1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72
73 static bool hw_memory_failure __read_mostly = false;
74
75 static DEFINE_MUTEX(mf_mutex);
76
num_poisoned_pages_inc(unsigned long pfn)77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
81 }
82
num_poisoned_pages_sub(unsigned long pfn,long i)83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 atomic_long_sub(i, &num_poisoned_pages);
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
88 }
89
90 /**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94 #define MF_ATTR_RO(_name) \
95 static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98 { \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102 } \
103 static DEVICE_ATTR_RO(_name)
104
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110
111 static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118 };
119
120 const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123 };
124
125 static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
144 { }
145 };
146
147 /*
148 * Return values:
149 * 1: the page is dissolved (if needed) and taken off from buddy,
150 * 0: the page is dissolved (if needed) and not taken off from buddy,
151 * < 0: failed to dissolve.
152 */
__page_handle_poison(struct page * page)153 static int __page_handle_poison(struct page *page)
154 {
155 int ret;
156
157 zone_pcp_disable(page_zone(page));
158 ret = dissolve_free_huge_page(page);
159 if (!ret)
160 ret = take_page_off_buddy(page);
161 zone_pcp_enable(page_zone(page));
162
163 return ret;
164 }
165
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)166 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
167 {
168 if (hugepage_or_freepage) {
169 /*
170 * Doing this check for free pages is also fine since dissolve_free_huge_page
171 * returns 0 for non-hugetlb pages as well.
172 */
173 if (__page_handle_poison(page) <= 0)
174 /*
175 * We could fail to take off the target page from buddy
176 * for example due to racy page allocation, but that's
177 * acceptable because soft-offlined page is not broken
178 * and if someone really want to use it, they should
179 * take it.
180 */
181 return false;
182 }
183
184 SetPageHWPoison(page);
185 if (release)
186 put_page(page);
187 page_ref_inc(page);
188 num_poisoned_pages_inc(page_to_pfn(page));
189
190 return true;
191 }
192
193 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
194
195 u32 hwpoison_filter_enable = 0;
196 u32 hwpoison_filter_dev_major = ~0U;
197 u32 hwpoison_filter_dev_minor = ~0U;
198 u64 hwpoison_filter_flags_mask;
199 u64 hwpoison_filter_flags_value;
200 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
201 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
205
hwpoison_filter_dev(struct page * p)206 static int hwpoison_filter_dev(struct page *p)
207 {
208 struct address_space *mapping;
209 dev_t dev;
210
211 if (hwpoison_filter_dev_major == ~0U &&
212 hwpoison_filter_dev_minor == ~0U)
213 return 0;
214
215 mapping = page_mapping(p);
216 if (mapping == NULL || mapping->host == NULL)
217 return -EINVAL;
218
219 dev = mapping->host->i_sb->s_dev;
220 if (hwpoison_filter_dev_major != ~0U &&
221 hwpoison_filter_dev_major != MAJOR(dev))
222 return -EINVAL;
223 if (hwpoison_filter_dev_minor != ~0U &&
224 hwpoison_filter_dev_minor != MINOR(dev))
225 return -EINVAL;
226
227 return 0;
228 }
229
hwpoison_filter_flags(struct page * p)230 static int hwpoison_filter_flags(struct page *p)
231 {
232 if (!hwpoison_filter_flags_mask)
233 return 0;
234
235 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
236 hwpoison_filter_flags_value)
237 return 0;
238 else
239 return -EINVAL;
240 }
241
242 /*
243 * This allows stress tests to limit test scope to a collection of tasks
244 * by putting them under some memcg. This prevents killing unrelated/important
245 * processes such as /sbin/init. Note that the target task may share clean
246 * pages with init (eg. libc text), which is harmless. If the target task
247 * share _dirty_ pages with another task B, the test scheme must make sure B
248 * is also included in the memcg. At last, due to race conditions this filter
249 * can only guarantee that the page either belongs to the memcg tasks, or is
250 * a freed page.
251 */
252 #ifdef CONFIG_MEMCG
253 u64 hwpoison_filter_memcg;
254 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)255 static int hwpoison_filter_task(struct page *p)
256 {
257 if (!hwpoison_filter_memcg)
258 return 0;
259
260 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
261 return -EINVAL;
262
263 return 0;
264 }
265 #else
hwpoison_filter_task(struct page * p)266 static int hwpoison_filter_task(struct page *p) { return 0; }
267 #endif
268
hwpoison_filter(struct page * p)269 int hwpoison_filter(struct page *p)
270 {
271 if (!hwpoison_filter_enable)
272 return 0;
273
274 if (hwpoison_filter_dev(p))
275 return -EINVAL;
276
277 if (hwpoison_filter_flags(p))
278 return -EINVAL;
279
280 if (hwpoison_filter_task(p))
281 return -EINVAL;
282
283 return 0;
284 }
285 #else
hwpoison_filter(struct page * p)286 int hwpoison_filter(struct page *p)
287 {
288 return 0;
289 }
290 #endif
291
292 EXPORT_SYMBOL_GPL(hwpoison_filter);
293
294 /*
295 * Kill all processes that have a poisoned page mapped and then isolate
296 * the page.
297 *
298 * General strategy:
299 * Find all processes having the page mapped and kill them.
300 * But we keep a page reference around so that the page is not
301 * actually freed yet.
302 * Then stash the page away
303 *
304 * There's no convenient way to get back to mapped processes
305 * from the VMAs. So do a brute-force search over all
306 * running processes.
307 *
308 * Remember that machine checks are not common (or rather
309 * if they are common you have other problems), so this shouldn't
310 * be a performance issue.
311 *
312 * Also there are some races possible while we get from the
313 * error detection to actually handle it.
314 */
315
316 struct to_kill {
317 struct list_head nd;
318 struct task_struct *tsk;
319 unsigned long addr;
320 short size_shift;
321 };
322
323 /*
324 * Send all the processes who have the page mapped a signal.
325 * ``action optional'' if they are not immediately affected by the error
326 * ``action required'' if error happened in current execution context
327 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)328 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
329 {
330 struct task_struct *t = tk->tsk;
331 short addr_lsb = tk->size_shift;
332 int ret = 0;
333
334 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
335 pfn, t->comm, t->pid);
336
337 if ((flags & MF_ACTION_REQUIRED) && (t == current))
338 ret = force_sig_mceerr(BUS_MCEERR_AR,
339 (void __user *)tk->addr, addr_lsb);
340 else
341 /*
342 * Signal other processes sharing the page if they have
343 * PF_MCE_EARLY set.
344 * Don't use force here, it's convenient if the signal
345 * can be temporarily blocked.
346 * This could cause a loop when the user sets SIGBUS
347 * to SIG_IGN, but hopefully no one will do that?
348 */
349 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
350 addr_lsb, t);
351 if (ret < 0)
352 pr_info("Error sending signal to %s:%d: %d\n",
353 t->comm, t->pid, ret);
354 return ret;
355 }
356
357 /*
358 * Unknown page type encountered. Try to check whether it can turn PageLRU by
359 * lru_add_drain_all.
360 */
shake_page(struct page * p)361 void shake_page(struct page *p)
362 {
363 if (PageHuge(p))
364 return;
365 /*
366 * TODO: Could shrink slab caches here if a lightweight range-based
367 * shrinker will be available.
368 */
369 if (PageSlab(p))
370 return;
371
372 lru_add_drain_all();
373 }
374 EXPORT_SYMBOL_GPL(shake_page);
375
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)376 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
377 unsigned long address)
378 {
379 unsigned long ret = 0;
380 pgd_t *pgd;
381 p4d_t *p4d;
382 pud_t *pud;
383 pmd_t *pmd;
384 pte_t *pte;
385 pte_t ptent;
386
387 VM_BUG_ON_VMA(address == -EFAULT, vma);
388 pgd = pgd_offset(vma->vm_mm, address);
389 if (!pgd_present(*pgd))
390 return 0;
391 p4d = p4d_offset(pgd, address);
392 if (!p4d_present(*p4d))
393 return 0;
394 pud = pud_offset(p4d, address);
395 if (!pud_present(*pud))
396 return 0;
397 if (pud_devmap(*pud))
398 return PUD_SHIFT;
399 pmd = pmd_offset(pud, address);
400 if (!pmd_present(*pmd))
401 return 0;
402 if (pmd_devmap(*pmd))
403 return PMD_SHIFT;
404 pte = pte_offset_map(pmd, address);
405 if (!pte)
406 return 0;
407 ptent = ptep_get(pte);
408 if (pte_present(ptent) && pte_devmap(ptent))
409 ret = PAGE_SHIFT;
410 pte_unmap(pte);
411 return ret;
412 }
413
414 /*
415 * Failure handling: if we can't find or can't kill a process there's
416 * not much we can do. We just print a message and ignore otherwise.
417 */
418
419 #define FSDAX_INVALID_PGOFF ULONG_MAX
420
421 /*
422 * Schedule a process for later kill.
423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
424 *
425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426 * filesystem with a memory failure handler has claimed the
427 * memory_failure event. In all other cases, page->index and
428 * page->mapping are sufficient for mapping the page back to its
429 * corresponding user virtual address.
430 */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr,pgoff_t fsdax_pgoff)431 static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 struct vm_area_struct *vma, struct list_head *to_kill,
433 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
434 {
435 struct to_kill *tk;
436
437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 if (!tk) {
439 pr_err("Out of memory while machine check handling\n");
440 return;
441 }
442
443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
444 if (is_zone_device_page(p)) {
445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 } else
449 tk->size_shift = page_shift(compound_head(p));
450
451 /*
452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 * so "tk->size_shift == 0" effectively checks no mapping on
455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 * to a process' address space, it's possible not all N VMAs
457 * contain mappings for the page, but at least one VMA does.
458 * Only deliver SIGBUS with payload derived from the VMA that
459 * has a mapping for the page.
