1 /*********************************************************************
2  *
3  * Filename:      irttp.c
4  * Version:       1.2
5  * Description:   Tiny Transport Protocol (TTP) implementation
6  * Status:        Stable
7  * Author:        Dag Brattli <dagb@cs.uit.no>
8  * Created at:    Sun Aug 31 20:14:31 1997
9  * Modified at:   Wed Jan  5 11:31:27 2000
10  * Modified by:   Dag Brattli <dagb@cs.uit.no>
11  *
12  *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13  *     All Rights Reserved.
14  *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15  *
16  *     This program is free software; you can redistribute it and/or
17  *     modify it under the terms of the GNU General Public License as
18  *     published by the Free Software Foundation; either version 2 of
19  *     the License, or (at your option) any later version.
20  *
21  *     Neither Dag Brattli nor University of Tromsø admit liability nor
22  *     provide warranty for any of this software. This material is
23  *     provided "AS-IS" and at no charge.
24  *
25  ********************************************************************/
26 
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 
33 #include <asm/byteorder.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/irda/irda.h>
37 #include <net/irda/irlap.h>
38 #include <net/irda/irlmp.h>
39 #include <net/irda/parameters.h>
40 #include <net/irda/irttp.h>
41 
42 static struct irttp_cb *irttp;
43 
44 static void __irttp_close_tsap(struct tsap_cb *self);
45 
46 static int irttp_data_indication(void *instance, void *sap,
47 				 struct sk_buff *skb);
48 static int irttp_udata_indication(void *instance, void *sap,
49 				  struct sk_buff *skb);
50 static void irttp_disconnect_indication(void *instance, void *sap,
51 					LM_REASON reason, struct sk_buff *);
52 static void irttp_connect_indication(void *instance, void *sap,
53 				     struct qos_info *qos, __u32 max_sdu_size,
54 				     __u8 header_size, struct sk_buff *skb);
55 static void irttp_connect_confirm(void *instance, void *sap,
56 				  struct qos_info *qos, __u32 max_sdu_size,
57 				  __u8 header_size, struct sk_buff *skb);
58 static void irttp_run_tx_queue(struct tsap_cb *self);
59 static void irttp_run_rx_queue(struct tsap_cb *self);
60 
61 static void irttp_flush_queues(struct tsap_cb *self);
62 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
63 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
64 static void irttp_todo_expired(unsigned long data);
65 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
66 				    int get);
67 
68 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
69 static void irttp_status_indication(void *instance,
70 				    LINK_STATUS link, LOCK_STATUS lock);
71 
72 /* Information for parsing parameters in IrTTP */
73 static pi_minor_info_t pi_minor_call_table[] = {
74 	{ NULL, 0 },                                             /* 0x00 */
75 	{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
76 };
77 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
78 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
79 
80 /************************ GLOBAL PROCEDURES ************************/
81 
82 /*
83  * Function irttp_init (void)
84  *
85  *    Initialize the IrTTP layer. Called by module initialization code
86  *
87  */
irttp_init(void)88 int __init irttp_init(void)
89 {
90 	irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
91 	if (irttp == NULL)
92 		return -ENOMEM;
93 
94 	irttp->magic = TTP_MAGIC;
95 
96 	irttp->tsaps = hashbin_new(HB_LOCK);
97 	if (!irttp->tsaps) {
98 		IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
99 			   __func__);
100 		kfree(irttp);
101 		return -ENOMEM;
102 	}
103 
104 	return 0;
105 }
106 
107 /*
108  * Function irttp_cleanup (void)
109  *
110  *    Called by module destruction/cleanup code
111  *
112  */
irttp_cleanup(void)113 void irttp_cleanup(void)
114 {
115 	/* Check for main structure */
116 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
117 
118 	/*
119 	 *  Delete hashbin and close all TSAP instances in it
120 	 */
121 	hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
122 
123 	irttp->magic = 0;
124 
125 	/* De-allocate main structure */
126 	kfree(irttp);
127 
128 	irttp = NULL;
129 }
130 
131 /*************************** SUBROUTINES ***************************/
132 
133 /*
134  * Function irttp_start_todo_timer (self, timeout)
135  *
136  *    Start todo timer.
137  *
138  * Made it more effient and unsensitive to race conditions - Jean II
139  */
irttp_start_todo_timer(struct tsap_cb * self,int timeout)140 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
141 {
142 	/* Set new value for timer */
143 	mod_timer(&self->todo_timer, jiffies + timeout);
144 }
145 
146 /*
147  * Function irttp_todo_expired (data)
148  *
149  *    Todo timer has expired!
150  *
151  * One of the restriction of the timer is that it is run only on the timer
152  * interrupt which run every 10ms. This mean that even if you set the timer
153  * with a delay of 0, it may take up to 10ms before it's run.
154  * So, to minimise latency and keep cache fresh, we try to avoid using
155  * it as much as possible.
156  * Note : we can't use tasklets, because they can't be asynchronously
157  * killed (need user context), and we can't guarantee that here...
158  * Jean II
159  */
irttp_todo_expired(unsigned long data)160 static void irttp_todo_expired(unsigned long data)
161 {
162 	struct tsap_cb *self = (struct tsap_cb *) data;
163 
164 	/* Check that we still exist */
165 	if (!self || self->magic != TTP_TSAP_MAGIC)
166 		return;
167 
168 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
169 
170 	/* Try to make some progress, especially on Tx side - Jean II */
171 	irttp_run_rx_queue(self);
172 	irttp_run_tx_queue(self);
173 
174 	/* Check if time for disconnect */
175 	if (test_bit(0, &self->disconnect_pend)) {
176 		/* Check if it's possible to disconnect yet */
177 		if (skb_queue_empty(&self->tx_queue)) {
178 			/* Make sure disconnect is not pending anymore */
179 			clear_bit(0, &self->disconnect_pend);	/* FALSE */
180 
181 			/* Note : self->disconnect_skb may be NULL */
182 			irttp_disconnect_request(self, self->disconnect_skb,
183 						 P_NORMAL);
184 			self->disconnect_skb = NULL;
185 		} else {
186 			/* Try again later */
187 			irttp_start_todo_timer(self, HZ/10);
188 
189 			/* No reason to try and close now */
190 			return;
191 		}
192 	}
193 
194 	/* Check if it's closing time */
195 	if (self->close_pend)
196 		/* Finish cleanup */
197 		irttp_close_tsap(self);
198 }
199 
200 /*
201  * Function irttp_flush_queues (self)
202  *
203  *     Flushes (removes all frames) in transitt-buffer (tx_list)
204  */
irttp_flush_queues(struct tsap_cb * self)205 static void irttp_flush_queues(struct tsap_cb *self)
206 {
207 	struct sk_buff* skb;
208 
209 	IRDA_DEBUG(4, "%s()\n", __func__);
210 
211 	IRDA_ASSERT(self != NULL, return;);
212 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
213 
214 	/* Deallocate frames waiting to be sent */
215 	while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
216 		dev_kfree_skb(skb);
217 
