1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * <linux/usb/gadget.h>
4 *
5 * We call the USB code inside a Linux-based peripheral device a "gadget"
6 * driver, except for the hardware-specific bus glue. One USB host can
7 * talk to many USB gadgets, but the gadgets are only able to communicate
8 * to one host.
9 *
10 *
11 * (C) Copyright 2002-2004 by David Brownell
12 * All Rights Reserved.
13 */
14
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/slab.h>
23 #include <linux/scatterlist.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include <linux/usb/ch9.h>
27
28 #define UDC_TRACE_STR_MAX 512
29
30 struct usb_ep;
31
32 /**
33 * struct usb_request - describes one i/o request
34 * @buf: Buffer used for data. Always provide this; some controllers
35 * only use PIO, or don't use DMA for some endpoints.
36 * @dma: DMA address corresponding to 'buf'. If you don't set this
37 * field, and the usb controller needs one, it is responsible
38 * for mapping and unmapping the buffer.
39 * @sg: a scatterlist for SG-capable controllers.
40 * @num_sgs: number of SG entries
41 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
42 * @length: Length of that data
43 * @stream_id: The stream id, when USB3.0 bulk streams are being used
44 * @is_last: Indicates if this is the last request of a stream_id before
45 * switching to a different stream (required for DWC3 controllers).
46 * @no_interrupt: If true, hints that no completion irq is needed.
47 * Helpful sometimes with deep request queues that are handled
48 * directly by DMA controllers.
49 * @zero: If true, when writing data, makes the last packet be "short"
50 * by adding a zero length packet as needed;
51 * @short_not_ok: When reading data, makes short packets be
52 * treated as errors (queue stops advancing till cleanup).
53 * @dma_mapped: Indicates if request has been mapped to DMA (internal)
54 * @complete: Function called when request completes, so this request and
55 * its buffer may be re-used. The function will always be called with
56 * interrupts disabled, and it must not sleep.
57 * Reads terminate with a short packet, or when the buffer fills,
58 * whichever comes first. When writes terminate, some data bytes
59 * will usually still be in flight (often in a hardware fifo).
60 * Errors (for reads or writes) stop the queue from advancing
61 * until the completion function returns, so that any transfers
62 * invalidated by the error may first be dequeued.
63 * @context: For use by the completion callback
64 * @list: For use by the gadget driver.
65 * @frame_number: Reports the interval number in (micro)frame in which the
66 * isochronous transfer was transmitted or received.
67 * @status: Reports completion code, zero or a negative errno.
68 * Normally, faults block the transfer queue from advancing until
69 * the completion callback returns.
70 * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
71 * or when the driver disabled the endpoint.
72 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
73 * transfers) this may be less than the requested length. If the
74 * short_not_ok flag is set, short reads are treated as errors
75 * even when status otherwise indicates successful completion.
76 * Note that for writes (IN transfers) some data bytes may still
77 * reside in a device-side FIFO when the request is reported as
78 * complete.
79 *
80 * These are allocated/freed through the endpoint they're used with. The
81 * hardware's driver can add extra per-request data to the memory it returns,
82 * which often avoids separate memory allocations (potential failures),
83 * later when the request is queued.
84 *
85 * Request flags affect request handling, such as whether a zero length
86 * packet is written (the "zero" flag), whether a short read should be
87 * treated as an error (blocking request queue advance, the "short_not_ok"
88 * flag), or hinting that an interrupt is not required (the "no_interrupt"
89 * flag, for use with deep request queues).
90 *
91 * Bulk endpoints can use any size buffers, and can also be used for interrupt
92 * transfers. interrupt-only endpoints can be much less functional.
93 *
94 * NOTE: this is analogous to 'struct urb' on the host side, except that
95 * it's thinner and promotes more pre-allocation.
96 */
97
98 struct usb_request {
99 void *buf;
100 unsigned length;
101 dma_addr_t dma;
102
103 struct scatterlist *sg;
104 unsigned num_sgs;
105 unsigned num_mapped_sgs;
106
107 unsigned stream_id:16;
108 unsigned is_last:1;
109 unsigned no_interrupt:1;
110 unsigned zero:1;
111 unsigned short_not_ok:1;
112 unsigned dma_mapped:1;
113
114 void (*complete)(struct usb_ep *ep,
115 struct usb_request *req);
116 void *context;
117 struct list_head list;
118
119 unsigned frame_number; /* ISO ONLY */
120
121 int status;
122 unsigned actual;
123 };
124
125 /*-------------------------------------------------------------------------*/
126
127 /* endpoint-specific parts of the api to the usb controller hardware.
