1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43 
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52 
53 enum {
54 	AUDIT_PRE_PAGE_FAULT,
55 	AUDIT_POST_PAGE_FAULT,
56 	AUDIT_PRE_PTE_WRITE,
57 	AUDIT_POST_PTE_WRITE,
58 	AUDIT_PRE_SYNC,
59 	AUDIT_POST_SYNC
60 };
61 
62 #undef MMU_DEBUG
63 
64 #ifdef MMU_DEBUG
65 
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68 
69 #else
70 
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73 
74 #endif
75 
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80 
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)							\
85 	if (!(x)) {							\
86 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
87 		       __FILE__, __LINE__, #x);				\
88 	}
89 #endif
90 
91 #define PTE_PREFETCH_NUM		8
92 
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95 
96 #define PT64_LEVEL_BITS 9
97 
98 #define PT64_LEVEL_SHIFT(level) \
99 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100 
101 #define PT64_INDEX(address, level)\
102 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103 
104 
105 #define PT32_LEVEL_BITS 10
106 
107 #define PT32_LEVEL_SHIFT(level) \
108 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109 
110 #define PT32_LVL_OFFSET_MASK(level) \
111 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 						* PT32_LEVEL_BITS))) - 1))
113 
114 #define PT32_INDEX(address, level)\
115 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116 
117 
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 						* PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 						* PT64_LEVEL_BITS))) - 1))
127 
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 					    * PT32_LEVEL_BITS))) - 1))
134 
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 			| PT64_NX_MASK)
137 
138 #define PTE_LIST_EXT 4
139 
140 #define ACC_EXEC_MASK    1
141 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
142 #define ACC_USER_MASK    PT_USER_MASK
143 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144 
145 #include <trace/events/kvm.h>
146 
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149 
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151 
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 
154 struct pte_list_desc {
155 	u64 *sptes[PTE_LIST_EXT];
156 	struct pte_list_desc *more;
157 };
158 
159 struct kvm_shadow_walk_iterator {
160 	u64 addr;
161 	hpa_t shadow_addr;
162 	u64 *sptep;
163 	int level;
164 	unsigned index;
165 };
166 
167 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
168 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
169 	     shadow_walk_okay(&(_walker));			\
170 	     shadow_walk_next(&(_walker)))
171 
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
173 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
174 	     shadow_walk_okay(&(_walker)) &&				\
175 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
176 	     __shadow_walk_next(&(_walker), spte))
177 
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181 
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188 
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193 	shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196 
mark_mmio_spte(u64 * sptep,u64 gfn,unsigned access)197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
200 
201 	trace_mark_mmio_spte(sptep, gfn, access);
202 	mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204 
is_mmio_spte(u64 spte)205 static bool is_mmio_spte(u64 spte)
206 {
207 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209 
get_mmio_spte_gfn(u64 spte)210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212 	return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214 
get_mmio_spte_access(u64 spte)215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217 	return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219 
set_mmio_spte(u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222 	if (unlikely(is_noslot_pfn(pfn))) {
223 		mark_mmio_spte(sptep, gfn, access);
224 		return true;
225 	}
226 
227 	return false;
228 }
229 
rsvd_bits(int s,int e)230 static inline u64 rsvd_bits(int s, int e)
231 {
232 	return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238 	shadow_user_mask = user_mask;
239 	shadow_accessed_mask = accessed_mask;
240 	shadow_dirty_mask = dirty_mask;
241 	shadow_nx_mask = nx_mask;
242 	shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245 
is_cpuid_PSE36(void)246 static int is_cpuid_PSE36(void)
247 {
248 	return 1;
249 }
250 
is_nx(struct kvm_vcpu * vcpu)251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253 	return vcpu->arch.efer & EFER_NX;
254 }
255 
is_shadow_present_pte(u64 pte)256 static int is_shadow_present_pte(u64 pte)
257 {
258 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260 
is_large_pte(u64 pte)261 static int is_large_pte(u64 pte)
262 {
263 	return pte & PT_PAGE_SIZE_MASK;
264 }
265 
is_dirty_gpte(unsigned long pte)266 static int is_dirty_gpte(unsigned long pte)
267 {
268 	return pte & PT_DIRTY_MASK;
269 }
270 
is_rmap_spte(u64 pte)271 static int is_rmap_spte(u64 pte)
272 {
273 	return is_shadow_present_pte(pte);
274 }
275 
is_last_spte(u64 pte,int level)276 static int is_last_spte(u64 pte, int level)
277 {
278 	if (level == PT_PAGE_TABLE_LEVEL)
279 		return 1;
280 	if (is_large_pte(pte))
281 		return 1;
282 	return 0;
283 }
284 
spte_to_pfn(u64 pte)285 static pfn_t spte_to_pfn(u64 pte)
286 {
287 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289 
pse36_gfn_delta(u32 gpte)290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293 
294 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296 
297 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300 	*sptep = spte;
301 }
302 
__update_clear_spte_fast(u64 * sptep,u64 spte)303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305 	*sptep = spte;
306 }
307 
__update_clear_spte_slow(u64 * sptep,u64 spte)308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310 	return xchg(sptep, spte);
311 }
312 
__get_spte_lockless(u64 * sptep)313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315 	return ACCESS_ONCE(*sptep);
316 }
317 
__check_direct_spte_mmio_pf(u64 spte)318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320 	/* It is valid if the spte is zapped. */
321 	return spte == 0ull;
322 }
323 #else
324 union split_spte {
325 	struct {
326 		u32 spte_low;
327 		u32 spte_high;
328 	};
329 	u64 spte;
330 };
331 
count_spte_clear(u64 * sptep,u64 spte)332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
335 
336 	if (is_shadow_present_pte(spte))
337 		return;
338 
339 	/* Ensure the spte is completely set before we increase the count */
340 	smp_wmb();
341 	sp->clear_spte_count++;
342 }
343 
__set_spte(u64 * sptep,u64 spte)344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346 	union split_spte *ssptep, sspte;
347 
348 	ssptep = (union split_spte *)sptep;
349 	sspte = (union split_spte)spte;
350 
351 	ssptep->spte_high = sspte.spte_high;
352 
353 	/*
354 	 * If we map the spte from nonpresent to present, We should store
355 	 * the high bits firstly, then set present bit, so cpu can not
356 	 * fetch this spte while we are setting the spte.
357 	 */
358 	smp_wmb();
359 
360 	ssptep->spte_low = sspte.spte_low;
361 }
362 
__update_clear_spte_fast(u64 * sptep,u64 spte)363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365 	union split_spte *ssptep, sspte;
366 
367 	ssptep = (union split_spte *)sptep;
368 	sspte = (union split_spte)spte;
369 
370 	ssptep->spte_low = sspte.spte_low;
371 
372 	/*
373 	 * If we map the spte from present to nonpresent, we should clear
374 	 * present bit firstly to avoid vcpu fetch the old high bits.
375 	 */
376 	smp_wmb();
377 
378 	ssptep->spte_high = sspte.spte_high;
379 	count_spte_clear(sptep, spte);
380 }
381 
__update_clear_spte_slow(u64 * sptep,u64 spte)382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384 	union split_spte *ssptep, sspte, orig;
385 
386 	ssptep = (union split_spte *)sptep;
387 	sspte = (union split_spte)spte;
388 
389 	/* xchg acts as a barrier before the setting of the high bits */
390 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391 	orig.spte_high = ssptep->spte_high;
392 	ssptep->spte_high = sspte.spte_high;
393 	count_spte_clear(sptep, spte);
394 
395 	return orig.spte;
396 }
397 
398 /*
399  * The idea using the light way get the spte on x86_32 guest is from
400  * gup_get_pte(arch/x86/mm/gup.c).
401  * The difference is we can not catch the spte tlb flush if we leave
402  * guest mode, so we emulate it by increase clear_spte_count when spte
403  * is cleared.
404  */
__get_spte_lockless(u64 * sptep)405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
408 	union split_spte spte, *orig = (union split_spte *)sptep;
409 	int count;
410 
411 retry:
412 	count = sp->clear_spte_count;
413 	smp_rmb();
414 
415 	spte.spte_low = orig->spte_low;
416 	smp_rmb();
417 
418 	spte.spte_high = orig->spte_high;
419 	smp_rmb();
420 
421 	if (unlikely(spte.spte_low != orig->spte_low ||
422 	      count != sp->clear_spte_count))
423 		goto retry;
424 
425 	return spte.spte;
426 }
427 
__check_direct_spte_mmio_pf(u64 spte)428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430 	union split_spte sspte = (union split_spte)spte;
431 	u32 high_mmio_mask = shadow_mmio_mask >> 32;
432 
433 	/* It is valid if the spte is zapped. */
434 	if (spte == 0ull)
435 		return true;
436 
437 	/* It is valid if the spte is being zapped. */
438 	if (sspte.spte_low == 0ull &&
439 	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440 		return true;
441 
442 	return false;
443 }
444 #endif
445 
spte_has_volatile_bits(u64 spte)446 static bool spte_has_volatile_bits(u64 spte)
447 {
448 	if (!shadow_accessed_mask)
449 		return false;
450 
451 	if (!is_shadow_present_pte(spte))
452 		return false;
453 
454 	if ((spte & shadow_accessed_mask) &&
455 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456 		return false;
457 
458 	return true;
459 }
460 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465 
466 /* Rules for using mmu_spte_set:
467  * Set the sptep from nonpresent to present.
468  * Note: the sptep being assigned *must* be either not present
469  * or in a state where the hardware will not attempt to update
470  * the spte.
471  */
mmu_spte_set(u64 * sptep,u64 new_spte)472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474 	WARN_ON(is_shadow_present_pte(*sptep));
475 	__set_spte(sptep, new_spte);
476 }
477 
478 /* Rules for using mmu_spte_update:
479  * Update the state bits, it means the mapped pfn is not changged.
480  */
mmu_spte_update(u64 * sptep,u64 new_spte)481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483 	u64 mask, old_spte = *sptep;
484 
485 	WARN_ON(!is_rmap_spte(new_spte));
486 
487 	if (!is_shadow_present_pte(old_spte))
488 		return mmu_spte_set(sptep, new_spte);
489 
490 	new_spte |= old_spte & shadow_dirty_mask;
491 
492 	mask = shadow_accessed_mask;
493 	if (is_writable_pte(old_spte))
494 		mask |= shadow_dirty_mask;
495 
496 	if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497 		__update_clear_spte_fast(sptep, new_spte);
498 	else
499 		old_spte = __update_clear_spte_slow(sptep, new_spte);
500 
501 	if (!shadow_accessed_mask)
502 		return;
503 
504 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509 
510 /*
511  * Rules for using mmu_spte_clear_track_bits:
512  * It sets the sptep from present to nonpresent, and track the
513  * state bits, it is used to clear the last level sptep.
514  */
mmu_spte_clear_track_bits(u64 * sptep)515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517 	pfn_t pfn;
518 	u64 old_spte = *sptep;
519 
520 	if (!spte_has_volatile_bits(old_spte))
521 		__update_clear_spte_fast(sptep, 0ull);
522 	else
523 		old_spte = __update_clear_spte_slow(sptep, 0ull);
524 
525 	if (!is_rmap_spte(old_spte))
526 		return 0;
527 
528 	pfn = spte_to_pfn(old_spte);
529 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530 		kvm_set_pfn_accessed(pfn);
531 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532 		kvm_set_pfn_dirty(pfn);
533 	return 1;
534 }
535 
536 /*
537  * Rules for using mmu_spte_clear_no_track:
538  * Directly clear spte without caring the state bits of sptep,
539  * it is used to set the upper level spte.
540  */
mmu_spte_clear_no_track(u64 * sptep)541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543 	__update_clear_spte_fast(sptep, 0ull);
544 }
545 
mmu_spte_get_lockless(u64 * sptep)546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548 	return __get_spte_lockless(sptep);
549 }
550 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553 	rcu_read_lock();
554 	atomic_inc(&vcpu->kvm->arch.reader_counter);
555 
556 	/* Increase the counter before walking shadow page table */
557 	smp_mb__after_atomic_inc();
558 }
559 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562 	/* Decrease the counter after walking shadow page table finished */
563 	smp_mb__before_atomic_dec();
564 	atomic_dec(&vcpu->kvm->arch.reader_counter);
565 	rcu_read_unlock();
566 }
567 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569 				  struct kmem_cache *base_cache, int min)
570 {
571 	void *obj;
572 
573 	if (cache->nobjs >= min)
574 		return 0;
575 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577 		if (!obj)
578 			return -ENOMEM;
579 		cache->objects[cache->nobjs++] = obj;
580 	}
581 	return 0;
582 }
583 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586 	return cache->nobjs;
587 }
588 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590 				  struct kmem_cache *cache)
591 {
592 	while (mc->nobjs)
593 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597 				       int min)
598 {
599 	void *page;
600 
601 	if (cache->nobjs >= min)
602 		return 0;
603 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604 		page = (void *)__get_free_page(GFP_KERNEL);
605 		if (!page)
606 			return -ENOMEM;
607 		cache->objects[cache->nobjs++] = page;
608 	}
609 	return 0;
610 }
611 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614 	while (mc->nobjs)
615 		free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620 	int r;
621 
622 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624 	if (r)
625 		goto out;
626 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627 	if (r)
628 		goto out;
629 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630 				   mmu_page_header_cache, 4);
631 out:
632 	return r;
633 }
634 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 				pte_list_desc_cache);
639 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641 				mmu_page_header_cache);
642 }
643 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc,size_t size)644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645 				    size_t size)
646 {
647 	void *p;
648 
649 	BUG_ON(!mc->nobjs);
650 	p = mc->objects[--mc->nobjs];
651 	return p;
652 }
653 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657 				      sizeof(struct pte_list_desc));
658 }
659 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667 	if (!sp->role.direct)
668 		return sp->gfns[index];
669 
670 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675 	if (sp->role.direct)
676 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677 	else
678 		sp->gfns[index] = gfn;
679 }
680 
681 /*
682  * Return the pointer to the large page information for a given gfn,
683  * handling slots that are not large page aligned.