218 	/* Deallocate received frames */
219 	while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
220 		dev_kfree_skb(skb);
221 
222 	/* Deallocate received fragments */
223 	while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
224 		dev_kfree_skb(skb);
225 }
226 
227 /*
228  * Function irttp_reassemble (self)
229  *
230  *    Makes a new (continuous) skb of all the fragments in the fragment
231  *    queue
232  *
233  */
irttp_reassemble_skb(struct tsap_cb * self)234 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
235 {
236 	struct sk_buff *skb, *frag;
237 	int n = 0;  /* Fragment index */
238 
239 	IRDA_ASSERT(self != NULL, return NULL;);
240 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
241 
242 	IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
243 		   self->rx_sdu_size);
244 
245 	skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
246 	if (!skb)
247 		return NULL;
248 
249 	/*
250 	 * Need to reserve space for TTP header in case this skb needs to
251 	 * be requeued in case delivery failes
252 	 */
253 	skb_reserve(skb, TTP_HEADER);
254 	skb_put(skb, self->rx_sdu_size);
255 
256 	/*
257 	 *  Copy all fragments to a new buffer
258 	 */
259 	while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
260 		skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
261 		n += frag->len;
262 
263 		dev_kfree_skb(frag);
264 	}
265 
266 	IRDA_DEBUG(2,
267 		   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
268 		   __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
269 	/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
270 	 * by summing the size of all fragments, so we should always
271 	 * have n == self->rx_sdu_size, except in cases where we
272 	 * droped the last fragment (when self->rx_sdu_size exceed
273 	 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
274 	 * Jean II */
275 	IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
276 
277 	/* Set the new length */
278 	skb_trim(skb, n);
279 
280 	self->rx_sdu_size = 0;
281 
282 	return skb;
283 }
284 
285 /*
286  * Function irttp_fragment_skb (skb)
287  *
288  *    Fragments a frame and queues all the fragments for transmission
289  *
290  */
irttp_fragment_skb(struct tsap_cb * self,struct sk_buff * skb)291 static inline void irttp_fragment_skb(struct tsap_cb *self,
292 				      struct sk_buff *skb)
293 {
294 	struct sk_buff *frag;
295 	__u8 *frame;
296 
297 	IRDA_DEBUG(2, "%s()\n", __func__);
298 
299 	IRDA_ASSERT(self != NULL, return;);
300 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
301 	IRDA_ASSERT(skb != NULL, return;);
302 
303 	/*
304 	 *  Split frame into a number of segments
305 	 */
306 	while (skb->len > self->max_seg_size) {
307 		IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
308 
309 		/* Make new segment */
310 		frag = alloc_skb(self->max_seg_size+self->max_header_size,
311 				 GFP_ATOMIC);
312 		if (!frag)
313 			return;
314 
315 		skb_reserve(frag, self->max_header_size);
316 
317 		/* Copy data from the original skb into this fragment. */
318 		skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
319 			      self->max_seg_size);
320 
321 		/* Insert TTP header, with the more bit set */
322 		frame = skb_push(frag, TTP_HEADER);
323 		frame[0] = TTP_MORE;
324 
325 		/* Hide the copied data from the original skb */
326 		skb_pull(skb, self->max_seg_size);
327 
328 		/* Queue fragment */
329 		skb_queue_tail(&self->tx_queue, frag);
330 	}
331 	/* Queue what is left of the original skb */
332 	IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
333 
334 	frame = skb_push(skb, TTP_HEADER);
335 	frame[0] = 0x00; /* Clear more bit */
336 
337 	/* Queue fragment */
338 	skb_queue_tail(&self->tx_queue, skb);
339 }
340 
341 /*
342  * Function irttp_param_max_sdu_size (self, param)
343  *
344  *    Handle the MaxSduSize parameter in the connect frames, this function
345  *    will be called both when this parameter needs to be inserted into, and
346  *    extracted from the connect frames
347  */
irttp_param_max_sdu_size(void * instance,irda_param_t * param,int get)348 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
349 				    int get)
350 {
351 	struct tsap_cb *self;
352 
353 	self = (struct tsap_cb *) instance;
354 
355 	IRDA_ASSERT(self != NULL, return -1;);
356 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
357 
358 	if (get)
359 		param->pv.i = self->tx_max_sdu_size;
360 	else
361 		self->tx_max_sdu_size = param->pv.i;
362 
363 	IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
364 
365 	return 0;
366 }
367 
368 /*************************** CLIENT CALLS ***************************/
369 /************************** LMP CALLBACKS **************************/
370 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
371 
372 /*
373  * Initialization, that has to be done on new tsap
374  * instance allocation and on duplication
375  */
irttp_init_tsap(struct tsap_cb * tsap)376 static void irttp_init_tsap(struct tsap_cb *tsap)
377 {
378 	spin_lock_init(&tsap->lock);
379 	init_timer(&tsap->todo_timer);
380 
381 	skb_queue_head_init(&tsap->rx_queue);
382 	skb_queue_head_init(&tsap->tx_queue);
383 	skb_queue_head_init(&tsap->rx_fragments);
384 }
385 
386 /*
387  * Function irttp_open_tsap (stsap, notify)
388  *
389  *    Create TSAP connection endpoint,
390  */
irttp_open_tsap(__u8 stsap_sel,int credit,notify_t * notify)391 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
392 {
393 	struct tsap_cb *self;
394 	struct lsap_cb *lsap;
395 	notify_t ttp_notify;
396 
397 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
398 
399 	/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
400 	 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
401 	 * JeanII */
402 	if((stsap_sel != LSAP_ANY) &&
403 	   ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
404 		IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
405 		return NULL;
406 	}
407 
408 	self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
409 	if (self == NULL) {
410 		IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
411 		return NULL;
412 	}
413 
414 	/* Initialize internal objects */
415 	irttp_init_tsap(self);
416 
417 	/* Initialise todo timer */
418 	self->todo_timer.data     = (unsigned long) self;
419 	self->todo_timer.function = &irttp_todo_expired;
420 
421 	/* Initialize callbacks for IrLMP to use */
422 	irda_notify_init(&ttp_notify);
423 	ttp_notify.connect_confirm = irttp_connect_confirm;
424 	ttp_notify.connect_indication = irttp_connect_indication;
425 	ttp_notify.disconnect_indication = irttp_disconnect_indication;
426 	ttp_notify.data_indication = irttp_data_indication;
427 	ttp_notify.udata_indication = irttp_udata_indication;
428 	ttp_notify.flow_indication = irttp_flow_indication;
429 	if(notify->status_indication != NULL)
430 		ttp_notify.status_indication = irttp_status_indication;
431 	ttp_notify.instance = self;
432 	strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
433 
434 	self->magic = TTP_TSAP_MAGIC;
435 	self->connected = FALSE;
436 
437 	/*
438 	 *  Create LSAP at IrLMP layer
439 	 */
440 	lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
441 	if (lsap == NULL) {
