593 static int its_force_quiescent(void __iomem *base)
4594 {
4595 u32 count = 1000000; /* 1s */
4596 u32 val;
4597
4598 val = readl_relaxed(base + GITS_CTLR);
4599 /*
4600 * GIC architecture specification requires the ITS to be both
4601 * disabled and quiescent for writes to GITS_BASER<n> or
4602 * GITS_CBASER to not have UNPREDICTABLE results.
4603 */
4604 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4605 return 0;
4606
4607 /* Disable the generation of all interrupts to this ITS */
4608 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4609 writel_relaxed(val, base + GITS_CTLR);
4610
4611 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4612 while (1) {
4613 val = readl_relaxed(base + GITS_CTLR);
4614 if (val & GITS_CTLR_QUIESCENT)
4615 return 0;
4616
4617 count--;
4618 if (!count)
4619 return -EBUSY;
4620
4621 cpu_relax();
4622 udelay(1);
4623 }
4624 }
4625
its_enable_quirk_cavium_22375(void * data)4626 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4627 {
4628 struct its_node *its = data;
4629
4630 /* erratum 22375: only alloc 8MB table size (20 bits) */
4631 its->typer &= ~GITS_TYPER_DEVBITS;
4632 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4633 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4634
4635 return true;
4636 }
4637
its_enable_quirk_cavium_23144(void * data)4638 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4639 {
4640 struct its_node *its = data;
4641
4642 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4643
4644 return true;
4645 }
4646
its_enable_quirk_qdf2400_e0065(void * data)4647 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4648 {
4649 struct its_node *its = data;
4650
4651 /* On QDF2400, the size of the ITE is 16Bytes */
4652 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4653 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4654
4655 return true;
4656 }
4657
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4658 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4659 {
4660 struct its_node *its = its_dev->its;
4661
4662 /*
4663 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4664 * which maps 32-bit writes targeted at a separate window of
4665 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4666 * with device ID taken from bits [device_id_bits + 1:2] of
4667 * the window offset.
4668 */
4669 return its->pre_its_base + (its_dev->device_id << 2);
4670 }
4671
its_enable_quirk_socionext_synquacer(void * data)4672 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4673 {
4674 struct its_node *its = data;
4675 u32 pre_its_window[2];
4676 u32 ids;
4677
4678 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4679 "socionext,synquacer-pre-its",
4680 pre_its_window,
4681 ARRAY_SIZE(pre_its_window))) {
4682
4683 its->pre_its_base = pre_its_window[0];
4684 its->get_msi_base = its_irq_get_msi_base_pre_its;
4685
4686 ids = ilog2(pre_its_window[1]) - 2;
4687 if (device_ids(its) > ids) {
4688 its->typer &= ~GITS_TYPER_DEVBITS;
4689 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4690 }
4691
4692 /* the pre-ITS breaks isolation, so disable MSI remapping */
4693 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4694 return true;
4695 }
4696 return false;
4697 }
4698
its_enable_quirk_hip07_161600802(void * data)4699 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4700 {
4701 struct its_node *its = data;
4702
4703 /*
4704 * Hip07 insists on using the wrong address for the VLPI
4705 * page. Trick it into doing the right thing...
4706 */
4707 its->vlpi_redist_offset = SZ_128K;
4708 return true;
4709 }
4710
4711 static const struct gic_quirk its_quirks[] = {
4712 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4713 {
4714 .desc = "ITS: Cavium errata 22375, 24313",
4715 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4716 .mask = 0xffff0fff,
4717 .init = its_enable_quirk_cavium_22375,
4718 },
4719 #endif
4720 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4721 {
4722 .desc = "ITS: Cavium erratum 23144",
4723 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4724 .mask = 0xffff0fff,
4725 .init = its_enable_quirk_cavium_23144,
4726 },
4727 #endif
4728 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4729 {
4730 .desc = "ITS: QDF2400 erratum 0065",
4731 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4732 .mask = 0xffffffff,
4733 .init = its_enable_quirk_qdf2400_e0065,
4734 },
4735 #endif
4736 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4737 {
4738 /*
4739 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4740 * implementation, but with a 'pre-ITS' added that requires
4741 * special handling in software.