128 * unlike the urb model, (de)multiplexing layers are not required.
129 * (so this api could slash overhead if used on the host side...)
130 *
131 * note that device side usb controllers commonly differ in how many
132 * endpoints they support, as well as their capabilities.
133 */
134 struct usb_ep_ops {
135 int (*enable) (struct usb_ep *ep,
136 const struct usb_endpoint_descriptor *desc);
137 int (*disable) (struct usb_ep *ep);
138 void (*dispose) (struct usb_ep *ep);
139
140 struct usb_request *(*alloc_request) (struct usb_ep *ep,
141 gfp_t gfp_flags);
142 void (*free_request) (struct usb_ep *ep, struct usb_request *req);
143
144 int (*queue) (struct usb_ep *ep, struct usb_request *req,
145 gfp_t gfp_flags);
146 int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
147
148 int (*set_halt) (struct usb_ep *ep, int value);
149 int (*set_wedge) (struct usb_ep *ep);
150
151 int (*fifo_status) (struct usb_ep *ep);
152 void (*fifo_flush) (struct usb_ep *ep);
153 };
154
155 /**
156 * struct usb_ep_caps - endpoint capabilities description
157 * @type_control:Endpoint supports control type (reserved for ep0).
158 * @type_iso:Endpoint supports isochronous transfers.
159 * @type_bulk:Endpoint supports bulk transfers.
160 * @type_int:Endpoint supports interrupt transfers.
161 * @dir_in:Endpoint supports IN direction.
162 * @dir_out:Endpoint supports OUT direction.
163 */
164 struct usb_ep_caps {
165 unsigned type_control:1;
166 unsigned type_iso:1;
167 unsigned type_bulk:1;
168 unsigned type_int:1;
169 unsigned dir_in:1;
170 unsigned dir_out:1;
171 };
172
173 #define USB_EP_CAPS_TYPE_CONTROL 0x01
174 #define USB_EP_CAPS_TYPE_ISO 0x02
175 #define USB_EP_CAPS_TYPE_BULK 0x04
176 #define USB_EP_CAPS_TYPE_INT 0x08
177 #define USB_EP_CAPS_TYPE_ALL \
178 (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
179 #define USB_EP_CAPS_DIR_IN 0x01
180 #define USB_EP_CAPS_DIR_OUT 0x02
181 #define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
182
183 #define USB_EP_CAPS(_type, _dir) \
184 { \
185 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
186 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
187 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
188 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
189 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
190 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
191 }
192
193 /**
194 * struct usb_ep - device side representation of USB endpoint
195 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
196 * @ops: Function pointers used to access hardware-specific operations.
197 * @ep_list:the gadget's ep_list holds all of its endpoints
198 * @caps:The structure describing types and directions supported by endpoint.
199 * @enabled: The current endpoint enabled/disabled state.
200 * @claimed: True if this endpoint is claimed by a function.
201 * @maxpacket:The maximum packet size used on this endpoint. The initial
202 * value can sometimes be reduced (hardware allowing), according to
203 * the endpoint descriptor used to configure the endpoint.
204 * @maxpacket_limit:The maximum packet size value which can be handled by this
205 * endpoint. It's set once by UDC driver when endpoint is initialized, and
206 * should not be changed. Should not be confused with maxpacket.
207 * @max_streams: The maximum number of streams supported
208 * by this EP (0 - 16, actual number is 2^n)
209 * @mult: multiplier, 'mult' value for SS Isoc EPs
210 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
211 * @driver_data:for use by the gadget driver.
212 * @address: used to identify the endpoint when finding descriptor that
213 * matches connection speed
214 * @desc: endpoint descriptor. This pointer is set before the endpoint is
215 * enabled and remains valid until the endpoint is disabled.
216 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
217 * descriptor that is used to configure the endpoint
218 *
219 * the bus controller driver lists all the general purpose endpoints in
220 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
221 * and is accessed only in response to a driver setup() callback.