442 		IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
443 		return NULL;
444 	}
445 
446 	/*
447 	 *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
448 	 *  will replace it with whatever source selector which is free, so
449 	 *  the stsap_sel we have might not be valid anymore
450 	 */
451 	self->stsap_sel = lsap->slsap_sel;
452 	IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
453 
454 	self->notify = *notify;
455 	self->lsap = lsap;
456 
457 	hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
458 
459 	if (credit > TTP_RX_MAX_CREDIT)
460 		self->initial_credit = TTP_RX_MAX_CREDIT;
461 	else
462 		self->initial_credit = credit;
463 
464 	return self;
465 }
466 EXPORT_SYMBOL(irttp_open_tsap);
467 
468 /*
469  * Function irttp_close (handle)
470  *
471  *    Remove an instance of a TSAP. This function should only deal with the
472  *    deallocation of the TSAP, and resetting of the TSAPs values;
473  *
474  */
__irttp_close_tsap(struct tsap_cb * self)475 static void __irttp_close_tsap(struct tsap_cb *self)
476 {
477 	/* First make sure we're connected. */
478 	IRDA_ASSERT(self != NULL, return;);
479 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
480 
481 	irttp_flush_queues(self);
482 
483 	del_timer(&self->todo_timer);
484 
485 	/* This one won't be cleaned up if we are disconnect_pend + close_pend
486 	 * and we receive a disconnect_indication */
487 	if (self->disconnect_skb)
488 		dev_kfree_skb(self->disconnect_skb);
489 
490 	self->connected = FALSE;
491 	self->magic = ~TTP_TSAP_MAGIC;
492 
493 	kfree(self);
494 }
495 
496 /*
497  * Function irttp_close (self)
498  *
499  *    Remove TSAP from list of all TSAPs and then deallocate all resources
500  *    associated with this TSAP
501  *
502  * Note : because we *free* the tsap structure, it is the responsibility
503  * of the caller to make sure we are called only once and to deal with
504  * possible race conditions. - Jean II
505  */
irttp_close_tsap(struct tsap_cb * self)506 int irttp_close_tsap(struct tsap_cb *self)
507 {
508 	struct tsap_cb *tsap;
509 
510 	IRDA_DEBUG(4, "%s()\n", __func__);
511 
512 	IRDA_ASSERT(self != NULL, return -1;);
513 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
514 
515 	/* Make sure tsap has been disconnected */
516 	if (self->connected) {
517 		/* Check if disconnect is not pending */
518 		if (!test_bit(0, &self->disconnect_pend)) {
519 			IRDA_WARNING("%s: TSAP still connected!\n",
520 				     __func__);
521 			irttp_disconnect_request(self, NULL, P_NORMAL);
522 		}
523 		self->close_pend = TRUE;
524 		irttp_start_todo_timer(self, HZ/10);
525 
526 		return 0; /* Will be back! */
527 	}
528 
529 	tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
530 
531 	IRDA_ASSERT(tsap == self, return -1;);
532 
533 	/* Close corresponding LSAP */
534 	if (self->lsap) {
535 		irlmp_close_lsap(self->lsap);
536 		self->lsap = NULL;
537 	}
538 
539 	__irttp_close_tsap(self);
540 
541 	return 0;
542 }
543 EXPORT_SYMBOL(irttp_close_tsap);
544 
545 /*
546  * Function irttp_udata_request (self, skb)
547  *
548  *    Send unreliable data on this TSAP
549  *
550  */
irttp_udata_request(struct tsap_cb * self,struct sk_buff * skb)551 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
552 {
553 	int ret;
554 
555 	IRDA_ASSERT(self != NULL, return -1;);
556 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
557 	IRDA_ASSERT(skb != NULL, return -1;);
558 
559 	IRDA_DEBUG(4, "%s()\n", __func__);
560 
561 	/* Take shortcut on zero byte packets */
562 	if (skb->len == 0) {
563 		ret = 0;
564 		goto err;
565 	}
566 
567 	/* Check that nothing bad happens */
568 	if (!self->connected) {
569 		IRDA_WARNING("%s(), Not connected\n", __func__);
570 		ret = -ENOTCONN;
571 		goto err;
572 	}
573 
574 	if (skb->len > self->max_seg_size) {
575 		IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
576 		ret = -EMSGSIZE;
577 		goto err;
578 	}
579 
580 	irlmp_udata_request(self->lsap, skb);
581 	self->stats.tx_packets++;
582 
583 	return 0;
584 
585 err:
586 	dev_kfree_skb(skb);
587 	return ret;
588 }
589 EXPORT_SYMBOL(irttp_udata_request);
590 
591 
592 /*
593  * Function irttp_data_request (handle, skb)
594  *
595  *    Queue frame for transmission. If SAR is enabled, fragement the frame
596  *    and queue the fragments for transmission
597  */
irttp_data_request(struct tsap_cb * self,struct sk_buff * skb)598 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
599 {
600 	__u8 *frame;
601 	int ret;
602 
603 	IRDA_ASSERT(self != NULL, return -1;);
604 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
605 	IRDA_ASSERT(skb != NULL, return -1;);
606 
607 	IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
608 		   skb_queue_len(&self->tx_queue));
609 
610 	/* Take shortcut on zero byte packets */
611 	if (skb->len == 0) {
612 		ret = 0;
613 		goto err;
614 	}
615 
616 	/* Check that nothing bad happens */
617 	if (!self->connected) {
618 		IRDA_WARNING("%s: Not connected\n", __func__);
619 		ret = -ENOTCONN;
620 		goto err;
621 	}
622 
623 	/*
624 	 *  Check if SAR is disabled, and the frame is larger than what fits
625 	 *  inside an IrLAP frame
626 	 */
627 	if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
628 		IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
629 			   __func__);
630 		ret = -EMSGSIZE;
631 		goto err;
632 	}
633 
634 	/*
635 	 *  Check if SAR is enabled, and the frame is larger than the
636 	 *  TxMaxSduSize
637 	 */
638 	if ((self->tx_max_sdu_size != 0) &&
639 	    (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
640 	    (skb->len > self->tx_max_sdu_size))
641 	{
642 		IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
643 			   __func__);
644 		ret = -EMSGSIZE;
645 		goto err;
646 	}
647 	/*
648 	 *  Check if transmit queue is full
649 	 */
650 	if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
651 		/*
652 		 *  Give it a chance to empty itself
653 		 */
654 		irttp_run_tx_queue(self);
655 
656 		/* Drop packet. This error code should trigger the caller
657 		 * to resend the data in the client code - Jean II */
658 		ret = -ENOBUFS;
659 		goto err;
660 	}
661 
662 	/* Queue frame, or queue frame segments */
663 	if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
664 		/* Queue frame */
665 		IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
666 		frame = skb_push(skb, TTP_HEADER);
667 		frame[0] = 0x00; /* Clear more bit */
668 
669 		skb_queue_tail(&self->tx_queue, skb);
670 	} else {
671 		/*
672 		 *  Fragment the frame, this function will also queue the
673 		 *  fragments, we don't care about the fact the transmit
674 		 *  queue may be overfilled by all the segments for a little
675 		 *  while
676 		 */
677 		irttp_fragment_skb(self, skb);
678 	}
679 
680 	/* Check if we can accept more data from client */
681 	if ((!self->tx_sdu_busy) &&
682 	    (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
683 		/* Tx queue filling up, so stop client. */
684 		if (self->notify.flow_indication) {
685 			self->notify.flow_indication(self->notify.instance,
686 						     self, FLOW_STOP);
687 		}
688 		/* self->tx_sdu_busy is the state of the client.