684  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686 					      struct kvm_memory_slot *slot,
687 					      int level)
688 {
689 	unsigned long idx;
690 
691 	idx = gfn_to_index(gfn, slot->base_gfn, level);
692 	return &slot->arch.lpage_info[level - 2][idx];
693 }
694 
account_shadowed(struct kvm * kvm,gfn_t gfn)695 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
696 {
697 	struct kvm_memory_slot *slot;
698 	struct kvm_lpage_info *linfo;
699 	int i;
700 
701 	slot = gfn_to_memslot(kvm, gfn);
702 	for (i = PT_DIRECTORY_LEVEL;
703 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
704 		linfo = lpage_info_slot(gfn, slot, i);
705 		linfo->write_count += 1;
706 	}
707 	kvm->arch.indirect_shadow_pages++;
708 }
709 
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)710 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
711 {
712 	struct kvm_memory_slot *slot;
713 	struct kvm_lpage_info *linfo;
714 	int i;
715 
716 	slot = gfn_to_memslot(kvm, gfn);
717 	for (i = PT_DIRECTORY_LEVEL;
718 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
719 		linfo = lpage_info_slot(gfn, slot, i);
720 		linfo->write_count -= 1;
721 		WARN_ON(linfo->write_count < 0);
722 	}
723 	kvm->arch.indirect_shadow_pages--;
724 }
725 
has_wrprotected_page(struct kvm * kvm,gfn_t gfn,int level)726 static int has_wrprotected_page(struct kvm *kvm,
727 				gfn_t gfn,
728 				int level)
729 {
730 	struct kvm_memory_slot *slot;
731 	struct kvm_lpage_info *linfo;
732 
733 	slot = gfn_to_memslot(kvm, gfn);
734 	if (slot) {
735 		linfo = lpage_info_slot(gfn, slot, level);
736 		return linfo->write_count;
737 	}
738 
739 	return 1;
740 }
741 
host_mapping_level(struct kvm * kvm,gfn_t gfn)742 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
743 {
744 	unsigned long page_size;
745 	int i, ret = 0;
746 
747 	page_size = kvm_host_page_size(kvm, gfn);
748 
749 	for (i = PT_PAGE_TABLE_LEVEL;
750 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
751 		if (page_size >= KVM_HPAGE_SIZE(i))
752 			ret = i;
753 		else
754 			break;
755 	}
756 
757 	return ret;
758 }
759 
760 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)761 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
762 			    bool no_dirty_log)
763 {
764 	struct kvm_memory_slot *slot;
765 
766 	slot = gfn_to_memslot(vcpu->kvm, gfn);
767 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
768 	      (no_dirty_log && slot->dirty_bitmap))
769 		slot = NULL;
770 
771 	return slot;
772 }
773 
mapping_level_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t large_gfn)774 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
775 {
776 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
777 }
778 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn)779 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
780 {
781 	int host_level, level, max_level;
782 
783 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
784 
785 	if (host_level == PT_PAGE_TABLE_LEVEL)
786 		return host_level;
787 
788 	max_level = kvm_x86_ops->get_lpage_level() < host_level ?
789 		kvm_x86_ops->get_lpage_level() : host_level;
790 
791 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
792 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
793 			break;
794 
795 	return level - 1;
796 }
797 
798 /*
799  * Pte mapping structures:
800  *
801  * If pte_list bit zero is zero, then pte_list point to the spte.
802  *
803  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
804  * pte_list_desc containing more mappings.
805  *
806  * Returns the number of pte entries before the spte was added or zero if
807  * the spte was not added.
808  *
809  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)810 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
811 			unsigned long *pte_list)
812 {
813 	struct pte_list_desc *desc;
814 	int i, count = 0;
815 
816 	if (!*pte_list) {
817 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
818 		*pte_list = (unsigned long)spte;
819 	} else if (!(*pte_list & 1)) {
820 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
821 		desc = mmu_alloc_pte_list_desc(vcpu);
822 		desc->sptes[0] = (u64 *)*pte_list;
823 		desc->sptes[1] = spte;
824 		*pte_list = (unsigned long)desc | 1;
825 		++count;
826 	} else {
827 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
828 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
829 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
830 			desc = desc->more;
831 			count += PTE_LIST_EXT;
832 		}
833 		if (desc->sptes[PTE_LIST_EXT-1]) {
834 			desc->more = mmu_alloc_pte_list_desc(vcpu);
835 			desc = desc->more;
836 		}
837 		for (i = 0; desc->sptes[i]; ++i)
838 			++count;
839 		desc->sptes[i] = spte;
840 	}
841 	return count;
842 }
843 
pte_list_next(unsigned long * pte_list,u64 * spte)844 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
845 {
846 	struct pte_list_desc *desc;
847 	u64 *prev_spte;
848 	int i;
849 
850 	if (!*pte_list)
851 		return NULL;
852 	else if (!(*pte_list & 1)) {
853 		if (!spte)
854 			return (u64 *)*pte_list;
855 		return NULL;
856 	}
857 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
858 	prev_spte = NULL;
859 	while (desc) {
860 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
861 			if (prev_spte == spte)
862 				return desc->sptes[i];
863 			prev_spte = desc->sptes[i];
864 		}
865 		desc = desc->more;
866 	}
867 	return NULL;
868 }
869 
870 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)871 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
872 			   int i, struct pte_list_desc *prev_desc)
873 {
874 	int j;
875 
876 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
877 		;
878 	desc->sptes[i] = desc->sptes[j];
879 	desc->sptes[j] = NULL;
880 	if (j != 0)
881 		return;
882 	if (!prev_desc && !desc->more)
883 		*pte_list = (unsigned long)desc->sptes[0];
884 	else
885 		if (prev_desc)
886 			prev_desc->more = desc->more;
887 		else
888 			*pte_list = (unsigned long)desc->more | 1;
889 	mmu_free_pte_list_desc(desc);
890 }
891 
pte_list_remove(u64 * spte,unsigned long * pte_list)892 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
893 {
894 	struct pte_list_desc *desc;
895 	struct pte_list_desc *prev_desc;
896 	int i;
897 
898 	if (!*pte_list) {
899 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
900 		BUG();
901 	} else if (!(*pte_list & 1)) {
902 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
903 		if ((u64 *)*pte_list != spte) {
904 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
905 			BUG();
906 		}
907 		*pte_list = 0;
908 	} else {
909 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
910 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
911 		prev_desc = NULL;
912 		while (desc) {
913 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
914 				if (desc->sptes[i] == spte) {
915 					pte_list_desc_remove_entry(pte_list,
916 							       desc, i,
917 							       prev_desc);
918 					return;
919 				}
920 			prev_desc = desc;
921 			desc = desc->more;
922 		}
923 		pr_err("pte_list_remove: %p many->many\n", spte);
924 		BUG();
925 	}
926 }
927 
928 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)929 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
930 {
931 	struct pte_list_desc *desc;
932 	int i;
933 
934 	if (!*pte_list)
935 		return;
936 
937 	if (!(*pte_list & 1))
938 		return fn((u64 *)*pte_list);
939 
940 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941 	while (desc) {
942 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
943 			fn(desc->sptes[i]);
944 		desc = desc->more;
945 	}
946 }
947 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)948 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
949 				    struct kvm_memory_slot *slot)
950 {
951 	struct kvm_lpage_info *linfo;
952 
953 	if (likely(level == PT_PAGE_TABLE_LEVEL))
954 		return &slot->rmap[gfn - slot->base_gfn];
955 
956 	linfo = lpage_info_slot(gfn, slot, level);
957 	return &linfo->rmap_pde;
958 }
959 
960 /*
961  * Take gfn and return the reverse mapping to it.
962  */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level)963 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
964 {
965 	struct kvm_memory_slot *slot;
966 
967 	slot = gfn_to_memslot(kvm, gfn);
968 	return __gfn_to_rmap(gfn, level, slot);
969 }
970 
rmap_can_add(struct kvm_vcpu * vcpu)971 static bool rmap_can_add(struct kvm_vcpu *vcpu)
972 {
973 	struct kvm_mmu_memory_cache *cache;
974 
975 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
976 	return mmu_memory_cache_free_objects(cache);
977 }
978 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)979 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
980 {
981 	struct kvm_mmu_page *sp;
982 	unsigned long *rmapp;
983 
984 	sp = page_header(__pa(spte));
985 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
986 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
987 	return pte_list_add(vcpu, spte, rmapp);
988 }
989 
rmap_next(unsigned long * rmapp,u64 * spte)990 static u64 *rmap_next(unsigned long *rmapp, u64 *spte)
991 {
992 	return pte_list_next(rmapp, spte);
993 }
994 
rmap_remove(struct kvm * kvm,u64 * spte)995 static void rmap_remove(struct kvm *kvm, u64 *spte)
996 {
997 	struct kvm_mmu_page *sp;
998 	gfn_t gfn;
999 	unsigned long *rmapp;
1000 
1001 	sp = page_header(__pa(spte));
1002 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1003 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1004 	pte_list_remove(spte, rmapp);
1005 }
1006 
drop_spte(struct kvm * kvm,u64 * sptep)1007 static void drop_spte(struct kvm *kvm, u64 *sptep)
1008 {
1009 	if (mmu_spte_clear_track_bits(sptep))
1010 		rmap_remove(kvm, sptep);
1011 }
1012 
kvm_mmu_rmap_write_protect(struct kvm * kvm,u64 gfn,struct kvm_memory_slot * slot)1013 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1014 			       struct kvm_memory_slot *slot)
1015 {
1016 	unsigned long *rmapp;
1017 	u64 *spte;
1018 	int i, write_protected = 0;
1019 
1020 	rmapp = __gfn_to_rmap(gfn, PT_PAGE_TABLE_LEVEL, slot);
1021 	spte = rmap_next(rmapp, NULL);
1022 	while (spte) {
1023 		BUG_ON(!(*spte & PT_PRESENT_MASK));
1024 		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1025 		if (is_writable_pte(*spte)) {
1026 			mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1027 			write_protected = 1;
1028 		}
1029 		spte = rmap_next(rmapp, spte);
1030 	}
1031 
1032 	/* check for huge page mappings */
1033 	for (i = PT_DIRECTORY_LEVEL;
1034 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1035 		rmapp = __gfn_to_rmap(gfn, i, slot);
1036 		spte = rmap_next(rmapp, NULL);
1037 		while (spte) {
1038 			BUG_ON(!(*spte & PT_PRESENT_MASK));
1039 			BUG_ON(!is_large_pte(*spte));
1040 			pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1041 			if (is_writable_pte(*spte)) {
1042 				drop_spte(kvm, spte);
1043 				--kvm->stat.lpages;
1044 				spte = NULL;
1045 				write_protected = 1;
1046 			}
1047 			spte = rmap_next(rmapp, spte);
1048 		}
1049 	}
1050 
1051 	return write_protected;
1052 }
1053 
rmap_write_protect(struct kvm * kvm,u64 gfn)1054 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1055 {
1056 	struct kvm_memory_slot *slot;
1057 
1058 	slot = gfn_to_memslot(kvm, gfn);
1059 	return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1060 }
1061 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1062 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1063 			   unsigned long data)
1064 {
1065 	u64 *spte;
1066 	int need_tlb_flush = 0;
1067 
1068 	while ((spte = rmap_next(rmapp, NULL))) {
1069 		BUG_ON(!(*spte & PT_PRESENT_MASK));
1070 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1071 		drop_spte(kvm, spte);
1072 		need_tlb_flush = 1;
1073 	}
1074 	return need_tlb_flush;
1075 }
1076 
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1077 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1078 			     unsigned long data)
1079 {
1080 	int need_flush = 0;
1081 	u64 *spte, new_spte;
1082 	pte_t *ptep = (pte_t *)data;
1083 	pfn_t new_pfn;
1084 
1085 	WARN_ON(pte_huge(*ptep));
1086 	new_pfn = pte_pfn(*ptep);
1087 	spte = rmap_next(rmapp, NULL);
1088 	while (spte) {
1089 		BUG_ON(!is_shadow_present_pte(*spte));
1090 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1091 		need_flush = 1;
1092 		if (pte_write(*ptep)) {
1093 			drop_spte(kvm, spte);
1094 			spte = rmap_next(rmapp, NULL);
1095 		} else {
1096 			new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1097 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1098 
1099 			new_spte &= ~PT_WRITABLE_MASK;
1100 			new_spte &= ~SPTE_HOST_WRITEABLE;
1101 			new_spte &= ~shadow_accessed_mask;
1102 			mmu_spte_clear_track_bits(spte);
1103 			mmu_spte_set(spte, new_spte);
1104 			spte = rmap_next(rmapp, spte);
1105 		}
1106 	}
1107 	if (need_flush)
1108 		kvm_flush_remote_tlbs(kvm);
1109 
1110 	return 0;
1111 }
1112 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,unsigned long data))1113 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1114 			  unsigned long data,
1115 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1116 					 unsigned long data))
1117 {
1118 	int j;
1119 	int ret;
1120 	int retval = 0;
1121 	struct kvm_memslots *slots;
1122 	struct kvm_memory_slot *memslot;
1123 
1124 	slots = kvm_memslots(kvm);
1125 
1126 	kvm_for_each_memslot(memslot, slots) {
1127 		unsigned long start = memslot->userspace_addr;
1128 		unsigned long end;
1129 
1130 		end = start + (memslot->npages << PAGE_SHIFT);
1131 		if (hva >= start && hva < end) {
1132 			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1133 			gfn_t gfn = memslot->base_gfn + gfn_offset;
1134 
1135 			ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1136 
1137 			for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1138 				struct kvm_lpage_info *linfo;
1139 
1140 				linfo = lpage_info_slot(gfn, memslot,
1141 							PT_DIRECTORY_LEVEL + j);
1142 				ret |= handler(kvm, &linfo->rmap_pde, data);
1143 			}
1144 			trace_kvm_age_page(hva, memslot, ret);
1145 			retval |= ret;
1146 		}
1147 	}
1148 
1149 	return retval;
1150 }
1151 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1152 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1153 {
1154 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1155 }
1156 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1157 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1158 {
1159 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1160 }
1161 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1162 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1163 			 unsigned long data)
1164 {
1165 	u64 *spte;
1166 	int young = 0;
1167 
1168 	/*
1169 	 * Emulate the accessed bit for EPT, by checking if this page has
1170 	 * an EPT mapping, and clearing it if it does. On the next access,
1171 	 * a new EPT mapping will be established.
1172 	 * This has some overhead, but not as much as the cost of swapping
1173 	 * out actively used pages or breaking up actively used hugepages.