4742 */
4743 .desc = "ITS: Socionext Synquacer pre-ITS",
4744 .iidr = 0x0001143b,
4745 .mask = 0xffffffff,
4746 .init = its_enable_quirk_socionext_synquacer,
4747 },
4748 #endif
4749 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4750 {
4751 .desc = "ITS: Hip07 erratum 161600802",
4752 .iidr = 0x00000004,
4753 .mask = 0xffffffff,
4754 .init = its_enable_quirk_hip07_161600802,
4755 },
4756 #endif
4757 {
4758 }
4759 };
4760
its_enable_quirks(struct its_node * its)4761 static void its_enable_quirks(struct its_node *its)
4762 {
4763 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4764
4765 gic_enable_quirks(iidr, its_quirks, its);
4766 }
4767
its_save_disable(void)4768 static int its_save_disable(void)
4769 {
4770 struct its_node *its;
4771 int err = 0;
4772
4773 raw_spin_lock(&its_lock);
4774 list_for_each_entry(its, &its_nodes, entry) {
4775 void __iomem *base;
4776
4777 base = its->base;
4778 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4779 err = its_force_quiescent(base);
4780 if (err) {
4781 pr_err("ITS@%pa: failed to quiesce: %d\n",
4782 &its->phys_base, err);
4783 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4784 goto err;
4785 }
4786
4787 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4788 }
4789
4790 err:
4791 if (err) {
4792 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4793 void __iomem *base;
4794
4795 base = its->base;
4796 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4797 }
4798 }
4799 raw_spin_unlock(&its_lock);
4800
4801 return err;
4802 }
4803
its_restore_enable(void)4804 static void its_restore_enable(void)
4805 {
4806 struct its_node *its;
4807 int ret;
4808
4809 raw_spin_lock(&its_lock);
4810 list_for_each_entry(its, &its_nodes, entry) {
4811 void __iomem *base;
4812 int i;
4813
4814 base = its->base;
4815
4816 /*
4817 * Make sure that the ITS is disabled. If it fails to quiesce,
4818 * don't restore it since writing to CBASER or BASER<n>
4819 * registers is undefined according to the GIC v3 ITS
4820 * Specification.
4821 *
4822 * Firmware resuming with the ITS enabled is terminally broken.
4823 */
4824 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4825 ret = its_force_quiescent(base);
4826 if (ret) {
4827 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4828 &its->phys_base, ret);
4829 continue;
4830 }
4831
4832 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4833
4834 /*
4835 * Writing CBASER resets CREADR to 0, so make CWRITER and
4836 * cmd_write line up with it.
4837 */
4838 its->cmd_write = its->cmd_base;
4839 gits_write_cwriter(0, base + GITS_CWRITER);
4840
4841 /* Restore GITS_BASER from the value cache. */
4842 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4843 struct its_baser *baser = &its->tables[i];
4844
4845 if (!(baser->val & GITS_BASER_VALID))
4846 continue;
4847
4848 its_write_baser(its, baser, baser->val);
4849 }
4850 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4851
4852 /*
4853 * Reinit the collection if it's stored in the ITS. This is
4854 * indicated by the col_id being less than the HCC field.
4855 * CID < HCC as specified in the GIC v3 Documentation.