222 */
223
224 struct usb_ep {
225 void *driver_data;
226
227 const char *name;
228 const struct usb_ep_ops *ops;
229 struct list_head ep_list;
230 struct usb_ep_caps caps;
231 bool claimed;
232 bool enabled;
233 unsigned maxpacket:16;
234 unsigned maxpacket_limit:16;
235 unsigned max_streams:16;
236 unsigned mult:2;
237 unsigned maxburst:5;
238 u8 address;
239 const struct usb_endpoint_descriptor *desc;
240 const struct usb_ss_ep_comp_descriptor *comp_desc;
241 };
242
243 /*-------------------------------------------------------------------------*/
244
245 #if IS_ENABLED(CONFIG_USB_GADGET)
246 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
247 int usb_ep_enable(struct usb_ep *ep);
248 int usb_ep_disable(struct usb_ep *ep);
249 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
250 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
251 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
252 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
253 int usb_ep_set_halt(struct usb_ep *ep);
254 int usb_ep_clear_halt(struct usb_ep *ep);
255 int usb_ep_set_wedge(struct usb_ep *ep);
256 int usb_ep_fifo_status(struct usb_ep *ep);
257 void usb_ep_fifo_flush(struct usb_ep *ep);
258 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)259 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
260 unsigned maxpacket_limit)
261 { }
usb_ep_enable(struct usb_ep * ep)262 static inline int usb_ep_enable(struct usb_ep *ep)
263 { return 0; }
usb_ep_disable(struct usb_ep * ep)264 static inline int usb_ep_disable(struct usb_ep *ep)
265 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)266 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
267 gfp_t gfp_flags)
268 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)269 static inline void usb_ep_free_request(struct usb_ep *ep,
270 struct usb_request *req)
271 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)272 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
273 gfp_t gfp_flags)
274 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)275 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
276 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)277 static inline int usb_ep_set_halt(struct usb_ep *ep)
278 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)279 static inline int usb_ep_clear_halt(struct usb_ep *ep)
280 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)281 static inline int usb_ep_set_wedge(struct usb_ep *ep)
282 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)283 static inline int usb_ep_fifo_status(struct usb_ep *ep)
284 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)285 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
286 { }
287 #endif /* USB_GADGET */
288
289 /*-------------------------------------------------------------------------*/
290
291 struct usb_dcd_config_params {
292 __u8 bU1devExitLat; /* U1 Device exit Latency */
293 #define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */
294 __le16 bU2DevExitLat; /* U2 Device exit Latency */
295 #define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */
296 __u8 besl_baseline; /* Recommended baseline BESL (0-15) */
297 __u8 besl_deep; /* Recommended deep BESL (0-15) */
298 #define USB_DEFAULT_BESL_UNSPECIFIED 0xFF /* No recommended value */
299 };
300
301
302 struct usb_gadget;
303 struct usb_gadget_driver;
304 struct usb_udc;
305
306 /* the rest of the api to the controller hardware: device operations,
307 * which don't involve endpoints (or i/o).
308 */
309 struct usb_gadget_ops {
310 int (*get_frame)(struct usb_gadget *);
311 int (*wakeup)(struct usb_gadget *);
312 int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
313 int (*vbus_session) (struct usb_gadget *, int is_active);
314 int (*vbus_draw) (struct usb_gadget *, unsigned mA);
315 int (*pullup) (struct usb_gadget *, int is_on);
316 int (*ioctl)(struct usb_gadget *,
317 unsigned code, unsigned long param);
318 void (*get_config_params)(struct usb_gadget *,
319 struct usb_dcd_config_params *);
320 int (*udc_start)(struct usb_gadget *,
321 struct usb_gadget_driver *);
322 int (*udc_stop)(struct usb_gadget *);
323 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
324 void (*udc_set_ssp_rate)(struct usb_gadget *gadget,
325 enum usb_ssp_rate rate);
326 void (*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
327 struct usb_ep *(*match_ep)(struct usb_gadget *,
328 struct usb_endpoint_descriptor *,
329 struct usb_ss_ep_comp_descriptor *);
330 int (*check_config)(struct usb_gadget *gadget);
331 };
332
333 /**
334 * struct usb_gadget - represents a usb device
335 * @work: (internal use) Workqueue to be used for sysfs_notify()
336 * @udc: struct usb_udc pointer for this gadget
337 * @ops: Function pointers used to access hardware-specific operations.
338 * @ep0: Endpoint zero, used when reading or writing responses to
339 * driver setup() requests
340 * @ep_list: List of other endpoints supported by the device.
