1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 William Irwin, IBM
5  * (C) 2004 William Irwin, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 
40 #define pid_hashfn(nr, ns)	\
41 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
45 
46 int pid_max = PID_MAX_DEFAULT;
47 
48 #define RESERVED_PIDS		300
49 
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52 
53 #define BITS_PER_PAGE		(PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
55 
mk_pid(struct pid_namespace * pid_ns,struct pidmap * map,int off)56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 		struct pidmap *map, int off)
58 {
59 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61 
62 #define find_next_offset(map, off)					\
63 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64 
65 /*
66  * PID-map pages start out as NULL, they get allocated upon
67  * first use and are never deallocated. This way a low pid_max
68  * value does not cause lots of bitmaps to be allocated, but
69  * the scheme scales to up to 4 million PIDs, runtime.
70  */
71 struct pid_namespace init_pid_ns = {
72 	.kref = {
73 		.refcount       = ATOMIC_INIT(2),
74 	},
75 	.pidmap = {
76 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 	},
78 	.last_pid = 0,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83 
is_container_init(struct task_struct * tsk)84 int is_container_init(struct task_struct *tsk)
85 {
86 	int ret = 0;
87 	struct pid *pid;
88 
89 	rcu_read_lock();
90 	pid = task_pid(tsk);
91 	if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 		ret = 1;
93 	rcu_read_unlock();
94 
95 	return ret;
96 }
97 EXPORT_SYMBOL(is_container_init);
98 
99 /*
100  * Note: disable interrupts while the pidmap_lock is held as an
101  * interrupt might come in and do read_lock(&tasklist_lock).
102  *
103  * If we don't disable interrupts there is a nasty deadlock between
104  * detach_pid()->free_pid() and another cpu that does
105  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106  * read_lock(&tasklist_lock);
107  *
108  * After we clean up the tasklist_lock and know there are no
109  * irq handlers that take it we can leave the interrupts enabled.
110  * For now it is easier to be safe than to prove it can't happen.
111  */
112 
113 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114 
free_pidmap(struct upid * upid)115 static void free_pidmap(struct upid *upid)
116 {
117 	int nr = upid->nr;
118 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119 	int offset = nr & BITS_PER_PAGE_MASK;
120 
121 	clear_bit(offset, map->page);
122 	atomic_inc(&map->nr_free);
123 }
124 
125 /*
126  * If we started walking pids at 'base', is 'a' seen before 'b'?
127  */
pid_before(int base,int a,int b)128 static int pid_before(int base, int a, int b)
129 {
130 	/*
131 	 * This is the same as saying
132 	 *
133 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
135 	 */
136 	return (unsigned)(a - base) < (unsigned)(b - base);
137 }
138 
139 /*
140  * We might be racing with someone else trying to set pid_ns->last_pid
141  * at the pid allocation time (there's also a sysctl for this, but racing
142  * with this one is OK, see comment in kernel/pid_namespace.c about it).
143  * We want the winner to have the "later" value, because if the
144  * "earlier" value prevails, then a pid may get reused immediately.
145  *
146  * Since pids rollover, it is not sufficient to just pick the bigger
147  * value.  We have to consider where we started counting from.
148  *
149  * 'base' is the value of pid_ns->last_pid that we observed when
150  * we started looking for a pid.
151  *
152  * 'pid' is the pid that we eventually found.
153  */
set_last_pid(struct pid_namespace * pid_ns,int base,int pid)154 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
155 {
156 	int prev;
157 	int last_write = base;
158 	do {
159 		prev = last_write;
160 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
161 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
162 }
163 
alloc_pidmap(struct pid_namespace * pid_ns)164 static int alloc_pidmap(struct pid_namespace *pid_ns)
165 {
166 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
167 	struct pidmap *map;
168 
169 	pid = last + 1;
170 	if (pid >= pid_max)
171 		pid = RESERVED_PIDS;
172 	offset = pid & BITS_PER_PAGE_MASK;
173 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
174 	/*
175 	 * If last_pid points into the middle of the map->page we
176 	 * want to scan this bitmap block twice, the second time
177 	 * we start with offset == 0 (or RESERVED_PIDS).