1174 	 */
1175 	if (!shadow_accessed_mask)
1176 		return kvm_unmap_rmapp(kvm, rmapp, data);
1177 
1178 	spte = rmap_next(rmapp, NULL);
1179 	while (spte) {
1180 		int _young;
1181 		u64 _spte = *spte;
1182 		BUG_ON(!(_spte & PT_PRESENT_MASK));
1183 		_young = _spte & PT_ACCESSED_MASK;
1184 		if (_young) {
1185 			young = 1;
1186 			clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1187 		}
1188 		spte = rmap_next(rmapp, spte);
1189 	}
1190 	return young;
1191 }
1192 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,unsigned long data)1193 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1194 			      unsigned long data)
1195 {
1196 	u64 *spte;
1197 	int young = 0;
1198 
1199 	/*
1200 	 * If there's no access bit in the secondary pte set by the
1201 	 * hardware it's up to gup-fast/gup to set the access bit in
1202 	 * the primary pte or in the page structure.
1203 	 */
1204 	if (!shadow_accessed_mask)
1205 		goto out;
1206 
1207 	spte = rmap_next(rmapp, NULL);
1208 	while (spte) {
1209 		u64 _spte = *spte;
1210 		BUG_ON(!(_spte & PT_PRESENT_MASK));
1211 		young = _spte & PT_ACCESSED_MASK;
1212 		if (young) {
1213 			young = 1;
1214 			break;
1215 		}
1216 		spte = rmap_next(rmapp, spte);
1217 	}
1218 out:
1219 	return young;
1220 }
1221 
1222 #define RMAP_RECYCLE_THRESHOLD 1000
1223 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1224 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1225 {
1226 	unsigned long *rmapp;
1227 	struct kvm_mmu_page *sp;
1228 
1229 	sp = page_header(__pa(spte));
1230 
1231 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1232 
1233 	kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1234 	kvm_flush_remote_tlbs(vcpu->kvm);
1235 }
1236 
kvm_age_hva(struct kvm * kvm,unsigned long hva)1237 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1238 {
1239 	return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1240 }
1241 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1242 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1243 {
1244 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1245 }
1246 
1247 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1248 static int is_empty_shadow_page(u64 *spt)
1249 {
1250 	u64 *pos;
1251 	u64 *end;
1252 
1253 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1254 		if (is_shadow_present_pte(*pos)) {
1255 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1256 			       pos, *pos);
1257 			return 0;
1258 		}
1259 	return 1;
1260 }
1261 #endif
1262 
1263 /*
1264  * This value is the sum of all of the kvm instances's
1265  * kvm->arch.n_used_mmu_pages values.  We need a global,
1266  * aggregate version in order to make the slab shrinker
1267  * faster
1268  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1269 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1270 {
1271 	kvm->arch.n_used_mmu_pages += nr;
1272 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1273 }
1274 
1275 /*
1276  * Remove the sp from shadow page cache, after call it,
1277  * we can not find this sp from the cache, and the shadow
1278  * page table is still valid.
1279  * It should be under the protection of mmu lock.
1280  */
kvm_mmu_isolate_page(struct kvm_mmu_page * sp)1281 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1282 {
1283 	ASSERT(is_empty_shadow_page(sp->spt));
1284 	hlist_del(&sp->hash_link);
1285 	if (!sp->role.direct)
1286 		free_page((unsigned long)sp->gfns);
1287 }
1288 
1289 /*
1290  * Free the shadow page table and the sp, we can do it
1291  * out of the protection of mmu lock.
1292  */
kvm_mmu_free_page(struct kvm_mmu_page * sp)1293 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1294 {
1295 	list_del(&sp->link);
1296 	free_page((unsigned long)sp->spt);
1297 	kmem_cache_free(mmu_page_header_cache, sp);
1298 }
1299 
kvm_page_table_hashfn(gfn_t gfn)1300 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1301 {
1302 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1303 }
1304 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1305 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1306 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1307 {
1308 	if (!parent_pte)
1309 		return;
1310 
1311 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1312 }
1313 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1314 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1315 				       u64 *parent_pte)
1316 {
1317 	pte_list_remove(parent_pte, &sp->parent_ptes);
1318 }
1319 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1320 static void drop_parent_pte(struct kvm_mmu_page *sp,
1321 			    u64 *parent_pte)
1322 {
1323 	mmu_page_remove_parent_pte(sp, parent_pte);
1324 	mmu_spte_clear_no_track(parent_pte);
1325 }
1326 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1327 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1328 					       u64 *parent_pte, int direct)
1329 {
1330 	struct kvm_mmu_page *sp;
1331 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1332 					sizeof *sp);
1333 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1334 	if (!direct)
1335 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1336 						  PAGE_SIZE);
1337 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1338 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1339 	bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1340 	sp->parent_ptes = 0;
1341 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1342 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1343 	return sp;
1344 }
1345 
1346 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1347 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1348 {
1349 	pte_list_walk(&sp->parent_ptes, mark_unsync);
1350 }
1351 
mark_unsync(u64 * spte)1352 static void mark_unsync(u64 *spte)
1353 {
1354 	struct kvm_mmu_page *sp;
1355 	unsigned int index;
1356 
1357 	sp = page_header(__pa(spte));
1358 	index = spte - sp->spt;
1359 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1360 		return;
1361 	if (sp->unsync_children++)
1362 		return;
1363 	kvm_mmu_mark_parents_unsync(sp);
1364 }
1365 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1366 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1367 			       struct kvm_mmu_page *sp)
1368 {
1369 	return 1;
1370 }
1371 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1372 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1373 {
1374 }
1375 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1376 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1377 				 struct kvm_mmu_page *sp, u64 *spte,
1378 				 const void *pte)
1379 {
1380 	WARN_ON(1);
1381 }
1382 
1383 #define KVM_PAGE_ARRAY_NR 16
1384 
1385 struct kvm_mmu_pages {
1386 	struct mmu_page_and_offset {
1387 		struct kvm_mmu_page *sp;
1388 		unsigned int idx;
1389 	} page[KVM_PAGE_ARRAY_NR];
1390 	unsigned int nr;
1391 };
1392 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1393 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1394 			 int idx)
1395 {
1396 	int i;
1397 
1398 	if (sp->unsync)
1399 		for (i=0; i < pvec->nr; i++)
1400 			if (pvec->page[i].sp == sp)
1401 				return 0;
1402 
1403 	pvec->page[pvec->nr].sp = sp;
1404 	pvec->page[pvec->nr].idx = idx;
1405 	pvec->nr++;
1406 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1407 }
1408 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1409 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1410 			   struct kvm_mmu_pages *pvec)
1411 {
1412 	int i, ret, nr_unsync_leaf = 0;
1413 
1414 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1415 		struct kvm_mmu_page *child;
1416 		u64 ent = sp->spt[i];
1417 
1418 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1419 			goto clear_child_bitmap;
1420 
1421 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1422 
1423 		if (child->unsync_children) {
1424 			if (mmu_pages_add(pvec, child, i))
1425 				return -ENOSPC;
1426 
1427 			ret = __mmu_unsync_walk(child, pvec);
1428 			if (!ret)
1429 				goto clear_child_bitmap;
1430 			else if (ret > 0)
1431 				nr_unsync_leaf += ret;
1432 			else
1433 				return ret;
1434 		} else if (child->unsync) {
1435 			nr_unsync_leaf++;
1436 			if (mmu_pages_add(pvec, child, i))
1437 				return -ENOSPC;
1438 		} else
1439 			 goto clear_child_bitmap;
1440 
1441 		continue;
1442 
1443 clear_child_bitmap:
1444 		__clear_bit(i, sp->unsync_child_bitmap);
1445 		sp->unsync_children--;
1446 		WARN_ON((int)sp->unsync_children < 0);
1447 	}
1448 
1449 
1450 	return nr_unsync_leaf;
1451 }
1452 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1453 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1454 			   struct kvm_mmu_pages *pvec)
1455 {
1456 	if (!sp->unsync_children)
1457 		return 0;
1458 
1459 	mmu_pages_add(pvec, sp, 0);
1460 	return __mmu_unsync_walk(sp, pvec);
1461 }
1462 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1463 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1464 {
1465 	WARN_ON(!sp->unsync);
1466 	trace_kvm_mmu_sync_page(sp);
1467 	sp->unsync = 0;
1468 	--kvm->stat.mmu_unsync;
1469 }
1470 
1471 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1472 				    struct list_head *invalid_list);
1473 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1474 				    struct list_head *invalid_list);
1475 
1476 #define for_each_gfn_sp(kvm, sp, gfn, pos)				\
1477   hlist_for_each_entry(sp, pos,						\
1478    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
1479 	if ((sp)->gfn != (gfn)) {} else
1480 
1481 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\
1482   hlist_for_each_entry(sp, pos,						\
1483    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
1484 		if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\
1485 			(sp)->role.invalid) {} else
1486 
1487 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1488 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1489 			   struct list_head *invalid_list, bool clear_unsync)
1490 {
1491 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1492 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1493 		return 1;
1494 	}
1495 
1496 	if (clear_unsync)
1497 		kvm_unlink_unsync_page(vcpu->kvm, sp);
1498 
1499 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1500 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1501 		return 1;
1502 	}
1503 
1504 	kvm_mmu_flush_tlb(vcpu);
1505 	return 0;
1506 }
1507 
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1508 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1509 				   struct kvm_mmu_page *sp)
1510 {
1511 	LIST_HEAD(invalid_list);
1512 	int ret;
1513 
1514 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1515 	if (ret)
1516 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1517 
1518 	return ret;
1519 }
1520 
1521 #ifdef CONFIG_KVM_MMU_AUDIT
1522 #include "mmu_audit.c"
1523 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1524 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1525 static void mmu_audit_disable(void) { }
1526 #endif
1527 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1528 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1529 			 struct list_head *invalid_list)
1530 {
1531 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1532 }
1533 
1534 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1535 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1536 {
1537 	struct kvm_mmu_page *s;
1538 	struct hlist_node *node;
1539 	LIST_HEAD(invalid_list);
1540 	bool flush = false;
1541 
1542 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1543 		if (!s->unsync)
1544 			continue;
1545 
1546 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1547 		kvm_unlink_unsync_page(vcpu->kvm, s);
1548 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1549 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1550 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1551 			continue;
1552 		}
1553 		flush = true;
1554 	}
1555 
1556 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1557 	if (flush)
1558 		kvm_mmu_flush_tlb(vcpu);
1559 }
1560 
1561 struct mmu_page_path {
1562 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1563 	unsigned int idx[PT64_ROOT_LEVEL-1];
1564 };
1565 
1566 #define for_each_sp(pvec, sp, parents, i)			\
1567 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1568 			sp = pvec.page[i].sp;			\
1569 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1570 			i = mmu_pages_next(&pvec, &parents, i))
1571 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1572 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1573 			  struct mmu_page_path *parents,
1574 			  int i)
1575 {
1576 	int n;
1577 
1578 	for (n = i+1; n < pvec->nr; n++) {
1579 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1580 
1581 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1582 			parents->idx[0] = pvec->page[n].idx;
1583 			return n;
1584 		}
1585 
1586 		parents->parent[sp->role.level-2] = sp;
1587 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1588 	}
1589 
1590 	return n;
1591 }
1592 
mmu_pages_clear_parents(struct mmu_page_path * parents)1593 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1594 {
1595 	struct kvm_mmu_page *sp;
1596 	unsigned int level = 0;
1597 
1598 	do {
1599 		unsigned int idx = parents->idx[level];
1600 
1601 		sp = parents->parent[level];
1602 		if (!sp)
1603 			return;
1604 
1605 		--sp->unsync_children;
1606 		WARN_ON((int)sp->unsync_children < 0);
1607 		__clear_bit(idx, sp->unsync_child_bitmap);
1608 		level++;
1609 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1610 }
1611 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1612 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1613 			       struct mmu_page_path *parents,
1614 			       struct kvm_mmu_pages *pvec)
1615 {
1616 	parents->parent[parent->role.level-1] = NULL;
1617 	pvec->nr = 0;
1618 }
1619 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1620 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1621 			      struct kvm_mmu_page *parent)
1622 {
1623 	int i;
1624 	struct kvm_mmu_page *sp;
1625 	struct mmu_page_path parents;
1626 	struct kvm_mmu_pages pages;
1627 	LIST_HEAD(invalid_list);
1628 
1629 	kvm_mmu_pages_init(parent, &parents, &pages);
1630 	while (mmu_unsync_walk(parent, &pages)) {
1631 		int protected = 0;
1632 
1633 		for_each_sp(pages, sp, parents, i)
1634 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1635 
1636 		if (protected)
1637 			kvm_flush_remote_tlbs(vcpu->kvm);
1638 
1639 		for_each_sp(pages, sp, parents, i) {
1640 			kvm_sync_page(vcpu, sp, &invalid_list);
1641 			mmu_pages_clear_parents(&parents);
1642 		}
1643 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1644 		cond_resched_lock(&vcpu->kvm->mmu_lock);
1645 		kvm_mmu_pages_init(parent, &parents, &pages);
1646 	}
1647 }
1648 
init_shadow_page_table(struct kvm_mmu_page * sp)1649 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1650 {
1651 	int i;
1652 
1653 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1654 		sp->spt[i] = 0ull;
1655 }
1656 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)1657 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1658 {
1659 	sp->write_flooding_count = 0;
1660 }
1661 
clear_sp_write_flooding_count(u64 * spte)1662 static void clear_sp_write_flooding_count(u64 *spte)
1663 {
1664 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
1665 
1666 	__clear_sp_write_flooding_count(sp);
1667 }
1668 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)1669 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1670 					     gfn_t gfn,
1671 					     gva_t gaddr,
1672 					     unsigned level,
1673 					     int direct,
1674 					     unsigned access,
1675 					     u64 *parent_pte)
1676 {
1677 	union kvm_mmu_page_role role;
1678 	unsigned quadrant;
1679 	struct kvm_mmu_page *sp;
1680 	struct hlist_node *node;
1681 	bool need_sync = false;
1682 
1683 	role = vcpu->arch.mmu.base_role;
1684 	role.level = level;
1685 	role.direct = direct;
1686 	if (role.direct)
1687 		role.cr4_pae = 0;
1688 	role.access = access;
1689 	if (!vcpu->arch.mmu.direct_map
1690 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1691 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1692 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1693 		role.quadrant = quadrant;
1694 	}
1695 	for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1696 		if (!need_sync && sp->unsync)
1697 			need_sync = true;
1698 
1699 		if (sp->role.word != role.word)
1700 			continue;
1701 
1702 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1703 			break;
1704 
1705 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1706 		if (sp->unsync_children) {
1707 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1708 			kvm_mmu_mark_parents_unsync(sp);
1709 		} else if (sp->unsync)
1710 			kvm_mmu_mark_parents_unsync(sp);
1711 
1712 		__clear_sp_write_flooding_count(sp);
1713 		trace_kvm_mmu_get_page(sp, false);
1714 		return sp;
1715 	}
1716 	++vcpu->kvm->stat.mmu_cache_miss;
1717 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1718 	if (!sp)
1719 		return sp;
1720 	sp->gfn = gfn;
1721 	sp->role = role;
1722 	hlist_add_head(&sp->hash_link,
1723 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1724 	if (!direct) {
1725 		if (rmap_write_protect(vcpu->kvm, gfn))
1726 			kvm_flush_remote_tlbs(vcpu->kvm);
1727 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1728 			kvm_sync_pages(vcpu, gfn);
1729 
1730 		account_shadowed(vcpu->kvm, gfn);
1731 	}
1732 	init_shadow_page_table(sp);
1733 	trace_kvm_mmu_get_page(sp, true);
1734 	return sp;
1735 }
1736 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)1737 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1738 			     struct kvm_vcpu *vcpu, u64 addr)
1739 {
1740 	iterator->addr = addr;
1741 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1742 	iterator->level = vcpu->arch.mmu.shadow_root_level;
1743 
1744 	if (iterator->level == PT64_ROOT_LEVEL &&
1745 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1746 	    !vcpu->arch.mmu.direct_map)
1747 		--iterator->level;
1748 
1749 	if (iterator->level == PT32E_ROOT_LEVEL) {
1750 		iterator->shadow_addr
1751 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1752 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1753 		--iterator->level;
1754 		if (!iterator->shadow_addr)
1755 			iterator->level = 0;
1756 	}
1757 }
1758 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)1759 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1760 {
1761 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
1762 		return false;
1763 
1764 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1765 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1766 	return true;
1767 }
1768 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)1769 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1770 			       u64 spte)
1771 {
1772 	if (is_last_spte(spte, iterator->level)) {
1773 		iterator->level = 0;
1774 		return;
1775 	}
1776 
1777 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1778 	--iterator->level;
1779 }
1780 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)1781 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1782 {
1783 	return __shadow_walk_next(iterator, *iterator->sptep);
1784 }
1785 
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp)1786 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1787 {
1788 	u64 spte;
1789 
1790 	spte = __pa(sp->spt)
1791 		| PT_PRESENT_MASK | PT_ACCESSED_MASK
1792 		| PT_WRITABLE_MASK | PT_USER_MASK;
1793 	mmu_spte_set(sptep, spte);
1794 }
1795 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1796 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1797 {
1798 	if (is_large_pte(*sptep)) {
1799 		drop_spte(vcpu->kvm, sptep);
1800 		--vcpu->kvm->stat.lpages;
1801 		kvm_flush_remote_tlbs(vcpu->kvm);
1802 	}
1803 }
1804 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)1805 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1806 				   unsigned direct_access)
1807 {
1808 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1809 		struct kvm_mmu_page *child;
1810 
1811 		/*
1812 		 * For the direct sp, if the guest pte's dirty bit
1813 		 * changed form clean to dirty, it will corrupt the
1814 		 * sp's access: allow writable in the read-only sp,
1815 		 * so we should update the spte at this point to get
1816 		 * a new sp with the correct access.