341 * @speed: Speed of current connection to USB host.
342 * @max_speed: Maximal speed the UDC can handle. UDC must support this
343 * and all slower speeds.
344 * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
345 * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
346 * can handle. The UDC must support this and all slower speeds and lower
347 * number of lanes.
348 * @state: the state we are now (attached, suspended, configured, etc)
349 * @name: Identifies the controller hardware type. Used in diagnostics
350 * and sometimes configuration.
351 * @dev: Driver model state for this abstract device.
352 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
353 * @out_epnum: last used out ep number
354 * @in_epnum: last used in ep number
355 * @mA: last set mA value
356 * @otg_caps: OTG capabilities of this gadget.
357 * @sg_supported: true if we can handle scatter-gather
358 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
359 * gadget driver must provide a USB OTG descriptor.
360 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
361 * is in the Mini-AB jack, and HNP has been used to switch roles
362 * so that the "A" device currently acts as A-Peripheral, not A-Host.
363 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
364 * supports HNP at this port.
365 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
366 * only supports HNP on a different root port.
367 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
368 * enabled HNP support.
369 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
370 * in peripheral mode can support HNP polling.
371 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
372 * or B-Peripheral wants to take host role.
373 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
374 * MaxPacketSize.
375 * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
376 * @quirk_stall_not_supp: UDC controller doesn't support stalling.
377 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
378 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
379 * u_ether.c to improve performance.
380 * @is_selfpowered: if the gadget is self-powered.
381 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
382 * be connected.
383 * @connected: True if gadget is connected.
384 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
385 * indicates that it supports LPM as per the LPM ECN & errata.
386 * @irq: the interrupt number for device controller.
387 * @id_number: a unique ID number for ensuring that gadget names are distinct
388 *
389 * Gadgets have a mostly-portable "gadget driver" implementing device
390 * functions, handling all usb configurations and interfaces. Gadget
391 * drivers talk to hardware-specific code indirectly, through ops vectors.
392 * That insulates the gadget driver from hardware details, and packages
393 * the hardware endpoints through generic i/o queues. The "usb_gadget"
394 * and "usb_ep" interfaces provide that insulation from the hardware.
395 *
396 * Except for the driver data, all fields in this structure are
397 * read-only to the gadget driver. That driver data is part of the
398 * "driver model" infrastructure in 2.6 (and later) kernels, and for
399 * earlier systems is grouped in a similar structure that's not known
400 * to the rest of the kernel.
401 *
402 * Values of the three OTG device feature flags are updated before the
403 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
404 * driver suspend() calls. They are valid only when is_otg, and when the
405 * device is acting as a B-Peripheral (so is_a_peripheral is false).
406 */
407 struct usb_gadget {
408 struct work_struct work;
409 struct usb_udc *udc;
410 /* readonly to gadget driver */
411 const struct usb_gadget_ops *ops;
412 struct usb_ep *ep0;
413 struct list_head ep_list; /* of usb_ep */
414 enum usb_device_speed speed;
415 enum usb_device_speed max_speed;
416
417 /* USB SuperSpeed Plus only */
418 enum usb_ssp_rate ssp_rate;
419 enum usb_ssp_rate max_ssp_rate;
420
421 enum usb_device_state state;
422 const char *name;
423 struct device dev;
424 unsigned isoch_delay;
425 unsigned out_epnum;
426 unsigned in_epnum;
427 unsigned mA;
428 struct usb_otg_caps *otg_caps;
429
430 unsigned sg_supported:1;
431 unsigned is_otg:1;
432 unsigned is_a_peripheral:1;
433 unsigned b_hnp_enable:1;
434 unsigned a_hnp_support:1;
435 unsigned a_alt_hnp_support:1;
436 unsigned hnp_polling_support:1;
437 unsigned host_request_flag:1;
438 unsigned quirk_ep_out_aligned_size:1;
439 unsigned quirk_altset_not_supp:1;
440 unsigned quirk_stall_not_supp:1;
441 unsigned quirk_zlp_not_supp:1;
442 unsigned quirk_avoids_skb_reserve:1;
443 unsigned is_selfpowered:1;
444 unsigned deactivated:1;
445 unsigned connected:1;
446 unsigned lpm_capable:1;
447 int irq;
448 int id_number;
449 };
450 #define work_to_gadget(w) (container_of((w), struct usb_gadget, work))
451
452 /* Interface to the device model */
set_gadget_data(struct usb_gadget * gadget,void * data)453 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