689 		 * Update state after notifying client to avoid
690 		 * race condition with irttp_flow_indication().
691 		 * If the queue empty itself after our test but before
692 		 * we set the flag, we will fix ourselves below in
693 		 * irttp_run_tx_queue().
694 		 * Jean II */
695 		self->tx_sdu_busy = TRUE;
696 	}
697 
698 	/* Try to make some progress */
699 	irttp_run_tx_queue(self);
700 
701 	return 0;
702 
703 err:
704 	dev_kfree_skb(skb);
705 	return ret;
706 }
707 EXPORT_SYMBOL(irttp_data_request);
708 
709 /*
710  * Function irttp_run_tx_queue (self)
711  *
712  *    Transmit packets queued for transmission (if possible)
713  *
714  */
irttp_run_tx_queue(struct tsap_cb * self)715 static void irttp_run_tx_queue(struct tsap_cb *self)
716 {
717 	struct sk_buff *skb;
718 	unsigned long flags;
719 	int n;
720 
721 	IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
722 		   __func__,
723 		   self->send_credit, skb_queue_len(&self->tx_queue));
724 
725 	/* Get exclusive access to the tx queue, otherwise don't touch it */
726 	if (irda_lock(&self->tx_queue_lock) == FALSE)
727 		return;
728 
729 	/* Try to send out frames as long as we have credits
730 	 * and as long as LAP is not full. If LAP is full, it will
731 	 * poll us through irttp_flow_indication() - Jean II */
732 	while ((self->send_credit > 0) &&
733 	       (!irlmp_lap_tx_queue_full(self->lsap)) &&
734 	       (skb = skb_dequeue(&self->tx_queue)))
735 	{
736 		/*
737 		 *  Since we can transmit and receive frames concurrently,
738 		 *  the code below is a critical region and we must assure that
739 		 *  nobody messes with the credits while we update them.
740 		 */
741 		spin_lock_irqsave(&self->lock, flags);
742 
743 		n = self->avail_credit;
744 		self->avail_credit = 0;
745 
746 		/* Only room for 127 credits in frame */
747 		if (n > 127) {
748 			self->avail_credit = n-127;
749 			n = 127;
750 		}
751 		self->remote_credit += n;
752 		self->send_credit--;
753 
754 		spin_unlock_irqrestore(&self->lock, flags);
755 
756 		/*
757 		 *  More bit must be set by the data_request() or fragment()
758 		 *  functions
759 		 */
760 		skb->data[0] |= (n & 0x7f);
761 
762 		/* Detach from socket.
763 		 * The current skb has a reference to the socket that sent
764 		 * it (skb->sk). When we pass it to IrLMP, the skb will be
765 		 * stored in in IrLAP (self->wx_list). When we are within
766 		 * IrLAP, we lose the notion of socket, so we should not
767 		 * have a reference to a socket. So, we drop it here.
768 		 *
769 		 * Why does it matter ?
770 		 * When the skb is freed (kfree_skb), if it is associated
771 		 * with a socket, it release buffer space on the socket
772 		 * (through sock_wfree() and sock_def_write_space()).
773 		 * If the socket no longer exist, we may crash. Hard.
774 		 * When we close a socket, we make sure that associated packets
775 		 * in IrTTP are freed. However, we have no way to cancel
776 		 * the packet that we have passed to IrLAP. So, if a packet
777 		 * remains in IrLAP (retry on the link or else) after we
778 		 * close the socket, we are dead !
779 		 * Jean II */
780 		if (skb->sk != NULL) {
781 			/* IrSOCK application, IrOBEX, ... */
782 			skb_orphan(skb);
783 		}
784 			/* IrCOMM over IrTTP, IrLAN, ... */
785 
786 		/* Pass the skb to IrLMP - done */
787 		irlmp_data_request(self->lsap, skb);
788 		self->stats.tx_packets++;
789 	}
790 
791 	/* Check if we can accept more frames from client.
792 	 * We don't want to wait until the todo timer to do that, and we
793 	 * can't use tasklets (grr...), so we are obliged to give control
794 	 * to client. That's ok, this test will be true not too often
795 	 * (max once per LAP window) and we are called from places
796 	 * where we can spend a bit of time doing stuff. - Jean II */
797 	if ((self->tx_sdu_busy) &&
798 	    (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
799 	    (!self->close_pend))
800 	{
801 		if (self->notify.flow_indication)
802 			self->notify.flow_indication(self->notify.instance,
803 						     self, FLOW_START);
804 
805 		/* self->tx_sdu_busy is the state of the client.
806 		 * We don't really have a race here, but it's always safer
807 		 * to update our state after the client - Jean II */
808 		self->tx_sdu_busy = FALSE;
809 	}
810 
811 	/* Reset lock */
812 	self->tx_queue_lock = 0;
813 }
814 
815 /*
816  * Function irttp_give_credit (self)
817  *
818  *    Send a dataless flowdata TTP-PDU and give available credit to peer
819  *    TSAP
820  */
irttp_give_credit(struct tsap_cb * self)821 static inline void irttp_give_credit(struct tsap_cb *self)
822 {
823 	struct sk_buff *tx_skb = NULL;
824 	unsigned long flags;
825 	int n;
826 
827 	IRDA_ASSERT(self != NULL, return;);
828 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
829 
830 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
831 		   __func__,
832 		   self->send_credit, self->avail_credit, self->remote_credit);
833 
834 	/* Give credit to peer */
835 	tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
836 	if (!tx_skb)
837 		return;
838 
839 	/* Reserve space for LMP, and LAP header */
840 	skb_reserve(tx_skb, LMP_MAX_HEADER);
841 
842 	/*
843 	 *  Since we can transmit and receive frames concurrently,
844 	 *  the code below is a critical region and we must assure that
845 	 *  nobody messes with the credits while we update them.
846 	 */
847 	spin_lock_irqsave(&self->lock, flags);
848 
849 	n = self->avail_credit;
850 	self->avail_credit = 0;
851 
852 	/* Only space for 127 credits in frame */
853 	if (n > 127) {
854 		self->avail_credit = n - 127;
855 		n = 127;
856 	}
857 	self->remote_credit += n;
858 
859 	spin_unlock_irqrestore(&self->lock, flags);
860 
861 	skb_put(tx_skb, 1);
862 	tx_skb->data[0] = (__u8) (n & 0x7f);
863 
864 	irlmp_data_request(self->lsap, tx_skb);
865 	self->stats.tx_packets++;
866 }
867 
868 /*
869  * Function irttp_udata_indication (instance, sap, skb)
870  *
871  *    Received some unit-data (unreliable)
872  *
873  */
irttp_udata_indication(void * instance,void * sap,struct sk_buff * skb)874 static int irttp_udata_indication(void *instance, void *sap,
875 				  struct sk_buff *skb)
876 {
877 	struct tsap_cb *self;
878 	int err;
879 
880 	IRDA_DEBUG(4, "%s()\n", __func__);
881 
882 	self = (struct tsap_cb *) instance;
883 
884 	IRDA_ASSERT(self != NULL, return -1;);
885 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
886 	IRDA_ASSERT(skb != NULL, return -1;);
887 
888 	self->stats.rx_packets++;
889 
890 	/* Just pass data to layer above */
891 	if (self->notify.udata_indication) {
892 		err = self->notify.udata_indication(self->notify.instance,
893 						    self,skb);
894 		/* Same comment as in irttp_do_data_indication() */
895 		if (!err)
896 			return 0;
897 	}
898 	/* Either no handler, or handler returns an error */
899 	dev_kfree_skb(skb);
900 
901 	return 0;
902 }
903 
904 /*
905  * Function irttp_data_indication (instance, sap, skb)
906  *
907  *    Receive segment from IrLMP.