1817 		 */
1818 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1819 		if (child->role.access == direct_access)
1820 			return;
1821 
1822 		drop_parent_pte(child, sptep);
1823 		kvm_flush_remote_tlbs(vcpu->kvm);
1824 	}
1825 }
1826 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)1827 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1828 			     u64 *spte)
1829 {
1830 	u64 pte;
1831 	struct kvm_mmu_page *child;
1832 
1833 	pte = *spte;
1834 	if (is_shadow_present_pte(pte)) {
1835 		if (is_last_spte(pte, sp->role.level)) {
1836 			drop_spte(kvm, spte);
1837 			if (is_large_pte(pte))
1838 				--kvm->stat.lpages;
1839 		} else {
1840 			child = page_header(pte & PT64_BASE_ADDR_MASK);
1841 			drop_parent_pte(child, spte);
1842 		}
1843 		return true;
1844 	}
1845 
1846 	if (is_mmio_spte(pte))
1847 		mmu_spte_clear_no_track(spte);
1848 
1849 	return false;
1850 }
1851 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)1852 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1853 					 struct kvm_mmu_page *sp)
1854 {
1855 	unsigned i;
1856 
1857 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1858 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
1859 }
1860 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)1861 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1862 {
1863 	mmu_page_remove_parent_pte(sp, parent_pte);
1864 }
1865 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)1866 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1867 {
1868 	u64 *parent_pte;
1869 
1870 	while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1871 		drop_parent_pte(sp, parent_pte);
1872 }
1873 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)1874 static int mmu_zap_unsync_children(struct kvm *kvm,
1875 				   struct kvm_mmu_page *parent,
1876 				   struct list_head *invalid_list)
1877 {
1878 	int i, zapped = 0;
1879 	struct mmu_page_path parents;
1880 	struct kvm_mmu_pages pages;
1881 
1882 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1883 		return 0;
1884 
1885 	kvm_mmu_pages_init(parent, &parents, &pages);
1886 	while (mmu_unsync_walk(parent, &pages)) {
1887 		struct kvm_mmu_page *sp;
1888 
1889 		for_each_sp(pages, sp, parents, i) {
1890 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1891 			mmu_pages_clear_parents(&parents);
1892 			zapped++;
1893 		}
1894 		kvm_mmu_pages_init(parent, &parents, &pages);
1895 	}
1896 
1897 	return zapped;
1898 }
1899 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)1900 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1901 				    struct list_head *invalid_list)
1902 {
1903 	int ret;
1904 
1905 	trace_kvm_mmu_prepare_zap_page(sp);
1906 	++kvm->stat.mmu_shadow_zapped;
1907 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1908 	kvm_mmu_page_unlink_children(kvm, sp);
1909 	kvm_mmu_unlink_parents(kvm, sp);
1910 	if (!sp->role.invalid && !sp->role.direct)
1911 		unaccount_shadowed(kvm, sp->gfn);
1912 	if (sp->unsync)
1913 		kvm_unlink_unsync_page(kvm, sp);
1914 	if (!sp->root_count) {
1915 		/* Count self */
1916 		ret++;
1917 		list_move(&sp->link, invalid_list);
1918 		kvm_mod_used_mmu_pages(kvm, -1);
1919 	} else {
1920 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
1921 		kvm_reload_remote_mmus(kvm);
1922 	}
1923 
1924 	sp->role.invalid = 1;
1925 	return ret;
1926 }
1927 
kvm_mmu_isolate_pages(struct list_head * invalid_list)1928 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1929 {
1930 	struct kvm_mmu_page *sp;
1931 
1932 	list_for_each_entry(sp, invalid_list, link)
1933 		kvm_mmu_isolate_page(sp);
1934 }
1935 
free_pages_rcu(struct rcu_head * head)1936 static void free_pages_rcu(struct rcu_head *head)
1937 {
1938 	struct kvm_mmu_page *next, *sp;
1939 
1940 	sp = container_of(head, struct kvm_mmu_page, rcu);
1941 	while (sp) {
1942 		if (!list_empty(&sp->link))
1943 			next = list_first_entry(&sp->link,
1944 				      struct kvm_mmu_page, link);
1945 		else
1946 			next = NULL;
1947 		kvm_mmu_free_page(sp);
1948 		sp = next;
1949 	}
1950 }
1951 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)1952 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1953 				    struct list_head *invalid_list)
1954 {
1955 	struct kvm_mmu_page *sp;
1956 
1957 	if (list_empty(invalid_list))
1958 		return;
1959 
1960 	kvm_flush_remote_tlbs(kvm);
1961 
1962 	if (atomic_read(&kvm->arch.reader_counter)) {
1963 		kvm_mmu_isolate_pages(invalid_list);
1964 		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1965 		list_del_init(invalid_list);
1966 
1967 		trace_kvm_mmu_delay_free_pages(sp);
1968 		call_rcu(&sp->rcu, free_pages_rcu);
1969 		return;
1970 	}
1971 
1972 	do {
1973 		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1974 		WARN_ON(!sp->role.invalid || sp->root_count);
1975 		kvm_mmu_isolate_page(sp);
1976 		kvm_mmu_free_page(sp);
1977 	} while (!list_empty(invalid_list));
1978 
1979 }
1980 
1981 /*
1982  * Changing the number of mmu pages allocated to the vm
1983  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1984  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)1985 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1986 {
1987 	LIST_HEAD(invalid_list);
1988 	/*
1989 	 * If we set the number of mmu pages to be smaller be than the
1990 	 * number of actived pages , we must to free some mmu pages before we
1991 	 * change the value
1992 	 */
1993 
1994 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1995 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1996 			!list_empty(&kvm->arch.active_mmu_pages)) {
1997 			struct kvm_mmu_page *page;
1998 
1999 			page = container_of(kvm->arch.active_mmu_pages.prev,
2000 					    struct kvm_mmu_page, link);
2001 			kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2002 		}
2003 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2004 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2005 	}
2006 
2007 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2008 }
2009 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2010 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2011 {
2012 	struct kvm_mmu_page *sp;
2013 	struct hlist_node *node;
2014 	LIST_HEAD(invalid_list);
2015 	int r;
2016 
2017 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2018 	r = 0;
2019 	spin_lock(&kvm->mmu_lock);
2020 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2021 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2022 			 sp->role.word);
2023 		r = 1;
2024 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2025 	}
2026 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2027 	spin_unlock(&kvm->mmu_lock);
2028 
2029 	return r;
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2032 
page_header_update_slot(struct kvm * kvm,void * pte,gfn_t gfn)2033 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2034 {
2035 	int slot = memslot_id(kvm, gfn);
2036 	struct kvm_mmu_page *sp = page_header(__pa(pte));
2037 
2038 	__set_bit(slot, sp->slot_bitmap);
2039 }
2040 
2041 /*
2042  * The function is based on mtrr_type_lookup() in
2043  * arch/x86/kernel/cpu/mtrr/generic.c
2044  */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)2045 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2046 			 u64 start, u64 end)
2047 {
2048 	int i;
2049 	u64 base, mask;
2050 	u8 prev_match, curr_match;
2051 	int num_var_ranges = KVM_NR_VAR_MTRR;
2052 
2053 	if (!mtrr_state->enabled)
2054 		return 0xFF;
2055 
2056 	/* Make end inclusive end, instead of exclusive */
2057 	end--;
2058 
2059 	/* Look in fixed ranges. Just return the type as per start */
2060 	if (mtrr_state->have_fixed && (start < 0x100000)) {
2061 		int idx;
2062 
2063 		if (start < 0x80000) {
2064 			idx = 0;
2065 			idx += (start >> 16);
2066 			return mtrr_state->fixed_ranges[idx];
2067 		} else if (start < 0xC0000) {
2068 			idx = 1 * 8;
2069 			idx += ((start - 0x80000) >> 14);
2070 			return mtrr_state->fixed_ranges[idx];
2071 		} else if (start < 0x1000000) {
2072 			idx = 3 * 8;
2073 			idx += ((start - 0xC0000) >> 12);
2074 			return mtrr_state->fixed_ranges[idx];
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * Look in variable ranges
2080 	 * Look of multiple ranges matching this address and pick type
2081 	 * as per MTRR precedence
2082 	 */
2083 	if (!(mtrr_state->enabled & 2))
2084 		return mtrr_state->def_type;
2085 
2086 	prev_match = 0xFF;
2087 	for (i = 0; i < num_var_ranges; ++i) {
2088 		unsigned short start_state, end_state;
2089 
2090 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2091 			continue;
2092 
2093 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2094 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2095 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2096 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2097 
2098 		start_state = ((start & mask) == (base & mask));
2099 		end_state = ((end & mask) == (base & mask));
2100 		if (start_state != end_state)
2101 			return 0xFE;
2102 
2103 		if ((start & mask) != (base & mask))
2104 			continue;
2105 
2106 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2107 		if (prev_match == 0xFF) {
2108 			prev_match = curr_match;
2109 			continue;
2110 		}
2111 
2112 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2113 		    curr_match == MTRR_TYPE_UNCACHABLE)
2114 			return MTRR_TYPE_UNCACHABLE;
2115 
2116 		if ((prev_match == MTRR_TYPE_WRBACK &&
2117 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2118 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2119 		     curr_match == MTRR_TYPE_WRBACK)) {
2120 			prev_match = MTRR_TYPE_WRTHROUGH;
2121 			curr_match = MTRR_TYPE_WRTHROUGH;
2122 		}
2123 
2124 		if (prev_match != curr_match)
2125 			return MTRR_TYPE_UNCACHABLE;
2126 	}
2127 
2128 	if (prev_match != 0xFF)
2129 		return prev_match;
2130 
2131 	return mtrr_state->def_type;
2132 }
2133 
kvm_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)2134 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2135 {
2136 	u8 mtrr;
2137 
2138 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2139 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2140 	if (mtrr == 0xfe || mtrr == 0xff)
2141 		mtrr = MTRR_TYPE_WRBACK;
2142 	return mtrr;
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2145 
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2146 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2147 {
2148 	trace_kvm_mmu_unsync_page(sp);
2149 	++vcpu->kvm->stat.mmu_unsync;
2150 	sp->unsync = 1;
2151 
2152 	kvm_mmu_mark_parents_unsync(sp);
2153 }
2154 
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2155 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2156 {
2157 	struct kvm_mmu_page *s;
2158 	struct hlist_node *node;
2159 
2160 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2161 		if (s->unsync)
2162 			continue;
2163 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2164 		__kvm_unsync_page(vcpu, s);
2165 	}
2166 }
2167 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2168 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 				  bool can_unsync)
2170 {
2171 	struct kvm_mmu_page *s;
2172 	struct hlist_node *node;
2173 	bool need_unsync = false;
2174 
2175 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2176 		if (!can_unsync)
2177 			return 1;
2178 
2179 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2180 			return 1;
2181 
2182 		if (!need_unsync && !s->unsync) {
2183 			need_unsync = true;
2184 		}
2185 	}
2186 	if (need_unsync)
2187 		kvm_unsync_pages(vcpu, gfn);
2188 	return 0;
2189 }
2190 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int user_fault,int write_fault,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2191 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2192 		    unsigned pte_access, int user_fault,
2193 		    int write_fault, int level,
2194 		    gfn_t gfn, pfn_t pfn, bool speculative,
2195 		    bool can_unsync, bool host_writable)
2196 {
2197 	u64 spte, entry = *sptep;
2198 	int ret = 0;
2199 
2200 	if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2201 		return 0;
2202 
2203 	spte = PT_PRESENT_MASK;
2204 	if (!speculative)
2205 		spte |= shadow_accessed_mask;
2206 
2207 	if (pte_access & ACC_EXEC_MASK)
2208 		spte |= shadow_x_mask;
2209 	else
2210 		spte |= shadow_nx_mask;
2211 	if (pte_access & ACC_USER_MASK)
2212 		spte |= shadow_user_mask;
2213 	if (level > PT_PAGE_TABLE_LEVEL)
2214 		spte |= PT_PAGE_SIZE_MASK;
2215 	if (tdp_enabled)
2216 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2217 			kvm_is_mmio_pfn(pfn));
2218 
2219 	if (host_writable)
2220 		spte |= SPTE_HOST_WRITEABLE;
2221 	else
2222 		pte_access &= ~ACC_WRITE_MASK;
2223 
2224 	spte |= (u64)pfn << PAGE_SHIFT;
2225 
2226 	if ((pte_access & ACC_WRITE_MASK)
2227 	    || (!vcpu->arch.mmu.direct_map && write_fault
2228 		&& !is_write_protection(vcpu) && !user_fault)) {
2229 
2230 		if (level > PT_PAGE_TABLE_LEVEL &&
2231 		    has_wrprotected_page(vcpu->kvm, gfn, level)) {
2232 			ret = 1;
2233 			drop_spte(vcpu->kvm, sptep);
2234 			goto done;
2235 		}
2236 
2237 		spte |= PT_WRITABLE_MASK;
2238 
2239 		if (!vcpu->arch.mmu.direct_map
2240 		    && !(pte_access & ACC_WRITE_MASK)) {
2241 			spte &= ~PT_USER_MASK;
2242 			/*
2243 			 * If we converted a user page to a kernel page,
2244 			 * so that the kernel can write to it when cr0.wp=0,
2245 			 * then we should prevent the kernel from executing it
2246 			 * if SMEP is enabled.