460 */
461 if (tk->addr == -EFAULT) {
462 pr_info("Unable to find user space address %lx in %s\n",
463 page_to_pfn(p), tsk->comm);
464 } else if (tk->size_shift == 0) {
465 kfree(tk);
466 return;
467 }
468
469 get_task_struct(tsk);
470 tk->tsk = tsk;
471 list_add_tail(&tk->nd, to_kill);
472 }
473
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)474 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 struct vm_area_struct *vma,
476 struct list_head *to_kill)
477 {
478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479 }
480
481 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)482 static bool task_in_to_kill_list(struct list_head *to_kill,
483 struct task_struct *tsk)
484 {
485 struct to_kill *tk, *next;
486
487 list_for_each_entry_safe(tk, next, to_kill, nd) {
488 if (tk->tsk == tsk)
489 return true;
490 }
491
492 return false;
493 }
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr)494 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 struct vm_area_struct *vma, struct list_head *to_kill,
496 unsigned long ksm_addr)
497 {
498 if (!task_in_to_kill_list(to_kill, tsk))
499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500 }
501 #endif
502 /*
503 * Kill the processes that have been collected earlier.
504 *
505 * Only do anything when FORCEKILL is set, otherwise just free the
506 * list (this is used for clean pages which do not need killing)
507 * Also when FAIL is set do a force kill because something went
508 * wrong earlier.
509 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)510 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 unsigned long pfn, int flags)
512 {
513 struct to_kill *tk, *next;
514
515 list_for_each_entry_safe(tk, next, to_kill, nd) {
516 if (forcekill) {
517 /*
518 * In case something went wrong with munmapping
519 * make sure the process doesn't catch the
520 * signal and then access the memory. Just kill it.
521 */
522 if (fail || tk->addr == -EFAULT) {
523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
524 pfn, tk->tsk->comm, tk->tsk->pid);
525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 tk->tsk, PIDTYPE_PID);
527 }
528
529 /*
530 * In theory the process could have mapped
531 * something else on the address in-between. We could
532 * check for that, but we need to tell the
533 * process anyways.
534 */
535 else if (kill_proc(tk, pfn, flags) < 0)
536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
537 pfn, tk->tsk->comm, tk->tsk->pid);
538 }
539 list_del(&tk->nd);
540 put_task_struct(tk->tsk);
541 kfree(tk);
542 }
543 }
544
545 /*
546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547 * on behalf of the thread group. Return task_struct of the (first found)
548 * dedicated thread if found, and return NULL otherwise.
549 *
550 * We already hold rcu lock in the caller, so we don't have to call
551 * rcu_read_lock/unlock() in this function.
552 */
find_early_kill_thread(struct task_struct * tsk)553 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
554 {
555 struct task_struct *t;
556
557 for_each_thread(tsk, t) {
558 if (t->flags & PF_MCE_PROCESS) {
559 if (t->flags & PF_MCE_EARLY)
560 return t;
561 } else {
562 if (sysctl_memory_failure_early_kill)
563 return t;
564 }
565 }
566 return NULL;
567 }
568
569 /*
570 * Determine whether a given process is "early kill" process which expects
571 * to be signaled when some page under the process is hwpoisoned.
572 * Return task_struct of the dedicated thread (main thread unless explicitly
573 * specified) if the process is "early kill" and otherwise returns NULL.
574 *
575 * Note that the above is true for Action Optional case. For Action Required
576 * case, it's only meaningful to the current thread which need to be signaled
577 * with SIGBUS, this error is Action Optional for other non current
578 * processes sharing the same error page,if the process is "early kill", the
579 * task_struct of the dedicated thread will also be returned.
580 */
task_early_kill(struct task_struct * tsk,int force_early)581 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
582 {
583 if (!tsk->mm)
584 return NULL;
585 /*
586 * Comparing ->mm here because current task might represent
587 * a subthread, while tsk always points to the main thread.
588 */
589 if (force_early && tsk->mm == current->mm)
590 return current;
591
592 return find_early_kill_thread(tsk);
593 }
594
595 /*
596 * Collect processes when the error hit an anonymous page.
597 */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)598 static void collect_procs_anon(struct folio *folio, struct page *page,
599 struct list_head *to_kill, int force_early)
600 {
601 struct vm_area_struct *vma;
602 struct task_struct *tsk;
603 struct anon_vma *av;
604 pgoff_t pgoff;
605
606 av = folio_lock_anon_vma_read(folio, NULL);
607 if (av == NULL) /* Not actually mapped anymore */
608 return;
609
610 pgoff = page_to_pgoff(page);
611 rcu_read_lock();
612 for_each_process(tsk) {
613 struct anon_vma_chain *vmac;
614 struct task_struct *t = task_early_kill(tsk, force_early);
615
616 if (!t)
617 continue;
618 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
619 pgoff, pgoff) {
620 vma = vmac->vma;
621 if (vma->vm_mm != t->mm)
622 continue;
623 if (!page_mapped_in_vma(page, vma))
624 continue;
625 add_to_kill_anon_file(t, page, vma, to_kill);
626 }
627 }
628 rcu_read_unlock();
629 anon_vma_unlock_read(av);
630 }
631
632 /*
633 * Collect processes when the error hit a file mapped page.
634 */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)635 static void collect_procs_file(struct folio *folio, struct page *page,
636 struct list_head *to_kill, int force_early)
637 {
638 struct vm_area_struct *vma;
639 struct task_struct *tsk;
640 struct address_space *mapping = folio->mapping;
641 pgoff_t pgoff;
642
643 i_mmap_lock_read(mapping);
644 rcu_read_lock();
645 pgoff = page_to_pgoff(page);
646 for_each_process(tsk) {
647 struct task_struct *t = task_early_kill(tsk, force_early);
648
649 if (!t)
650 continue;
651 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
652 pgoff) {
653 /*
654 * Send early kill signal to tasks where a vma covers
655 * the page but the corrupted page is not necessarily
656 * mapped in its pte.
657 * Assume applications who requested early kill want
658 * to be informed of all such data corruptions.
659 */
660 if (vma->vm_mm == t->mm)
661 add_to_kill_anon_file(t, page, vma, to_kill);
662 }
663 }
664 rcu_read_unlock();
665 i_mmap_unlock_read(mapping);
666 }
667
668 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)669 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
670 struct vm_area_struct *vma,
671 struct list_head *to_kill, pgoff_t pgoff)
672 {
673 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
674 }
675
676 /*
677 * Collect processes when the error hit a fsdax page.
678 */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill)679 static void collect_procs_fsdax(struct page *page,
680 struct address_space *mapping, pgoff_t pgoff,
681 struct list_head *to_kill)
682 {
683 struct vm_area_struct *vma;
684 struct task_struct *tsk;
685
686 i_mmap_lock_read(mapping);
687 rcu_read_lock();
688 for_each_process(tsk) {
689 struct task_struct *t = task_early_kill(tsk, true);
690
691 if (!t)
692 continue;
693 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
694 if (vma->vm_mm == t->mm)
695 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
696 }
697 }
698 rcu_read_unlock();
699 i_mmap_unlock_read(mapping);
700 }
701 #endif /* CONFIG_FS_DAX */
702
703 /*
704 * Collect the processes who have the corrupted page mapped to kill.
705 */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)706 static void collect_procs(struct folio *folio, struct page *page,
707 struct list_head *tokill, int force_early)
708 {
709 if (!folio->mapping)
710 return;
711 if (unlikely(PageKsm(page)))
712 collect_procs_ksm(page, tokill, force_early);
713 else if (PageAnon(page))
714 collect_procs_anon(folio, page, tokill, force_early);
715 else
716 collect_procs_file(folio, page, tokill, force_early);
717 }
718
719 struct hwpoison_walk {
720 struct to_kill tk;
721 unsigned long pfn;
722 int flags;
723 };
724
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)725 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
726 {
727 tk->addr = addr;
728 tk->size_shift = shift;
729 }
730
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)731 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
732 unsigned long poisoned_pfn, struct to_kill *tk)
733 {
734 unsigned long pfn = 0;
735
736 if (pte_present(pte)) {
737 pfn = pte_pfn(pte);
738 } else {
739 swp_entry_t swp = pte_to_swp_entry(pte);
740
741 if (is_hwpoison_entry(swp))
742 pfn = swp_offset_pfn(swp);
743 }
744
745 if (!pfn || pfn != poisoned_pfn)
746 return 0;
747
748 set_to_kill(tk, addr, shift);
749 return 1;
750 }
751
752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)753 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
754 struct hwpoison_walk *hwp)
755 {
756 pmd_t pmd = *pmdp;
757 unsigned long pfn;
758 unsigned long hwpoison_vaddr;
759
760 if (!pmd_present(pmd))
761 return 0;
762 pfn = pmd_pfn(pmd);
763 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
764 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
765 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
766 return 1;
767 }
768 return 0;
769 }
770 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)771 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
772 struct hwpoison_walk *hwp)
773 {
774 return 0;
775 }
776 #endif
777
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)778 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
779 unsigned long end, struct mm_walk *walk)
780 {
781 struct hwpoison_walk *hwp = walk->private;
782 int ret = 0;
783 pte_t *ptep, *mapped_pte;
784 spinlock_t *ptl;
785
786 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
787 if (ptl) {
788 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
789 spin_unlock(ptl);
790 goto out;
791 }
792
793 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
794 addr, &ptl);
795 if (!ptep)
796 goto out;
797
798 for (; addr != end; ptep++, addr += PAGE_SIZE) {
799 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
800 hwp->pfn, &hwp->tk);
801 if (ret == 1)
802 break;
803 }
804 pte_unmap_unlock(mapped_pte, ptl);
805 out:
806 cond_resched();
807 return ret;
808 }
809
810 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)811 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
812 unsigned long addr, unsigned long end,
813 struct mm_walk *walk)
814 {
815 struct hwpoison_walk *hwp = walk->private;
816 pte_t pte = huge_ptep_get(ptep);
817 struct hstate *h = hstate_vma(walk->vma);
818
819 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
820 hwp->pfn, &hwp->tk);
821 }
822 #else
823 #define hwpoison_hugetlb_range NULL
824 #endif
825
826 static const struct mm_walk_ops hwpoison_walk_ops = {
827 .pmd_entry = hwpoison_pte_range,
828 .hugetlb_entry = hwpoison_hugetlb_range,
829 .walk_lock = PGWALK_RDLOCK,
830 };
831
832 /*
833 * Sends SIGBUS to the current process with error info.