4856 */
4857 if (its->collections[smp_processor_id()].col_id <
4858 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4859 its_cpu_init_collection(its);
4860 }
4861 raw_spin_unlock(&its_lock);
4862 }
4863
4864 static struct syscore_ops its_syscore_ops = {
4865 .suspend = its_save_disable,
4866 .resume = its_restore_enable,
4867 };
4868
its_map_one(struct resource * res,int * err)4869 static void __init __iomem *its_map_one(struct resource *res, int *err)
4870 {
4871 void __iomem *its_base;
4872 u32 val;
4873
4874 its_base = ioremap(res->start, SZ_64K);
4875 if (!its_base) {
4876 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4877 *err = -ENOMEM;
4878 return NULL;
4879 }
4880
4881 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4882 if (val != 0x30 && val != 0x40) {
4883 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4884 *err = -ENODEV;
4885 goto out_unmap;
4886 }
4887
4888 *err = its_force_quiescent(its_base);
4889 if (*err) {
4890 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4891 goto out_unmap;
4892 }
4893
4894 return its_base;
4895
4896 out_unmap:
4897 iounmap(its_base);
4898 return NULL;
4899 }
4900
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4901 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4902 {
4903 struct irq_domain *inner_domain;
4904 struct msi_domain_info *info;
4905
4906 info = kzalloc(sizeof(*info), GFP_KERNEL);
4907 if (!info)
4908 return -ENOMEM;
4909
4910 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4911 if (!inner_domain) {
4912 kfree(info);
4913 return -ENOMEM;
4914 }
4915
4916 inner_domain->parent = its_parent;
4917 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4918 inner_domain->flags |= its->msi_domain_flags;
4919 info->ops = &its_msi_domain_ops;
4920 info->data = its;
4921 inner_domain->host_data = info;
4922
4923 return 0;
4924 }
4925
its_init_vpe_domain(void)4926 static int its_init_vpe_domain(void)
4927 {
4928 struct its_node *its;
4929 u32 devid;
4930 int entries;
4931
4932 if (gic_rdists->has_direct_lpi) {
4933 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4934 return 0;
4935 }
4936
4937 /* Any ITS will do, even if not v4 */
4938 its = list_first_entry(&its_nodes, struct its_node, entry);
4939
4940 entries = roundup_pow_of_two(nr_cpu_ids);
4941 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4942 GFP_KERNEL);
4943 if (!vpe_proxy.vpes)
4944 return -ENOMEM;
4945
4946 /* Use the last possible DevID */
4947 devid = GENMASK(device_ids(its) - 1, 0);
4948 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4949 if (!vpe_proxy.dev) {
4950 kfree(vpe_proxy.vpes);
4951 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4952 return -ENOMEM;
4953 }
4954
4955 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4956
4957 raw_spin_lock_init(&vpe_proxy.lock);
4958 vpe_proxy.next_victim = 0;
4959 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4960 devid, vpe_proxy.dev->nr_ites);
4961
4962 return 0;
4963 }
4964
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4965 static int __init its_compute_its_list_map(struct resource *res,
4966 void __iomem *its_base)
4967 {
4968 int its_number;
4969 u32 ctlr;
4970
4971 /*
4972 * This is assumed to be done early enough that we're
4973 * guaranteed to be single-threaded, hence no
4974 * locking. Should this change, we should address
4975 * this.
4976 */
4977 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4978 if (its_number >= GICv4_ITS_LIST_MAX) {
4979 pr_err("ITS@%pa: No ITSList entry available!\n",
4980 &res->start);
4981 return -EINVAL;
4982 }
4983
4984 ctlr = readl_relaxed(its_base + GITS_CTLR);
4985 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4986 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4987 writel_relaxed(ctlr, its_base + GITS_CTLR);
4988 ctlr = readl_relaxed(its_base + GITS_CTLR);
4989 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4990 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4991 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4992 }
4993
4994 if (test_and_set_bit(its_number, &its_list_map)) {
4995 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4996 &res->start, its_number);
4997 return -EINVAL;
4998 }
4999
5000 return its_number;
5001 }
5002
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)5003 static int __init its_probe_one(struct resource *res,
5004 struct fwnode_handle *handle, int numa_node)
5005 {
5006 struct its_node *its;
5007 void __iomem *its_base;