908  *
909  */
irttp_data_indication(void * instance,void * sap,struct sk_buff * skb)910 static int irttp_data_indication(void *instance, void *sap,
911 				 struct sk_buff *skb)
912 {
913 	struct tsap_cb *self;
914 	unsigned long flags;
915 	int n;
916 
917 	self = (struct tsap_cb *) instance;
918 
919 	n = skb->data[0] & 0x7f;     /* Extract the credits */
920 
921 	self->stats.rx_packets++;
922 
923 	/*  Deal with inbound credit
924 	 *  Since we can transmit and receive frames concurrently,
925 	 *  the code below is a critical region and we must assure that
926 	 *  nobody messes with the credits while we update them.
927 	 */
928 	spin_lock_irqsave(&self->lock, flags);
929 	self->send_credit += n;
930 	if (skb->len > 1)
931 		self->remote_credit--;
932 	spin_unlock_irqrestore(&self->lock, flags);
933 
934 	/*
935 	 *  Data or dataless packet? Dataless frames contains only the
936 	 *  TTP_HEADER.
937 	 */
938 	if (skb->len > 1) {
939 		/*
940 		 *  We don't remove the TTP header, since we must preserve the
941 		 *  more bit, so the defragment routing knows what to do
942 		 */
943 		skb_queue_tail(&self->rx_queue, skb);
944 	} else {
945 		/* Dataless flowdata TTP-PDU */
946 		dev_kfree_skb(skb);
947 	}
948 
949 
950 	/* Push data to the higher layer.
951 	 * We do it synchronously because running the todo timer for each
952 	 * receive packet would be too much overhead and latency.
953 	 * By passing control to the higher layer, we run the risk that
954 	 * it may take time or grab a lock. Most often, the higher layer
955 	 * will only put packet in a queue.
956 	 * Anyway, packets are only dripping through the IrDA, so we can
957 	 * have time before the next packet.
958 	 * Further, we are run from NET_BH, so the worse that can happen is
959 	 * us missing the optimal time to send back the PF bit in LAP.
960 	 * Jean II */
961 	irttp_run_rx_queue(self);
962 
963 	/* We now give credits to peer in irttp_run_rx_queue().
964 	 * We need to send credit *NOW*, otherwise we are going
965 	 * to miss the next Tx window. The todo timer may take
966 	 * a while before it's run... - Jean II */
967 
968 	/*
969 	 * If the peer device has given us some credits and we didn't have
970 	 * anyone from before, then we need to shedule the tx queue.
971 	 * We need to do that because our Tx have stopped (so we may not
972 	 * get any LAP flow indication) and the user may be stopped as
973 	 * well. - Jean II
974 	 */
975 	if (self->send_credit == n) {
976 		/* Restart pushing stuff to LAP */
977 		irttp_run_tx_queue(self);
978 		/* Note : we don't want to schedule the todo timer
979 		 * because it has horrible latency. No tasklets
980 		 * because the tasklet API is broken. - Jean II */
981 	}
982 
983 	return 0;
984 }
985 
986 /*
987  * Function irttp_status_indication (self, reason)
988  *
989  *    Status_indication, just pass to the higher layer...
990  *
991  */
irttp_status_indication(void * instance,LINK_STATUS link,LOCK_STATUS lock)992 static void irttp_status_indication(void *instance,
993 				    LINK_STATUS link, LOCK_STATUS lock)
994 {
995 	struct tsap_cb *self;
996 
997 	IRDA_DEBUG(4, "%s()\n", __func__);
998 
999 	self = (struct tsap_cb *) instance;
1000 
1001 	IRDA_ASSERT(self != NULL, return;);
1002 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1003 
1004 	/* Check if client has already closed the TSAP and gone away */
1005 	if (self->close_pend)
1006 		return;
1007 
1008 	/*
1009 	 *  Inform service user if he has requested it
1010 	 */
1011 	if (self->notify.status_indication != NULL)
1012 		self->notify.status_indication(self->notify.instance,
1013 					       link, lock);
1014 	else
1015 		IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1016 }
1017 
1018 /*
1019  * Function irttp_flow_indication (self, reason)
1020  *
1021  *    Flow_indication : IrLAP tells us to send more data.
1022  *
1023  */
irttp_flow_indication(void * instance,void * sap,LOCAL_FLOW flow)1024 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1025 {
1026 	struct tsap_cb *self;
1027 
1028 	self = (struct tsap_cb *) instance;
1029 
1030 	IRDA_ASSERT(self != NULL, return;);
1031 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1032 
1033 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1034 
1035 	/* We are "polled" directly from LAP, and the LAP want to fill
1036 	 * its Tx window. We want to do our best to send it data, so that
1037 	 * we maximise the window. On the other hand, we want to limit the
1038 	 * amount of work here so that LAP doesn't hang forever waiting
1039 	 * for packets. - Jean II */
1040 
1041 	/* Try to send some packets. Currently, LAP calls us every time
1042 	 * there is one free slot, so we will send only one packet.
1043 	 * This allow the scheduler to do its round robin - Jean II */
1044 	irttp_run_tx_queue(self);
1045 
1046 	/* Note regarding the interraction with higher layer.
1047 	 * irttp_run_tx_queue() may call the client when its queue
1048 	 * start to empty, via notify.flow_indication(). Initially.
1049 	 * I wanted this to happen in a tasklet, to avoid client
1050 	 * grabbing the CPU, but we can't use tasklets safely. And timer
1051 	 * is definitely too slow.
1052 	 * This will happen only once per LAP window, and usually at
1053 	 * the third packet (unless window is smaller). LAP is still
1054 	 * doing mtt and sending first packet so it's sort of OK
1055 	 * to do that. Jean II */
1056 
1057 	/* If we need to send disconnect. try to do it now */
1058 	if(self->disconnect_pend)
1059 		irttp_start_todo_timer(self, 0);
1060 }
1061 
1062 /*
1063  * Function irttp_flow_request (self, command)
1064  *
1065  *    This function could be used by the upper layers to tell IrTTP to stop
1066  *    delivering frames if the receive queues are starting to get full, or
1067  *    to tell IrTTP to start delivering frames again.
