1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170 {
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257 }
258
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275 }
276
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294 }
295
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298 {
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317 }
318
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322 {
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461 }
462
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504 out:
505 return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537 }
538
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547 const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549 if (!(ether_addr_equal(hdr, rfc1042_header) &&
550 *hdr_proto != htons(ETH_P_AARP) &&
551 *hdr_proto != htons(ETH_P_IPX)) &&
552 !ether_addr_equal(hdr, bridge_tunnel_header))
553 return false;
554
555 *proto = *hdr_proto;
556
557 return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563 const void *mesh_addr;
564 struct {
565 struct ethhdr eth;
566 u8 flags;
567 } payload;
568 int hdrlen;
569 int ret;
570
571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572 if (ret)
573 return ret;
574
575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579 &payload.eth.h_proto)))
580 hdrlen += ETH_ALEN + 2;
581 else if (!pskb_may_pull(skb, hdrlen))
582 return -EINVAL;
583 else
584 payload.eth.h_proto = htons(skb->len - hdrlen);
585
586 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
587 switch (payload.flags & MESH_FLAGS_AE) {
588 case MESH_FLAGS_AE_A4:
589 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
590 break;
591 case MESH_FLAGS_AE_A5_A6:
592 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
593 break;
594 default:
595 break;
596 }
597
598 pskb_pull(skb, hdrlen - sizeof(payload.eth));
599 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
600
601 return 0;
602 }
603 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
604
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)605 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
606 const u8 *addr, enum nl80211_iftype iftype,
607 u8 data_offset, bool is_amsdu)
608 {
609 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
610 struct {
611 u8 hdr[ETH_ALEN] __aligned(2);
612 __be16 proto;
613 } payload;
614 struct ethhdr tmp;
615 u16 hdrlen;
616
617 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
618 return -1;
619
620 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
621 if (skb->len < hdrlen)
622 return -1;
623
624 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
625 * header
626 * IEEE 802.11 address fields:
627 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
628 * 0 0 DA SA BSSID n/a
629 * 0 1 DA BSSID SA n/a
630 * 1 0 BSSID SA DA n/a
631 * 1 1 RA TA DA SA
632 */
633 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
634 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
635
636 switch (hdr->frame_control &
637 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
638 case cpu_to_le16(IEEE80211_FCTL_TODS):
639 if (unlikely(iftype != NL80211_IFTYPE_AP &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_P2P_GO))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
645 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
646 iftype != NL80211_IFTYPE_AP_VLAN &&
647 iftype != NL80211_IFTYPE_STATION))
648 return -1;
649 break;
650 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
651 if ((iftype != NL80211_IFTYPE_STATION &&
652 iftype != NL80211_IFTYPE_P2P_CLIENT &&
653 iftype != NL80211_IFTYPE_MESH_POINT) ||
654 (is_multicast_ether_addr(tmp.h_dest) &&
655 ether_addr_equal(tmp.h_source, addr)))
656 return -1;
657 break;
658 case cpu_to_le16(0):
659 if (iftype != NL80211_IFTYPE_ADHOC &&
660 iftype != NL80211_IFTYPE_STATION &&
661 iftype != NL80211_IFTYPE_OCB)
662 return -1;
663 break;
664 }
665
666 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
667 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
668 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
669 /* remove RFC1042 or Bridge-Tunnel encapsulation */
670 hdrlen += ETH_ALEN + 2;
671 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
672 } else {
673 tmp.h_proto = htons(skb->len - hdrlen);
674 }
675
676 pskb_pull(skb, hdrlen);
677
678 if (!ehdr)
679 ehdr = skb_push(skb, sizeof(struct ethhdr));
680 memcpy(ehdr, &tmp, sizeof(tmp));
681
682 return 0;
683 }
684 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
685
686 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)687 __frame_add_frag(struct sk_buff *skb, struct page *page,
688 void *ptr, int len, int size)
689 {
690 struct skb_shared_info *sh = skb_shinfo(skb);
691 int page_offset;
692
693 get_page(page);
694 page_offset = ptr - page_address(page);
695 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
696 }
697
698 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)699 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
700 int offset, int len)
701 {
702 struct skb_shared_info *sh = skb_shinfo(skb);
703 const skb_frag_t *frag = &sh->frags[0];
704 struct page *frag_page;
705 void *frag_ptr;
706 int frag_len, frag_size;
707 int head_size = skb->len - skb->data_len;
708 int cur_len;
709
710 frag_page = virt_to_head_page(skb->head);
711 frag_ptr = skb->data;
712 frag_size = head_size;
713
714 while (offset >= frag_size) {
715 offset -= frag_size;
716 frag_page = skb_frag_page(frag);
717 frag_ptr = skb_frag_address(frag);
718 frag_size = skb_frag_size(frag);
719 frag++;
720 }
721
722 frag_ptr += offset;
723 frag_len = frag_size - offset;
724
725 cur_len = min(len, frag_len);
726
727 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
728 len -= cur_len;
729
730 while (len > 0) {
731 frag_len = skb_frag_size(frag);
732 cur_len = min(len, frag_len);
733 __frame_add_frag(frame, skb_frag_page(frag),
734 skb_frag_address(frag), cur_len, frag_len);
735 len -= cur_len;
736 frag++;
737 }
738 }
739
740 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)741 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
742 int offset, int len, bool reuse_frag,
743 int min_len)
744 {
745 struct sk_buff *frame;
746 int cur_len = len;
747
748 if (skb->len - offset < len)
749 return NULL;
750
751 /*
752 * When reusing framents, copy some data to the head to simplify
753 * ethernet header handling and speed up protocol header processing
754 * in the stack later.
755 */
756 if (reuse_frag)
757 cur_len = min_t(int, len, min_len);
758
759 /*
760 * Allocate and reserve two bytes more for payload
761 * alignment since sizeof(struct ethhdr) is 14.