178 	 */
179 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
180 	for (i = 0; i <= max_scan; ++i) {
181 		if (unlikely(!map->page)) {
182 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
183 			/*
184 			 * Free the page if someone raced with us
185 			 * installing it:
186 			 */
187 			spin_lock_irq(&pidmap_lock);
188 			if (!map->page) {
189 				map->page = page;
190 				page = NULL;
191 			}
192 			spin_unlock_irq(&pidmap_lock);
193 			kfree(page);
194 			if (unlikely(!map->page))
195 				break;
196 		}
197 		if (likely(atomic_read(&map->nr_free))) {
198 			do {
199 				if (!test_and_set_bit(offset, map->page)) {
200 					atomic_dec(&map->nr_free);
201 					set_last_pid(pid_ns, last, pid);
202 					return pid;
203 				}
204 				offset = find_next_offset(map, offset);
205 				pid = mk_pid(pid_ns, map, offset);
206 			} while (offset < BITS_PER_PAGE && pid < pid_max);
207 		}
208 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
209 			++map;
210 			offset = 0;
211 		} else {
212 			map = &pid_ns->pidmap[0];
213 			offset = RESERVED_PIDS;
214 			if (unlikely(last == offset))
215 				break;
216 		}
217 		pid = mk_pid(pid_ns, map, offset);
218 	}
219 	return -1;
220 }
221 
next_pidmap(struct pid_namespace * pid_ns,unsigned int last)222 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
223 {
224 	int offset;
225 	struct pidmap *map, *end;
226 
227 	if (last >= PID_MAX_LIMIT)
228 		return -1;
229 
230 	offset = (last + 1) & BITS_PER_PAGE_MASK;
231 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
232 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
233 	for (; map < end; map++, offset = 0) {
234 		if (unlikely(!map->page))
235 			continue;
236 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
237 		if (offset < BITS_PER_PAGE)
238 			return mk_pid(pid_ns, map, offset);
239 	}
240 	return -1;
241 }
242 
put_pid(struct pid * pid)243 void put_pid(struct pid *pid)
244 {
245 	struct pid_namespace *ns;
246 
247 	if (!pid)
248 		return;
249 
250 	ns = pid->numbers[pid->level].ns;
251 	if ((atomic_read(&pid->count) == 1) ||
252 	     atomic_dec_and_test(&pid->count)) {
253 		kmem_cache_free(ns->pid_cachep, pid);
254 		put_pid_ns(ns);
255 	}
256 }
257 EXPORT_SYMBOL_GPL(put_pid);
258 
delayed_put_pid(struct rcu_head * rhp)259 static void delayed_put_pid(struct rcu_head *rhp)
260 {
261 	struct pid *pid = container_of(rhp, struct pid, rcu);
262 	put_pid(pid);
263 }
264 
free_pid(struct pid * pid)265 void free_pid(struct pid *pid)
266 {
267 	/* We can be called with write_lock_irq(&tasklist_lock) held */
268 	int i;
269 	unsigned long flags;
270 
271 	spin_lock_irqsave(&pidmap_lock, flags);
272 	for (i = 0; i <= pid->level; i++)
273 		hlist_del_rcu(&pid->numbers[i].pid_chain);
274 	spin_unlock_irqrestore(&pidmap_lock, flags);
275 
276 	for (i = 0; i <= pid->level; i++)
277 		free_pidmap(pid->numbers + i);
278 
279 	call_rcu(&pid->rcu, delayed_put_pid);
280 }
281 
alloc_pid(struct pid_namespace * ns)282 struct pid *alloc_pid(struct pid_namespace *ns)
283 {
284 	struct pid *pid;
285 	enum pid_type type;
286 	int i, nr;
287 	struct pid_namespace *tmp;
288 	struct upid *upid;
289 
290 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
291 	if (!pid)
292 		goto out;
293 
294 	tmp = ns;
295 	for (i = ns->level; i >= 0; i--) {
296 		nr = alloc_pidmap(tmp);
297 		if (nr < 0)
298 			goto out_free;
299 
300 		pid->numbers[i].nr = nr;