5008 u64 baser, tmp, typer;
5009 struct page *page;
5010 u32 ctlr;
5011 int err;
5012
5013 its_base = its_map_one(res, &err);
5014 if (!its_base)
5015 return err;
5016
5017 pr_info("ITS %pR\n", res);
5018
5019 its = kzalloc(sizeof(*its), GFP_KERNEL);
5020 if (!its) {
5021 err = -ENOMEM;
5022 goto out_unmap;
5023 }
5024
5025 raw_spin_lock_init(&its->lock);
5026 mutex_init(&its->dev_alloc_lock);
5027 INIT_LIST_HEAD(&its->entry);
5028 INIT_LIST_HEAD(&its->its_device_list);
5029 typer = gic_read_typer(its_base + GITS_TYPER);
5030 its->typer = typer;
5031 its->base = its_base;
5032 its->phys_base = res->start;
5033 if (is_v4(its)) {
5034 if (!(typer & GITS_TYPER_VMOVP)) {
5035 err = its_compute_its_list_map(res, its_base);
5036 if (err < 0)
5037 goto out_free_its;
5038
5039 its->list_nr = err;
5040
5041 pr_info("ITS@%pa: Using ITS number %d\n",
5042 &res->start, err);
5043 } else {
5044 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5045 }
5046
5047 if (is_v4_1(its)) {
5048 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5049
5050 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5051 if (!its->sgir_base) {
5052 err = -ENOMEM;
5053 goto out_free_its;
5054 }
5055
5056 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5057
5058 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5059 &res->start, its->mpidr, svpet);
5060 }
5061 }
5062
5063 its->numa_node = numa_node;
5064
5065 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5066 get_order(ITS_CMD_QUEUE_SZ));
5067 if (!page) {
5068 err = -ENOMEM;
5069 goto out_unmap_sgir;
5070 }
5071 its->cmd_base = (void *)page_address(page);
5072 its->cmd_write = its->cmd_base;
5073 its->fwnode_handle = handle;
5074 its->get_msi_base = its_irq_get_msi_base;
5075 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5076
5077 its_enable_quirks(its);
5078
5079 err = its_alloc_tables(its);
5080 if (err)
5081 goto out_free_cmd;
5082
5083 err = its_alloc_collections(its);
5084 if (err)
5085 goto out_free_tables;
5086
5087 baser = (virt_to_phys(its->cmd_base) |
5088 GITS_CBASER_RaWaWb |
5089 GITS_CBASER_InnerShareable |
5090 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5091 GITS_CBASER_VALID);
5092
5093 gits_write_cbaser(baser, its->base + GITS_CBASER);
5094 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5095
5096 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5097 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5098 /*
5099 * The HW reports non-shareable, we must
5100 * remove the cacheability attributes as
5101 * well.
5102 */
5103 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5104 GITS_CBASER_CACHEABILITY_MASK);
5105 baser |= GITS_CBASER_nC;
5106 gits_write_cbaser(baser, its->base + GITS_CBASER);
5107 }
5108 pr_info("ITS: using cache flushing for cmd queue\n");
5109 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5110 }
5111
5112 gits_write_cwriter(0, its->base + GITS_CWRITER);
5113 ctlr = readl_relaxed(its->base + GITS_CTLR);
5114 ctlr |= GITS_CTLR_ENABLE;
5115 if (is_v4(its))
5116 ctlr |= GITS_CTLR_ImDe;
5117 writel_relaxed(ctlr, its->base + GITS_CTLR);
5118
5119 err = its_init_domain(handle, its);
5120 if (err)
5121 goto out_free_tables;
5122
5123 raw_spin_lock(&its_lock);
5124 list_add(&its->entry, &its_nodes);
5125 raw_spin_unlock(&its_lock);
5126
5127 return 0;
5128
5129 out_free_tables:
5130 its_free_tables(its);
5131 out_free_cmd:
5132 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5133 out_unmap_sgir:
5134 if (its->sgir_base)
5135 iounmap(its->sgir_base);
5136 out_free_its:
5137 kfree(its);
5138 out_unmap:
5139 iounmap(its_base);
5140 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5141 return err;
5142 }
5143
gic_rdists_supports_plpis(void)5144 static bool gic_rdists_supports_plpis(void)
5145 {
5146 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5147 }
5148
redist_disable_lpis(void)5149 static int redist_disable_lpis(void)
5150 {
5151 void __iomem *rbase = gic_data_rdist_rd_base();
5152 u64 timeout = USEC_PER_SEC;
5153 u64 val;
5154
5155 if (!gic_rdists_supports_plpis()) {
5156 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5157 return -ENXIO;
5158 }
5159
5160 val = readl_relaxed(rbase + GICR_CTLR);
5161 if (!(val & GICR_CTLR_ENABLE_LPIS))
5162 return 0;
5163
5164 /*
5165 * If coming via a CPU hotplug event, we don't need to disable
5166 * LPIs before trying to re-enable them. They are already
5167 * configured and all is well in the world.