834 *
835 * This function is intended to handle "Action Required" MCEs on already
836 * hardware poisoned pages. They could happen, for example, when
837 * memory_failure() failed to unmap the error page at the first call, or
838 * when multiple local machine checks happened on different CPUs.
839 *
840 * MCE handler currently has no easy access to the error virtual address,
841 * so this function walks page table to find it. The returned virtual address
842 * is proper in most cases, but it could be wrong when the application
843 * process has multiple entries mapping the error page.
844 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)845 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
846 int flags)
847 {
848 int ret;
849 struct hwpoison_walk priv = {
850 .pfn = pfn,
851 };
852 priv.tk.tsk = p;
853
854 if (!p->mm)
855 return -EFAULT;
856
857 mmap_read_lock(p->mm);
858 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
859 (void *)&priv);
860 if (ret == 1 && priv.tk.addr)
861 kill_proc(&priv.tk, pfn, flags);
862 else
863 ret = 0;
864 mmap_read_unlock(p->mm);
865 return ret > 0 ? -EHWPOISON : -EFAULT;
866 }
867
868 static const char *action_name[] = {
869 [MF_IGNORED] = "Ignored",
870 [MF_FAILED] = "Failed",
871 [MF_DELAYED] = "Delayed",
872 [MF_RECOVERED] = "Recovered",
873 };
874
875 static const char * const action_page_types[] = {
876 [MF_MSG_KERNEL] = "reserved kernel page",
877 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
878 [MF_MSG_SLAB] = "kernel slab page",
879 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
880 [MF_MSG_HUGE] = "huge page",
881 [MF_MSG_FREE_HUGE] = "free huge page",
882 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
883 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
884 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
885 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
886 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
887 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
888 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
889 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
890 [MF_MSG_CLEAN_LRU] = "clean LRU page",
891 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
892 [MF_MSG_BUDDY] = "free buddy page",
893 [MF_MSG_DAX] = "dax page",
894 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
895 [MF_MSG_UNKNOWN] = "unknown page",
896 };
897
898 /*
899 * XXX: It is possible that a page is isolated from LRU cache,
900 * and then kept in swap cache or failed to remove from page cache.
901 * The page count will stop it from being freed by unpoison.
902 * Stress tests should be aware of this memory leak problem.
903 */
delete_from_lru_cache(struct page * p)904 static int delete_from_lru_cache(struct page *p)
905 {
906 if (isolate_lru_page(p)) {
907 /*
908 * Clear sensible page flags, so that the buddy system won't
909 * complain when the page is unpoison-and-freed.
910 */
911 ClearPageActive(p);
912 ClearPageUnevictable(p);
913
914 /*
915 * Poisoned page might never drop its ref count to 0 so we have
916 * to uncharge it manually from its memcg.
917 */
918 mem_cgroup_uncharge(page_folio(p));
919
920 /*
921 * drop the page count elevated by isolate_lru_page()
922 */
923 put_page(p);
924 return 0;
925 }
926 return -EIO;
927 }
928
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)929 static int truncate_error_page(struct page *p, unsigned long pfn,
930 struct address_space *mapping)
931 {
932 int ret = MF_FAILED;
933
934 if (mapping->a_ops->error_remove_page) {
935 struct folio *folio = page_folio(p);
936 int err = mapping->a_ops->error_remove_page(mapping, p);
937
938 if (err != 0)
939 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
940 else if (!filemap_release_folio(folio, GFP_NOIO))
941 pr_info("%#lx: failed to release buffers\n", pfn);
942 else
943 ret = MF_RECOVERED;
944 } else {
945 /*
946 * If the file system doesn't support it just invalidate
947 * This fails on dirty or anything with private pages
948 */
949 if (invalidate_inode_page(p))
950 ret = MF_RECOVERED;
951 else
952 pr_info("%#lx: Failed to invalidate\n", pfn);
953 }
954
955 return ret;
956 }
957
958 struct page_state {
959 unsigned long mask;
960 unsigned long res;
961 enum mf_action_page_type type;
962
963 /* Callback ->action() has to unlock the relevant page inside it. */
964 int (*action)(struct page_state *ps, struct page *p);
965 };
966
967 /*
968 * Return true if page is still referenced by others, otherwise return
969 * false.
970 *
971 * The extra_pins is true when one extra refcount is expected.
972 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)973 static bool has_extra_refcount(struct page_state *ps, struct page *p,
974 bool extra_pins)
975 {
976 int count = page_count(p) - 1;
977
978 if (extra_pins)
979 count -= 1;
980
981 if (count > 0) {
982 pr_err("%#lx: %s still referenced by %d users\n",
983 page_to_pfn(p), action_page_types[ps->type], count);
984 return true;
985 }
986
987 return false;
988 }
989
990 /*
991 * Error hit kernel page.
992 * Do nothing, try to be lucky and not touch this instead. For a few cases we
993 * could be more sophisticated.
994 */
me_kernel(struct page_state * ps,struct page * p)995 static int me_kernel(struct page_state *ps, struct page *p)
996 {
997 unlock_page(p);
998 return MF_IGNORED;
999 }
1000
1001 /*
1002 * Page in unknown state. Do nothing.
1003 */
me_unknown(struct page_state * ps,struct page * p)1004 static int me_unknown(struct page_state *ps, struct page *p)
1005 {
1006 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1007 unlock_page(p);
1008 return MF_FAILED;
1009 }
1010
1011 /*
1012 * Clean (or cleaned) page cache page.
1013 */
me_pagecache_clean(struct page_state * ps,struct page * p)1014 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1015 {
1016 int ret;
1017 struct address_space *mapping;
1018 bool extra_pins;
1019
1020 delete_from_lru_cache(p);
1021
1022 /*
1023 * For anonymous pages we're done the only reference left
1024 * should be the one m_f() holds.
1025 */
1026 if (PageAnon(p)) {
1027 ret = MF_RECOVERED;
1028 goto out;
1029 }
1030
1031 /*
1032 * Now truncate the page in the page cache. This is really
1033 * more like a "temporary hole punch"
1034 * Don't do this for block devices when someone else
1035 * has a reference, because it could be file system metadata
1036 * and that's not safe to truncate.
1037 */
1038 mapping = page_mapping(p);
1039 if (!mapping) {
1040 /*
1041 * Page has been teared down in the meanwhile
1042 */
1043 ret = MF_FAILED;
1044 goto out;
1045 }
1046
1047 /*
1048 * The shmem page is kept in page cache instead of truncating
1049 * so is expected to have an extra refcount after error-handling.
1050 */
1051 extra_pins = shmem_mapping(mapping);
1052
1053 /*
1054 * Truncation is a bit tricky. Enable it per file system for now.
1055 *
1056 * Open: to take i_rwsem or not for this? Right now we don't.
1057 */
1058 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1059 if (has_extra_refcount(ps, p, extra_pins))
1060 ret = MF_FAILED;
1061
1062 out:
1063 unlock_page(p);
1064
1065 return ret;
1066 }
1067
1068 /*
1069 * Dirty pagecache page
1070 * Issues: when the error hit a hole page the error is not properly
1071 * propagated.
1072 */
me_pagecache_dirty(struct page_state * ps,struct page * p)1073 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1074 {
1075 struct address_space *mapping = page_mapping(p);
1076
1077 SetPageError(p);
1078 /* TBD: print more information about the file. */
1079 if (mapping) {
1080 /*
1081 * IO error will be reported by write(), fsync(), etc.
1082 * who check the mapping.
1083 * This way the application knows that something went
1084 * wrong with its dirty file data.
1085 *
1086 * There's one open issue:
1087 *
1088 * The EIO will be only reported on the next IO
1089 * operation and then cleared through the IO map.
1090 * Normally Linux has two mechanisms to pass IO error
1091 * first through the AS_EIO flag in the address space
1092 * and then through the PageError flag in the page.
1093 * Since we drop pages on memory failure handling the
1094 * only mechanism open to use is through AS_AIO.
1095 *
1096 * This has the disadvantage that it gets cleared on
1097 * the first operation that returns an error, while
1098 * the PageError bit is more sticky and only cleared
1099 * when the page is reread or dropped. If an
1100 * application assumes it will always get error on
1101 * fsync, but does other operations on the fd before
1102 * and the page is dropped between then the error
1103 * will not be properly reported.
1104 *
1105 * This can already happen even without hwpoisoned
1106 * pages: first on metadata IO errors (which only
1107 * report through AS_EIO) or when the page is dropped
1108 * at the wrong time.
1109 *
1110 * So right now we assume that the application DTRT on
1111 * the first EIO, but we're not worse than other parts
1112 * of the kernel.
1113 */
1114 mapping_set_error(mapping, -EIO);
1115 }
1116
1117 return me_pagecache_clean(ps, p);
1118 }
1119
1120 /*
1121 * Clean and dirty swap cache.
1122 *
1123 * Dirty swap cache page is tricky to handle. The page could live both in page
1124 * cache and swap cache(ie. page is freshly swapped in). So it could be
1125 * referenced concurrently by 2 types of PTEs:
1126 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1127 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1128 * and then
1129 * - clear dirty bit to prevent IO
1130 * - remove from LRU
1131 * - but keep in the swap cache, so that when we return to it on
1132 * a later page fault, we know the application is accessing
1133 * corrupted data and shall be killed (we installed simple
1134 * interception code in do_swap_page to catch it).
1135 *
1136 * Clean swap cache pages can be directly isolated. A later page fault will
1137 * bring in the known good data from disk.