762 */
763 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
764 if (!frame)
765 return NULL;
766
767 frame->priority = skb->priority;
768 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
769 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
770
771 len -= cur_len;
772 if (!len)
773 return frame;
774
775 offset += cur_len;
776 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
777
778 return frame;
779 }
780
781 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)782 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
783 {
784 __le16 *field_le = field;
785 __be16 *field_be = field;
786 u16 len;
787
788 if (hdr_type >= 2)
789 len = le16_to_cpu(*field_le);
790 else
791 len = be16_to_cpu(*field_be);
792 if (hdr_type)
793 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
794
795 return len;
796 }
797
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)798 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
799 {
800 int offset = 0, remaining, subframe_len, padding;
801
802 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
803 struct {
804 __be16 len;
805 u8 mesh_flags;
806 } hdr;
807 u16 len;
808
809 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
810 return false;
811
812 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
813 mesh_hdr);
814 subframe_len = sizeof(struct ethhdr) + len;
815 padding = (4 - subframe_len) & 0x3;
816 remaining = skb->len - offset;
817
818 if (subframe_len > remaining)
819 return false;
820 }
821
822 return true;
823 }
824 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
825
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)826 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
827 const u8 *addr, enum nl80211_iftype iftype,
828 const unsigned int extra_headroom,
829 const u8 *check_da, const u8 *check_sa,
830 u8 mesh_control)
831 {
832 unsigned int hlen = ALIGN(extra_headroom, 4);
833 struct sk_buff *frame = NULL;
834 int offset = 0, remaining;
835 struct {
836 struct ethhdr eth;
837 uint8_t flags;
838 } hdr;
839 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
840 bool reuse_skb = false;
841 bool last = false;
842 int copy_len = sizeof(hdr.eth);
843
844 if (iftype == NL80211_IFTYPE_MESH_POINT)
845 copy_len = sizeof(hdr);
846
847 while (!last) {
848 unsigned int subframe_len;
849 int len, mesh_len = 0;
850 u8 padding;
851
852 skb_copy_bits(skb, offset, &hdr, copy_len);
853 if (iftype == NL80211_IFTYPE_MESH_POINT)
854 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
855 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
856 mesh_control);
857 subframe_len = sizeof(struct ethhdr) + len;
858 padding = (4 - subframe_len) & 0x3;
859
860 /* the last MSDU has no padding */
861 remaining = skb->len - offset;
862 if (subframe_len > remaining)
863 goto purge;
864 /* mitigate A-MSDU aggregation injection attacks */
865 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866 goto purge;
867
868 offset += sizeof(struct ethhdr);
869 last = remaining <= subframe_len + padding;
870
871 /* FIXME: should we really accept multicast DA? */
872 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875 offset += len + padding;
876 continue;
877 }
878
879 /* reuse skb for the last subframe */
880 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881 skb_pull(skb, offset);
882 frame = skb;
883 reuse_skb = true;
884 } else {
885 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886 reuse_frag, 32 + mesh_len);
887 if (!frame)
888 goto purge;
889
890 offset += len + padding;
891 }
892
893 skb_reset_network_header(frame);
894 frame->dev = skb->dev;
895 frame->priority = skb->priority;
896
897 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899 skb_pull(frame, ETH_ALEN + 2);
900
901 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902 __skb_queue_tail(list, frame);
903 }
904
905 if (!reuse_skb)
906 dev_kfree_skb(skb);
907
908 return;
909
910 purge:
911 __skb_queue_purge(list);
912 dev_kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915
916 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)917 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918 struct cfg80211_qos_map *qos_map)
919 {
920 unsigned int dscp;
921 unsigned char vlan_priority;
922 unsigned int ret;
923
924 /* skb->priority values from 256->263 are magic values to
925 * directly indicate a specific 802.1d priority. This is used
926 * to allow 802.1d priority to be passed directly in from VLAN
927 * tags, etc.
928 */
929 if (skb->priority >= 256 && skb->priority <= 263) {
930 ret = skb->priority - 256;
931 goto out;
932 }
933
934 if (skb_vlan_tag_present(skb)) {
935 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936 >> VLAN_PRIO_SHIFT;
937 if (vlan_priority > 0) {
938 ret = vlan_priority;
939 goto out;
940 }
941 }
942
943 switch (skb->protocol) {
944 case htons(ETH_P_IP):
945 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946 break;
947 case htons(ETH_P_IPV6):
948 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949 break;
950 case htons(ETH_P_MPLS_UC):
951 case htons(ETH_P_MPLS_MC): {
952 struct mpls_label mpls_tmp, *mpls;
953
954 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955 sizeof(*mpls), &mpls_tmp);
956 if (!mpls)
957 return 0;
958
959 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960 >> MPLS_LS_TC_SHIFT;
961 goto out;
962 }
963 case htons(ETH_P_80221):
964 /* 802.21 is always network control traffic */
965 return 7;
966 default:
967 return 0;
968 }
969
970 if (qos_map) {
971 unsigned int i, tmp_dscp = dscp >> 2;
972
973 for (i = 0; i < qos_map->num_des; i++) {
974 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975 ret = qos_map->dscp_exception[i].up;
976 goto out;
977 }
978 }
979
980 for (i = 0; i < 8; i++) {
981 if (tmp_dscp >= qos_map->up[i].low &&
982 tmp_dscp <= qos_map->up[i].high) {
983 ret = i;
984 goto out;
985 }
986 }
987 }
988
989 ret = dscp >> 5;
990 out:
991 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
992 }
993 EXPORT_SYMBOL(cfg80211_classify8021d);
994
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)995 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
996 {
997 const struct cfg80211_bss_ies *ies;
998
999 ies = rcu_dereference(bss->ies);
1000 if (!ies)
1001 return NULL;
1002
1003 return cfg80211_find_elem(id, ies->data, ies->len);
1004 }
1005 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1006
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1007 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1008 {
1009 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1010 struct net_device *dev = wdev->netdev;
1011 int i;
1012
1013 if (!wdev->connect_keys)
1014 return;
1015
1016 for (i = 0; i < 4; i++) {
1017 if (!wdev->connect_keys->params[i].cipher)
1018 continue;
1019 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1020 &wdev->connect_keys->params[i])) {
1021 netdev_err(dev, "failed to set key %d\n", i);
1022 continue;
1023 }
1024 if (wdev->connect_keys->def == i &&
1025 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1026 netdev_err(dev, "failed to set defkey %d\n", i);
1027 continue;
1028 }
1029 }
1030
1031 kfree_sensitive(wdev->connect_keys);
1032 wdev->connect_keys = NULL;
1033 }
1034
cfg80211_process_wdev_events(struct wireless_dev * wdev)1035 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1036 {
1037 struct cfg80211_event *ev;
1038 unsigned long flags;
1039
1040 spin_lock_irqsave(&wdev->event_lock, flags);
1041 while (!list_empty(&wdev->event_list)) {
1042 ev = list_first_entry(&wdev->event_list,
1043 struct cfg80211_event, list);
1044 list_del(&ev->list);
1045 spin_unlock_irqrestore(&wdev->event_lock, flags);
1046
1047 wdev_lock(wdev);
1048 switch (ev->type) {
1049 case EVENT_CONNECT_RESULT:
1050 __cfg80211_connect_result(