5168 *
5169 * If running with preallocated tables, there is nothing to do.
5170 */
5171 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5172 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5173 return 0;
5174
5175 /*
5176 * From that point on, we only try to do some damage control.
5177 */
5178 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5179 smp_processor_id());
5180 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5181
5182 /* Disable LPIs */
5183 val &= ~GICR_CTLR_ENABLE_LPIS;
5184 writel_relaxed(val, rbase + GICR_CTLR);
5185
5186 /* Make sure any change to GICR_CTLR is observable by the GIC */
5187 dsb(sy);
5188
5189 /*
5190 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5191 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5192 * Error out if we time out waiting for RWP to clear.
5193 */
5194 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5195 if (!timeout) {
5196 pr_err("CPU%d: Timeout while disabling LPIs\n",
5197 smp_processor_id());
5198 return -ETIMEDOUT;
5199 }
5200 udelay(1);
5201 timeout--;
5202 }
5203
5204 /*
5205 * After it has been written to 1, it is IMPLEMENTATION
5206 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5207 * cleared to 0. Error out if clearing the bit failed.
5208 */
5209 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5210 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5211 return -EBUSY;
5212 }
5213
5214 return 0;
5215 }
5216
its_cpu_init(void)5217 int its_cpu_init(void)
5218 {
5219 if (!list_empty(&its_nodes)) {
5220 int ret;
5221
5222 ret = redist_disable_lpis();
5223 if (ret)
5224 return ret;
5225
5226 its_cpu_init_lpis();
5227 its_cpu_init_collections();
5228 }
5229
5230 return 0;
5231 }
5232
rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct * work)5233 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5234 {
5235 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5236 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5237 }
5238
5239 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5240 rdist_memreserve_cpuhp_cleanup_workfn);
5241
its_cpu_memreserve_lpi(unsigned int cpu)5242 static int its_cpu_memreserve_lpi(unsigned int cpu)
5243 {
5244 struct page *pend_page;
5245 int ret = 0;
5246
5247 /* This gets to run exactly once per CPU */
5248 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5249 return 0;
5250
5251 pend_page = gic_data_rdist()->pend_page;
5252 if (WARN_ON(!pend_page)) {
5253 ret = -ENOMEM;
5254 goto out;
5255 }
5256 /*
5257 * If the pending table was pre-programmed, free the memory we
5258 * preemptively allocated. Otherwise, reserve that memory for
5259 * later kexecs.
5260 */
5261 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5262 its_free_pending_table(pend_page);
5263 gic_data_rdist()->pend_page = NULL;
5264 } else {
5265 phys_addr_t paddr = page_to_phys(pend_page);
5266 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5267 }
5268
5269 out:
5270 /* Last CPU being brought up gets to issue the cleanup */
5271 if (!IS_ENABLED(CONFIG_SMP) ||
5272 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5273 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5274
5275 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5276 return ret;
5277 }
5278
5279 /* Mark all the BASER registers as invalid before they get reprogrammed */
its_reset_one(struct resource * res)5280 static int __init its_reset_one(struct resource *res)
5281 {
5282 void __iomem *its_base;
5283 int err, i;
5284
5285 its_base = its_map_one(res, &err);
5286 if (!its_base)
5287 return err;
5288
5289 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5290 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5291
5292 iounmap(its_base);
5293 return 0;
5294 }
5295
5296 static const struct of_device_id its_device_id[] = {
5297 { .compatible = "arm,gic-v3-its", },
5298 {},
5299 };
5300
its_of_probe(struct device_node * node)5301 static int __init its_of_probe(struct device_node *node)
5302 {
5303 struct device_node *np;
5304 struct resource res;
5305
5306 /*
5307 * Make sure *all* the ITS are reset before we probe any, as
5308 * they may be sharing memory. If any of the ITS fails to
5309 * reset, don't even try to go any further, as this could
5310 * result in something even worse.