1138 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1139 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1140 {
1141 int ret;
1142 bool extra_pins = false;
1143
1144 ClearPageDirty(p);
1145 /* Trigger EIO in shmem: */
1146 ClearPageUptodate(p);
1147
1148 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1149 unlock_page(p);
1150
1151 if (ret == MF_DELAYED)
1152 extra_pins = true;
1153
1154 if (has_extra_refcount(ps, p, extra_pins))
1155 ret = MF_FAILED;
1156
1157 return ret;
1158 }
1159
me_swapcache_clean(struct page_state * ps,struct page * p)1160 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1161 {
1162 struct folio *folio = page_folio(p);
1163 int ret;
1164
1165 delete_from_swap_cache(folio);
1166
1167 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1168 folio_unlock(folio);
1169
1170 if (has_extra_refcount(ps, p, false))
1171 ret = MF_FAILED;
1172
1173 return ret;
1174 }
1175
1176 /*
1177 * Huge pages. Needs work.
1178 * Issues:
1179 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1180 * To narrow down kill region to one page, we need to break up pmd.
1181 */
me_huge_page(struct page_state * ps,struct page * p)1182 static int me_huge_page(struct page_state *ps, struct page *p)
1183 {
1184 int res;
1185 struct page *hpage = compound_head(p);
1186 struct address_space *mapping;
1187 bool extra_pins = false;
1188
1189 mapping = page_mapping(hpage);
1190 if (mapping) {
1191 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1192 /* The page is kept in page cache. */
1193 extra_pins = true;
1194 unlock_page(hpage);
1195 } else {
1196 unlock_page(hpage);
1197 /*
1198 * migration entry prevents later access on error hugepage,
1199 * so we can free and dissolve it into buddy to save healthy
1200 * subpages.
1201 */
1202 put_page(hpage);
1203 if (__page_handle_poison(p) >= 0) {
1204 page_ref_inc(p);
1205 res = MF_RECOVERED;
1206 } else {
1207 res = MF_FAILED;
1208 }
1209 }
1210
1211 if (has_extra_refcount(ps, p, extra_pins))
1212 res = MF_FAILED;
1213
1214 return res;
1215 }
1216
1217 /*
1218 * Various page states we can handle.
1219 *
1220 * A page state is defined by its current page->flags bits.
1221 * The table matches them in order and calls the right handler.
1222 *
1223 * This is quite tricky because we can access page at any time
1224 * in its live cycle, so all accesses have to be extremely careful.
1225 *
1226 * This is not complete. More states could be added.
1227 * For any missing state don't attempt recovery.
1228 */
1229
1230 #define dirty (1UL << PG_dirty)
1231 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1232 #define unevict (1UL << PG_unevictable)
1233 #define mlock (1UL << PG_mlocked)
1234 #define lru (1UL << PG_lru)
1235 #define head (1UL << PG_head)
1236 #define slab (1UL << PG_slab)
1237 #define reserved (1UL << PG_reserved)
1238
1239 static struct page_state error_states[] = {
1240 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1241 /*
1242 * free pages are specially detected outside this table:
1243 * PG_buddy pages only make a small fraction of all free pages.
1244 */
1245
1246 /*
1247 * Could in theory check if slab page is free or if we can drop
1248 * currently unused objects without touching them. But just
1249 * treat it as standard kernel for now.
1250 */
1251 { slab, slab, MF_MSG_SLAB, me_kernel },
1252
1253 { head, head, MF_MSG_HUGE, me_huge_page },
1254
1255 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1256 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1257
1258 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1259 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1260
1261 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1262 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1263
1264 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1265 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1266
1267 /*
1268 * Catchall entry: must be at end.
1269 */
1270 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1271 };
1272
1273 #undef dirty
1274 #undef sc
1275 #undef unevict
1276 #undef mlock
1277 #undef lru
1278 #undef head
1279 #undef slab
1280 #undef reserved
1281
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1282 static void update_per_node_mf_stats(unsigned long pfn,
1283 enum mf_result result)
1284 {
1285 int nid = MAX_NUMNODES;
1286 struct memory_failure_stats *mf_stats = NULL;
1287
1288 nid = pfn_to_nid(pfn);
1289 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1290 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1291 return;
1292 }
1293
1294 mf_stats = &NODE_DATA(nid)->mf_stats;
1295 switch (result) {
1296 case MF_IGNORED:
1297 ++mf_stats->ignored;
1298 break;
1299 case MF_FAILED:
1300 ++mf_stats->failed;
1301 break;
1302 case MF_DELAYED:
1303 ++mf_stats->delayed;
1304 break;
1305 case MF_RECOVERED:
1306 ++mf_stats->recovered;
1307 break;
1308 default:
1309 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1310 break;
1311 }
1312 ++mf_stats->total;
1313 }
1314
1315 /*
1316 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1317 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1318 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1319 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1320 enum mf_result result)
1321 {
1322 trace_memory_failure_event(pfn, type, result);
1323
1324 num_poisoned_pages_inc(pfn);
1325
1326 update_per_node_mf_stats(pfn, result);
1327
1328 pr_err("%#lx: recovery action for %s: %s\n",
1329 pfn, action_page_types[type], action_name[result]);
1330
1331 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1332 }
1333
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1334 static int page_action(struct page_state *ps, struct page *p,
1335 unsigned long pfn)
1336 {
1337 int result;
1338
1339 /* page p should be unlocked after returning from ps->action(). */
1340 result = ps->action(ps, p);
1341
1342 /* Could do more checks here if page looks ok */
1343 /*
1344 * Could adjust zone counters here to correct for the missing page.
1345 */
1346
1347 return action_result(pfn, ps->type, result);
1348 }
1349
PageHWPoisonTakenOff(struct page * page)1350 static inline bool PageHWPoisonTakenOff(struct page *page)
1351 {
1352 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1353 }
1354
SetPageHWPoisonTakenOff(struct page * page)1355 void SetPageHWPoisonTakenOff(struct page *page)
1356 {
1357 set_page_private(page, MAGIC_HWPOISON);
1358 }
1359
ClearPageHWPoisonTakenOff(struct page * page)1360 void ClearPageHWPoisonTakenOff(struct page *page)
1361 {
1362 if (PageHWPoison(page))
1363 set_page_private(page, 0);
1364 }
1365
1366 /*
1367 * Return true if a page type of a given page is supported by hwpoison
1368 * mechanism (while handling could fail), otherwise false. This function
1369 * does not return true for hugetlb or device memory pages, so it's assumed
1370 * to be called only in the context where we never have such pages.
1371 */
HWPoisonHandlable(struct page * page,unsigned long flags)1372 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1373 {
1374 /* Soft offline could migrate non-LRU movable pages */
1375 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1376 return true;
1377
1378 return PageLRU(page) || is_free_buddy_page(page);
1379 }
1380
__get_hwpoison_page(struct page * page,unsigned long flags)1381 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1382 {
1383 struct folio *folio = page_folio(page);
1384 int ret = 0;
1385 bool hugetlb = false;
1386
1387 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1388 if (hugetlb) {
1389 /* Make sure hugetlb demotion did not happen from under us. */
1390 if (folio == page_folio(page))
1391 return ret;
1392 if (ret > 0) {
1393 folio_put(folio);
1394 folio = page_folio(page);
1395 }
1396 }
1397
1398 /*
1399 * This check prevents from calling folio_try_get() for any
1400 * unsupported type of folio in order to reduce the risk of unexpected
1401 * races caused by taking a folio refcount.
1402 */
1403 if (!HWPoisonHandlable(&folio->page, flags))
1404 return -EBUSY;
1405
1406 if (folio_try_get(folio)) {
1407 if (folio == page_folio(page))
1408 return 1;
1409
1410 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1411 folio_put(folio);
1412 }
1413
1414 return 0;
1415 }
1416
get_any_page(struct page * p,unsigned long flags)1417 static int get_any_page(struct page *p, unsigned long flags)
1418 {
1419 int ret = 0, pass = 0;
1420 bool count_increased = false;
1421
1422 if (flags & MF_COUNT_INCREASED)
1423 count_increased = true;
1424
1425 try_again:
1426 if (!count_increased) {
1427 ret = __get_hwpoison_page(p, flags);
1428 if (!ret) {
1429 if (page_count(p)) {
1430 /* We raced with an allocation, retry. */
1431 if (pass++ < 3)
1432 goto try_again;
1433 ret = -EBUSY;
1434 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1435 /* We raced with put_page, retry. */
1436 if (pass++ < 3)
1437 goto try_again;
1438 ret = -EIO;
1439 }
1440 goto out;
1441 } else if (ret == -EBUSY) {
1442 /*
1443 * We raced with (possibly temporary) unhandlable
1444 * page, retry.
1445 */
1446 if (pass++ < 3) {
1447 shake_page(p);
1448 goto try_again;
1449 }
1450 ret = -EIO;
1451 goto out;
1452 }
1453 }
1454
1455 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1456 ret = 1;
1457 } else {
1458 /*
1459 * A page we cannot handle. Check whether we can turn
1460 * it into something we can handle.
1461 */
1462 if (pass++ < 3) {
1463 put_page(p);
1464 shake_page(p);
1465 count_increased = false;
1466 goto try_again;
1467 }
1468 put_page(p);
1469 ret = -EIO;
1470 }
1471 out:
1472 if (ret == -EIO)
1473 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1474
1475 return ret;
1476 }
1477
__get_unpoison_page(struct page * page)1478 static int __get_unpoison_page(struct page *page)
1479 {
1480 struct folio *folio = page_folio(page);
1481 int ret = 0;
1482 bool hugetlb = false;
1483
1484 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1485 if (hugetlb) {
1486 /* Make sure hugetlb demotion did not happen from under us. */
1487 if (folio == page_folio(page))
1488 return ret;
1489 if (ret > 0)
1490 folio_put(folio);
1491 }
1492
1493 /*
1494 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1495 * but also isolated from buddy freelist, so need to identify the
1496 * state and have to cancel both operations to unpoison.