454 { dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)455 static inline void *get_gadget_data(struct usb_gadget *gadget)
456 { return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)457 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
458 {
459 return container_of(dev, struct usb_gadget, dev);
460 }
usb_get_gadget(struct usb_gadget * gadget)461 static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
462 {
463 get_device(&gadget->dev);
464 return gadget;
465 }
usb_put_gadget(struct usb_gadget * gadget)466 static inline void usb_put_gadget(struct usb_gadget *gadget)
467 {
468 put_device(&gadget->dev);
469 }
470 extern void usb_initialize_gadget(struct device *parent,
471 struct usb_gadget *gadget, void (*release)(struct device *dev));
472 extern int usb_add_gadget(struct usb_gadget *gadget);
473 extern void usb_del_gadget(struct usb_gadget *gadget);
474
475 /* Legacy device-model interface */
476 extern int usb_add_gadget_udc_release(struct device *parent,
477 struct usb_gadget *gadget, void (*release)(struct device *dev));
478 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
479 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
480 extern char *usb_get_gadget_udc_name(void);
481
482 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
483 #define gadget_for_each_ep(tmp, gadget) \
484 list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
485
486 /**
487 * usb_ep_align - returns @len aligned to ep's maxpacketsize.
488 * @ep: the endpoint whose maxpacketsize is used to align @len
489 * @len: buffer size's length to align to @ep's maxpacketsize
490 *
491 * This helper is used to align buffer's size to an ep's maxpacketsize.
492 */
usb_ep_align(struct usb_ep * ep,size_t len)493 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
494 {
495 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc);
496
497 return round_up(len, max_packet_size);
498 }
499
500 /**
501 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
502 * requires quirk_ep_out_aligned_size, otherwise returns len.
503 * @g: controller to check for quirk
504 * @ep: the endpoint whose maxpacketsize is used to align @len
505 * @len: buffer size's length to align to @ep's maxpacketsize
506 *
507 * This helper is used in case it's required for any reason to check and maybe
508 * align buffer's size to an ep's maxpacketsize.
509 */
510 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)511 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
512 {
513 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
514 }
515
516 /**
517 * gadget_is_altset_supported - return true iff the hardware supports
518 * altsettings
519 * @g: controller to check for quirk
520 */
gadget_is_altset_supported(struct usb_gadget * g)521 static inline int gadget_is_altset_supported(struct usb_gadget *g)
522 {
523 return !g->quirk_altset_not_supp;
524 }
525
526 /**
527 * gadget_is_stall_supported - return true iff the hardware supports stalling
528 * @g: controller to check for quirk
529 */
gadget_is_stall_supported(struct usb_gadget * g)530 static inline int gadget_is_stall_supported(struct usb_gadget *g)
531 {
532 return !g->quirk_stall_not_supp;
533 }
534
535 /**
536 * gadget_is_zlp_supported - return true iff the hardware supports zlp
537 * @g: controller to check for quirk
538 */
gadget_is_zlp_supported(struct usb_gadget * g)539 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
540 {
541 return !g->quirk_zlp_not_supp;
542 }
543
544 /**
545 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
546 * skb_reserve to improve performance.
547 * @g: controller to check for quirk
548 */
gadget_avoids_skb_reserve(struct usb_gadget * g)549 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
550 {
551 return g->quirk_avoids_skb_reserve;
552 }
553
554 /**
555 * gadget_is_dualspeed - return true iff the hardware handles high speed
556 * @g: controller that might support both high and full speeds
557 */
gadget_is_dualspeed(struct usb_gadget * g)558 static inline int gadget_is_dualspeed(struct usb_gadget *g)
559 {
560 return g->max_speed >= USB_SPEED_HIGH;
561 }
562
563 /**
564 * gadget_is_superspeed() - return true if the hardware handles superspeed
565 * @g: controller that might support superspeed
566 */
gadget_is_superspeed(struct usb_gadget * g)567 static inline int gadget_is_superspeed(struct usb_gadget *g)
568 {
569 return g->max_speed >= USB_SPEED_SUPER;
570 }
571
572 /**
573 * gadget_is_superspeed_plus() - return true if the hardware handles
574 * superspeed plus
575 * @g: controller that might support superspeed plus
576 */
gadget_is_superspeed_plus(struct usb_gadget * g)577 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
578 {
579 return g->max_speed >= USB_SPEED_SUPER_PLUS;
580 }
581
582 /**
583 * gadget_is_otg - return true iff the hardware is OTG-ready
584 * @g: controller that might have a Mini-AB connector
585 *
586 * This is a runtime test, since kernels with a USB-OTG stack sometimes
587 * run on boards which only have a Mini-B (or Mini-A) connector.