5311 */
5312 for (np = of_find_matching_node(node, its_device_id); np;
5313 np = of_find_matching_node(np, its_device_id)) {
5314 int err;
5315
5316 if (!of_device_is_available(np) ||
5317 !of_property_read_bool(np, "msi-controller") ||
5318 of_address_to_resource(np, 0, &res))
5319 continue;
5320
5321 err = its_reset_one(&res);
5322 if (err)
5323 return err;
5324 }
5325
5326 for (np = of_find_matching_node(node, its_device_id); np;
5327 np = of_find_matching_node(np, its_device_id)) {
5328 if (!of_device_is_available(np))
5329 continue;
5330 if (!of_property_read_bool(np, "msi-controller")) {
5331 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5332 np);
5333 continue;
5334 }
5335
5336 if (of_address_to_resource(np, 0, &res)) {
5337 pr_warn("%pOF: no regs?\n", np);
5338 continue;
5339 }
5340
5341 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5342 }
5343 return 0;
5344 }
5345
5346 #ifdef CONFIG_ACPI
5347
5348 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5349
5350 #ifdef CONFIG_ACPI_NUMA
5351 struct its_srat_map {
5352 /* numa node id */
5353 u32 numa_node;
5354 /* GIC ITS ID */
5355 u32 its_id;
5356 };
5357
5358 static struct its_srat_map *its_srat_maps __initdata;
5359 static int its_in_srat __initdata;
5360
acpi_get_its_numa_node(u32 its_id)5361 static int __init acpi_get_its_numa_node(u32 its_id)
5362 {
5363 int i;
5364
5365 for (i = 0; i < its_in_srat; i++) {
5366 if (its_id == its_srat_maps[i].its_id)
5367 return its_srat_maps[i].numa_node;
5368 }
5369 return NUMA_NO_NODE;
5370 }
5371
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5372 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5373 const unsigned long end)
5374 {
5375 return 0;
5376 }
5377
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5378 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5379 const unsigned long end)
5380 {
5381 int node;
5382 struct acpi_srat_gic_its_affinity *its_affinity;
5383
5384 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5385 if (!its_affinity)
5386 return -EINVAL;
5387
5388 if (its_affinity->header.length < sizeof(*its_affinity)) {
5389 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5390 its_affinity->header.length);
5391 return -EINVAL;
5392 }
5393
5394 /*
5395 * Note that in theory a new proximity node could be created by this
5396 * entry as it is an SRAT resource allocation structure.
5397 * We do not currently support doing so.
5398 */
5399 node = pxm_to_node(its_affinity->proximity_domain);
5400
5401 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5402 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5403 return 0;
5404 }
5405
5406 its_srat_maps[its_in_srat].numa_node = node;
5407 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5408 its_in_srat++;
5409 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5410 its_affinity->proximity_domain, its_affinity->its_id, node);
5411
5412 return 0;
5413 }
5414
acpi_table_parse_srat_its(void)5415 static void __init acpi_table_parse_srat_its(void)
5416 {
5417 int count;
5418
5419 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5420 sizeof(struct acpi_table_srat),
5421 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5422 gic_acpi_match_srat_its, 0);
5423 if (count <= 0)
5424 return;
5425
5426 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5427 GFP_KERNEL);
5428 if (!its_srat_maps)
5429 return;
5430
5431 acpi_table_parse_entries(ACPI_SIG_SRAT,
5432 sizeof(struct acpi_table_srat),
5433 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5434 gic_acpi_parse_srat_its, 0);
5435 }
5436
5437 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5438 static void __init acpi_its_srat_maps_free(void)
5439 {
5440 kfree(its_srat_maps);
5441 }
5442 #else
acpi_table_parse_srat_its(void)5443 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5444 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5445 static void __init acpi_its_srat_maps_free(void) { }
5446 #endif
5447
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5448 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5449 const unsigned long end)
5450 {
5451 struct acpi_madt_generic_translator *its_entry;