2247 			 */
2248 			if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2249 				spte |= PT64_NX_MASK;
2250 		}
2251 
2252 		/*
2253 		 * Optimization: for pte sync, if spte was writable the hash
2254 		 * lookup is unnecessary (and expensive). Write protection
2255 		 * is responsibility of mmu_get_page / kvm_sync_page.
2256 		 * Same reasoning can be applied to dirty page accounting.
2257 		 */
2258 		if (!can_unsync && is_writable_pte(*sptep))
2259 			goto set_pte;
2260 
2261 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2262 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2263 				 __func__, gfn);
2264 			ret = 1;
2265 			pte_access &= ~ACC_WRITE_MASK;
2266 			if (is_writable_pte(spte))
2267 				spte &= ~PT_WRITABLE_MASK;
2268 		}
2269 	}
2270 
2271 	if (pte_access & ACC_WRITE_MASK)
2272 		mark_page_dirty(vcpu->kvm, gfn);
2273 
2274 set_pte:
2275 	mmu_spte_update(sptep, spte);
2276 	/*
2277 	 * If we overwrite a writable spte with a read-only one we
2278 	 * should flush remote TLBs. Otherwise rmap_write_protect
2279 	 * will find a read-only spte, even though the writable spte
2280 	 * might be cached on a CPU's TLB.
2281 	 */
2282 	if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2283 		kvm_flush_remote_tlbs(vcpu->kvm);
2284 done:
2285 	return ret;
2286 }
2287 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pt_access,unsigned pte_access,int user_fault,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2288 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2289 			 unsigned pt_access, unsigned pte_access,
2290 			 int user_fault, int write_fault,
2291 			 int *emulate, int level, gfn_t gfn,
2292 			 pfn_t pfn, bool speculative,
2293 			 bool host_writable)
2294 {
2295 	int was_rmapped = 0;
2296 	int rmap_count;
2297 
2298 	pgprintk("%s: spte %llx access %x write_fault %d"
2299 		 " user_fault %d gfn %llx\n",
2300 		 __func__, *sptep, pt_access,
2301 		 write_fault, user_fault, gfn);
2302 
2303 	if (is_rmap_spte(*sptep)) {
2304 		/*
2305 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2306 		 * the parent of the now unreachable PTE.
2307 		 */
2308 		if (level > PT_PAGE_TABLE_LEVEL &&
2309 		    !is_large_pte(*sptep)) {
2310 			struct kvm_mmu_page *child;
2311 			u64 pte = *sptep;
2312 
2313 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2314 			drop_parent_pte(child, sptep);
2315 			kvm_flush_remote_tlbs(vcpu->kvm);
2316 		} else if (pfn != spte_to_pfn(*sptep)) {
2317 			pgprintk("hfn old %llx new %llx\n",
2318 				 spte_to_pfn(*sptep), pfn);
2319 			drop_spte(vcpu->kvm, sptep);
2320 			kvm_flush_remote_tlbs(vcpu->kvm);
2321 		} else
2322 			was_rmapped = 1;
2323 	}
2324 
2325 	if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2326 		      level, gfn, pfn, speculative, true,
2327 		      host_writable)) {
2328 		if (write_fault)
2329 			*emulate = 1;
2330 		kvm_mmu_flush_tlb(vcpu);
2331 	}
2332 
2333 	if (unlikely(is_mmio_spte(*sptep) && emulate))
2334 		*emulate = 1;
2335 
2336 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2337 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2338 		 is_large_pte(*sptep)? "2MB" : "4kB",
2339 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2340 		 *sptep, sptep);
2341 	if (!was_rmapped && is_large_pte(*sptep))
2342 		++vcpu->kvm->stat.lpages;
2343 
2344 	if (is_shadow_present_pte(*sptep)) {
2345 		page_header_update_slot(vcpu->kvm, sptep, gfn);
2346 		if (!was_rmapped) {
2347 			rmap_count = rmap_add(vcpu, sptep, gfn);
2348 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2349 				rmap_recycle(vcpu, sptep, gfn);
2350 		}
2351 	}
2352 	kvm_release_pfn_clean(pfn);
2353 }
2354 
nonpaging_new_cr3(struct kvm_vcpu * vcpu)2355 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2356 {
2357 }
2358 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2359 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2360 				     bool no_dirty_log)
2361 {
2362 	struct kvm_memory_slot *slot;
2363 	unsigned long hva;
2364 
2365 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2366 	if (!slot) {
2367 		get_page(fault_page);
2368 		return page_to_pfn(fault_page);
2369 	}
2370 
2371 	hva = gfn_to_hva_memslot(slot, gfn);
2372 
2373 	return hva_to_pfn_atomic(vcpu->kvm, hva);
2374 }
2375 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2376 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2377 				    struct kvm_mmu_page *sp,
2378 				    u64 *start, u64 *end)
2379 {
2380 	struct page *pages[PTE_PREFETCH_NUM];
2381 	unsigned access = sp->role.access;
2382 	int i, ret;
2383 	gfn_t gfn;
2384 
2385 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2386 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2387 		return -1;
2388 
2389 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2390 	if (ret <= 0)
2391 		return -1;
2392 
2393 	for (i = 0; i < ret; i++, gfn++, start++)
2394 		mmu_set_spte(vcpu, start, ACC_ALL,
2395 			     access, 0, 0, NULL,
2396 			     sp->role.level, gfn,
2397 			     page_to_pfn(pages[i]), true, true);
2398 
2399 	return 0;
2400 }
2401 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2402 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2403 				  struct kvm_mmu_page *sp, u64 *sptep)
2404 {
2405 	u64 *spte, *start = NULL;
2406 	int i;
2407 
2408 	WARN_ON(!sp->role.direct);
2409 
2410 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2411 	spte = sp->spt + i;
2412 
2413 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2414 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2415 			if (!start)
2416 				continue;
2417 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2418 				break;
2419 			start = NULL;
2420 		} else if (!start)
2421 			start = spte;
2422 	}
2423 }
2424 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2425 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2426 {
2427 	struct kvm_mmu_page *sp;
2428 
2429 	/*
2430 	 * Since it's no accessed bit on EPT, it's no way to
2431 	 * distinguish between actually accessed translations
2432 	 * and prefetched, so disable pte prefetch if EPT is
2433 	 * enabled.
2434 	 */
2435 	if (!shadow_accessed_mask)
2436 		return;
2437 
2438 	sp = page_header(__pa(sptep));
2439 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2440 		return;
2441 
2442 	__direct_pte_prefetch(vcpu, sp, sptep);
2443 }
2444 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2445 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2446 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2447 			bool prefault)
2448 {
2449 	struct kvm_shadow_walk_iterator iterator;
2450 	struct kvm_mmu_page *sp;
2451 	int emulate = 0;
2452 	gfn_t pseudo_gfn;
2453 
2454 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2455 		return 0;
2456 
2457 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2458 		if (iterator.level == level) {
2459 			unsigned pte_access = ACC_ALL;
2460 
2461 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2462 				     0, write, &emulate,
2463 				     level, gfn, pfn, prefault, map_writable);
2464 			direct_pte_prefetch(vcpu, iterator.sptep);
2465 			++vcpu->stat.pf_fixed;
2466 			break;
2467 		}
2468 
2469 		if (!is_shadow_present_pte(*iterator.sptep)) {
2470 			u64 base_addr = iterator.addr;
2471 
2472 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2473 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2474 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2475 					      iterator.level - 1,
2476 					      1, ACC_ALL, iterator.sptep);
2477 			if (!sp) {
2478 				pgprintk("nonpaging_map: ENOMEM\n");
2479 				kvm_release_pfn_clean(pfn);
2480 				return -ENOMEM;
2481 			}
2482 
2483 			mmu_spte_set(iterator.sptep,
2484 				     __pa(sp->spt)
2485 				     | PT_PRESENT_MASK | PT_WRITABLE_MASK
2486 				     | shadow_user_mask | shadow_x_mask
2487 				     | shadow_accessed_mask);
2488 		}
2489 	}
2490 	return emulate;
2491 }
2492 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2493 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2494 {
2495 	siginfo_t info;
2496 
2497 	info.si_signo	= SIGBUS;
2498 	info.si_errno	= 0;
2499 	info.si_code	= BUS_MCEERR_AR;
2500 	info.si_addr	= (void __user *)address;
2501 	info.si_addr_lsb = PAGE_SHIFT;
2502 
2503 	send_sig_info(SIGBUS, &info, tsk);
2504 }
2505 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2506 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2507 {
2508 	kvm_release_pfn_clean(pfn);
2509 	if (is_hwpoison_pfn(pfn)) {
2510 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2511 		return 0;
2512 	}
2513 
2514 	return -EFAULT;
2515 }
2516 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2517 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2518 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2519 {
2520 	pfn_t pfn = *pfnp;
2521 	gfn_t gfn = *gfnp;
2522 	int level = *levelp;
2523 
2524 	/*
2525 	 * Check if it's a transparent hugepage. If this would be an
2526 	 * hugetlbfs page, level wouldn't be set to
2527 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2528 	 * here.
2529 	 */
2530 	if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2531 	    level == PT_PAGE_TABLE_LEVEL &&
2532 	    PageTransCompound(pfn_to_page(pfn)) &&
2533 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2534 		unsigned long mask;
2535 		/*
2536 		 * mmu_notifier_retry was successful and we hold the
2537 		 * mmu_lock here, so the pmd can't become splitting
2538 		 * from under us, and in turn
2539 		 * __split_huge_page_refcount() can't run from under
2540 		 * us and we can safely transfer the refcount from
2541 		 * PG_tail to PG_head as we switch the pfn to tail to
2542 		 * head.
2543 		 */
2544 		*levelp = level = PT_DIRECTORY_LEVEL;
2545 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2546 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2547 		if (pfn & mask) {
2548 			gfn &= ~mask;
2549 			*gfnp = gfn;
2550 			kvm_release_pfn_clean(pfn);
2551 			pfn &= ~mask;
2552 			if (!get_page_unless_zero(pfn_to_page(pfn)))
2553 				BUG();
2554 			*pfnp = pfn;
2555 		}
2556 	}
2557 }
2558 
mmu_invalid_pfn(pfn_t pfn)2559 static bool mmu_invalid_pfn(pfn_t pfn)
2560 {
2561 	return unlikely(is_invalid_pfn(pfn));
2562 }
2563 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2564 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2565 				pfn_t pfn, unsigned access, int *ret_val)
2566 {
2567 	bool ret = true;
2568 
2569 	/* The pfn is invalid, report the error! */
2570 	if (unlikely(is_invalid_pfn(pfn))) {
2571 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2572 		goto exit;
2573 	}
2574 
2575 	if (unlikely(is_noslot_pfn(pfn)))
2576 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2577 
2578 	ret = false;
2579 exit:
2580 	return ret;
2581 }
2582 
2583 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2584 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2585 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,int write,gfn_t gfn,bool prefault)2586 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2587 			 bool prefault)
2588 {
2589 	int r;
2590 	int level;
2591 	int force_pt_level;
2592 	pfn_t pfn;
2593 	unsigned long mmu_seq;
2594 	bool map_writable;
2595 
2596 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2597 	if (likely(!force_pt_level)) {
2598 		level = mapping_level(vcpu, gfn);
2599 		/*
2600 		 * This path builds a PAE pagetable - so we can map
2601 		 * 2mb pages at maximum. Therefore check if the level
2602 		 * is larger than that.