1497 */
1498 if (PageHWPoisonTakenOff(page))
1499 return -EHWPOISON;
1500
1501 return get_page_unless_zero(page) ? 1 : 0;
1502 }
1503
1504 /**
1505 * get_hwpoison_page() - Get refcount for memory error handling
1506 * @p: Raw error page (hit by memory error)
1507 * @flags: Flags controlling behavior of error handling
1508 *
1509 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1510 * error on it, after checking that the error page is in a well-defined state
1511 * (defined as a page-type we can successfully handle the memory error on it,
1512 * such as LRU page and hugetlb page).
1513 *
1514 * Memory error handling could be triggered at any time on any type of page,
1515 * so it's prone to race with typical memory management lifecycle (like
1516 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1517 * extra care for the error page's state (as done in __get_hwpoison_page()),
1518 * and has some retry logic in get_any_page().
1519 *
1520 * When called from unpoison_memory(), the caller should already ensure that
1521 * the given page has PG_hwpoison. So it's never reused for other page
1522 * allocations, and __get_unpoison_page() never races with them.
1523 *
1524 * Return: 0 on failure,
1525 * 1 on success for in-use pages in a well-defined state,
1526 * -EIO for pages on which we can not handle memory errors,
1527 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1528 * operations like allocation and free,
1529 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1530 */
get_hwpoison_page(struct page * p,unsigned long flags)1531 static int get_hwpoison_page(struct page *p, unsigned long flags)
1532 {
1533 int ret;
1534
1535 zone_pcp_disable(page_zone(p));
1536 if (flags & MF_UNPOISON)
1537 ret = __get_unpoison_page(p);
1538 else
1539 ret = get_any_page(p, flags);
1540 zone_pcp_enable(page_zone(p));
1541
1542 return ret;
1543 }
1544
1545 /*
1546 * Do all that is necessary to remove user space mappings. Unmap
1547 * the pages and send SIGBUS to the processes if the data was dirty.
1548 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1549 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1550 int flags, struct page *hpage)
1551 {
1552 struct folio *folio = page_folio(hpage);
1553 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1554 struct address_space *mapping;
1555 LIST_HEAD(tokill);
1556 bool unmap_success;
1557 int forcekill;
1558 bool mlocked = PageMlocked(hpage);
1559
1560 /*
1561 * Here we are interested only in user-mapped pages, so skip any
1562 * other types of pages.
1563 */
1564 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1565 return true;
1566 if (!(PageLRU(hpage) || PageHuge(p)))
1567 return true;
1568
1569 /*
1570 * This check implies we don't kill processes if their pages
1571 * are in the swap cache early. Those are always late kills.
1572 */
1573 if (!page_mapped(p))
1574 return true;
1575
1576 if (PageSwapCache(p)) {
1577 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1578 ttu &= ~TTU_HWPOISON;
1579 }
1580
1581 /*
1582 * Propagate the dirty bit from PTEs to struct page first, because we
1583 * need this to decide if we should kill or just drop the page.
1584 * XXX: the dirty test could be racy: set_page_dirty() may not always
1585 * be called inside page lock (it's recommended but not enforced).
1586 */
1587 mapping = page_mapping(hpage);
1588 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1589 mapping_can_writeback(mapping)) {
1590 if (page_mkclean(hpage)) {
1591 SetPageDirty(hpage);
1592 } else {
1593 ttu &= ~TTU_HWPOISON;
1594 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1595 pfn);
1596 }
1597 }
1598
1599 /*
1600 * First collect all the processes that have the page
1601 * mapped in dirty form. This has to be done before try_to_unmap,
1602 * because ttu takes the rmap data structures down.
1603 */
1604 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1605
1606 if (PageHuge(hpage) && !PageAnon(hpage)) {
1607 /*
1608 * For hugetlb pages in shared mappings, try_to_unmap
1609 * could potentially call huge_pmd_unshare. Because of
1610 * this, take semaphore in write mode here and set
1611 * TTU_RMAP_LOCKED to indicate we have taken the lock
1612 * at this higher level.
1613 */
1614 mapping = hugetlb_page_mapping_lock_write(hpage);
1615 if (mapping) {
1616 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1617 i_mmap_unlock_write(mapping);
1618 } else
1619 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1620 } else {
1621 try_to_unmap(folio, ttu);
1622 }
1623
1624 unmap_success = !page_mapped(p);
1625 if (!unmap_success)
1626 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1627 pfn, page_mapcount(p));
1628
1629 /*
1630 * try_to_unmap() might put mlocked page in lru cache, so call
1631 * shake_page() again to ensure that it's flushed.
1632 */
1633 if (mlocked)
1634 shake_page(hpage);
1635
1636 /*
1637 * Now that the dirty bit has been propagated to the
1638 * struct page and all unmaps done we can decide if
1639 * killing is needed or not. Only kill when the page
1640 * was dirty or the process is not restartable,
1641 * otherwise the tokill list is merely
1642 * freed. When there was a problem unmapping earlier
1643 * use a more force-full uncatchable kill to prevent
1644 * any accesses to the poisoned memory.
1645 */
1646 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1647 !unmap_success;
1648 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1649
1650 return unmap_success;
1651 }
1652
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1653 static int identify_page_state(unsigned long pfn, struct page *p,
1654 unsigned long page_flags)
1655 {
1656 struct page_state *ps;
1657
1658 /*
1659 * The first check uses the current page flags which may not have any
1660 * relevant information. The second check with the saved page flags is
1661 * carried out only if the first check can't determine the page status.
1662 */
1663 for (ps = error_states;; ps++)
1664 if ((p->flags & ps->mask) == ps->res)
1665 break;
1666
1667 page_flags |= (p->flags & (1UL << PG_dirty));
1668
1669 if (!ps->mask)
1670 for (ps = error_states;; ps++)
1671 if ((page_flags & ps->mask) == ps->res)
1672 break;
1673 return page_action(ps, p, pfn);
1674 }
1675
try_to_split_thp_page(struct page * page)1676 static int try_to_split_thp_page(struct page *page)
1677 {
1678 int ret;
1679
1680 lock_page(page);
1681 ret = split_huge_page(page);
1682 unlock_page(page);
1683
1684 if (unlikely(ret))
1685 put_page(page);
1686
1687 return ret;
1688 }
1689
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1690 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1691 struct address_space *mapping, pgoff_t index, int flags)
1692 {
1693 struct to_kill *tk;
1694 unsigned long size = 0;
1695
1696 list_for_each_entry(tk, to_kill, nd)
1697 if (tk->size_shift)
1698 size = max(size, 1UL << tk->size_shift);
1699
1700 if (size) {
1701 /*
1702 * Unmap the largest mapping to avoid breaking up device-dax
1703 * mappings which are constant size. The actual size of the
1704 * mapping being torn down is communicated in siginfo, see
1705 * kill_proc()
1706 */
1707 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1708
1709 unmap_mapping_range(mapping, start, size, 0);
1710 }
1711
1712 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1713 }
1714
1715 /*
1716 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1717 * either do not claim or fails to claim a hwpoison event, or devdax.
1718 * The fsdax pages are initialized per base page, and the devdax pages
1719 * could be initialized either as base pages, or as compound pages with
1720 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1721 * hwpoison, such that, if a subpage of a compound page is poisoned,
1722 * simply mark the compound head page is by far sufficient.
1723 */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1724 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1725 struct dev_pagemap *pgmap)
1726 {
1727 struct folio *folio = pfn_folio(pfn);
1728 LIST_HEAD(to_kill);
1729 dax_entry_t cookie;
1730 int rc = 0;
1731
1732 /*
1733 * Prevent the inode from being freed while we are interrogating
1734 * the address_space, typically this would be handled by
1735 * lock_page(), but dax pages do not use the page lock. This
1736 * also prevents changes to the mapping of this pfn until
1737 * poison signaling is complete.
1738 */
1739 cookie = dax_lock_folio(folio);
1740 if (!cookie)
1741 return -EBUSY;
1742
1743 if (hwpoison_filter(&folio->page)) {
1744 rc = -EOPNOTSUPP;
1745 goto unlock;
1746 }
1747
1748 switch (pgmap->type) {
1749 case MEMORY_DEVICE_PRIVATE:
1750 case MEMORY_DEVICE_COHERENT:
1751 /*
1752 * TODO: Handle device pages which may need coordination
1753 * with device-side memory.
1754 */
1755 rc = -ENXIO;
1756 goto unlock;
1757 default:
1758 break;
1759 }
1760
1761 /*
1762 * Use this flag as an indication that the dax page has been
1763 * remapped UC to prevent speculative consumption of poison.