301 		pid->numbers[i].ns = tmp;
302 		tmp = tmp->parent;
303 	}
304 
305 	get_pid_ns(ns);
306 	pid->level = ns->level;
307 	atomic_set(&pid->count, 1);
308 	for (type = 0; type < PIDTYPE_MAX; ++type)
309 		INIT_HLIST_HEAD(&pid->tasks[type]);
310 
311 	upid = pid->numbers + ns->level;
312 	spin_lock_irq(&pidmap_lock);
313 	for ( ; upid >= pid->numbers; --upid)
314 		hlist_add_head_rcu(&upid->pid_chain,
315 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
316 	spin_unlock_irq(&pidmap_lock);
317 
318 out:
319 	return pid;
320 
321 out_free:
322 	while (++i <= ns->level)
323 		free_pidmap(pid->numbers + i);
324 
325 	kmem_cache_free(ns->pid_cachep, pid);
326 	pid = NULL;
327 	goto out;
328 }
329 
find_pid_ns(int nr,struct pid_namespace * ns)330 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
331 {
332 	struct hlist_node *elem;
333 	struct upid *pnr;
334 
335 	hlist_for_each_entry_rcu(pnr, elem,
336 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
337 		if (pnr->nr == nr && pnr->ns == ns)
338 			return container_of(pnr, struct pid,
339 					numbers[ns->level]);
340 
341 	return NULL;
342 }
343 EXPORT_SYMBOL_GPL(find_pid_ns);
344 
find_vpid(int nr)345 struct pid *find_vpid(int nr)
346 {
347 	return find_pid_ns(nr, current->nsproxy->pid_ns);
348 }
349 EXPORT_SYMBOL_GPL(find_vpid);
350 
351 /*
352  * attach_pid() must be called with the tasklist_lock write-held.
353  */
attach_pid(struct task_struct * task,enum pid_type type,struct pid * pid)354 void attach_pid(struct task_struct *task, enum pid_type type,
355 		struct pid *pid)
356 {
357 	struct pid_link *link;
358 
359 	link = &task->pids[type];
360 	link->pid = pid;
361 	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
362 }
363 
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)364 static void __change_pid(struct task_struct *task, enum pid_type type,
365 			struct pid *new)
366 {
367 	struct pid_link *link;
368 	struct pid *pid;
369 	int tmp;
370 
371 	link = &task->pids[type];
372 	pid = link->pid;
373 
374 	hlist_del_rcu(&link->node);
375 	link->pid = new;
376 
377 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
378 		if (!hlist_empty(&pid->tasks[tmp]))
379 			return;
380 
381 	free_pid(pid);
382 }
383 
detach_pid(struct task_struct * task,enum pid_type type)384 void detach_pid(struct task_struct *task, enum pid_type type)
385 {
386 	__change_pid(task, type, NULL);
387 }
388 
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)389 void change_pid(struct task_struct *task, enum pid_type type,
390 		struct pid *pid)
391 {
392 	__change_pid(task, type, pid);
393 	attach_pid(task, type, pid);
394 }
395 
396 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)397 void transfer_pid(struct task_struct *old, struct task_struct *new,
398 			   enum pid_type type)
399 {
400 	new->pids[type].pid = old->pids[type].pid;
401 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
402 }
403 
pid_task(struct pid * pid,enum pid_type type)404 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
405 {
406 	struct task_struct *result = NULL;
407 	if (pid) {
408 		struct hlist_node *first;
409 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
410 					      lockdep_tasklist_lock_is_held());
411 		if (first)
412 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
413 	}
414 	return result;
415 }
416 EXPORT_SYMBOL(pid_task);
417 
418 /*
419  * Must be called under rcu_read_lock().