2603 		 */
2604 		if (level > PT_DIRECTORY_LEVEL)
2605 			level = PT_DIRECTORY_LEVEL;
2606 
2607 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2608 	} else
2609 		level = PT_PAGE_TABLE_LEVEL;
2610 
2611 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2612 	smp_rmb();
2613 
2614 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2615 		return 0;
2616 
2617 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2618 		return r;
2619 
2620 	spin_lock(&vcpu->kvm->mmu_lock);
2621 	if (mmu_notifier_retry(vcpu, mmu_seq))
2622 		goto out_unlock;
2623 	kvm_mmu_free_some_pages(vcpu);
2624 	if (likely(!force_pt_level))
2625 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2626 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2627 			 prefault);
2628 	spin_unlock(&vcpu->kvm->mmu_lock);
2629 
2630 
2631 	return r;
2632 
2633 out_unlock:
2634 	spin_unlock(&vcpu->kvm->mmu_lock);
2635 	kvm_release_pfn_clean(pfn);
2636 	return 0;
2637 }
2638 
2639 
mmu_free_roots(struct kvm_vcpu * vcpu)2640 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2641 {
2642 	int i;
2643 	struct kvm_mmu_page *sp;
2644 	LIST_HEAD(invalid_list);
2645 
2646 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2647 		return;
2648 	spin_lock(&vcpu->kvm->mmu_lock);
2649 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2650 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2651 	     vcpu->arch.mmu.direct_map)) {
2652 		hpa_t root = vcpu->arch.mmu.root_hpa;
2653 
2654 		sp = page_header(root);
2655 		--sp->root_count;
2656 		if (!sp->root_count && sp->role.invalid) {
2657 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2658 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2659 		}
2660 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2661 		spin_unlock(&vcpu->kvm->mmu_lock);
2662 		return;
2663 	}
2664 	for (i = 0; i < 4; ++i) {
2665 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2666 
2667 		if (root) {
2668 			root &= PT64_BASE_ADDR_MASK;
2669 			sp = page_header(root);
2670 			--sp->root_count;
2671 			if (!sp->root_count && sp->role.invalid)
2672 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2673 							 &invalid_list);
2674 		}
2675 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2676 	}
2677 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2678 	spin_unlock(&vcpu->kvm->mmu_lock);
2679 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2680 }
2681 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)2682 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2683 {
2684 	int ret = 0;
2685 
2686 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2687 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2688 		ret = 1;
2689 	}
2690 
2691 	return ret;
2692 }
2693 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)2694 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2695 {
2696 	struct kvm_mmu_page *sp;
2697 	unsigned i;
2698 
2699 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2700 		spin_lock(&vcpu->kvm->mmu_lock);
2701 		kvm_mmu_free_some_pages(vcpu);
2702 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2703 				      1, ACC_ALL, NULL);
2704 		++sp->root_count;
2705 		spin_unlock(&vcpu->kvm->mmu_lock);
2706 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2707 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2708 		for (i = 0; i < 4; ++i) {
2709 			hpa_t root = vcpu->arch.mmu.pae_root[i];
2710 
2711 			ASSERT(!VALID_PAGE(root));
2712 			spin_lock(&vcpu->kvm->mmu_lock);
2713 			kvm_mmu_free_some_pages(vcpu);
2714 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2715 					      i << 30,
2716 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
2717 					      NULL);
2718 			root = __pa(sp->spt);
2719 			++sp->root_count;
2720 			spin_unlock(&vcpu->kvm->mmu_lock);
2721 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2722 		}
2723 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2724 	} else
2725 		BUG();
2726 
2727 	return 0;
2728 }
2729 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)2730 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2731 {
2732 	struct kvm_mmu_page *sp;
2733 	u64 pdptr, pm_mask;
2734 	gfn_t root_gfn;
2735 	int i;
2736 
2737 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2738 
2739 	if (mmu_check_root(vcpu, root_gfn))
2740 		return 1;
2741 
2742 	/*
2743 	 * Do we shadow a long mode page table? If so we need to
2744 	 * write-protect the guests page table root.
2745 	 */
2746 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2747 		hpa_t root = vcpu->arch.mmu.root_hpa;
2748 
2749 		ASSERT(!VALID_PAGE(root));
2750 
2751 		spin_lock(&vcpu->kvm->mmu_lock);
2752 		kvm_mmu_free_some_pages(vcpu);
2753 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2754 				      0, ACC_ALL, NULL);
2755 		root = __pa(sp->spt);
2756 		++sp->root_count;
2757 		spin_unlock(&vcpu->kvm->mmu_lock);
2758 		vcpu->arch.mmu.root_hpa = root;
2759 		return 0;
2760 	}
2761 
2762 	/*
2763 	 * We shadow a 32 bit page table. This may be a legacy 2-level
2764 	 * or a PAE 3-level page table. In either case we need to be aware that
2765 	 * the shadow page table may be a PAE or a long mode page table.
2766 	 */
2767 	pm_mask = PT_PRESENT_MASK;
2768 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2769 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2770 
2771 	for (i = 0; i < 4; ++i) {
2772 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2773 
2774 		ASSERT(!VALID_PAGE(root));
2775 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2776 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2777 			if (!is_present_gpte(pdptr)) {
2778 				vcpu->arch.mmu.pae_root[i] = 0;
2779 				continue;
2780 			}
2781 			root_gfn = pdptr >> PAGE_SHIFT;
2782 			if (mmu_check_root(vcpu, root_gfn))
2783 				return 1;
2784 		}
2785 		spin_lock(&vcpu->kvm->mmu_lock);
2786 		kvm_mmu_free_some_pages(vcpu);
2787 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2788 				      PT32_ROOT_LEVEL, 0,
2789 				      ACC_ALL, NULL);
2790 		root = __pa(sp->spt);
2791 		++sp->root_count;
2792 		spin_unlock(&vcpu->kvm->mmu_lock);
2793 
2794 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2795 	}
2796 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2797 
2798 	/*
2799 	 * If we shadow a 32 bit page table with a long mode page
2800 	 * table we enter this path.
2801 	 */
2802 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2803 		if (vcpu->arch.mmu.lm_root == NULL) {
2804 			/*
2805 			 * The additional page necessary for this is only
2806 			 * allocated on demand.
2807 			 */
2808 
2809 			u64 *lm_root;
2810 
2811 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2812 			if (lm_root == NULL)
2813 				return 1;
2814 
2815 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2816 
2817 			vcpu->arch.mmu.lm_root = lm_root;
2818 		}
2819 
2820 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2821 	}
2822 
2823 	return 0;
2824 }
2825 
mmu_alloc_roots(struct kvm_vcpu * vcpu)2826 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2827 {
2828 	if (vcpu->arch.mmu.direct_map)
2829 		return mmu_alloc_direct_roots(vcpu);
2830 	else
2831 		return mmu_alloc_shadow_roots(vcpu);
2832 }
2833 
mmu_sync_roots(struct kvm_vcpu * vcpu)2834 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2835 {
2836 	int i;
2837 	struct kvm_mmu_page *sp;
2838 
2839 	if (vcpu->arch.mmu.direct_map)
2840 		return;
2841 
2842 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2843 		return;
2844 
2845 	vcpu_clear_mmio_info(vcpu, ~0ul);
2846 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2847 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2848 		hpa_t root = vcpu->arch.mmu.root_hpa;
2849 		sp = page_header(root);
2850 		mmu_sync_children(vcpu, sp);
2851 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2852 		return;
2853 	}
2854 	for (i = 0; i < 4; ++i) {
2855 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2856 
2857 		if (root && VALID_PAGE(root)) {
2858 			root &= PT64_BASE_ADDR_MASK;
2859 			sp = page_header(root);
2860 			mmu_sync_children(vcpu, sp);
2861 		}
2862 	}
2863 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2864 }
2865 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)2866 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2867 {
2868 	spin_lock(&vcpu->kvm->mmu_lock);
2869 	mmu_sync_roots(vcpu);
2870 	spin_unlock(&vcpu->kvm->mmu_lock);
2871 }
2872 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)2873 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2874 				  u32 access, struct x86_exception *exception)
2875 {
2876 	if (exception)
2877 		exception->error_code = 0;
2878 	return vaddr;
2879 }
2880 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)2881 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2882 					 u32 access,
2883 					 struct x86_exception *exception)
2884 {
2885 	if (exception)
2886 		exception->error_code = 0;
2887 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2888 }
2889 
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)2890 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2891 {
2892 	if (direct)
2893 		return vcpu_match_mmio_gpa(vcpu, addr);
2894 
2895 	return vcpu_match_mmio_gva(vcpu, addr);
2896 }
2897 
2898 
2899 /*
2900  * On direct hosts, the last spte is only allows two states
2901  * for mmio page fault:
2902  *   - It is the mmio spte
2903  *   - It is zapped or it is being zapped.
2904  *
2905  * This function completely checks the spte when the last spte
2906  * is not the mmio spte.
2907  */
check_direct_spte_mmio_pf(u64 spte)2908 static bool check_direct_spte_mmio_pf(u64 spte)
2909 {
2910 	return __check_direct_spte_mmio_pf(spte);
2911 }
2912 
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr)2913 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2914 {
2915 	struct kvm_shadow_walk_iterator iterator;
2916 	u64 spte = 0ull;
2917 
2918 	walk_shadow_page_lockless_begin(vcpu);
2919 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2920 		if (!is_shadow_present_pte(spte))
2921 			break;
2922 	walk_shadow_page_lockless_end(vcpu);
2923 
2924 	return spte;
2925 }
2926 
2927 /*
2928  * If it is a real mmio page fault, return 1 and emulat the instruction
2929  * directly, return 0 to let CPU fault again on the address, -1 is
2930  * returned if bug is detected.
2931  */
handle_mmio_page_fault_common(struct kvm_vcpu * vcpu,u64 addr,bool direct)2932 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2933 {
2934 	u64 spte;
2935 
2936 	if (quickly_check_mmio_pf(vcpu, addr, direct))
2937 		return 1;
2938 
2939 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2940 
2941 	if (is_mmio_spte(spte)) {
2942 		gfn_t gfn = get_mmio_spte_gfn(spte);
2943 		unsigned access = get_mmio_spte_access(spte);
2944 
2945 		if (direct)
2946 			addr = 0;
2947 
2948 		trace_handle_mmio_page_fault(addr, gfn, access);
2949 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2950 		return 1;
2951 	}
2952 
2953 	/*
2954 	 * It's ok if the gva is remapped by other cpus on shadow guest,
2955 	 * it's a BUG if the gfn is not a mmio page.
2956 	 */
2957 	if (direct && !check_direct_spte_mmio_pf(spte))
2958 		return -1;
2959 
2960 	/*
2961 	 * If the page table is zapped by other cpus, let CPU fault again on
2962 	 * the address.