1068  */
irttp_flow_request(struct tsap_cb * self,LOCAL_FLOW flow)1069 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1070 {
1071 	IRDA_DEBUG(1, "%s()\n", __func__);
1072 
1073 	IRDA_ASSERT(self != NULL, return;);
1074 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1075 
1076 	switch (flow) {
1077 	case FLOW_STOP:
1078 		IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1079 		self->rx_sdu_busy = TRUE;
1080 		break;
1081 	case FLOW_START:
1082 		IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1083 		self->rx_sdu_busy = FALSE;
1084 
1085 		/* Client say he can accept more data, try to free our
1086 		 * queues ASAP - Jean II */
1087 		irttp_run_rx_queue(self);
1088 
1089 		break;
1090 	default:
1091 		IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1092 	}
1093 }
1094 EXPORT_SYMBOL(irttp_flow_request);
1095 
1096 /*
1097  * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1098  *
1099  *    Try to connect to remote destination TSAP selector
1100  *
1101  */
irttp_connect_request(struct tsap_cb * self,__u8 dtsap_sel,__u32 saddr,__u32 daddr,struct qos_info * qos,__u32 max_sdu_size,struct sk_buff * userdata)1102 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1103 			  __u32 saddr, __u32 daddr,
1104 			  struct qos_info *qos, __u32 max_sdu_size,
1105 			  struct sk_buff *userdata)
1106 {
1107 	struct sk_buff *tx_skb;
1108 	__u8 *frame;
1109 	__u8 n;
1110 
1111 	IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1112 
1113 	IRDA_ASSERT(self != NULL, return -EBADR;);
1114 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1115 
1116 	if (self->connected) {
1117 		if(userdata)
1118 			dev_kfree_skb(userdata);
1119 		return -EISCONN;
1120 	}
1121 
1122 	/* Any userdata supplied? */
1123 	if (userdata == NULL) {
1124 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1125 				   GFP_ATOMIC);
1126 		if (!tx_skb)
1127 			return -ENOMEM;
1128 
1129 		/* Reserve space for MUX_CONTROL and LAP header */
1130 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1131 	} else {
1132 		tx_skb = userdata;
1133 		/*
1134 		 *  Check that the client has reserved enough space for
1135 		 *  headers
1136 		 */
1137 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1138 			{ dev_kfree_skb(userdata); return -1; } );
1139 	}
1140 
1141 	/* Initialize connection parameters */
1142 	self->connected = FALSE;
1143 	self->avail_credit = 0;
1144 	self->rx_max_sdu_size = max_sdu_size;
1145 	self->rx_sdu_size = 0;
1146 	self->rx_sdu_busy = FALSE;
1147 	self->dtsap_sel = dtsap_sel;
1148 
1149 	n = self->initial_credit;
1150 
1151 	self->remote_credit = 0;
1152 	self->send_credit = 0;
1153 
1154 	/*
1155 	 *  Give away max 127 credits for now
1156 	 */
1157 	if (n > 127) {
1158 		self->avail_credit=n-127;
1159 		n = 127;
1160 	}
1161 
1162 	self->remote_credit = n;
1163 
1164 	/* SAR enabled? */
1165 	if (max_sdu_size > 0) {
1166 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1167 			{ dev_kfree_skb(tx_skb); return -1; } );
1168 
1169 		/* Insert SAR parameters */
1170 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1171 
1172 		frame[0] = TTP_PARAMETERS | n;
1173 		frame[1] = 0x04; /* Length */
1174 		frame[2] = 0x01; /* MaxSduSize */
1175 		frame[3] = 0x02; /* Value length */
1176 
1177 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1178 			      (__be16 *)(frame+4));
1179 	} else {
1180 		/* Insert plain TTP header */
1181 		frame = skb_push(tx_skb, TTP_HEADER);
1182 
1183 		/* Insert initial credit in frame */
1184 		frame[0] = n & 0x7f;
1185 	}
1186 
1187 	/* Connect with IrLMP. No QoS parameters for now */
1188 	return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1189 				     tx_skb);
1190 }
1191 EXPORT_SYMBOL(irttp_connect_request);
1192 
1193 /*
1194  * Function irttp_connect_confirm (handle, qos, skb)
1195  *
1196  *    Service user confirms TSAP connection with peer.
1197  *
1198  */
irttp_connect_confirm(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1199 static void irttp_connect_confirm(void *instance, void *sap,
1200 				  struct qos_info *qos, __u32 max_seg_size,
1201 				  __u8 max_header_size, struct sk_buff *skb)
1202 {
1203 	struct tsap_cb *self;
1204 	int parameters;
1205 	int ret;
1206 	__u8 plen;
1207 	__u8 n;
1208 
1209 	IRDA_DEBUG(4, "%s()\n", __func__);
1210 
1211 	self = (struct tsap_cb *) instance;
1212 
1213 	IRDA_ASSERT(self != NULL, return;);
1214 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1215 	IRDA_ASSERT(skb != NULL, return;);
1216 
1217 	self->max_seg_size = max_seg_size - TTP_HEADER;
1218 	self->max_header_size = max_header_size + TTP_HEADER;
1219 
1220 	/*
1221 	 *  Check if we have got some QoS parameters back! This should be the
1222 	 *  negotiated QoS for the link.
1223 	 */
1224 	if (qos) {
1225 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1226 		       qos->baud_rate.bits);
1227 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1228 		       qos->baud_rate.value);
1229 	}
1230 
1231 	n = skb->data[0] & 0x7f;
1232 
1233 	IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1234 
1235 	self->send_credit = n;
1236 	self->tx_max_sdu_size = 0;
1237 	self->connected = TRUE;
1238 
1239 	parameters = skb->data[0] & 0x80;
1240 
1241 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1242 	skb_pull(skb, TTP_HEADER);
1243 
1244 	if (parameters) {
1245 		plen = skb->data[0];
1246 
1247 		ret = irda_param_extract_all(self, skb->data+1,
1248 					     IRDA_MIN(skb->len-1, plen),
1249 					     &param_info);
1250 
1251 		/* Any errors in the parameter list? */
1252 		if (ret < 0) {
1253 			IRDA_WARNING("%s: error extracting parameters\n",
1254 				     __func__);
1255 			dev_kfree_skb(skb);
1256 
1257 			/* Do not accept this connection attempt */
1258 			return;
1259 		}
1260 		/* Remove parameters */
1261 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1262 	}
1263 
1264 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1265 	      self->send_credit, self->avail_credit, self->remote_credit);
1266 
1267 	IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1268 		   self->tx_max_sdu_size);
1269 
1270 	if (self->notify.connect_confirm) {
1271 		self->notify.connect_confirm(self->notify.instance, self, qos,
1272 					     self->tx_max_sdu_size,
1273 					     self->max_header_size, skb);
1274 	} else
1275 		dev_kfree_skb(skb);
1276 }
1277 
1278 /*
1279  * Function irttp_connect_indication (handle, skb)
1280  *
1281  *    Some other device is connecting to this TSAP
1282  *
1283  */
irttp_connect_indication(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1284 static void irttp_connect_indication(void *instance, void *sap,
1285 		struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1286 		struct sk_buff *skb)
1287 {
1288 	struct tsap_cb *self;
1289 	struct lsap_cb *lsap;
1290 	int parameters;
1291 	int ret;
1292 	__u8 plen;
1293 	__u8 n;
1294 
1295 	self = (struct tsap_cb *) instance;
1296 
1297 	IRDA_ASSERT(self != NULL, return;);
1298 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1299 	IRDA_ASSERT(skb != NULL, return;);
1300 
1301 	lsap = (struct lsap_cb *) sap;
1302 
1303 	self->max_seg_size = max_seg_size - TTP_HEADER;
1304 	self->max_header_size = max_header_size+TTP_HEADER;
1305 
1306 	IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1307 
1308 	/* Need to update dtsap_sel if its equal to LSAP_ANY */
1309 	self->dtsap_sel = lsap->dlsap_sel;
1310 
1311 	n = skb->data[0] & 0x7f;
1312 
1313 	self->send_credit = n;
1314 	self->tx_max_sdu_size = 0;
1315 
1316 	parameters = skb->data[0] & 0x80;
1317 
1318 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1319 	skb_pull(skb, TTP_HEADER);
1320 
1321 	if (parameters) {
1322 		plen = skb->data[0];
1323 
1324 		ret = irda_param_extract_all(self, skb->data+1,
1325 					     IRDA_MIN(skb->len-1, plen),
1326 					     &param_info);
1327 
1328 		/* Any errors in the parameter list? */
1329 		if (ret < 0) {
1330 			IRDA_WARNING("%s: error extracting parameters\n",
1331 				     __func__);
1332 			dev_kfree_skb(skb);
1333 
1334 			/* Do not accept this connection attempt */
1335 			return;
1336 		}
1337 
1338 		/* Remove parameters */
1339 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1340 	}
1341 
1342 	if (self->notify.connect_indication) {
1343 		self->notify.connect_indication(self->notify.instance, self,
1344 						qos, self->tx_max_sdu_size,
1345 						self->max_header_size, skb);
1346 	} else
1347 		dev_kfree_skb(skb);
1348 }
1349 
1350 /*
1351  * Function irttp_connect_response (handle, userdata)
1352  *
1353  *    Service user is accepting the connection, just pass it down to
1354  *    IrLMP!