1051 wdev->netdev,
1052 &ev->cr,
1053 ev->cr.status == WLAN_STATUS_SUCCESS);
1054 break;
1055 case EVENT_ROAMED:
1056 __cfg80211_roamed(wdev, &ev->rm);
1057 break;
1058 case EVENT_DISCONNECTED:
1059 __cfg80211_disconnected(wdev->netdev,
1060 ev->dc.ie, ev->dc.ie_len,
1061 ev->dc.reason,
1062 !ev->dc.locally_generated);
1063 break;
1064 case EVENT_IBSS_JOINED:
1065 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1066 ev->ij.channel);
1067 break;
1068 case EVENT_STOPPED:
1069 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1070 break;
1071 case EVENT_PORT_AUTHORIZED:
1072 __cfg80211_port_authorized(wdev, ev->pa.bssid,
1073 ev->pa.td_bitmap,
1074 ev->pa.td_bitmap_len);
1075 break;
1076 }
1077 wdev_unlock(wdev);
1078
1079 kfree(ev);
1080
1081 spin_lock_irqsave(&wdev->event_lock, flags);
1082 }
1083 spin_unlock_irqrestore(&wdev->event_lock, flags);
1084 }
1085
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1086 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1087 {
1088 struct wireless_dev *wdev;
1089
1090 lockdep_assert_held(&rdev->wiphy.mtx);
1091
1092 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1093 cfg80211_process_wdev_events(wdev);
1094 }
1095
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1096 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1097 struct net_device *dev, enum nl80211_iftype ntype,
1098 struct vif_params *params)
1099 {
1100 int err;
1101 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1102
1103 lockdep_assert_held(&rdev->wiphy.mtx);
1104
1105 /* don't support changing VLANs, you just re-create them */
1106 if (otype == NL80211_IFTYPE_AP_VLAN)
1107 return -EOPNOTSUPP;
1108
1109 /* cannot change into P2P device or NAN */
1110 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1111 ntype == NL80211_IFTYPE_NAN)
1112 return -EOPNOTSUPP;
1113
1114 if (!rdev->ops->change_virtual_intf ||
1115 !(rdev->wiphy.interface_modes & (1 << ntype)))
1116 return -EOPNOTSUPP;
1117
1118 if (ntype != otype) {
1119 /* if it's part of a bridge, reject changing type to station/ibss */
1120 if (netif_is_bridge_port(dev) &&
1121 (ntype == NL80211_IFTYPE_ADHOC ||
1122 ntype == NL80211_IFTYPE_STATION ||
1123 ntype == NL80211_IFTYPE_P2P_CLIENT))
1124 return -EBUSY;
1125
1126 dev->ieee80211_ptr->use_4addr = false;
1127 wdev_lock(dev->ieee80211_ptr);
1128 rdev_set_qos_map(rdev, dev, NULL);
1129 wdev_unlock(dev->ieee80211_ptr);
1130
1131 switch (otype) {
1132 case NL80211_IFTYPE_AP:
1133 case NL80211_IFTYPE_P2P_GO:
1134 cfg80211_stop_ap(rdev, dev, -1, true);
1135 break;
1136 case NL80211_IFTYPE_ADHOC:
1137 cfg80211_leave_ibss(rdev, dev, false);
1138 break;
1139 case NL80211_IFTYPE_STATION:
1140 case NL80211_IFTYPE_P2P_CLIENT:
1141 wdev_lock(dev->ieee80211_ptr);
1142 cfg80211_disconnect(rdev, dev,
1143 WLAN_REASON_DEAUTH_LEAVING, true);
1144 wdev_unlock(dev->ieee80211_ptr);
1145 break;
1146 case NL80211_IFTYPE_MESH_POINT:
1147 /* mesh should be handled? */
1148 break;
1149 case NL80211_IFTYPE_OCB:
1150 cfg80211_leave_ocb(rdev, dev);
1151 break;
1152 default:
1153 break;
1154 }
1155
1156 cfg80211_process_rdev_events(rdev);
1157 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1158
1159 memset(&dev->ieee80211_ptr->u, 0,
1160 sizeof(dev->ieee80211_ptr->u));
1161 memset(&dev->ieee80211_ptr->links, 0,
1162 sizeof(dev->ieee80211_ptr->links));
1163 }
1164
1165 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1166
1167 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1168
1169 if (!err && params && params->use_4addr != -1)
1170 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1171
1172 if (!err) {
1173 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1174 switch (ntype) {
1175 case NL80211_IFTYPE_STATION:
1176 if (dev->ieee80211_ptr->use_4addr)
1177 break;
1178 fallthrough;
1179 case NL80211_IFTYPE_OCB:
1180 case NL80211_IFTYPE_P2P_CLIENT:
1181 case NL80211_IFTYPE_ADHOC:
1182 dev->priv_flags |= IFF_DONT_BRIDGE;
1183 break;
1184 case NL80211_IFTYPE_P2P_GO:
1185 case NL80211_IFTYPE_AP:
1186 case NL80211_IFTYPE_AP_VLAN:
1187 case NL80211_IFTYPE_MESH_POINT:
1188 /* bridging OK */
1189 break;
1190 case NL80211_IFTYPE_MONITOR:
1191 /* monitor can't bridge anyway */
1192 break;
1193 case NL80211_IFTYPE_UNSPECIFIED:
1194 case NUM_NL80211_IFTYPES:
1195 /* not happening */
1196 break;
1197 case NL80211_IFTYPE_P2P_DEVICE:
1198 case NL80211_IFTYPE_WDS:
1199 case NL80211_IFTYPE_NAN:
1200 WARN_ON(1);
1201 break;
1202 }
1203 }
1204
1205 if (!err && ntype != otype && netif_running(dev)) {
1206 cfg80211_update_iface_num(rdev, ntype, 1);
1207 cfg80211_update_iface_num(rdev, otype, -1);
1208 }
1209
1210 return err;
1211 }
1212
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1213 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1214 {
1215 int modulation, streams, bitrate;
1216
1217 /* the formula below does only work for MCS values smaller than 32 */
1218 if (WARN_ON_ONCE(rate->mcs >= 32))
1219 return 0;
1220
1221 modulation = rate->mcs & 7;
1222 streams = (rate->mcs >> 3) + 1;
1223
1224 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1225
1226 if (modulation < 4)
1227 bitrate *= (modulation + 1);
1228 else if (modulation == 4)
1229 bitrate *= (modulation + 2);
1230 else
1231 bitrate *= (modulation + 3);
1232
1233 bitrate *= streams;
1234
1235 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1236 bitrate = (bitrate / 9) * 10;
1237
1238 /* do NOT round down here */
1239 return (bitrate + 50000) / 100000;
1240 }
1241
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1242 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1243 {
1244 static const u32 __mcs2bitrate[] = {
1245 /* control PHY */
1246 [0] = 275,
1247 /* SC PHY */
1248 [1] = 3850,
1249 [2] = 7700,
1250 [3] = 9625,
1251 [4] = 11550,
1252 [5] = 12512, /* 1251.25 mbps */
1253 [6] = 15400,
1254 [7] = 19250,
1255 [8] = 23100,
1256 [9] = 25025,
1257 [10] = 30800,
1258 [11] = 38500,
1259 [12] = 46200,
1260 /* OFDM PHY */
1261 [13] = 6930,
1262 [14] = 8662, /* 866.25 mbps */
1263 [15] = 13860,
1264 [16] = 17325,
1265 [17] = 20790,
1266 [18] = 27720,
1267 [19] = 34650,
1268 [20] = 41580,
1269 [21] = 45045,
1270 [22] = 51975,
1271 [23] = 62370,
1272 [24] = 67568, /* 6756.75 mbps */
1273 /* LP-SC PHY */
1274 [25] = 6260,
1275 [26] = 8340,
1276 [27] = 11120,
1277 [28] = 12510,
1278 [29] = 16680,
1279 [30] = 22240,
1280 [31] = 25030,
1281 };
1282
1283 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1284 return 0;
1285
1286 return __mcs2bitrate[rate->mcs];
1287 }
1288
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1289 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1290 {
1291 static const u32 __mcs2bitrate[] = {
1292 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1293 [7 - 6] = 50050, /* MCS 12.1 */
1294 [8 - 6] = 53900,
1295 [9 - 6] = 57750,
1296 [10 - 6] = 63900,
1297 [11 - 6] = 75075,
1298 [12 - 6] = 80850,
1299 };
1300
1301 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1302 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1303 return 0;
1304
1305 return __mcs2bitrate[rate->mcs - 6];
1306 }
1307
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1308 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1309 {
1310 static const u32 __mcs2bitrate[] = {
1311 /* control PHY */
1312 [0] = 275,
1313 /* SC PHY */
1314 [1] = 3850,
1315 [2] = 7700,
1316 [3] = 9625,
1317 [4] = 11550,
1318 [5] = 12512, /* 1251.25 mbps */
1319 [6] = 13475,
1320 [7] = 15400,
1321 [8] = 19250,
1322 [9] = 23100,
1323 [10] = 25025,
1324 [11] = 26950,
1325 [12] = 30800,
1326 [13] = 38500,
1327 [14] = 46200,
1328 [15] = 50050,
1329 [16] = 53900,
1330 [17] = 57750,
1331 [18] = 69300,
1332 [19] = 75075,
1333 [20] = 80850,
1334 };
1335
1336 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1337 return 0;