2963 	 */
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2967 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 error_code,bool direct)2968 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2969 				  u32 error_code, bool direct)
2970 {
2971 	int ret;
2972 
2973 	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2974 	WARN_ON(ret < 0);
2975 	return ret;
2976 }
2977 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)2978 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2979 				u32 error_code, bool prefault)
2980 {
2981 	gfn_t gfn;
2982 	int r;
2983 
2984 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2985 
2986 	if (unlikely(error_code & PFERR_RSVD_MASK))
2987 		return handle_mmio_page_fault(vcpu, gva, error_code, true);
2988 
2989 	r = mmu_topup_memory_caches(vcpu);
2990 	if (r)
2991 		return r;
2992 
2993 	ASSERT(vcpu);
2994 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2995 
2996 	gfn = gva >> PAGE_SHIFT;
2997 
2998 	return nonpaging_map(vcpu, gva & PAGE_MASK,
2999 			     error_code & PFERR_WRITE_MASK, gfn, prefault);
3000 }
3001 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3002 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3003 {
3004 	struct kvm_arch_async_pf arch;
3005 
3006 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3007 	arch.gfn = gfn;
3008 	arch.direct_map = vcpu->arch.mmu.direct_map;
3009 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3010 
3011 	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3012 }
3013 
can_do_async_pf(struct kvm_vcpu * vcpu)3014 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3015 {
3016 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3017 		     kvm_event_needs_reinjection(vcpu)))
3018 		return false;
3019 
3020 	return kvm_x86_ops->interrupt_allowed(vcpu);
3021 }
3022 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3023 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3024 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3025 {
3026 	bool async;
3027 
3028 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3029 
3030 	if (!async)
3031 		return false; /* *pfn has correct page already */
3032 
3033 	put_page(pfn_to_page(*pfn));
3034 
3035 	if (!prefault && can_do_async_pf(vcpu)) {
3036 		trace_kvm_try_async_get_page(gva, gfn);
3037 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3038 			trace_kvm_async_pf_doublefault(gva, gfn);
3039 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3040 			return true;
3041 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3042 			return true;
3043 	}
3044 
3045 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3046 
3047 	return false;
3048 }
3049 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3050 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3051 			  bool prefault)
3052 {
3053 	pfn_t pfn;
3054 	int r;
3055 	int level;
3056 	int force_pt_level;
3057 	gfn_t gfn = gpa >> PAGE_SHIFT;
3058 	unsigned long mmu_seq;
3059 	int write = error_code & PFERR_WRITE_MASK;
3060 	bool map_writable;
3061 
3062 	ASSERT(vcpu);
3063 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3064 
3065 	if (unlikely(error_code & PFERR_RSVD_MASK))
3066 		return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3067 
3068 	r = mmu_topup_memory_caches(vcpu);
3069 	if (r)
3070 		return r;
3071 
3072 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3073 	if (likely(!force_pt_level)) {
3074 		level = mapping_level(vcpu, gfn);
3075 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3076 	} else
3077 		level = PT_PAGE_TABLE_LEVEL;
3078 
3079 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3080 	smp_rmb();
3081 
3082 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3083 		return 0;
3084 
3085 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3086 		return r;
3087 
3088 	spin_lock(&vcpu->kvm->mmu_lock);
3089 	if (mmu_notifier_retry(vcpu, mmu_seq))
3090 		goto out_unlock;
3091 	kvm_mmu_free_some_pages(vcpu);
3092 	if (likely(!force_pt_level))
3093 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3094 	r = __direct_map(vcpu, gpa, write, map_writable,
3095 			 level, gfn, pfn, prefault);
3096 	spin_unlock(&vcpu->kvm->mmu_lock);
3097 
3098 	return r;
3099 
3100 out_unlock:
3101 	spin_unlock(&vcpu->kvm->mmu_lock);
3102 	kvm_release_pfn_clean(pfn);
3103 	return 0;
3104 }
3105 
nonpaging_free(struct kvm_vcpu * vcpu)3106 static void nonpaging_free(struct kvm_vcpu *vcpu)
3107 {
3108 	mmu_free_roots(vcpu);
3109 }
3110 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3111 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3112 				  struct kvm_mmu *context)
3113 {
3114 	context->new_cr3 = nonpaging_new_cr3;
3115 	context->page_fault = nonpaging_page_fault;
3116 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3117 	context->free = nonpaging_free;
3118 	context->sync_page = nonpaging_sync_page;
3119 	context->invlpg = nonpaging_invlpg;
3120 	context->update_pte = nonpaging_update_pte;
3121 	context->root_level = 0;
3122 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3123 	context->root_hpa = INVALID_PAGE;
3124 	context->direct_map = true;
3125 	context->nx = false;
3126 	return 0;
3127 }
3128 
kvm_mmu_flush_tlb(struct kvm_vcpu * vcpu)3129 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3130 {
3131 	++vcpu->stat.tlb_flush;
3132 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3133 }
3134 
paging_new_cr3(struct kvm_vcpu * vcpu)3135 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3136 {
3137 	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3138 	mmu_free_roots(vcpu);
3139 }
3140 
get_cr3(struct kvm_vcpu * vcpu)3141 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3142 {
3143 	return kvm_read_cr3(vcpu);
3144 }
3145 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3146 static void inject_page_fault(struct kvm_vcpu *vcpu,
3147 			      struct x86_exception *fault)
3148 {
3149 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3150 }
3151 
paging_free(struct kvm_vcpu * vcpu)3152 static void paging_free(struct kvm_vcpu *vcpu)
3153 {
3154 	nonpaging_free(vcpu);
3155 }
3156 
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)3157 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3158 {
3159 	int bit7;
3160 
3161 	bit7 = (gpte >> 7) & 1;
3162 	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3163 }
3164 
sync_mmio_spte(u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3165 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3166 			   int *nr_present)
3167 {
3168 	if (unlikely(is_mmio_spte(*sptep))) {
3169 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3170 			mmu_spte_clear_no_track(sptep);
3171 			return true;
3172 		}
3173 
3174 		(*nr_present)++;
3175 		mark_mmio_spte(sptep, gfn, access);
3176 		return true;
3177 	}
3178 
3179 	return false;
3180 }
3181 
3182 #define PTTYPE 64
3183 #include "paging_tmpl.h"
3184 #undef PTTYPE
3185 
3186 #define PTTYPE 32
3187 #include "paging_tmpl.h"
3188 #undef PTTYPE
3189 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3190 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3191 				  struct kvm_mmu *context)
3192 {
3193 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3194 	u64 exb_bit_rsvd = 0;
3195 
3196 	if (!context->nx)
3197 		exb_bit_rsvd = rsvd_bits(63, 63);
3198 	switch (context->root_level) {
3199 	case PT32_ROOT_LEVEL:
3200 		/* no rsvd bits for 2 level 4K page table entries */
3201 		context->rsvd_bits_mask[0][1] = 0;
3202 		context->rsvd_bits_mask[0][0] = 0;
3203 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3204 
3205 		if (!is_pse(vcpu)) {
3206 			context->rsvd_bits_mask[1][1] = 0;
3207 			break;
3208 		}
3209 
3210 		if (is_cpuid_PSE36())
3211 			/* 36bits PSE 4MB page */
3212 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3213 		else
3214 			/* 32 bits PSE 4MB page */
3215 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3216 		break;
3217 	case PT32E_ROOT_LEVEL:
3218 		context->rsvd_bits_mask[0][2] =
3219 			rsvd_bits(maxphyaddr, 63) |
3220 			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3221 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3222 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3223 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3224 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3225 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3226 			rsvd_bits(maxphyaddr, 62) |
3227 			rsvd_bits(13, 20);		/* large page */
3228 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3229 		break;
3230 	case PT64_ROOT_LEVEL:
3231 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3232 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3233 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3234 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3235 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3236 			rsvd_bits(maxphyaddr, 51);
3237 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3238 			rsvd_bits(maxphyaddr, 51);
3239 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3240 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3241 			rsvd_bits(maxphyaddr, 51) |
3242 			rsvd_bits(13, 29);
3243 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3244 			rsvd_bits(maxphyaddr, 51) |
3245 			rsvd_bits(13, 20);		/* large page */
3246 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3247 		break;
3248 	}
3249 }
3250 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3251 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3252 					struct kvm_mmu *context,
3253 					int level)
3254 {
3255 	context->nx = is_nx(vcpu);
3256 	context->root_level = level;
3257 
3258 	reset_rsvds_bits_mask(vcpu, context);
3259 
3260 	ASSERT(is_pae(vcpu));
3261 	context->new_cr3 = paging_new_cr3;
3262 	context->page_fault = paging64_page_fault;
3263 	context->gva_to_gpa = paging64_gva_to_gpa;
3264 	context->sync_page = paging64_sync_page;
3265 	context->invlpg = paging64_invlpg;
3266 	context->update_pte = paging64_update_pte;
3267 	context->free = paging_free;
3268 	context->shadow_root_level = level;
3269 	context->root_hpa = INVALID_PAGE;
3270 	context->direct_map = false;
3271 	return 0;
3272 }
3273 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3274 static int paging64_init_context(struct kvm_vcpu *vcpu,
3275 				 struct kvm_mmu *context)
3276 {
3277 	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3278 }
3279 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3280 static int paging32_init_context(struct kvm_vcpu *vcpu,
3281 				 struct kvm_mmu *context)
3282 {
3283 	context->nx = false;
3284 	context->root_level = PT32_ROOT_LEVEL;
3285 
3286 	reset_rsvds_bits_mask(vcpu, context);
3287 
3288 	context->new_cr3 = paging_new_cr3;
3289 	context->page_fault = paging32_page_fault;
3290 	context->gva_to_gpa = paging32_gva_to_gpa;
3291 	context->free = paging_free;
3292 	context->sync_page = paging32_sync_page;
3293 	context->invlpg = paging32_invlpg;
3294 	context->update_pte = paging32_update_pte;
3295 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3296 	context->root_hpa = INVALID_PAGE;
3297 	context->direct_map = false;
3298 	return 0;
3299 }
3300 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3301 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3302 				  struct kvm_mmu *context)
3303 {
3304 	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3305 }
3306 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3307 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3308 {
3309 	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3310 
3311 	context->base_role.word = 0;
3312 	context->new_cr3 = nonpaging_new_cr3;
3313 	context->page_fault = tdp_page_fault;
3314 	context->free = nonpaging_free;
3315 	context->sync_page = nonpaging_sync_page;
3316 	context->invlpg = nonpaging_invlpg;
3317 	context->update_pte = nonpaging_update_pte;
3318 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3319 	context->root_hpa = INVALID_PAGE;
3320 	context->direct_map = true;
3321 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3322 	context->get_cr3 = get_cr3;
3323 	context->get_pdptr = kvm_pdptr_read;
3324 	context->inject_page_fault = kvm_inject_page_fault;
3325 
3326 	if (!is_paging(vcpu)) {
3327 		context->nx = false;
3328 		context->gva_to_gpa = nonpaging_gva_to_gpa;
3329 		context->root_level = 0;
3330 	} else if (is_long_mode(vcpu)) {
3331 		context->nx = is_nx(vcpu);
3332 		context->root_level = PT64_ROOT_LEVEL;
3333 		reset_rsvds_bits_mask(vcpu, context);
3334 		context->gva_to_gpa = paging64_gva_to_gpa;
3335 	} else if (is_pae(vcpu)) {
3336 		context->nx = is_nx(vcpu);
3337 		context->root_level = PT32E_ROOT_LEVEL;
3338 		reset_rsvds_bits_mask(vcpu, context);
3339 		context->gva_to_gpa = paging64_gva_to_gpa;
3340 	} else {
3341 		context->nx = false;
3342 		context->root_level = PT32_ROOT_LEVEL;
3343 		reset_rsvds_bits_mask(vcpu, context);
3344 		context->gva_to_gpa = paging32_gva_to_gpa;
3345 	}
3346 
3347 	return 0;
3348 }
3349 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3350 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3351 {
3352 	int r;
3353 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3354 	ASSERT(vcpu);
3355 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3356 
3357 	if (!is_paging(vcpu))
3358 		r = nonpaging_init_context(vcpu, context);
3359 	else if (is_long_mode(vcpu))
3360 		r = paging64_init_context(vcpu, context);
3361 	else if (is_pae(vcpu))
3362 		r = paging32E_init_context(vcpu, context);
3363 	else
3364 		r = paging32_init_context(vcpu, context);
3365 
3366 	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3367 	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3368 	vcpu->arch.mmu.base_role.smep_andnot_wp
3369 		= smep && !is_write_protection(vcpu);
3370 
3371 	return r;
3372 }
3373 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3374 
init_kvm_softmmu(struct kvm_vcpu * vcpu)3375 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3376 {
3377 	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3378 
3379 	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3380 	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3381 	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3382 	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3383 
3384 	return r;
3385 }
3386 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)3387 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3388 {
3389 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3390 
3391 	g_context->get_cr3           = get_cr3;
3392 	g_context->get_pdptr         = kvm_pdptr_read;
3393 	g_context->inject_page_fault = kvm_inject_page_fault;
3394 
3395 	/*
3396 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3397 	 * translation of l2_gpa to l1_gpa addresses is done using the
3398 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3399 	 * functions between mmu and nested_mmu are swapped.
3400 	 */
3401 	if (!is_paging(vcpu)) {
3402 		g_context->nx = false;
3403 		g_context->root_level = 0;
3404 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3405 	} else if (is_long_mode(vcpu)) {
3406 		g_context->nx = is_nx(vcpu);
3407 		g_context->root_level = PT64_ROOT_LEVEL;
3408 		reset_rsvds_bits_mask(vcpu, g_context);
3409 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3410 	} else if (is_pae(vcpu)) {
3411 		g_context->nx = is_nx(vcpu);
3412 		g_context->root_level = PT32E_ROOT_LEVEL;
3413 		reset_rsvds_bits_mask(vcpu, g_context);
3414 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3415 	} else {
3416 		g_context->nx = false;
3417 		g_context->root_level = PT32_ROOT_LEVEL;
3418 		reset_rsvds_bits_mask(vcpu, g_context);
3419 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3420 	}
3421 
3422 	return 0;
3423 }
3424 
init_kvm_mmu(struct kvm_vcpu * vcpu)3425 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3426 {
3427 	if (mmu_is_nested(vcpu))
3428 		return init_kvm_nested_mmu(vcpu);
3429 	else if (tdp_enabled)
3430 		return init_kvm_tdp_mmu(vcpu);
3431 	else
3432 		return init_kvm_softmmu(vcpu);
3433 }
3434 
destroy_kvm_mmu(struct kvm_vcpu * vcpu)3435 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3436 {
3437 	ASSERT(vcpu);
3438 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3439 		/* mmu.free() should set root_hpa = INVALID_PAGE */
3440 		vcpu->arch.mmu.free(vcpu);
3441 }
3442 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)3443 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3444 {
3445 	destroy_kvm_mmu(vcpu);
3446 	return init_kvm_mmu(vcpu);
3447 }
3448 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3449 
kvm_mmu_load(struct kvm_vcpu * vcpu)3450 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3451 {
3452 	int r;
3453 
3454 	r = mmu_topup_memory_caches(vcpu);
3455 	if (r)
3456 		goto out;
3457 	r = mmu_alloc_roots(vcpu);
3458 	spin_lock(&vcpu->kvm->mmu_lock);
3459 	mmu_sync_roots(vcpu);
3460 	spin_unlock(&vcpu->kvm->mmu_lock);
3461 	if (r)
3462 		goto out;
3463 	/* set_cr3() should ensure TLB has been flushed */
3464 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3465 out:
3466 	return r;
3467 }
3468 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3469 
kvm_mmu_unload(struct kvm_vcpu * vcpu)3470 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3471 {
3472 	mmu_free_roots(vcpu);
3473 }
3474 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3475 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)3476 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3477 				  struct kvm_mmu_page *sp, u64 *spte,
3478 				  const void *new)
3479 {
3480 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3481 		++vcpu->kvm->stat.mmu_pde_zapped;
3482 		return;
3483         }
3484 
3485 	++vcpu->kvm->stat.mmu_pte_updated;
3486 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3487 }
3488 
need_remote_flush(u64 old,u64 new)3489 static bool need_remote_flush(u64 old, u64 new)
3490 {
3491 	if (!is_shadow_present_pte(old))
3492 		return false;
3493 	if (!is_shadow_present_pte(new))
3494 		return true;
3495 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
3496 		return true;
3497 	old ^= PT64_NX_MASK;
3498 	new ^= PT64_NX_MASK;
3499 	return (old & ~new & PT64_PERM_MASK) != 0;
3500 }
3501 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)3502 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3503 				    bool remote_flush, bool local_flush)
3504 {
3505 	if (zap_page)
3506 		return;
3507 
3508 	if (remote_flush)
3509 		kvm_flush_remote_tlbs(vcpu->kvm);
3510 	else if (local_flush)
3511 		kvm_mmu_flush_tlb(vcpu);
3512 }
3513 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)3514 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3515 				    const u8 *new, int *bytes)
3516 {
3517 	u64 gentry;
3518 	int r;
3519 
3520 	/*
3521 	 * Assume that the pte write on a page table of the same type
3522 	 * as the current vcpu paging mode since we update the sptes only
3523 	 * when they have the same mode.
3524 	 */
3525 	if (is_pae(vcpu) && *bytes == 4) {
3526 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3527 		*gpa &= ~(gpa_t)7;
3528 		*bytes = 8;
3529 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3530 		if (r)
3531 			gentry = 0;
3532 		new = (const u8 *)&gentry;
3533 	}
3534 
3535 	switch (*bytes) {
3536 	case 4:
3537 		gentry = *(const u32 *)new;
3538 		break;
3539 	case 8:
3540 		gentry = *(const u64 *)new;
3541 		break;
3542 	default:
3543 		gentry = 0;
3544 		break;
3545 	}
3546 
3547 	return gentry;
3548 }
3549 
3550 /*
3551  * If we're seeing too many writes to a page, it may no longer be a page table,
3552  * or we may be forking, in which case it is better to unmap the page.