1764 */
1765 SetPageHWPoison(&folio->page);
1766
1767 /*
1768 * Unlike System-RAM there is no possibility to swap in a
1769 * different physical page at a given virtual address, so all
1770 * userspace consumption of ZONE_DEVICE memory necessitates
1771 * SIGBUS (i.e. MF_MUST_KILL)
1772 */
1773 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1774 collect_procs(folio, &folio->page, &to_kill, true);
1775
1776 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1777 unlock:
1778 dax_unlock_folio(folio, cookie);
1779 return rc;
1780 }
1781
1782 #ifdef CONFIG_FS_DAX
1783 /**
1784 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1785 * @mapping: address_space of the file in use
1786 * @index: start pgoff of the range within the file
1787 * @count: length of the range, in unit of PAGE_SIZE
1788 * @mf_flags: memory failure flags
1789 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1790 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1791 unsigned long count, int mf_flags)
1792 {
1793 LIST_HEAD(to_kill);
1794 dax_entry_t cookie;
1795 struct page *page;
1796 size_t end = index + count;
1797
1798 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1799
1800 for (; index < end; index++) {
1801 page = NULL;
1802 cookie = dax_lock_mapping_entry(mapping, index, &page);
1803 if (!cookie)
1804 return -EBUSY;
1805 if (!page)
1806 goto unlock;
1807
1808 SetPageHWPoison(page);
1809
1810 collect_procs_fsdax(page, mapping, index, &to_kill);
1811 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1812 index, mf_flags);
1813 unlock:
1814 dax_unlock_mapping_entry(mapping, index, cookie);
1815 }
1816 return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1819 #endif /* CONFIG_FS_DAX */
1820
1821 #ifdef CONFIG_HUGETLB_PAGE
1822
1823 /*
1824 * Struct raw_hwp_page represents information about "raw error page",
1825 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1826 */
1827 struct raw_hwp_page {
1828 struct llist_node node;
1829 struct page *page;
1830 };
1831
raw_hwp_list_head(struct folio * folio)1832 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1833 {
1834 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1835 }
1836
is_raw_hwpoison_page_in_hugepage(struct page * page)1837 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1838 {
1839 struct llist_head *raw_hwp_head;
1840 struct raw_hwp_page *p;
1841 struct folio *folio = page_folio(page);
1842 bool ret = false;
1843
1844 if (!folio_test_hwpoison(folio))
1845 return false;
1846
1847 if (!folio_test_hugetlb(folio))
1848 return PageHWPoison(page);
1849
1850 /*
1851 * When RawHwpUnreliable is set, kernel lost track of which subpages
1852 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1853 */
1854 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1855 return true;
1856
1857 mutex_lock(&mf_mutex);
1858
1859 raw_hwp_head = raw_hwp_list_head(folio);
1860 llist_for_each_entry(p, raw_hwp_head->first, node) {
1861 if (page == p->page) {
1862 ret = true;
1863 break;
1864 }
1865 }
1866
1867 mutex_unlock(&mf_mutex);
1868
1869 return ret;
1870 }
1871
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1872 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1873 {
1874 struct llist_node *head;
1875 struct raw_hwp_page *p, *next;
1876 unsigned long count = 0;
1877
1878 head = llist_del_all(raw_hwp_list_head(folio));
1879 llist_for_each_entry_safe(p, next, head, node) {
1880 if (move_flag)
1881 SetPageHWPoison(p->page);
1882 else
1883 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1884 kfree(p);
1885 count++;
1886 }
1887 return count;
1888 }
1889
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1890 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1891 {
1892 struct llist_head *head;
1893 struct raw_hwp_page *raw_hwp;
1894 struct raw_hwp_page *p, *next;
1895 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1896
1897 /*
1898 * Once the hwpoison hugepage has lost reliable raw error info,
1899 * there is little meaning to keep additional error info precisely,
1900 * so skip to add additional raw error info.
1901 */
1902 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1903 return -EHWPOISON;
1904 head = raw_hwp_list_head(folio);
1905 llist_for_each_entry_safe(p, next, head->first, node) {
1906 if (p->page == page)
1907 return -EHWPOISON;
1908 }
1909
1910 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1911 if (raw_hwp) {
1912 raw_hwp->page = page;
1913 llist_add(&raw_hwp->node, head);
1914 /* the first error event will be counted in action_result(). */
1915 if (ret)
1916 num_poisoned_pages_inc(page_to_pfn(page));
1917 } else {
1918 /*
1919 * Failed to save raw error info. We no longer trace all
1920 * hwpoisoned subpages, and we need refuse to free/dissolve
1921 * this hwpoisoned hugepage.
1922 */
1923 folio_set_hugetlb_raw_hwp_unreliable(folio);
1924 /*
1925 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1926 * used any more, so free it.
1927 */
1928 __folio_free_raw_hwp(folio, false);
1929 }
1930 return ret;
1931 }
1932
folio_free_raw_hwp(struct folio * folio,bool move_flag)1933 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1934 {
1935 /*
1936 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1937 * pages for tail pages are required but they don't exist.
1938 */
1939 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1940 return 0;
1941
1942 /*
1943 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1944 * definition.
1945 */
1946 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1947 return 0;
1948
1949 return __folio_free_raw_hwp(folio, move_flag);
1950 }
1951
folio_clear_hugetlb_hwpoison(struct folio * folio)1952 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1953 {
1954 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1955 return;
1956 if (folio_test_hugetlb_vmemmap_optimized(folio))
1957 return;
1958 folio_clear_hwpoison(folio);
1959 folio_free_raw_hwp(folio, true);
1960 }
1961
1962 /*
1963 * Called from hugetlb code with hugetlb_lock held.
1964 *
1965 * Return values:
1966 * 0 - free hugepage
1967 * 1 - in-use hugepage
1968 * 2 - not a hugepage
1969 * -EBUSY - the hugepage is busy (try to retry)
1970 * -EHWPOISON - the hugepage is already hwpoisoned
1971 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1972 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1973 bool *migratable_cleared)
1974 {
1975 struct page *page = pfn_to_page(pfn);
1976 struct folio *folio = page_folio(page);
1977 int ret = 2; /* fallback to normal page handling */
1978 bool count_increased = false;
1979
1980 if (!folio_test_hugetlb(folio))
1981 goto out;
1982
1983 if (flags & MF_COUNT_INCREASED) {
1984 ret = 1;
1985 count_increased = true;
1986 } else if (folio_test_hugetlb_freed(folio)) {
1987 ret = 0;
1988 } else if (folio_test_hugetlb_migratable(folio)) {
1989 ret = folio_try_get(folio);
1990 if (ret)
1991 count_increased = true;
1992 } else {
1993 ret = -EBUSY;
1994 if (!(flags & MF_NO_RETRY))
1995 goto out;
1996 }
1997
1998 if (folio_set_hugetlb_hwpoison(folio, page)) {
1999 ret = -EHWPOISON;
2000 goto out;
2001 }
2002
2003 /*
2004 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2005 * from being migrated by memory hotremove.
2006 */
2007 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2008 folio_clear_hugetlb_migratable(folio);
2009 *migratable_cleared = true;
2010 }
2011
2012 return ret;
2013 out:
2014 if (count_increased)
2015 folio_put(folio);
2016 return ret;
2017 }
2018
2019 /*
2020 * Taking refcount of hugetlb pages needs extra care about race conditions
2021 * with basic operations like hugepage allocation/free/demotion.
2022 * So some of prechecks for hwpoison (pinning, and testing/setting
2023 * PageHWPoison) should be done in single hugetlb_lock range.
2024 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2025 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2026 {
2027 int res;
2028 struct page *p = pfn_to_page(pfn);
2029 struct folio *folio;
2030 unsigned long page_flags;
2031 bool migratable_cleared = false;
2032
2033 *hugetlb = 1;
2034 retry:
2035 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2036 if (res == 2) { /* fallback to normal page handling */
2037 *hugetlb = 0;
2038 return 0;
2039 } else if (res == -EHWPOISON) {
2040 pr_err("%#lx: already hardware poisoned\n", pfn);
2041 if (flags & MF_ACTION_REQUIRED) {
2042 folio = page_folio(p);
2043 res = kill_accessing_process(current, folio_pfn(folio), flags);
2044 }
2045 return res;
2046 } else if (res == -EBUSY) {
2047 if (!(flags & MF_NO_RETRY)) {
2048 flags |= MF_NO_RETRY;
2049 goto retry;
2050 }
2051 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2052 }
2053
2054 folio = page_folio(p);
2055 folio_lock(folio);
2056
2057 if (hwpoison_filter(p)) {
2058 folio_clear_hugetlb_hwpoison(folio);
2059 if (migratable_cleared)
2060 folio_set_hugetlb_migratable(folio);
2061 folio_unlock(folio);
2062 if (res == 1)
2063 folio_put(folio);
2064 return -EOPNOTSUPP;
2065 }
2066
2067 /*
2068 * Handling free hugepage. The possible race with hugepage allocation
2069 * or demotion can be prevented by PageHWPoison flag.
2070 */
2071 if (res == 0) {
2072 folio_unlock(folio);
2073 if (__page_handle_poison(p) >= 0) {
2074 page_ref_inc(p);
2075 res = MF_RECOVERED;
2076 } else {
2077 res = MF_FAILED;
2078 }
2079 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2080 }
2081
2082 page_flags = folio->flags;
2083
2084 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2085 folio_unlock(folio);
2086 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2087 }
2088
2089 return identify_page_state(pfn, p, page_flags);
2090 }
2091
2092 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2093 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2094 {
2095 return 0;
2096 }
2097
folio_free_raw_hwp(struct folio * folio,bool flag)2098 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2099 {
2100 return 0;
2101 }
2102 #endif /* CONFIG_HUGETLB_PAGE */
2103
2104 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2105 static void put_ref_page(unsigned long pfn, int flags)
2106 {
2107 struct page *page;
2108
2109 if (!(flags & MF_COUNT_INCREASED))
2110 return;
2111
2112 page = pfn_to_page(pfn);
2113 if (page)
2114 put_page(page);
2115 }
2116
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2117 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2118 struct dev_pagemap *pgmap)
2119 {
2120 int rc = -ENXIO;
2121
2122 /* device metadata space is not recoverable */
2123 if (!pgmap_pfn_valid(pgmap, pfn))
2124 goto out;
2125
2126 /*
2127 * Call driver's implementation to handle the memory failure, otherwise
2128 * fall back to generic handler.
2129 */
2130 if (pgmap_has_memory_failure(pgmap)) {
2131 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2132 /*
2133 * Fall back to generic handler too if operation is not
2134 * supported inside the driver/device/filesystem.
2135 */
2136 if (rc != -EOPNOTSUPP)
2137 goto out;
2138 }
2139
2140 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2141 out:
2142 /* drop pgmap ref acquired in caller */
2143 put_dev_pagemap(pgmap);
2144 if (rc != -EOPNOTSUPP)
2145 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2146 return rc;
2147 }
2148
2149 /**
2150 * memory_failure - Handle memory failure of a page.