588 */
gadget_is_otg(struct usb_gadget * g)589 static inline int gadget_is_otg(struct usb_gadget *g)
590 {
591 #ifdef CONFIG_USB_OTG
592 return g->is_otg;
593 #else
594 return 0;
595 #endif
596 }
597
598 /*-------------------------------------------------------------------------*/
599
600 #if IS_ENABLED(CONFIG_USB_GADGET)
601 int usb_gadget_frame_number(struct usb_gadget *gadget);
602 int usb_gadget_wakeup(struct usb_gadget *gadget);
603 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
604 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
605 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
606 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
607 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
608 int usb_gadget_connect(struct usb_gadget *gadget);
609 int usb_gadget_disconnect(struct usb_gadget *gadget);
610 int usb_gadget_deactivate(struct usb_gadget *gadget);
611 int usb_gadget_activate(struct usb_gadget *gadget);
612 int usb_gadget_check_config(struct usb_gadget *gadget);
613 #else
usb_gadget_frame_number(struct usb_gadget * gadget)614 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
615 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)616 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
617 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)618 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
619 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)620 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
621 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)622 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
623 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)624 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
625 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)626 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
627 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)628 static inline int usb_gadget_connect(struct usb_gadget *gadget)
629 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)630 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
631 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)632 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
633 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)634 static inline int usb_gadget_activate(struct usb_gadget *gadget)
635 { return 0; }
usb_gadget_check_config(struct usb_gadget * gadget)636 static inline int usb_gadget_check_config(struct usb_gadget *gadget)
637 { return 0; }
638 #endif /* CONFIG_USB_GADGET */
639
640 /*-------------------------------------------------------------------------*/
641
642 /**
643 * struct usb_gadget_driver - driver for usb gadget devices
644 * @function: String describing the gadget's function
645 * @max_speed: Highest speed the driver handles.
646 * @setup: Invoked for ep0 control requests that aren't handled by
647 * the hardware level driver. Most calls must be handled by
648 * the gadget driver, including descriptor and configuration
649 * management. The 16 bit members of the setup data are in
650 * USB byte order. Called in_interrupt; this may not sleep. Driver
651 * queues a response to ep0, or returns negative to stall.
652 * @disconnect: Invoked after all transfers have been stopped,
653 * when the host is disconnected. May be called in_interrupt; this
654 * may not sleep. Some devices can't detect disconnect, so this might
655 * not be called except as part of controller shutdown.
656 * @bind: the driver's bind callback
657 * @unbind: Invoked when the driver is unbound from a gadget,
658 * usually from rmmod (after a disconnect is reported).
659 * Called in a context that permits sleeping.
660 * @suspend: Invoked on USB suspend. May be called in_interrupt.
661 * @resume: Invoked on USB resume. May be called in_interrupt.
662 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
663 * and should be called in_interrupt.
664 * @driver: Driver model state for this driver.
665 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
666 * this driver will be bound to any available UDC.
667 * @match_existing_only: If udc is not found, return an error and fail
668 * the driver registration
669 * @is_bound: Allow a driver to be bound to only one gadget
670 *
671 * Devices are disabled till a gadget driver successfully bind()s, which
672 * means the driver will handle setup() requests needed to enumerate (and
673 * meet "chapter 9" requirements) then do some useful work.
674 *
675 * If gadget->is_otg is true, the gadget driver must provide an OTG
676 * descriptor during enumeration, or else fail the bind() call. In such
677 * cases, no USB traffic may flow until both bind() returns without
678 * having called usb_gadget_disconnect(), and the USB host stack has
679 * initialized.
680 *
681 * Drivers use hardware-specific knowledge to configure the usb hardware.
682 * endpoint addressing is only one of several hardware characteristics that
683 * are in descriptors the ep0 implementation returns from setup() calls.