1355  *
1356  */
irttp_connect_response(struct tsap_cb * self,__u32 max_sdu_size,struct sk_buff * userdata)1357 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1358 			   struct sk_buff *userdata)
1359 {
1360 	struct sk_buff *tx_skb;
1361 	__u8 *frame;
1362 	int ret;
1363 	__u8 n;
1364 
1365 	IRDA_ASSERT(self != NULL, return -1;);
1366 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1367 
1368 	IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1369 		   self->stsap_sel);
1370 
1371 	/* Any userdata supplied? */
1372 	if (userdata == NULL) {
1373 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1374 				   GFP_ATOMIC);
1375 		if (!tx_skb)
1376 			return -ENOMEM;
1377 
1378 		/* Reserve space for MUX_CONTROL and LAP header */
1379 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1380 	} else {
1381 		tx_skb = userdata;
1382 		/*
1383 		 *  Check that the client has reserved enough space for
1384 		 *  headers
1385 		 */
1386 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1387 			{ dev_kfree_skb(userdata); return -1; } );
1388 	}
1389 
1390 	self->avail_credit = 0;
1391 	self->remote_credit = 0;
1392 	self->rx_max_sdu_size = max_sdu_size;
1393 	self->rx_sdu_size = 0;
1394 	self->rx_sdu_busy = FALSE;
1395 
1396 	n = self->initial_credit;
1397 
1398 	/* Frame has only space for max 127 credits (7 bits) */
1399 	if (n > 127) {
1400 		self->avail_credit = n - 127;
1401 		n = 127;
1402 	}
1403 
1404 	self->remote_credit = n;
1405 	self->connected = TRUE;
1406 
1407 	/* SAR enabled? */
1408 	if (max_sdu_size > 0) {
1409 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1410 			{ dev_kfree_skb(tx_skb); return -1; } );
1411 
1412 		/* Insert TTP header with SAR parameters */
1413 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1414 
1415 		frame[0] = TTP_PARAMETERS | n;
1416 		frame[1] = 0x04; /* Length */
1417 
1418 		/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1419 /*				  TTP_SAR_HEADER, &param_info) */
1420 
1421 		frame[2] = 0x01; /* MaxSduSize */
1422 		frame[3] = 0x02; /* Value length */
1423 
1424 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1425 			      (__be16 *)(frame+4));
1426 	} else {
1427 		/* Insert TTP header */
1428 		frame = skb_push(tx_skb, TTP_HEADER);
1429 
1430 		frame[0] = n & 0x7f;
1431 	}
1432 
1433 	ret = irlmp_connect_response(self->lsap, tx_skb);
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(irttp_connect_response);
1438 
1439 /*
1440  * Function irttp_dup (self, instance)
1441  *
1442  *    Duplicate TSAP, can be used by servers to confirm a connection on a
1443  *    new TSAP so it can keep listening on the old one.
1444  */
irttp_dup(struct tsap_cb * orig,void * instance)1445 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1446 {
1447 	struct tsap_cb *new;
1448 	unsigned long flags;
1449 
1450 	IRDA_DEBUG(1, "%s()\n", __func__);
1451 
1452 	/* Protect our access to the old tsap instance */
1453 	spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1454 
1455 	/* Find the old instance */
1456 	if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1457 		IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1458 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1459 		return NULL;
1460 	}
1461 
1462 	/* Allocate a new instance */
1463 	new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
1464 	if (!new) {
1465 		IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1466 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1467 		return NULL;
1468 	}
1469 	/* Dup */
1470 	memcpy(new, orig, sizeof(struct tsap_cb));
1471 	spin_lock_init(&new->lock);
1472 
1473 	/* We don't need the old instance any more */
1474 	spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1475 
1476 	/* Try to dup the LSAP (may fail if we were too slow) */
1477 	new->lsap = irlmp_dup(orig->lsap, new);
1478 	if (!new->lsap) {
1479 		IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1480 		kfree(new);
1481 		return NULL;
1482 	}
1483 
1484 	/* Not everything should be copied */
1485 	new->notify.instance = instance;
1486 
1487 	/* Initialize internal objects */
1488 	irttp_init_tsap(new);
1489 
1490 	/* This is locked */
1491 	hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1492 
1493 	return new;
1494 }
1495 EXPORT_SYMBOL(irttp_dup);
1496 
1497 /*
1498  * Function irttp_disconnect_request (self)
1499  *
1500  *    Close this connection please! If priority is high, the queued data
1501  *    segments, if any, will be deallocated first
1502  *
1503  */
irttp_disconnect_request(struct tsap_cb * self,struct sk_buff * userdata,int priority)1504 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1505 			     int priority)
1506 {
1507 	int ret;
1508 
1509 	IRDA_ASSERT(self != NULL, return -1;);
1510 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1511 
1512 	/* Already disconnected? */
1513 	if (!self->connected) {
1514 		IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1515 		if (userdata)
1516 			dev_kfree_skb(userdata);
1517 		return -1;
1518 	}
1519 
1520 	/* Disconnect already pending ?
1521 	 * We need to use an atomic operation to prevent reentry. This
1522 	 * function may be called from various context, like user, timer
1523 	 * for following a disconnect_indication() (i.e. net_bh).