1338
1339 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1340 }
1341
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1342 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1343 {
1344 static const u32 base[4][12] = {
1345 { 6500000,
1346 13000000,
1347 19500000,
1348 26000000,
1349 39000000,
1350 52000000,
1351 58500000,
1352 65000000,
1353 78000000,
1354 /* not in the spec, but some devices use this: */
1355 86700000,
1356 97500000,
1357 108300000,
1358 },
1359 { 13500000,
1360 27000000,
1361 40500000,
1362 54000000,
1363 81000000,
1364 108000000,
1365 121500000,
1366 135000000,
1367 162000000,
1368 180000000,
1369 202500000,
1370 225000000,
1371 },
1372 { 29300000,
1373 58500000,
1374 87800000,
1375 117000000,
1376 175500000,
1377 234000000,
1378 263300000,
1379 292500000,
1380 351000000,
1381 390000000,
1382 438800000,
1383 487500000,
1384 },
1385 { 58500000,
1386 117000000,
1387 175500000,
1388 234000000,
1389 351000000,
1390 468000000,
1391 526500000,
1392 585000000,
1393 702000000,
1394 780000000,
1395 877500000,
1396 975000000,
1397 },
1398 };
1399 u32 bitrate;
1400 int idx;
1401
1402 if (rate->mcs > 11)
1403 goto warn;
1404
1405 switch (rate->bw) {
1406 case RATE_INFO_BW_160:
1407 idx = 3;
1408 break;
1409 case RATE_INFO_BW_80:
1410 idx = 2;
1411 break;
1412 case RATE_INFO_BW_40:
1413 idx = 1;
1414 break;
1415 case RATE_INFO_BW_5:
1416 case RATE_INFO_BW_10:
1417 default:
1418 goto warn;
1419 case RATE_INFO_BW_20:
1420 idx = 0;
1421 }
1422
1423 bitrate = base[idx][rate->mcs];
1424 bitrate *= rate->nss;
1425
1426 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1427 bitrate = (bitrate / 9) * 10;
1428
1429 /* do NOT round down here */
1430 return (bitrate + 50000) / 100000;
1431 warn:
1432 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1433 rate->bw, rate->mcs, rate->nss);
1434 return 0;
1435 }
1436
cfg80211_calculate_bitrate_he(struct rate_info * rate)1437 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1438 {
1439 #define SCALE 6144
1440 u32 mcs_divisors[14] = {
1441 102399, /* 16.666666... */
1442 51201, /* 8.333333... */
1443 34134, /* 5.555555... */
1444 25599, /* 4.166666... */
1445 17067, /* 2.777777... */
1446 12801, /* 2.083333... */
1447 11377, /* 1.851725... */
1448 10239, /* 1.666666... */
1449 8532, /* 1.388888... */
1450 7680, /* 1.250000... */
1451 6828, /* 1.111111... */
1452 6144, /* 1.000000... */
1453 5690, /* 0.926106... */
1454 5120, /* 0.833333... */
1455 };
1456 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1457 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1458 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1459 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1460 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1461 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1462 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1463 u64 tmp;
1464 u32 result;
1465
1466 if (WARN_ON_ONCE(rate->mcs > 13))
1467 return 0;
1468
1469 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1470 return 0;
1471 if (WARN_ON_ONCE(rate->he_ru_alloc >
1472 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1473 return 0;
1474 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1475 return 0;
1476
1477 if (rate->bw == RATE_INFO_BW_160)
1478 result = rates_160M[rate->he_gi];
1479 else if (rate->bw == RATE_INFO_BW_80 ||
1480 (rate->bw == RATE_INFO_BW_HE_RU &&
1481 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1482 result = rates_969[rate->he_gi];
1483 else if (rate->bw == RATE_INFO_BW_40 ||
1484 (rate->bw == RATE_INFO_BW_HE_RU &&
1485 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1486 result = rates_484[rate->he_gi];
1487 else if (rate->bw == RATE_INFO_BW_20 ||
1488 (rate->bw == RATE_INFO_BW_HE_RU &&
1489 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1490 result = rates_242[rate->he_gi];
1491 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1492 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1493 result = rates_106[rate->he_gi];
1494 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1495 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1496 result = rates_52[rate->he_gi];
1497 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1498 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1499 result = rates_26[rate->he_gi];
1500 else {
1501 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1502 rate->bw, rate->he_ru_alloc);
1503 return 0;
1504 }
1505
1506 /* now scale to the appropriate MCS */
1507 tmp = result;
1508 tmp *= SCALE;
1509 do_div(tmp, mcs_divisors[rate->mcs]);
1510 result = tmp;
1511
1512 /* and take NSS, DCM into account */
1513 result = (result * rate->nss) / 8;
1514 if (rate->he_dcm)
1515 result /= 2;
1516
1517 return result / 10000;
1518 }
1519
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1520 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1521 {
1522 #define SCALE 6144
1523 static const u32 mcs_divisors[16] = {
1524 102399, /* 16.666666... */
1525 51201, /* 8.333333... */
1526 34134, /* 5.555555... */
1527 25599, /* 4.166666... */
1528 17067, /* 2.777777... */
1529 12801, /* 2.083333... */
1530 11377, /* 1.851725... */
1531 10239, /* 1.666666... */
1532 8532, /* 1.388888... */
1533 7680, /* 1.250000... */
1534 6828, /* 1.111111... */
1535 6144, /* 1.000000... */
1536 5690, /* 0.926106... */
1537 5120, /* 0.833333... */
1538 409600, /* 66.666666... */
1539 204800, /* 33.333333... */
1540 };
1541 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1542 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1543 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1544 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1545 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1546 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1547 u64 tmp;
1548 u32 result;
1549
1550 if (WARN_ON_ONCE(rate->mcs > 15))
1551 return 0;
1552 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1553 return 0;
1554 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1555 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1556 return 0;
1557 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1558 return 0;
1559
1560 /* Bandwidth checks for MCS 14 */
1561 if (rate->mcs == 14) {
1562 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1563 rate->bw != RATE_INFO_BW_80 &&
1564 rate->bw != RATE_INFO_BW_160 &&
1565 rate->bw != RATE_INFO_BW_320) ||
1566 (rate->bw == RATE_INFO_BW_EHT_RU &&
1567 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1568 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1569 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1570 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1571 rate->bw, rate->eht_ru_alloc);
1572 return 0;
1573 }
1574 }
1575
1576 if (rate->bw == RATE_INFO_BW_320 ||
1577 (rate->bw == RATE_INFO_BW_EHT_RU &&
1578 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1579 result = 4 * rates_996[rate->eht_gi];
1580 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1581 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1582 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1583 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1584 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1585 result = 3 * rates_996[rate->eht_gi];
1586 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1587 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1588 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1589 else if (rate->bw == RATE_INFO_BW_160 ||
1590 (rate->bw == RATE_INFO_BW_EHT_RU &&
1591 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1592 result = 2 * rates_996[rate->eht_gi];
1593 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1594 rate->eht_ru_alloc ==