2151 * @pfn: Page Number of the corrupted page
2152 * @flags: fine tune action taken
2153 *
2154 * This function is called by the low level machine check code
2155 * of an architecture when it detects hardware memory corruption
2156 * of a page. It tries its best to recover, which includes
2157 * dropping pages, killing processes etc.
2158 *
2159 * The function is primarily of use for corruptions that
2160 * happen outside the current execution context (e.g. when
2161 * detected by a background scrubber)
2162 *
2163 * Must run in process context (e.g. a work queue) with interrupts
2164 * enabled and no spinlocks held.
2165 *
2166 * Return: 0 for successfully handled the memory error,
2167 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2168 * < 0(except -EOPNOTSUPP) on failure.
2169 */
memory_failure(unsigned long pfn,int flags)2170 int memory_failure(unsigned long pfn, int flags)
2171 {
2172 struct page *p;
2173 struct page *hpage;
2174 struct dev_pagemap *pgmap;
2175 int res = 0;
2176 unsigned long page_flags;
2177 bool retry = true;
2178 int hugetlb = 0;
2179
2180 if (!sysctl_memory_failure_recovery)
2181 panic("Memory failure on page %lx", pfn);
2182
2183 mutex_lock(&mf_mutex);
2184
2185 if (!(flags & MF_SW_SIMULATED))
2186 hw_memory_failure = true;
2187
2188 p = pfn_to_online_page(pfn);
2189 if (!p) {
2190 res = arch_memory_failure(pfn, flags);
2191 if (res == 0)
2192 goto unlock_mutex;
2193
2194 if (pfn_valid(pfn)) {
2195 pgmap = get_dev_pagemap(pfn, NULL);
2196 put_ref_page(pfn, flags);
2197 if (pgmap) {
2198 res = memory_failure_dev_pagemap(pfn, flags,
2199 pgmap);
2200 goto unlock_mutex;
2201 }
2202 }
2203 pr_err("%#lx: memory outside kernel control\n", pfn);
2204 res = -ENXIO;
2205 goto unlock_mutex;
2206 }
2207
2208 try_again:
2209 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2210 if (hugetlb)
2211 goto unlock_mutex;
2212
2213 if (TestSetPageHWPoison(p)) {
2214 pr_err("%#lx: already hardware poisoned\n", pfn);
2215 res = -EHWPOISON;
2216 if (flags & MF_ACTION_REQUIRED)
2217 res = kill_accessing_process(current, pfn, flags);
2218 if (flags & MF_COUNT_INCREASED)
2219 put_page(p);
2220 goto unlock_mutex;
2221 }
2222
2223 /*
2224 * We need/can do nothing about count=0 pages.
2225 * 1) it's a free page, and therefore in safe hand:
2226 * check_new_page() will be the gate keeper.
2227 * 2) it's part of a non-compound high order page.
2228 * Implies some kernel user: cannot stop them from
2229 * R/W the page; let's pray that the page has been
2230 * used and will be freed some time later.
2231 * In fact it's dangerous to directly bump up page count from 0,
2232 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2233 */
2234 if (!(flags & MF_COUNT_INCREASED)) {
2235 res = get_hwpoison_page(p, flags);
2236 if (!res) {
2237 if (is_free_buddy_page(p)) {
2238 if (take_page_off_buddy(p)) {
2239 page_ref_inc(p);
2240 res = MF_RECOVERED;
2241 } else {
2242 /* We lost the race, try again */
2243 if (retry) {
2244 ClearPageHWPoison(p);
2245 retry = false;
2246 goto try_again;
2247 }
2248 res = MF_FAILED;
2249 }
2250 res = action_result(pfn, MF_MSG_BUDDY, res);
2251 } else {
2252 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2253 }
2254 goto unlock_mutex;
2255 } else if (res < 0) {
2256 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2257 goto unlock_mutex;
2258 }
2259 }
2260
2261 hpage = compound_head(p);
2262 if (PageTransHuge(hpage)) {
2263 /*
2264 * The flag must be set after the refcount is bumped
2265 * otherwise it may race with THP split.
2266 * And the flag can't be set in get_hwpoison_page() since
2267 * it is called by soft offline too and it is just called
2268 * for !MF_COUNT_INCREASED. So here seems to be the best
2269 * place.
2270 *
2271 * Don't need care about the above error handling paths for
2272 * get_hwpoison_page() since they handle either free page
2273 * or unhandlable page. The refcount is bumped iff the
2274 * page is a valid handlable page.
2275 */
2276 SetPageHasHWPoisoned(hpage);
2277 if (try_to_split_thp_page(p) < 0) {
2278 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2279 goto unlock_mutex;
2280 }
2281 VM_BUG_ON_PAGE(!page_count(p), p);
2282 }
2283
2284 /*
2285 * We ignore non-LRU pages for good reasons.
2286 * - PG_locked is only well defined for LRU pages and a few others
2287 * - to avoid races with __SetPageLocked()
2288 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2289 * The check (unnecessarily) ignores LRU pages being isolated and
2290 * walked by the page reclaim code, however that's not a big loss.
2291 */
2292 shake_page(p);
2293
2294 lock_page(p);
2295
2296 /*
2297 * We're only intended to deal with the non-Compound page here.
2298 * However, the page could have changed compound pages due to
2299 * race window. If this happens, we could try again to hopefully
2300 * handle the page next round.
2301 */
2302 if (PageCompound(p)) {
2303 if (retry) {
2304 ClearPageHWPoison(p);
2305 unlock_page(p);
2306 put_page(p);
2307 flags &= ~MF_COUNT_INCREASED;
2308 retry = false;
2309 goto try_again;
2310 }
2311 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2312 goto unlock_page;
2313 }
2314
2315 /*
2316 * We use page flags to determine what action should be taken, but
2317 * the flags can be modified by the error containment action. One
2318 * example is an mlocked page, where PG_mlocked is cleared by
2319 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2320 * correctly, we save a copy of the page flags at this time.
2321 */
2322 page_flags = p->flags;
2323
2324 if (hwpoison_filter(p)) {
2325 ClearPageHWPoison(p);
2326 unlock_page(p);
2327 put_page(p);
2328 res = -EOPNOTSUPP;
2329 goto unlock_mutex;
2330 }
2331
2332 /*
2333 * __munlock_folio() may clear a writeback page's LRU flag without
2334 * page_lock. We need wait writeback completion for this page or it
2335 * may trigger vfs BUG while evict inode.
2336 */
2337 if (!PageLRU(p) && !PageWriteback(p))
2338 goto identify_page_state;
2339
2340 /*
2341 * It's very difficult to mess with pages currently under IO
2342 * and in many cases impossible, so we just avoid it here.
2343 */
2344 wait_on_page_writeback(p);
2345
2346 /*
2347 * Now take care of user space mappings.
2348 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2349 */
2350 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2351 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2352 goto unlock_page;
2353 }
2354
2355 /*
2356 * Torn down by someone else?
2357 */
2358 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2359 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2360 goto unlock_page;
2361 }
2362
2363 identify_page_state:
2364 res = identify_page_state(pfn, p, page_flags);
2365 mutex_unlock(&mf_mutex);
2366 return res;
2367 unlock_page:
2368 unlock_page(p);
2369 unlock_mutex:
2370 mutex_unlock(&mf_mutex);
2371 return res;
2372 }
2373 EXPORT_SYMBOL_GPL(memory_failure);
2374
2375 #define MEMORY_FAILURE_FIFO_ORDER 4
2376 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2377
2378 struct memory_failure_entry {
2379 unsigned long pfn;
2380 int flags;
2381 };
2382
2383 struct memory_failure_cpu {
2384 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2385 MEMORY_FAILURE_FIFO_SIZE);
2386 spinlock_t lock;
2387 struct work_struct work;
2388 };
2389
2390 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2391
2392 /**
2393 * memory_failure_queue - Schedule handling memory failure of a page.
2394 * @pfn: Page Number of the corrupted page
2395 * @flags: Flags for memory failure handling
2396 *
2397 * This function is called by the low level hardware error handler
2398 * when it detects hardware memory corruption of a page. It schedules
2399 * the recovering of error page, including dropping pages, killing
2400 * processes etc.
2401 *
2402 * The function is primarily of use for corruptions that
2403 * happen outside the current execution context (e.g. when
2404 * detected by a background scrubber)
2405 *
2406 * Can run in IRQ context.
2407 */
memory_failure_queue(unsigned long pfn,int flags)2408 void memory_failure_queue(unsigned long pfn, int flags)
2409 {
2410 struct memory_failure_cpu *mf_cpu;
2411 unsigned long proc_flags;
2412 struct memory_failure_entry entry = {
2413 .pfn = pfn,
2414 .flags = flags,
2415 };
2416
2417 mf_cpu = &get_cpu_var(memory_failure_cpu);
2418 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2419 if (kfifo_put(&mf_cpu->fifo, entry))
2420 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2421 else
2422 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2423 pfn);
2424 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2425 put_cpu_var(memory_failure_cpu);
2426 }
2427 EXPORT_SYMBOL_GPL(memory_failure_queue);
2428
memory_failure_work_func(struct work_struct * work)2429 static void memory_failure_work_func(struct work_struct *work)
2430 {
2431 struct memory_failure_cpu *mf_cpu;
2432 struct memory_failure_entry entry = { 0, };
2433 unsigned long proc_flags;
2434 int gotten;
2435
2436 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2437 for (;;) {
2438 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2439 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2440 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2441 if (!gotten)
2442 break;
2443 if (entry.flags & MF_SOFT_OFFLINE)
2444 soft_offline_page(entry.pfn, entry.flags);
2445 else
2446 memory_failure(entry.pfn, entry.flags);
2447 }
2448 }
2449
2450 /*
2451 * Process memory_failure work queued on the specified CPU.