684 *
685 * Except for ep0 implementation, most driver code shouldn't need change to
686 * run on top of different usb controllers. It'll use endpoints set up by
687 * that ep0 implementation.
688 *
689 * The usb controller driver handles a few standard usb requests. Those
690 * include set_address, and feature flags for devices, interfaces, and
691 * endpoints (the get_status, set_feature, and clear_feature requests).
692 *
693 * Accordingly, the driver's setup() callback must always implement all
694 * get_descriptor requests, returning at least a device descriptor and
695 * a configuration descriptor. Drivers must make sure the endpoint
696 * descriptors match any hardware constraints. Some hardware also constrains
697 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
698 *
699 * The driver's setup() callback must also implement set_configuration,
700 * and should also implement set_interface, get_configuration, and
701 * get_interface. Setting a configuration (or interface) is where
702 * endpoints should be activated or (config 0) shut down.
703 *
704 * (Note that only the default control endpoint is supported. Neither
705 * hosts nor devices generally support control traffic except to ep0.)
706 *
707 * Most devices will ignore USB suspend/resume operations, and so will
708 * not provide those callbacks. However, some may need to change modes
709 * when the host is not longer directing those activities. For example,
710 * local controls (buttons, dials, etc) may need to be re-enabled since
711 * the (remote) host can't do that any longer; or an error state might
712 * be cleared, to make the device behave identically whether or not
713 * power is maintained.
714 */
715 struct usb_gadget_driver {
716 char *function;
717 enum usb_device_speed max_speed;
718 int (*bind)(struct usb_gadget *gadget,
719 struct usb_gadget_driver *driver);
720 void (*unbind)(struct usb_gadget *);
721 int (*setup)(struct usb_gadget *,
722 const struct usb_ctrlrequest *);
723 void (*disconnect)(struct usb_gadget *);
724 void (*suspend)(struct usb_gadget *);
725 void (*resume)(struct usb_gadget *);
726 void (*reset)(struct usb_gadget *);
727
728 /* FIXME support safe rmmod */
729 struct device_driver driver;
730
731 char *udc_name;
732 unsigned match_existing_only:1;
733 bool is_bound:1;
734 };
735
736
737
738 /*-------------------------------------------------------------------------*/
739
740 /* driver modules register and unregister, as usual.
741 * these calls must be made in a context that can sleep.
742 *
743 * A gadget driver can be bound to only one gadget at a time.
744 */
745
746 /**
747 * usb_gadget_register_driver_owner - register a gadget driver
748 * @driver: the driver being registered
749 * @owner: the driver module
750 * @mod_name: the driver module's build name
751 * Context: can sleep
752 *
753 * Call this in your gadget driver's module initialization function,
754 * to tell the underlying UDC controller driver about your driver.
755 * The @bind() function will be called to bind it to a gadget before this
756 * registration call returns. It's expected that the @bind() function will
757 * be in init sections.
758 *
759 * Use the macro defined below instead of calling this directly.
760 */
761 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
762 struct module *owner, const char *mod_name);
763
764 /* use a define to avoid include chaining to get THIS_MODULE & friends */
765 #define usb_gadget_register_driver(driver) \
766 usb_gadget_register_driver_owner(driver, THIS_MODULE, KBUILD_MODNAME)
767
768 /**
769 * usb_gadget_unregister_driver - unregister a gadget driver
770 * @driver:the driver being unregistered
771 * Context: can sleep
772 *
773 * Call this in your gadget driver's module cleanup function,
774 * to tell the underlying usb controller that your driver is
775 * going away. If the controller is connected to a USB host,
776 * it will first disconnect(). The driver is also requested
777 * to unbind() and clean up any device state, before this procedure
778 * finally returns. It's expected that the unbind() functions
779 * will be in exit sections, so may not be linked in some kernels.
780 */
781 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
782
783 /*-------------------------------------------------------------------------*/
784
785 /* utility to simplify dealing with string descriptors */
786
787 /**
788 * struct usb_string - wraps a C string and its USB id
789 * @id:the (nonzero) ID for this string
790 * @s:the string, in UTF-8 encoding
791 *
792 * If you're using usb_gadget_get_string(), use this to wrap a string
793 * together with its ID.
794 */
795 struct usb_string {
796 u8 id;
797 const char *s;
798 };
799
800 /**
801 * struct usb_gadget_strings - a set of USB strings in a given language
802 * @language:identifies the strings' language (0x0409 for en-us)
803 * @strings:array of strings with their ids
804 *
805 * If you're using usb_gadget_get_string(), use this to wrap all the
806 * strings for a given language.