1595 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1596 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1597 + rates_242[rate->eht_gi];
1598 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1599 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1600 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1601 else if (rate->bw == RATE_INFO_BW_80 ||
1602 (rate->bw == RATE_INFO_BW_EHT_RU &&
1603 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1604 result = rates_996[rate->eht_gi];
1605 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1606 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1607 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1608 else if (rate->bw == RATE_INFO_BW_40 ||
1609 (rate->bw == RATE_INFO_BW_EHT_RU &&
1610 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1611 result = rates_484[rate->eht_gi];
1612 else if (rate->bw == RATE_INFO_BW_20 ||
1613 (rate->bw == RATE_INFO_BW_EHT_RU &&
1614 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1615 result = rates_242[rate->eht_gi];
1616 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1617 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1618 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1619 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1620 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1621 result = rates_106[rate->eht_gi];
1622 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1623 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1624 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1625 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1626 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1627 result = rates_52[rate->eht_gi];
1628 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1629 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1630 result = rates_26[rate->eht_gi];
1631 else {
1632 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1633 rate->bw, rate->eht_ru_alloc);
1634 return 0;
1635 }
1636
1637 /* now scale to the appropriate MCS */
1638 tmp = result;
1639 tmp *= SCALE;
1640 do_div(tmp, mcs_divisors[rate->mcs]);
1641
1642 /* and take NSS */
1643 tmp *= rate->nss;
1644 do_div(tmp, 8);
1645
1646 result = tmp;
1647
1648 return result / 10000;
1649 }
1650
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1651 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1652 {
1653 /* For 1, 2, 4, 8 and 16 MHz channels */
1654 static const u32 base[5][11] = {
1655 { 300000,
1656 600000,
1657 900000,
1658 1200000,
1659 1800000,
1660 2400000,
1661 2700000,
1662 3000000,
1663 3600000,
1664 4000000,
1665 /* MCS 10 supported in 1 MHz only */
1666 150000,
1667 },
1668 { 650000,
1669 1300000,
1670 1950000,
1671 2600000,
1672 3900000,
1673 5200000,
1674 5850000,
1675 6500000,
1676 7800000,
1677 /* MCS 9 not valid */
1678 },
1679 { 1350000,
1680 2700000,
1681 4050000,
1682 5400000,
1683 8100000,
1684 10800000,
1685 12150000,
1686 13500000,
1687 16200000,
1688 18000000,
1689 },
1690 { 2925000,
1691 5850000,
1692 8775000,
1693 11700000,
1694 17550000,
1695 23400000,
1696 26325000,
1697 29250000,
1698 35100000,
1699 39000000,
1700 },
1701 { 8580000,
1702 11700000,
1703 17550000,
1704 23400000,
1705 35100000,
1706 46800000,
1707 52650000,
1708 58500000,
1709 70200000,
1710 78000000,
1711 },
1712 };
1713 u32 bitrate;
1714 /* default is 1 MHz index */
1715 int idx = 0;
1716
1717 if (rate->mcs >= 11)
1718 goto warn;
1719
1720 switch (rate->bw) {
1721 case RATE_INFO_BW_16:
1722 idx = 4;
1723 break;
1724 case RATE_INFO_BW_8:
1725 idx = 3;
1726 break;
1727 case RATE_INFO_BW_4:
1728 idx = 2;
1729 break;
1730 case RATE_INFO_BW_2:
1731 idx = 1;
1732 break;
1733 case RATE_INFO_BW_1:
1734 idx = 0;
1735 break;
1736 case RATE_INFO_BW_5:
1737 case RATE_INFO_BW_10:
1738 case RATE_INFO_BW_20:
1739 case RATE_INFO_BW_40:
1740 case RATE_INFO_BW_80:
1741 case RATE_INFO_BW_160:
1742 default:
1743 goto warn;
1744 }
1745
1746 bitrate = base[idx][rate->mcs];
1747 bitrate *= rate->nss;
1748
1749 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1750 bitrate = (bitrate / 9) * 10;
1751 /* do NOT round down here */
1752 return (bitrate + 50000) / 100000;
1753 warn:
1754 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1755 rate->bw, rate->mcs, rate->nss);
1756 return 0;
1757 }
1758
cfg80211_calculate_bitrate(struct rate_info * rate)1759 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1760 {
1761 if (rate->flags & RATE_INFO_FLAGS_MCS)
1762 return cfg80211_calculate_bitrate_ht(rate);
1763 if (rate->flags & RATE_INFO_FLAGS_DMG)
1764 return cfg80211_calculate_bitrate_dmg(rate);
1765 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1766 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1767 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1768 return cfg80211_calculate_bitrate_edmg(rate);
1769 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1770 return cfg80211_calculate_bitrate_vht(rate);
1771 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1772 return cfg80211_calculate_bitrate_he(rate);
1773 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1774 return cfg80211_calculate_bitrate_eht(rate);
1775 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1776 return cfg80211_calculate_bitrate_s1g(rate);
1777
1778 return rate->legacy;
1779 }
1780 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1781
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1782 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1783 enum ieee80211_p2p_attr_id attr,
1784 u8 *buf, unsigned int bufsize)
1785 {
1786 u8 *out = buf;
1787 u16 attr_remaining = 0;
1788 bool desired_attr = false;
1789 u16 desired_len = 0;
1790
1791 while (len > 0) {
1792 unsigned int iedatalen;
1793 unsigned int copy;
1794 const u8 *iedata;
1795
1796 if (len < 2)
1797 return -EILSEQ;
1798 iedatalen = ies[1];
1799 if (iedatalen + 2 > len)
1800 return -EILSEQ;
1801
1802 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1803 goto cont;
1804
1805 if (iedatalen < 4)
1806 goto cont;
1807
1808 iedata = ies + 2;
1809
1810 /* check WFA OUI, P2P subtype */
1811 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1812 iedata[2] != 0x9a || iedata[3] != 0x09)
1813 goto cont;
1814
1815 iedatalen -= 4;
1816 iedata += 4;
1817
1818 /* check attribute continuation into this IE */
1819 copy = min_t(unsigned int, attr_remaining, iedatalen);
1820 if (copy && desired_attr) {
1821 desired_len += copy;
1822 if (out) {
1823 memcpy(out, iedata, min(bufsize, copy));
1824 out += min(bufsize, copy);
1825 bufsize -= min(bufsize, copy);
1826 }
1827
1828
1829 if (copy == attr_remaining)
1830 return desired_len;
1831 }
1832
1833 attr_remaining -= copy;
1834 if (attr_remaining)
1835 goto cont;
1836
1837 iedatalen -= copy;
1838 iedata += copy;
1839
1840 while (iedatalen > 0) {
1841 u16 attr_len;
1842
1843 /* P2P attribute ID & size must fit */
1844 if (iedatalen < 3)
1845 return -EILSEQ;
1846 desired_attr = iedata[0] == attr;
1847 attr_len = get_unaligned_le16(iedata + 1);
1848 iedatalen -= 3;
1849 iedata += 3;
1850
1851 copy = min_t(unsigned int, attr_len, iedatalen);
1852
1853 if (desired_attr) {
1854 desired_len += copy;
1855 if (out) {
1856 memcpy(out, iedata, min(bufsize, copy));
1857 out += min(bufsize, copy);
1858 bufsize -= min(bufsize, copy);
1859 }
1860
1861 if (copy == attr_len)
1862 return desired_len;
1863 }
1864
1865 iedata += copy;
1866 iedatalen -= copy;
1867 attr_remaining = attr_len - copy;
1868 }
1869
1870 cont:
1871 len -= ies[1] + 2;
1872 ies += ies[1] + 2;
1873 }
1874
1875 if (attr_remaining && desired_attr)
1876 return -EILSEQ;
1877
1878 return -ENOENT;
1879 }
1880 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1881
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1882 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1883 {