5452 struct fwnode_handle *dom_handle;
5453 struct resource res;
5454 int err;
5455
5456 its_entry = (struct acpi_madt_generic_translator *)header;
5457 memset(&res, 0, sizeof(res));
5458 res.start = its_entry->base_address;
5459 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5460 res.flags = IORESOURCE_MEM;
5461
5462 dom_handle = irq_domain_alloc_fwnode(&res.start);
5463 if (!dom_handle) {
5464 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5465 &res.start);
5466 return -ENOMEM;
5467 }
5468
5469 err = iort_register_domain_token(its_entry->translation_id, res.start,
5470 dom_handle);
5471 if (err) {
5472 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5473 &res.start, its_entry->translation_id);
5474 goto dom_err;
5475 }
5476
5477 err = its_probe_one(&res, dom_handle,
5478 acpi_get_its_numa_node(its_entry->translation_id));
5479 if (!err)
5480 return 0;
5481
5482 iort_deregister_domain_token(its_entry->translation_id);
5483 dom_err:
5484 irq_domain_free_fwnode(dom_handle);
5485 return err;
5486 }
5487
its_acpi_reset(union acpi_subtable_headers * header,const unsigned long end)5488 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5489 const unsigned long end)
5490 {
5491 struct acpi_madt_generic_translator *its_entry;
5492 struct resource res;
5493
5494 its_entry = (struct acpi_madt_generic_translator *)header;
5495 res = (struct resource) {
5496 .start = its_entry->base_address,
5497 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5498 .flags = IORESOURCE_MEM,
5499 };
5500
5501 return its_reset_one(&res);
5502 }
5503
its_acpi_probe(void)5504 static void __init its_acpi_probe(void)
5505 {
5506 acpi_table_parse_srat_its();
5507 /*
5508 * Make sure *all* the ITS are reset before we probe any, as
5509 * they may be sharing memory. If any of the ITS fails to
5510 * reset, don't even try to go any further, as this could
5511 * result in something even worse.
5512 */
5513 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5514 its_acpi_reset, 0) > 0)
5515 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5516 gic_acpi_parse_madt_its, 0);
5517 acpi_its_srat_maps_free();
5518 }
5519 #else
its_acpi_probe(void)5520 static void __init its_acpi_probe(void) { }
5521 #endif
5522
its_lpi_memreserve_init(void)5523 int __init its_lpi_memreserve_init(void)
5524 {
5525 int state;
5526
5527 if (!efi_enabled(EFI_CONFIG_TABLES))
5528 return 0;
5529
5530 if (list_empty(&its_nodes))
5531 return 0;
5532
5533 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5534 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5535 "irqchip/arm/gicv3/memreserve:online",
5536 its_cpu_memreserve_lpi,
5537 NULL);
5538 if (state < 0)
5539 return state;
5540
5541 gic_rdists->cpuhp_memreserve_state = state;
5542
5543 return 0;
5544 }
5545
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5546 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5547 struct irq_domain *parent_domain)
5548 {
5549 struct device_node *of_node;
5550 struct its_node *its;
5551 bool has_v4 = false;
5552 bool has_v4_1 = false;
5553 int err;
5554
5555 gic_rdists = rdists;
5556
5557 its_parent = parent_domain;
5558 of_node = to_of_node(handle);
5559 if (of_node)
5560 its_of_probe(of_node);
5561 else
5562 its_acpi_probe();
5563
5564 if (list_empty(&its_nodes)) {
5565 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5566 return -ENXIO;
5567 }
5568
5569 err = allocate_lpi_tables();
5570 if (err)
5571 return err;
5572
5573 list_for_each_entry(its, &its_nodes, entry) {
5574 has_v4 |= is_v4(its);
5575 has_v4_1 |= is_v4_1(its);
5576 }
5577
5578 /* Don't bother with inconsistent systems */
5579 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5580 rdists->has_rvpeid = false;
5581
5582 if (has_v4 & rdists->has_vlpis) {
5583 const struct irq_domain_ops *sgi_ops;
5584
5585 if (has_v4_1)
5586 sgi_ops = &its_sgi_domain_ops;
5587 else
5588 sgi_ops = NULL;
5589
5590 if (its_init_vpe_domain() ||
5591 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5592 rdists->has_vlpis = false;
5593 pr_err("ITS: Disabling GICv4 support\n");
5594 }
5595 }
5596
5597 register_syscore_ops(&its_syscore_ops);
5598
5599 return 0;
5600 }
5601