807 */
808 struct usb_gadget_strings {
809 u16 language; /* 0x0409 for en-us */
810 struct usb_string *strings;
811 };
812
813 struct usb_gadget_string_container {
814 struct list_head list;
815 u8 *stash[];
816 };
817
818 /* put descriptor for string with that id into buf (buflen >= 256) */
819 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
820
821 /* check if the given language identifier is valid */
822 bool usb_validate_langid(u16 langid);
823
824 /*-------------------------------------------------------------------------*/
825
826 /* utility to simplify managing config descriptors */
827
828 /* write vector of descriptors into buffer */
829 int usb_descriptor_fillbuf(void *, unsigned,
830 const struct usb_descriptor_header **);
831
832 /* build config descriptor from single descriptor vector */
833 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
834 void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
835
836 /* copy a NULL-terminated vector of descriptors */
837 struct usb_descriptor_header **usb_copy_descriptors(
838 struct usb_descriptor_header **);
839
840 /**
841 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
842 * @v: vector of descriptors
843 */
usb_free_descriptors(struct usb_descriptor_header ** v)844 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
845 {
846 kfree(v);
847 }
848
849 struct usb_function;
850 int usb_assign_descriptors(struct usb_function *f,
851 struct usb_descriptor_header **fs,
852 struct usb_descriptor_header **hs,
853 struct usb_descriptor_header **ss,
854 struct usb_descriptor_header **ssp);
855 void usb_free_all_descriptors(struct usb_function *f);
856
857 struct usb_descriptor_header *usb_otg_descriptor_alloc(
858 struct usb_gadget *gadget);
859 int usb_otg_descriptor_init(struct usb_gadget *gadget,
860 struct usb_descriptor_header *otg_desc);
861 /*-------------------------------------------------------------------------*/
862
863 /* utility to simplify map/unmap of usb_requests to/from DMA */
864
865 #ifdef CONFIG_HAS_DMA
866 extern int usb_gadget_map_request_by_dev(struct device *dev,
867 struct usb_request *req, int is_in);
868 extern int usb_gadget_map_request(struct usb_gadget *gadget,
869 struct usb_request *req, int is_in);
870
871 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
872 struct usb_request *req, int is_in);
873 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
874 struct usb_request *req, int is_in);
875 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)876 static inline int usb_gadget_map_request_by_dev(struct device *dev,
877 struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)878 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
879 struct usb_request *req, int is_in) { return -ENOSYS; }
880
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)881 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
882 struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)883 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
884 struct usb_request *req, int is_in) { }
885 #endif /* !CONFIG_HAS_DMA */
886
887 /*-------------------------------------------------------------------------*/
888
889 /* utility to set gadget state properly */
890
891 extern void usb_gadget_set_state(struct usb_gadget *gadget,
892 enum usb_device_state state);
893
894 /*-------------------------------------------------------------------------*/
895
896 /* utility to tell udc core that the bus reset occurs */
897 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
898 struct usb_gadget_driver *driver);
899
900 /*-------------------------------------------------------------------------*/
901
902 /* utility to give requests back to the gadget layer */
903
904 extern void usb_gadget_giveback_request(struct usb_ep *ep,
905 struct usb_request *req);
906
907 /*-------------------------------------------------------------------------*/
908
909 /* utility to find endpoint by name */
910
911 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
912 const char *name);
913
914 /*-------------------------------------------------------------------------*/
915
916 /* utility to check if endpoint caps match descriptor needs */
917
918 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
919 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
920 struct usb_ss_ep_comp_descriptor *ep_comp);
921
922 /*-------------------------------------------------------------------------*/
923
924 /* utility to update vbus status for udc core, it may be scheduled */
925 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
926
927 /*-------------------------------------------------------------------------*/
928
929 /* utility wrapping a simple endpoint selection policy */
930
931 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
932 struct usb_endpoint_descriptor *);
933
934
935 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
936 struct usb_endpoint_descriptor *,
937 struct usb_ss_ep_comp_descriptor *);
938
939 extern void usb_ep_autoconfig_release(struct usb_ep *);
940
941 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
942
943 #endif /* __LINUX_USB_GADGET_H */
944