1884 int i;
1885
1886 /* Make sure array values are legal */
1887 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1888 return false;
1889
1890 i = 0;
1891 while (i < n_ids) {
1892 if (ids[i] == WLAN_EID_EXTENSION) {
1893 if (id_ext && (ids[i + 1] == id))
1894 return true;
1895
1896 i += 2;
1897 continue;
1898 }
1899
1900 if (ids[i] == id && !id_ext)
1901 return true;
1902
1903 i++;
1904 }
1905 return false;
1906 }
1907
skip_ie(const u8 * ies,size_t ielen,size_t pos)1908 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1909 {
1910 /* we assume a validly formed IEs buffer */
1911 u8 len = ies[pos + 1];
1912
1913 pos += 2 + len;
1914
1915 /* the IE itself must have 255 bytes for fragments to follow */
1916 if (len < 255)
1917 return pos;
1918
1919 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1920 len = ies[pos + 1];
1921 pos += 2 + len;
1922 }
1923
1924 return pos;
1925 }
1926
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1927 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1928 const u8 *ids, int n_ids,
1929 const u8 *after_ric, int n_after_ric,
1930 size_t offset)
1931 {
1932 size_t pos = offset;
1933
1934 while (pos < ielen) {
1935 u8 ext = 0;
1936
1937 if (ies[pos] == WLAN_EID_EXTENSION)
1938 ext = 2;
1939 if ((pos + ext) >= ielen)
1940 break;
1941
1942 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1943 ies[pos] == WLAN_EID_EXTENSION))
1944 break;
1945
1946 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1947 pos = skip_ie(ies, ielen, pos);
1948
1949 while (pos < ielen) {
1950 if (ies[pos] == WLAN_EID_EXTENSION)
1951 ext = 2;
1952 else
1953 ext = 0;
1954
1955 if ((pos + ext) >= ielen)
1956 break;
1957
1958 if (!ieee80211_id_in_list(after_ric,
1959 n_after_ric,
1960 ies[pos + ext],
1961 ext == 2))
1962 pos = skip_ie(ies, ielen, pos);
1963 else
1964 break;
1965 }
1966 } else {
1967 pos = skip_ie(ies, ielen, pos);
1968 }
1969 }
1970
1971 return pos;
1972 }
1973 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1974
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1975 bool ieee80211_operating_class_to_band(u8 operating_class,
1976 enum nl80211_band *band)
1977 {
1978 switch (operating_class) {
1979 case 112:
1980 case 115 ... 127:
1981 case 128 ... 130:
1982 *band = NL80211_BAND_5GHZ;
1983 return true;
1984 case 131 ... 135:
1985 *band = NL80211_BAND_6GHZ;
1986 return true;
1987 case 81:
1988 case 82:
1989 case 83:
1990 case 84:
1991 *band = NL80211_BAND_2GHZ;
1992 return true;
1993 case 180:
1994 *band = NL80211_BAND_60GHZ;
1995 return true;
1996 }
1997
1998 return false;
1999 }
2000 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2001
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2002 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2003 u8 *op_class)
2004 {
2005 u8 vht_opclass;
2006 u32 freq = chandef->center_freq1;
2007
2008 if (freq >= 2412 && freq <= 2472) {
2009 if (chandef->width > NL80211_CHAN_WIDTH_40)
2010 return false;
2011
2012 /* 2.407 GHz, channels 1..13 */
2013 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2014 if (freq > chandef->chan->center_freq)
2015 *op_class = 83; /* HT40+ */
2016 else
2017 *op_class = 84; /* HT40- */
2018 } else {
2019 *op_class = 81;
2020 }
2021
2022 return true;
2023 }
2024
2025 if (freq == 2484) {
2026 /* channel 14 is only for IEEE 802.11b */
2027 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2028 return false;
2029
2030 *op_class = 82; /* channel 14 */
2031 return true;
2032 }
2033
2034 switch (chandef->width) {
2035 case NL80211_CHAN_WIDTH_80:
2036 vht_opclass = 128;
2037 break;
2038 case NL80211_CHAN_WIDTH_160:
2039 vht_opclass = 129;
2040 break;
2041 case NL80211_CHAN_WIDTH_80P80:
2042 vht_opclass = 130;
2043 break;
2044 case NL80211_CHAN_WIDTH_10:
2045 case NL80211_CHAN_WIDTH_5:
2046 return false; /* unsupported for now */
2047 default:
2048 vht_opclass = 0;
2049 break;
2050 }
2051
2052 /* 5 GHz, channels 36..48 */
2053 if (freq >= 5180 && freq <= 5240) {
2054 if (vht_opclass) {
2055 *op_class = vht_opclass;
2056 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2057 if (freq > chandef->chan->center_freq)
2058 *op_class = 116;
2059 else
2060 *op_class = 117;
2061 } else {
2062 *op_class = 115;
2063 }
2064
2065 return true;
2066 }
2067
2068 /* 5 GHz, channels 52..64 */
2069 if (freq >= 5260 && freq <= 5320) {
2070 if (vht_opclass) {
2071 *op_class = vht_opclass;
2072 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2073 if (freq > chandef->chan->center_freq)
2074 *op_class = 119;
2075 else
2076 *op_class = 120;
2077 } else {
2078 *op_class = 118;
2079 }
2080
2081 return true;
2082 }
2083
2084 /* 5 GHz, channels 100..144 */
2085 if (freq >= 5500 && freq <= 5720) {
2086 if (vht_opclass) {
2087 *op_class = vht_opclass;
2088 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2089 if (freq > chandef->chan->center_freq)
2090 *op_class = 122;
2091 else
2092 *op_class = 123;
2093 } else {
2094 *op_class = 121;
2095 }
2096
2097 return true;
2098 }
2099
2100 /* 5 GHz, channels 149..169 */
2101 if (freq >= 5745 && freq <= 5845) {
2102 if (vht_opclass) {
2103 *op_class = vht_opclass;
2104 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2105 if (freq > chandef->chan->center_freq)
2106 *op_class = 126;
2107 else
2108 *op_class = 127;
2109 } else if (freq <= 5805) {
2110 *op_class = 124;
2111 } else {
2112 *op_class = 125;
2113 }
2114
2115 return true;
2116 }
2117
2118 /* 56.16 GHz, channel 1..4 */
2119 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2120 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2121 return false;
2122
2123 *op_class = 180;
2124 return true;
2125 }
2126
2127 /* not supported yet */
2128 return false;
2129 }
2130 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2131
cfg80211_wdev_bi(struct wireless_dev * wdev)2132 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2133 {
2134 switch (wdev->iftype) {
2135 case NL80211_IFTYPE_AP:
2136 case NL80211_IFTYPE_P2P_GO:
2137 WARN_ON(wdev->valid_links);
2138 return wdev->links[0].ap.beacon_interval;
2139 case NL80211_IFTYPE_MESH_POINT:
2140 return wdev->u.mesh.beacon_interval;
2141 case NL80211_IFTYPE_ADHOC:
2142 return wdev->u.ibss.beacon_interval;
2143 default:
2144 break;
2145 }
2146
2147 return 0;
2148 }
2149
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)2150 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2151 u32 *beacon_int_gcd,
2152 bool *beacon_int_different)
2153 {
2154 struct wireless_dev *wdev;
2155
2156 *beacon_int_gcd = 0;
2157 *beacon_int_different = false;
2158
2159 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2160 int wdev_bi;
2161
2162 /* this feature isn't supported with MLO */
2163 if (wdev->valid_links)
2164 continue;
2165
2166 wdev_bi = cfg80211_wdev_bi(wdev);
2167
2168 if (!wdev_bi)
2169 continue;
2170
2171 if (!*beacon_int_gcd) {
2172 *beacon_int_gcd = wdev_bi;
2173 continue;
2174 }
2175
2176 if (wdev_bi == *beacon_int_gcd)
2177 continue;
2178
2179 *beacon_int_different = true;
2180 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2181 }
2182
2183 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2184 if (*beacon_int_gcd)
2185 *beacon_int_different = true;
2186 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2187 }
2188 }
2189
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2190 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2191 enum nl80211_iftype iftype, u32 beacon_int)
2192 {
2193 /*
2194 * This is just a basic pre-condition check; if interface combinations
2195 * are possible the driver must already be checking those with a call
2196 * to cfg80211_check_combinations(), in which case we'll validate more
2197 * through the cfg80211_calculate_bi_data() call and code in
2198 * cfg80211_iter_combinations().