420  */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)421 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
422 {
423 	rcu_lockdep_assert(rcu_read_lock_held(),
424 			   "find_task_by_pid_ns() needs rcu_read_lock()"
425 			   " protection");
426 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
427 }
428 
find_task_by_vpid(pid_t vnr)429 struct task_struct *find_task_by_vpid(pid_t vnr)
430 {
431 	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
432 }
433 
get_task_pid(struct task_struct * task,enum pid_type type)434 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
435 {
436 	struct pid *pid;
437 	rcu_read_lock();
438 	if (type != PIDTYPE_PID)
439 		task = task->group_leader;
440 	pid = get_pid(task->pids[type].pid);
441 	rcu_read_unlock();
442 	return pid;
443 }
444 EXPORT_SYMBOL_GPL(get_task_pid);
445 
get_pid_task(struct pid * pid,enum pid_type type)446 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
447 {
448 	struct task_struct *result;
449 	rcu_read_lock();
450 	result = pid_task(pid, type);
451 	if (result)
452 		get_task_struct(result);
453 	rcu_read_unlock();
454 	return result;
455 }
456 EXPORT_SYMBOL_GPL(get_pid_task);
457 
find_get_pid(pid_t nr)458 struct pid *find_get_pid(pid_t nr)
459 {
460 	struct pid *pid;
461 
462 	rcu_read_lock();
463 	pid = get_pid(find_vpid(nr));
464 	rcu_read_unlock();
465 
466 	return pid;
467 }
468 EXPORT_SYMBOL_GPL(find_get_pid);
469 
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)470 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
471 {
472 	struct upid *upid;
473 	pid_t nr = 0;
474 
475 	if (pid && ns->level <= pid->level) {
476 		upid = &pid->numbers[ns->level];
477 		if (upid->ns == ns)
478 			nr = upid->nr;
479 	}
480 	return nr;
481 }
482 
pid_vnr(struct pid * pid)483 pid_t pid_vnr(struct pid *pid)
484 {
485 	return pid_nr_ns(pid, current->nsproxy->pid_ns);
486 }
487 EXPORT_SYMBOL_GPL(pid_vnr);
488 
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)489 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
490 			struct pid_namespace *ns)
491 {
492 	pid_t nr = 0;
493 
494 	rcu_read_lock();
495 	if (!ns)
496 		ns = current->nsproxy->pid_ns;
497 	if (likely(pid_alive(task))) {
498 		if (type != PIDTYPE_PID)
499 			task = task->group_leader;
500 		nr = pid_nr_ns(task->pids[type].pid, ns);
501 	}
502 	rcu_read_unlock();
503 
504 	return nr;
505 }
506 EXPORT_SYMBOL(__task_pid_nr_ns);
507 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)508 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
509 {
510 	return pid_nr_ns(task_tgid(tsk), ns);
511 }
512 EXPORT_SYMBOL(task_tgid_nr_ns);
513 
task_active_pid_ns(struct task_struct * tsk)514 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
515 {
516 	return ns_of_pid(task_pid(tsk));
517 }
518 EXPORT_SYMBOL_GPL(task_active_pid_ns);
519 
520 /*
521  * Used by proc to find the first pid that is greater than or equal to nr.
522  *
523  * If there is a pid at nr this function is exactly the same as find_pid_ns.
524  */
find_ge_pid(int nr,struct pid_namespace * ns)525 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
526 {
527 	struct pid *pid;
528 
529 	do {
530 		pid = find_pid_ns(nr, ns);
531 		if (pid)
532 			break;
533 		nr = next_pidmap(ns, nr);
534 	} while (nr > 0);
535 
536 	return pid;
537 }
538 
539 /*
540  * The pid hash table is scaled according to the amount of memory in the
541  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
542  * more.
543  */
pidhash_init(void)544 void __init pidhash_init(void)
545 {
546 	unsigned int i, pidhash_size;
547 
548 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
549 					   HASH_EARLY | HASH_SMALL,
550 					   &pidhash_shift, NULL, 4096);
551 	pidhash_size = 1U << pidhash_shift;
552 
553 	for (i = 0; i < pidhash_size; i++)
554 		INIT_HLIST_HEAD(&pid_hash[i]);
555 }
556 
pidmap_init(void)557 void __init pidmap_init(void)
558 {
559 	/* bump default and minimum pid_max based on number of cpus */
560 	pid_max = min(pid_max_max, max_t(int, pid_max,
561 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
562 	pid_max_min = max_t(int, pid_max_min,
563 				PIDS_PER_CPU_MIN * num_possible_cpus());
564 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
565 
566 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
567 	/* Reserve PID 0. We never call free_pidmap(0) */
568 	set_bit(0, init_pid_ns.pidmap[0].page);
569 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
570 
571 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
572 			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
573 }
574