2452 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2453 */
memory_failure_queue_kick(int cpu)2454 void memory_failure_queue_kick(int cpu)
2455 {
2456 struct memory_failure_cpu *mf_cpu;
2457
2458 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2459 cancel_work_sync(&mf_cpu->work);
2460 memory_failure_work_func(&mf_cpu->work);
2461 }
2462
memory_failure_init(void)2463 static int __init memory_failure_init(void)
2464 {
2465 struct memory_failure_cpu *mf_cpu;
2466 int cpu;
2467
2468 for_each_possible_cpu(cpu) {
2469 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2470 spin_lock_init(&mf_cpu->lock);
2471 INIT_KFIFO(mf_cpu->fifo);
2472 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2473 }
2474
2475 register_sysctl_init("vm", memory_failure_table);
2476
2477 return 0;
2478 }
2479 core_initcall(memory_failure_init);
2480
2481 #undef pr_fmt
2482 #define pr_fmt(fmt) "" fmt
2483 #define unpoison_pr_info(fmt, pfn, rs) \
2484 ({ \
2485 if (__ratelimit(rs)) \
2486 pr_info(fmt, pfn); \
2487 })
2488
2489 /**
2490 * unpoison_memory - Unpoison a previously poisoned page
2491 * @pfn: Page number of the to be unpoisoned page
2492 *
2493 * Software-unpoison a page that has been poisoned by
2494 * memory_failure() earlier.
2495 *
2496 * This is only done on the software-level, so it only works
2497 * for linux injected failures, not real hardware failures
2498 *
2499 * Returns 0 for success, otherwise -errno.
2500 */
unpoison_memory(unsigned long pfn)2501 int unpoison_memory(unsigned long pfn)
2502 {
2503 struct folio *folio;
2504 struct page *p;
2505 int ret = -EBUSY, ghp;
2506 unsigned long count = 1;
2507 bool huge = false;
2508 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2509 DEFAULT_RATELIMIT_BURST);
2510
2511 if (!pfn_valid(pfn))
2512 return -ENXIO;
2513
2514 p = pfn_to_page(pfn);
2515 folio = page_folio(p);
2516
2517 mutex_lock(&mf_mutex);
2518
2519 if (hw_memory_failure) {
2520 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2521 pfn, &unpoison_rs);
2522 ret = -EOPNOTSUPP;
2523 goto unlock_mutex;
2524 }
2525
2526 if (!PageHWPoison(p)) {
2527 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2528 pfn, &unpoison_rs);
2529 goto unlock_mutex;
2530 }
2531
2532 if (folio_ref_count(folio) > 1) {
2533 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2534 pfn, &unpoison_rs);
2535 goto unlock_mutex;
2536 }
2537
2538 if (folio_test_slab(folio) || PageTable(&folio->page) ||
2539 folio_test_reserved(folio) || PageOffline(&folio->page))
2540 goto unlock_mutex;
2541
2542 /*
2543 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2544 * in folio_mapped() has to be done after folio_test_slab() is checked.
2545 */
2546 if (folio_mapped(folio)) {
2547 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2548 pfn, &unpoison_rs);
2549 goto unlock_mutex;
2550 }
2551
2552 if (folio_mapping(folio)) {
2553 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2554 pfn, &unpoison_rs);
2555 goto unlock_mutex;
2556 }
2557
2558 ghp = get_hwpoison_page(p, MF_UNPOISON);
2559 if (!ghp) {
2560 if (PageHuge(p)) {
2561 huge = true;
2562 count = folio_free_raw_hwp(folio, false);
2563 if (count == 0)
2564 goto unlock_mutex;
2565 }
2566 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2567 } else if (ghp < 0) {
2568 if (ghp == -EHWPOISON) {
2569 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2570 } else {
2571 ret = ghp;
2572 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2573 pfn, &unpoison_rs);
2574 }
2575 } else {
2576 if (PageHuge(p)) {
2577 huge = true;
2578 count = folio_free_raw_hwp(folio, false);
2579 if (count == 0) {
2580 folio_put(folio);
2581 goto unlock_mutex;
2582 }
2583 }
2584
2585 folio_put(folio);
2586 if (TestClearPageHWPoison(p)) {
2587 folio_put(folio);
2588 ret = 0;
2589 }
2590 }
2591
2592 unlock_mutex:
2593 mutex_unlock(&mf_mutex);
2594 if (!ret) {
2595 if (!huge)
2596 num_poisoned_pages_sub(pfn, 1);
2597 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2598 page_to_pfn(p), &unpoison_rs);
2599 }
2600 return ret;
2601 }
2602 EXPORT_SYMBOL(unpoison_memory);
2603
isolate_page(struct page * page,struct list_head * pagelist)2604 static bool isolate_page(struct page *page, struct list_head *pagelist)
2605 {
2606 bool isolated = false;
2607
2608 if (PageHuge(page)) {
2609 isolated = isolate_hugetlb(page_folio(page), pagelist);
2610 } else {
2611 bool lru = !__PageMovable(page);
2612
2613 if (lru)
2614 isolated = isolate_lru_page(page);
2615 else
2616 isolated = isolate_movable_page(page,
2617 ISOLATE_UNEVICTABLE);
2618
2619 if (isolated) {
2620 list_add(&page->lru, pagelist);
2621 if (lru)
2622 inc_node_page_state(page, NR_ISOLATED_ANON +
2623 page_is_file_lru(page));
2624 }
2625 }
2626
2627 /*
2628 * If we succeed to isolate the page, we grabbed another refcount on
2629 * the page, so we can safely drop the one we got from get_any_page().
2630 * If we failed to isolate the page, it means that we cannot go further
2631 * and we will return an error, so drop the reference we got from
2632 * get_any_page() as well.
2633 */
2634 put_page(page);
2635 return isolated;
2636 }
2637
2638 /*
2639 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2640 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2641 * If the page is mapped, it migrates the contents over.
2642 */
soft_offline_in_use_page(struct page * page)2643 static int soft_offline_in_use_page(struct page *page)
2644 {
2645 long ret = 0;
2646 unsigned long pfn = page_to_pfn(page);
2647 struct page *hpage = compound_head(page);
2648 char const *msg_page[] = {"page", "hugepage"};
2649 bool huge = PageHuge(page);
2650 LIST_HEAD(pagelist);
2651 struct migration_target_control mtc = {
2652 .nid = NUMA_NO_NODE,
2653 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2654 };
2655
2656 if (!huge && PageTransHuge(hpage)) {
2657 if (try_to_split_thp_page(page)) {
2658 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2659 return -EBUSY;
2660 }
2661 hpage = page;
2662 }
2663
2664 lock_page(page);
2665 if (!huge)
2666 wait_on_page_writeback(page);
2667 if (PageHWPoison(page)) {
2668 unlock_page(page);
2669 put_page(page);
2670 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2671 return 0;
2672 }
2673
2674 if (!huge && PageLRU(page) && !PageSwapCache(page))
2675 /*
2676 * Try to invalidate first. This should work for
2677 * non dirty unmapped page cache pages.
2678 */
2679 ret = invalidate_inode_page(page);
2680 unlock_page(page);
2681
2682 if (ret) {
2683 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2684 page_handle_poison(page, false, true);
2685 return 0;
2686 }
2687
2688 if (isolate_page(hpage, &pagelist)) {
2689 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2690 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2691 if (!ret) {
2692 bool release = !huge;
2693
2694 if (!page_handle_poison(page, huge, release))
2695 ret = -EBUSY;
2696 } else {
2697 if (!list_empty(&pagelist))
2698 putback_movable_pages(&pagelist);
2699
2700 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2701 pfn, msg_page[huge], ret, &page->flags);
2702 if (ret > 0)
2703 ret = -EBUSY;
2704 }
2705 } else {
2706 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2707 pfn, msg_page[huge], page_count(page), &page->flags);
2708 ret = -EBUSY;
2709 }
2710 return ret;
2711 }
2712
2713 /**
2714 * soft_offline_page - Soft offline a page.
2715 * @pfn: pfn to soft-offline
2716 * @flags: flags. Same as memory_failure().
2717 *
2718 * Returns 0 on success
2719 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2720 * < 0 otherwise negated errno.
2721 *
2722 * Soft offline a page, by migration or invalidation,
2723 * without killing anything. This is for the case when
2724 * a page is not corrupted yet (so it's still valid to access),
2725 * but has had a number of corrected errors and is better taken
2726 * out.
2727 *
2728 * The actual policy on when to do that is maintained by
2729 * user space.
2730 *
2731 * This should never impact any application or cause data loss,
2732 * however it might take some time.
2733 *
2734 * This is not a 100% solution for all memory, but tries to be
2735 * ``good enough'' for the majority of memory.
2736 */
soft_offline_page(unsigned long pfn,int flags)2737 int soft_offline_page(unsigned long pfn, int flags)
2738 {
2739 int ret;
2740 bool try_again = true;
2741 struct page *page;
2742
2743 if (!pfn_valid(pfn)) {
2744 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2745 return -ENXIO;
2746 }
2747
2748 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2749 page = pfn_to_online_page(pfn);
2750 if (!page) {
2751 put_ref_page(pfn, flags);
2752 return -EIO;
2753 }
2754
2755 mutex_lock(&mf_mutex);
2756
2757 if (PageHWPoison(page)) {
2758 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2759 put_ref_page(pfn, flags);
2760 mutex_unlock(&mf_mutex);
2761 return 0;
2762 }
2763
2764 retry:
2765 get_online_mems();
2766 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2767 put_online_mems();
2768
2769 if (hwpoison_filter(page)) {
2770 if (ret > 0)
2771 put_page(page);
2772
2773 mutex_unlock(&mf_mutex);
2774 return -EOPNOTSUPP;
2775 }
2776
2777 if (ret > 0) {
2778 ret = soft_offline_in_use_page(page);
2779 } else if (ret == 0) {
2780 if (!page_handle_poison(page, true, false)) {
2781 if (try_again) {
2782 try_again = false;
2783 flags &= ~MF_COUNT_INCREASED;
2784 goto retry;
2785 }
2786 ret = -EBUSY;
2787 }
2788 }
2789
2790 mutex_unlock(&mf_mutex);
2791
2792 return ret;
2793 }
2794