2199 */
2200
2201 if (beacon_int < 10 || beacon_int > 10000)
2202 return -EINVAL;
2203
2204 return 0;
2205 }
2206
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2207 int cfg80211_iter_combinations(struct wiphy *wiphy,
2208 struct iface_combination_params *params,
2209 void (*iter)(const struct ieee80211_iface_combination *c,
2210 void *data),
2211 void *data)
2212 {
2213 const struct ieee80211_regdomain *regdom;
2214 enum nl80211_dfs_regions region = 0;
2215 int i, j, iftype;
2216 int num_interfaces = 0;
2217 u32 used_iftypes = 0;
2218 u32 beacon_int_gcd;
2219 bool beacon_int_different;
2220
2221 /*
2222 * This is a bit strange, since the iteration used to rely only on
2223 * the data given by the driver, but here it now relies on context,
2224 * in form of the currently operating interfaces.
2225 * This is OK for all current users, and saves us from having to
2226 * push the GCD calculations into all the drivers.
2227 * In the future, this should probably rely more on data that's in
2228 * cfg80211 already - the only thing not would appear to be any new
2229 * interfaces (while being brought up) and channel/radar data.
2230 */
2231 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2232 &beacon_int_gcd, &beacon_int_different);
2233
2234 if (params->radar_detect) {
2235 rcu_read_lock();
2236 regdom = rcu_dereference(cfg80211_regdomain);
2237 if (regdom)
2238 region = regdom->dfs_region;
2239 rcu_read_unlock();
2240 }
2241
2242 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2243 num_interfaces += params->iftype_num[iftype];
2244 if (params->iftype_num[iftype] > 0 &&
2245 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2246 used_iftypes |= BIT(iftype);
2247 }
2248
2249 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2250 const struct ieee80211_iface_combination *c;
2251 struct ieee80211_iface_limit *limits;
2252 u32 all_iftypes = 0;
2253
2254 c = &wiphy->iface_combinations[i];
2255
2256 if (num_interfaces > c->max_interfaces)
2257 continue;
2258 if (params->num_different_channels > c->num_different_channels)
2259 continue;
2260
2261 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2262 GFP_KERNEL);
2263 if (!limits)
2264 return -ENOMEM;
2265
2266 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2267 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2268 continue;
2269 for (j = 0; j < c->n_limits; j++) {
2270 all_iftypes |= limits[j].types;
2271 if (!(limits[j].types & BIT(iftype)))
2272 continue;
2273 if (limits[j].max < params->iftype_num[iftype])
2274 goto cont;
2275 limits[j].max -= params->iftype_num[iftype];
2276 }
2277 }
2278
2279 if (params->radar_detect !=
2280 (c->radar_detect_widths & params->radar_detect))
2281 goto cont;
2282
2283 if (params->radar_detect && c->radar_detect_regions &&
2284 !(c->radar_detect_regions & BIT(region)))
2285 goto cont;
2286
2287 /* Finally check that all iftypes that we're currently
2288 * using are actually part of this combination. If they
2289 * aren't then we can't use this combination and have
2290 * to continue to the next.
2291 */
2292 if ((all_iftypes & used_iftypes) != used_iftypes)
2293 goto cont;
2294
2295 if (beacon_int_gcd) {
2296 if (c->beacon_int_min_gcd &&
2297 beacon_int_gcd < c->beacon_int_min_gcd)
2298 goto cont;
2299 if (!c->beacon_int_min_gcd && beacon_int_different)
2300 goto cont;
2301 }
2302
2303 /* This combination covered all interface types and
2304 * supported the requested numbers, so we're good.
2305 */
2306
2307 (*iter)(c, data);
2308 cont:
2309 kfree(limits);
2310 }
2311
2312 return 0;
2313 }
2314 EXPORT_SYMBOL(cfg80211_iter_combinations);
2315
2316 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2317 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2318 void *data)
2319 {
2320 int *num = data;
2321 (*num)++;
2322 }
2323
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2324 int cfg80211_check_combinations(struct wiphy *wiphy,
2325 struct iface_combination_params *params)
2326 {
2327 int err, num = 0;
2328
2329 err = cfg80211_iter_combinations(wiphy, params,
2330 cfg80211_iter_sum_ifcombs, &num);
2331 if (err)
2332 return err;
2333 if (num == 0)
2334 return -EBUSY;
2335
2336 return 0;
2337 }
2338 EXPORT_SYMBOL(cfg80211_check_combinations);
2339
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2340 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2341 const u8 *rates, unsigned int n_rates,
2342 u32 *mask)
2343 {
2344 int i, j;
2345
2346 if (!sband)
2347 return -EINVAL;
2348
2349 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2350 return -EINVAL;
2351
2352 *mask = 0;
2353
2354 for (i = 0; i < n_rates; i++) {
2355 int rate = (rates[i] & 0x7f) * 5;
2356 bool found = false;
2357
2358 for (j = 0; j < sband->n_bitrates; j++) {
2359 if (sband->bitrates[j].bitrate == rate) {
2360 found = true;
2361 *mask |= BIT(j);
2362 break;
2363 }
2364 }
2365 if (!found)
2366 return -EINVAL;
2367 }
2368
2369 /*
2370 * mask must have at least one bit set here since we
2371 * didn't accept a 0-length rates array nor allowed
2372 * entries in the array that didn't exist
2373 */
2374
2375 return 0;
2376 }
2377
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2378 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2379 {
2380 enum nl80211_band band;
2381 unsigned int n_channels = 0;
2382
2383 for (band = 0; band < NUM_NL80211_BANDS; band++)
2384 if (wiphy->bands[band])
2385 n_channels += wiphy->bands[band]->n_channels;
2386
2387 return n_channels;
2388 }
2389 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2390
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2391 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2392 struct station_info *sinfo)
2393 {
2394 struct cfg80211_registered_device *rdev;
2395 struct wireless_dev *wdev;
2396
2397 wdev = dev->ieee80211_ptr;
2398 if (!wdev)
2399 return -EOPNOTSUPP;
2400
2401 rdev = wiphy_to_rdev(wdev->wiphy);
2402 if (!rdev->ops->get_station)
2403 return -EOPNOTSUPP;
2404
2405 memset(sinfo, 0, sizeof(*sinfo));
2406
2407 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2408 }
2409 EXPORT_SYMBOL(cfg80211_get_station);
2410
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2411 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2412 {
2413 int i;
2414
2415 if (!f)
2416 return;
2417
2418 kfree(f->serv_spec_info);
2419 kfree(f->srf_bf);
2420 kfree(f->srf_macs);
2421 for (i = 0; i < f->num_rx_filters; i++)
2422 kfree(f->rx_filters[i].filter);
2423
2424 for (i = 0; i < f->num_tx_filters; i++)
2425 kfree(f->tx_filters[i].filter);
2426
2427 kfree(f->rx_filters);
2428 kfree(f->tx_filters);
2429 kfree(f);
2430 }
2431 EXPORT_SYMBOL(cfg80211_free_nan_func);
2432
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2433 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2434 u32 center_freq_khz, u32 bw_khz)
2435 {
2436 u32 start_freq_khz, end_freq_khz;
2437
2438 start_freq_khz = center_freq_khz - (bw_khz / 2);
2439 end_freq_khz = center_freq_khz + (bw_khz / 2);
2440
2441 if (start_freq_khz >= freq_range->start_freq_khz &&
2442 end_freq_khz <= freq_range->end_freq_khz)
2443 return true;
2444
2445 return false;
2446 }
2447
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2448 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2449 {
2450 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2451 sizeof(*(sinfo->pertid)),
2452 gfp);
2453 if (!sinfo->pertid)
2454 return -ENOMEM;
2455
2456 return 0;
2457 }
2458 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2459
2460 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2461 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2462 const unsigned char rfc1042_header[] __aligned(2) =
2463 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2464 EXPORT_SYMBOL(rfc1042_header);
2465
2466 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2467 const unsigned char bridge_tunnel_header[] __aligned(2) =
2468 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2469 EXPORT_SYMBOL(bridge_tunnel_header);
2470
2471 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2472 struct iapp_layer2_update {
2473 u8 da[ETH_ALEN]; /* broadcast */
2474 u8 sa[ETH_ALEN]; /* STA addr */
2475 __be16 len; /* 6 */
2476 u8 dsap; /* 0 */
2477 u8 ssap; /* 0 */
2478 u8 control;
2479 u8 xid_info[3];
2480 } __packed;
2481
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2482 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2483 {
2484 struct iapp_layer2_update *msg;
2485 struct sk_buff *skb;
2486
2487 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2488 * bridge devices */
2489
2490 skb = dev_alloc_skb(sizeof(*msg));
2491 if (!skb)
2492 return;
2493 msg = skb_put(skb, sizeof(*msg));
2494
2495 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2496 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2497
2498 eth_broadcast_addr(msg->da);
2499 ether_addr_copy(msg->sa, addr);
2500 msg->len = htons(6);
2501 msg->dsap = 0;
2502 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2503 msg->control = 0xaf; /* XID response lsb.1111F101.