3553  */
detect_write_flooding(struct kvm_mmu_page * sp)3554 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3555 {
3556 	/*
3557 	 * Skip write-flooding detected for the sp whose level is 1, because
3558 	 * it can become unsync, then the guest page is not write-protected.
3559 	 */
3560 	if (sp->role.level == 1)
3561 		return false;
3562 
3563 	return ++sp->write_flooding_count >= 3;
3564 }
3565 
3566 /*
3567  * Misaligned accesses are too much trouble to fix up; also, they usually
3568  * indicate a page is not used as a page table.
3569  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)3570 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3571 				    int bytes)
3572 {
3573 	unsigned offset, pte_size, misaligned;
3574 
3575 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3576 		 gpa, bytes, sp->role.word);
3577 
3578 	offset = offset_in_page(gpa);
3579 	pte_size = sp->role.cr4_pae ? 8 : 4;
3580 
3581 	/*
3582 	 * Sometimes, the OS only writes the last one bytes to update status
3583 	 * bits, for example, in linux, andb instruction is used in clear_bit().
3584 	 */
3585 	if (!(offset & (pte_size - 1)) && bytes == 1)
3586 		return false;
3587 
3588 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3589 	misaligned |= bytes < 4;
3590 
3591 	return misaligned;
3592 }
3593 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)3594 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3595 {
3596 	unsigned page_offset, quadrant;
3597 	u64 *spte;
3598 	int level;
3599 
3600 	page_offset = offset_in_page(gpa);
3601 	level = sp->role.level;
3602 	*nspte = 1;
3603 	if (!sp->role.cr4_pae) {
3604 		page_offset <<= 1;	/* 32->64 */
3605 		/*
3606 		 * A 32-bit pde maps 4MB while the shadow pdes map
3607 		 * only 2MB.  So we need to double the offset again
3608 		 * and zap two pdes instead of one.
3609 		 */
3610 		if (level == PT32_ROOT_LEVEL) {
3611 			page_offset &= ~7; /* kill rounding error */
3612 			page_offset <<= 1;
3613 			*nspte = 2;
3614 		}
3615 		quadrant = page_offset >> PAGE_SHIFT;
3616 		page_offset &= ~PAGE_MASK;
3617 		if (quadrant != sp->role.quadrant)
3618 			return NULL;
3619 	}
3620 
3621 	spte = &sp->spt[page_offset / sizeof(*spte)];
3622 	return spte;
3623 }
3624 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)3625 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3626 		       const u8 *new, int bytes)
3627 {
3628 	gfn_t gfn = gpa >> PAGE_SHIFT;
3629 	union kvm_mmu_page_role mask = { .word = 0 };
3630 	struct kvm_mmu_page *sp;
3631 	struct hlist_node *node;
3632 	LIST_HEAD(invalid_list);
3633 	u64 entry, gentry, *spte;
3634 	int npte;
3635 	bool remote_flush, local_flush, zap_page;
3636 
3637 	/*
3638 	 * If we don't have indirect shadow pages, it means no page is
3639 	 * write-protected, so we can exit simply.
3640 	 */
3641 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3642 		return;
3643 
3644 	zap_page = remote_flush = local_flush = false;
3645 
3646 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3647 
3648 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3649 
3650 	/*
3651 	 * No need to care whether allocation memory is successful
3652 	 * or not since pte prefetch is skiped if it does not have
3653 	 * enough objects in the cache.
3654 	 */
3655 	mmu_topup_memory_caches(vcpu);
3656 
3657 	spin_lock(&vcpu->kvm->mmu_lock);
3658 	++vcpu->kvm->stat.mmu_pte_write;
3659 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3660 
3661 	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3662 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3663 		if (detect_write_misaligned(sp, gpa, bytes) ||
3664 		      detect_write_flooding(sp)) {
3665 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3666 						     &invalid_list);
3667 			++vcpu->kvm->stat.mmu_flooded;
3668 			continue;
3669 		}
3670 
3671 		spte = get_written_sptes(sp, gpa, &npte);
3672 		if (!spte)
3673 			continue;
3674 
3675 		local_flush = true;
3676 		while (npte--) {
3677 			entry = *spte;
3678 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
3679 			if (gentry &&
3680 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3681 			      & mask.word) && rmap_can_add(vcpu))
3682 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3683 			if (!remote_flush && need_remote_flush(entry, *spte))
3684 				remote_flush = true;
3685 			++spte;
3686 		}
3687 	}
3688 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3689 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3690 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3691 	spin_unlock(&vcpu->kvm->mmu_lock);
3692 }
3693 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)3694 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3695 {
3696 	gpa_t gpa;
3697 	int r;
3698 
3699 	if (vcpu->arch.mmu.direct_map)
3700 		return 0;
3701 
3702 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3703 
3704 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3705 
3706 	return r;
3707 }
3708 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3709 
__kvm_mmu_free_some_pages(struct kvm_vcpu * vcpu)3710 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3711 {
3712 	LIST_HEAD(invalid_list);
3713 
3714 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3715 	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3716 		struct kvm_mmu_page *sp;
3717 
3718 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3719 				  struct kvm_mmu_page, link);
3720 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3721 		++vcpu->kvm->stat.mmu_recycled;
3722 	}
3723 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3724 }
3725 
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)3726 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3727 {
3728 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3729 		return vcpu_match_mmio_gpa(vcpu, addr);
3730 
3731 	return vcpu_match_mmio_gva(vcpu, addr);
3732 }
3733 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)3734 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3735 		       void *insn, int insn_len)
3736 {
3737 	int r, emulation_type = EMULTYPE_RETRY;
3738 	enum emulation_result er;
3739 
3740 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3741 	if (r < 0)
3742 		goto out;
3743 
3744 	if (!r) {
3745 		r = 1;
3746 		goto out;
3747 	}
3748 
3749 	if (is_mmio_page_fault(vcpu, cr2))
3750 		emulation_type = 0;
3751 
3752 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3753 
3754 	switch (er) {
3755 	case EMULATE_DONE:
3756 		return 1;
3757 	case EMULATE_DO_MMIO:
3758 		++vcpu->stat.mmio_exits;
3759 		/* fall through */
3760 	case EMULATE_FAIL:
3761 		return 0;
3762 	default:
3763 		BUG();
3764 	}
3765 out:
3766 	return r;
3767 }
3768 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3769 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)3770 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3771 {
3772 	vcpu->arch.mmu.invlpg(vcpu, gva);
3773 	kvm_mmu_flush_tlb(vcpu);
3774 	++vcpu->stat.invlpg;
3775 }
3776 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3777 
kvm_enable_tdp(void)3778 void kvm_enable_tdp(void)
3779 {
3780 	tdp_enabled = true;
3781 }
3782 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3783 
kvm_disable_tdp(void)3784 void kvm_disable_tdp(void)
3785 {
3786 	tdp_enabled = false;
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3789 
free_mmu_pages(struct kvm_vcpu * vcpu)3790 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3791 {
3792 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
3793 	if (vcpu->arch.mmu.lm_root != NULL)
3794 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
3795 }
3796 
alloc_mmu_pages(struct kvm_vcpu * vcpu)3797 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3798 {
3799 	struct page *page;
3800 	int i;
3801 
3802 	ASSERT(vcpu);
3803 
3804 	/*
3805 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3806 	 * Therefore we need to allocate shadow page tables in the first
3807 	 * 4GB of memory, which happens to fit the DMA32 zone.
3808 	 */
3809 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3810 	if (!page)
3811 		return -ENOMEM;
3812 
3813 	vcpu->arch.mmu.pae_root = page_address(page);
3814 	for (i = 0; i < 4; ++i)
3815 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3816 
3817 	return 0;
3818 }
3819 
kvm_mmu_create(struct kvm_vcpu * vcpu)3820 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3821 {
3822 	ASSERT(vcpu);
3823 
3824 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3825 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3826 	vcpu->arch.mmu.translate_gpa = translate_gpa;
3827 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3828 
3829 	return alloc_mmu_pages(vcpu);
3830 }
3831 
kvm_mmu_setup(struct kvm_vcpu * vcpu)3832 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3833 {
3834 	ASSERT(vcpu);
3835 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3836 
3837 	return init_kvm_mmu(vcpu);
3838 }
3839 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,int slot)3840 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3841 {
3842 	struct kvm_mmu_page *sp;
3843 
3844 	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3845 		int i;
3846 		u64 *pt;
3847 
3848 		if (!test_bit(slot, sp->slot_bitmap))
3849 			continue;
3850 
3851 		pt = sp->spt;
3852 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3853 			if (!is_shadow_present_pte(pt[i]) ||
3854 			      !is_last_spte(pt[i], sp->role.level))
3855 				continue;
3856 
3857 			if (is_large_pte(pt[i])) {
3858 				drop_spte(kvm, &pt[i]);
3859 				--kvm->stat.lpages;
3860 				continue;
3861 			}
3862 
3863 			/* avoid RMW */
3864 			if (is_writable_pte(pt[i]))
3865 				mmu_spte_update(&pt[i],
3866 						pt[i] & ~PT_WRITABLE_MASK);
3867 		}
3868 	}
3869 	kvm_flush_remote_tlbs(kvm);
3870 }
3871 
kvm_mmu_zap_all(struct kvm * kvm)3872 void kvm_mmu_zap_all(struct kvm *kvm)
3873 {
3874 	struct kvm_mmu_page *sp, *node;
3875 	LIST_HEAD(invalid_list);
3876 
3877 	spin_lock(&kvm->mmu_lock);
3878 restart:
3879 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3880 		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3881 			goto restart;
3882 
3883 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3884 	spin_unlock(&kvm->mmu_lock);
3885 }
3886 
kvm_mmu_remove_some_alloc_mmu_pages(struct kvm * kvm,struct list_head * invalid_list)3887 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3888 						struct list_head *invalid_list)
3889 {
3890 	struct kvm_mmu_page *page;
3891 
3892 	page = container_of(kvm->arch.active_mmu_pages.prev,
3893 			    struct kvm_mmu_page, link);
3894 	kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3895 }
3896 
mmu_shrink(struct shrinker * shrink,struct shrink_control * sc)3897 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3898 {
3899 	struct kvm *kvm;
3900 	struct kvm *kvm_freed = NULL;
3901 	int nr_to_scan = sc->nr_to_scan;
3902 
3903 	if (nr_to_scan == 0)
3904 		goto out;
3905 
3906 	raw_spin_lock(&kvm_lock);
3907 
3908 	list_for_each_entry(kvm, &vm_list, vm_list) {
3909 		int idx;
3910 		LIST_HEAD(invalid_list);
3911 
3912 		idx = srcu_read_lock(&kvm->srcu);
3913 		spin_lock(&kvm->mmu_lock);
3914 		if (!kvm_freed && nr_to_scan > 0 &&
3915 		    kvm->arch.n_used_mmu_pages > 0) {
3916 			kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3917 							    &invalid_list);
3918 			kvm_freed = kvm;
3919 		}
3920 		nr_to_scan--;
3921 
3922 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3923 		spin_unlock(&kvm->mmu_lock);
3924 		srcu_read_unlock(&kvm->srcu, idx);
3925 	}
3926 	if (kvm_freed)
3927 		list_move_tail(&kvm_freed->vm_list, &vm_list);
3928 
3929 	raw_spin_unlock(&kvm_lock);
3930 
3931 out:
3932 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3933 }
3934 
3935 static struct shrinker mmu_shrinker = {
3936 	.shrink = mmu_shrink,
3937 	.seeks = DEFAULT_SEEKS * 10,
3938 };
3939 
mmu_destroy_caches(void)3940 static void mmu_destroy_caches(void)
3941 {
3942 	if (pte_list_desc_cache)
3943 		kmem_cache_destroy(pte_list_desc_cache);
3944 	if (mmu_page_header_cache)
3945 		kmem_cache_destroy(mmu_page_header_cache);
3946 }
3947 
kvm_mmu_module_init(void)3948 int kvm_mmu_module_init(void)
3949 {
3950 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3951 					    sizeof(struct pte_list_desc),
3952 					    0, 0, NULL);
3953 	if (!pte_list_desc_cache)
3954 		goto nomem;
3955 
3956 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3957 						  sizeof(struct kvm_mmu_page),
3958 						  0, 0, NULL);
3959 	if (!mmu_page_header_cache)
3960 		goto nomem;
3961 
3962 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3963 		goto nomem;
3964 
3965 	register_shrinker(&mmu_shrinker);
3966 
3967 	return 0;
3968 
3969 nomem:
3970 	mmu_destroy_caches();
3971 	return -ENOMEM;
3972 }
3973 
3974 /*
3975  * Caculate mmu pages needed for kvm.
3976  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)3977 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3978 {
3979 	unsigned int nr_mmu_pages;
3980 	unsigned int  nr_pages = 0;
3981 	struct kvm_memslots *slots;
3982 	struct kvm_memory_slot *memslot;
3983 
3984 	slots = kvm_memslots(kvm);
3985 
3986 	kvm_for_each_memslot(memslot, slots)
3987 		nr_pages += memslot->npages;
3988 
3989 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3990 	nr_mmu_pages = max(nr_mmu_pages,
3991 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3992 
3993 	return nr_mmu_pages;
3994 }
3995 
kvm_mmu_get_spte_hierarchy(struct kvm_vcpu * vcpu,u64 addr,u64 sptes[4])3996 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3997 {
3998 	struct kvm_shadow_walk_iterator iterator;
3999 	u64 spte;
4000 	int nr_sptes = 0;
4001 
4002 	walk_shadow_page_lockless_begin(vcpu);
4003 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4004 		sptes[iterator.level-1] = spte;
4005 		nr_sptes++;
4006 		if (!is_shadow_present_pte(spte))
4007 			break;
4008 	}
4009 	walk_shadow_page_lockless_end(vcpu);
4010 
4011 	return nr_sptes;
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4014 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4015 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4016 {
4017 	ASSERT(vcpu);
4018 
4019 	destroy_kvm_mmu(vcpu);
4020 	free_mmu_pages(vcpu);
4021 	mmu_free_memory_caches(vcpu);
4022 }
4023 
kvm_mmu_module_exit(void)4024 void kvm_mmu_module_exit(void)
4025 {
4026 	mmu_destroy_caches();
4027 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4028 	unregister_shrinker(&mmu_shrinker);
4029 	mmu_audit_disable();
4030 }
4031