2504 * F=0 (no poll command; unsolicited frame) */
2505 msg->xid_info[0] = 0x81; /* XID format identifier */
2506 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2507 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2508
2509 skb->dev = dev;
2510 skb->protocol = eth_type_trans(skb, dev);
2511 memset(skb->cb, 0, sizeof(skb->cb));
2512 netif_rx(skb);
2513 }
2514 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2515
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2516 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2517 enum ieee80211_vht_chanwidth bw,
2518 int mcs, bool ext_nss_bw_capable,
2519 unsigned int max_vht_nss)
2520 {
2521 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2522 int ext_nss_bw;
2523 int supp_width;
2524 int i, mcs_encoding;
2525
2526 if (map == 0xffff)
2527 return 0;
2528
2529 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2530 return 0;
2531 if (mcs <= 7)
2532 mcs_encoding = 0;
2533 else if (mcs == 8)
2534 mcs_encoding = 1;
2535 else
2536 mcs_encoding = 2;
2537
2538 if (!max_vht_nss) {
2539 /* find max_vht_nss for the given MCS */
2540 for (i = 7; i >= 0; i--) {
2541 int supp = (map >> (2 * i)) & 3;
2542
2543 if (supp == 3)
2544 continue;
2545
2546 if (supp >= mcs_encoding) {
2547 max_vht_nss = i + 1;
2548 break;
2549 }
2550 }
2551 }
2552
2553 if (!(cap->supp_mcs.tx_mcs_map &
2554 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2555 return max_vht_nss;
2556
2557 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2558 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2559 supp_width = le32_get_bits(cap->vht_cap_info,
2560 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2561
2562 /* if not capable, treat ext_nss_bw as 0 */
2563 if (!ext_nss_bw_capable)
2564 ext_nss_bw = 0;
2565
2566 /* This is invalid */
2567 if (supp_width == 3)
2568 return 0;
2569
2570 /* This is an invalid combination so pretend nothing is supported */
2571 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2572 return 0;
2573
2574 /*
2575 * Cover all the special cases according to IEEE 802.11-2016
2576 * Table 9-250. All other cases are either factor of 1 or not
2577 * valid/supported.
2578 */
2579 switch (bw) {
2580 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2581 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2582 if ((supp_width == 1 || supp_width == 2) &&
2583 ext_nss_bw == 3)
2584 return 2 * max_vht_nss;
2585 break;
2586 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2587 if (supp_width == 0 &&
2588 (ext_nss_bw == 1 || ext_nss_bw == 2))
2589 return max_vht_nss / 2;
2590 if (supp_width == 0 &&
2591 ext_nss_bw == 3)
2592 return (3 * max_vht_nss) / 4;
2593 if (supp_width == 1 &&
2594 ext_nss_bw == 3)
2595 return 2 * max_vht_nss;
2596 break;
2597 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2598 if (supp_width == 0 && ext_nss_bw == 1)
2599 return 0; /* not possible */
2600 if (supp_width == 0 &&
2601 ext_nss_bw == 2)
2602 return max_vht_nss / 2;
2603 if (supp_width == 0 &&
2604 ext_nss_bw == 3)
2605 return (3 * max_vht_nss) / 4;
2606 if (supp_width == 1 &&
2607 ext_nss_bw == 0)
2608 return 0; /* not possible */
2609 if (supp_width == 1 &&
2610 ext_nss_bw == 1)
2611 return max_vht_nss / 2;
2612 if (supp_width == 1 &&
2613 ext_nss_bw == 2)
2614 return (3 * max_vht_nss) / 4;
2615 break;
2616 }
2617
2618 /* not covered or invalid combination received */
2619 return max_vht_nss;
2620 }
2621 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2622
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2623 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2624 bool is_4addr, u8 check_swif)
2625
2626 {
2627 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2628
2629 switch (check_swif) {
2630 case 0:
2631 if (is_vlan && is_4addr)
2632 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2633 return wiphy->interface_modes & BIT(iftype);
2634 case 1:
2635 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2636 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2637 return wiphy->software_iftypes & BIT(iftype);
2638 default:
2639 break;
2640 }
2641
2642 return false;
2643 }
2644 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2645
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2646 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2647 {
2648 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2649
2650 ASSERT_WDEV_LOCK(wdev);
2651
2652 switch (wdev->iftype) {
2653 case NL80211_IFTYPE_AP:
2654 case NL80211_IFTYPE_P2P_GO:
2655 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2656 break;
2657 default:
2658 /* per-link not relevant */
2659 break;
2660 }
2661
2662 wdev->valid_links &= ~BIT(link_id);
2663
2664 rdev_del_intf_link(rdev, wdev, link_id);
2665
2666 eth_zero_addr(wdev->links[link_id].addr);
2667 }
2668
cfg80211_remove_links(struct wireless_dev * wdev)2669 void cfg80211_remove_links(struct wireless_dev *wdev)
2670 {
2671 unsigned int link_id;
2672
2673 /*
2674 * links are controlled by upper layers (userspace/cfg)
2675 * only for AP mode, so only remove them here for AP
2676 */
2677 if (wdev->iftype != NL80211_IFTYPE_AP)
2678 return;
2679
2680 wdev_lock(wdev);
2681 if (wdev->valid_links) {
2682 for_each_valid_link(wdev, link_id)
2683 cfg80211_remove_link(wdev, link_id);
2684 }
2685 wdev_unlock(wdev);
2686 }
2687
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2688 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2689 struct wireless_dev *wdev)
2690 {
2691 cfg80211_remove_links(wdev);
2692
2693 return rdev_del_virtual_intf(rdev, wdev);
2694 }
2695
2696 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2697 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2698 {
2699 int i;
2700
2701 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2702 if (wiphy->iftype_ext_capab[i].iftype == type)
2703 return &wiphy->iftype_ext_capab[i];
2704 }
2705
2706 return NULL;
2707 }
2708 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2709