1524 	 * Jean II */
1525 	if(test_and_set_bit(0, &self->disconnect_pend)) {
1526 		IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1527 			   __func__);
1528 		if (userdata)
1529 			dev_kfree_skb(userdata);
1530 
1531 		/* Try to make some progress */
1532 		irttp_run_tx_queue(self);
1533 		return -1;
1534 	}
1535 
1536 	/*
1537 	 *  Check if there is still data segments in the transmit queue
1538 	 */
1539 	if (!skb_queue_empty(&self->tx_queue)) {
1540 		if (priority == P_HIGH) {
1541 			/*
1542 			 *  No need to send the queued data, if we are
1543 			 *  disconnecting right now since the data will
1544 			 *  not have any usable connection to be sent on
1545 			 */
1546 			IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1547 			irttp_flush_queues(self);
1548 		} else if (priority == P_NORMAL) {
1549 			/*
1550 			 *  Must delay disconnect until after all data segments
1551 			 *  have been sent and the tx_queue is empty
1552 			 */
1553 			/* We'll reuse this one later for the disconnect */
1554 			self->disconnect_skb = userdata;  /* May be NULL */
1555 
1556 			irttp_run_tx_queue(self);
1557 
1558 			irttp_start_todo_timer(self, HZ/10);
1559 			return -1;
1560 		}
1561 	}
1562 	/* Note : we don't need to check if self->rx_queue is full and the
1563 	 * state of self->rx_sdu_busy because the disconnect response will
1564 	 * be sent at the LMP level (so even if the peer has its Tx queue
1565 	 * full of data). - Jean II */
1566 
1567 	IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1568 	self->connected = FALSE;
1569 
1570 	if (!userdata) {
1571 		struct sk_buff *tx_skb;
1572 		tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1573 		if (!tx_skb)
1574 			return -ENOMEM;
1575 
1576 		/*
1577 		 *  Reserve space for MUX and LAP header
1578 		 */
1579 		skb_reserve(tx_skb, LMP_MAX_HEADER);
1580 
1581 		userdata = tx_skb;
1582 	}
1583 	ret = irlmp_disconnect_request(self->lsap, userdata);
1584 
1585 	/* The disconnect is no longer pending */
1586 	clear_bit(0, &self->disconnect_pend);	/* FALSE */
1587 
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL(irttp_disconnect_request);
1591 
1592 /*
1593  * Function irttp_disconnect_indication (self, reason)
1594  *
1595  *    Disconnect indication, TSAP disconnected by peer?
1596  *
1597  */
irttp_disconnect_indication(void * instance,void * sap,LM_REASON reason,struct sk_buff * skb)1598 static void irttp_disconnect_indication(void *instance, void *sap,
1599 		LM_REASON reason, struct sk_buff *skb)
1600 {
1601 	struct tsap_cb *self;
1602 
1603 	IRDA_DEBUG(4, "%s()\n", __func__);
1604 
1605 	self = (struct tsap_cb *) instance;
1606 
1607 	IRDA_ASSERT(self != NULL, return;);
1608 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1609 
1610 	/* Prevent higher layer to send more data */
1611 	self->connected = FALSE;
1612 
1613 	/* Check if client has already tried to close the TSAP */
1614 	if (self->close_pend) {
1615 		/* In this case, the higher layer is probably gone. Don't
1616 		 * bother it and clean up the remains - Jean II */
1617 		if (skb)
1618 			dev_kfree_skb(skb);
1619 		irttp_close_tsap(self);
1620 		return;
1621 	}
1622 
1623 	/* If we are here, we assume that is the higher layer is still
1624 	 * waiting for the disconnect notification and able to process it,
1625 	 * even if he tried to disconnect. Otherwise, it would have already
1626 	 * attempted to close the tsap and self->close_pend would be TRUE.
1627 	 * Jean II */
1628 
1629 	/* No need to notify the client if has already tried to disconnect */
1630 	if(self->notify.disconnect_indication)
1631 		self->notify.disconnect_indication(self->notify.instance, self,
1632 						   reason, skb);
1633 	else
1634 		if (skb)
1635 			dev_kfree_skb(skb);
1636 }
1637 
1638 /*
1639  * Function irttp_do_data_indication (self, skb)
1640  *
1641  *    Try to deliver reassembled skb to layer above, and requeue it if that
1642  *    for some reason should fail. We mark rx sdu as busy to apply back
1643  *    pressure is necessary.
1644  */
irttp_do_data_indication(struct tsap_cb * self,struct sk_buff * skb)1645 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1646 {
1647 	int err;
1648 
1649 	/* Check if client has already closed the TSAP and gone away */
1650 	if (self->close_pend) {
1651 		dev_kfree_skb(skb);
1652 		return;
1653 	}
1654 
1655 	err = self->notify.data_indication(self->notify.instance, self, skb);
1656 
1657 	/* Usually the layer above will notify that it's input queue is
1658 	 * starting to get filled by using the flow request, but this may
1659 	 * be difficult, so it can instead just refuse to eat it and just
1660 	 * give an error back
1661 	 */
1662 	if (err) {
1663 		IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1664 
1665 		/* Make sure we take a break */
1666 		self->rx_sdu_busy = TRUE;
1667 
1668 		/* Need to push the header in again */
1669 		skb_push(skb, TTP_HEADER);
1670 		skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1671 
1672 		/* Put skb back on queue */
1673 		skb_queue_head(&self->rx_queue, skb);
1674 	}
1675 }
1676 
1677 /*
1678  * Function irttp_run_rx_queue (self)
1679  *
1680  *     Check if we have any frames to be transmitted, or if we have any
1681  *     available credit to give away.
1682  */
irttp_run_rx_queue(struct tsap_cb * self)1683 static void irttp_run_rx_queue(struct tsap_cb *self)
1684 {
1685 	struct sk_buff *skb;
1686 	int more = 0;
1687 
1688 	IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1689 		   self->send_credit, self->avail_credit, self->remote_credit);
1690 
1691 	/* Get exclusive access to the rx queue, otherwise don't touch it */
1692 	if (irda_lock(&self->rx_queue_lock) == FALSE)
1693 		return;
1694 
1695 	/*
1696 	 *  Reassemble all frames in receive queue and deliver them
1697 	 */
1698 	while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1699 		/* This bit will tell us if it's the last fragment or not */
1700 		more = skb->data[0] & 0x80;
1701 
1702 		/* Remove TTP header */
1703 		skb_pull(skb, TTP_HEADER);
1704 
1705 		/* Add the length of the remaining data */
1706 		self->rx_sdu_size += skb->len;
1707 
1708 		/*
1709 		 * If SAR is disabled, or user has requested no reassembly
1710 		 * of received fragments then we just deliver them
1711 		 * immediately. This can be requested by clients that
1712 		 * implements byte streams without any message boundaries
1713 		 */
1714 		if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1715 			irttp_do_data_indication(self, skb);
1716 			self->rx_sdu_size = 0;
1717 
1718 			continue;
1719 		}
1720 
1721 		/* Check if this is a fragment, and not the last fragment */
1722 		if (more) {
1723 			/*
1724 			 *  Queue the fragment if we still are within the
1725 			 *  limits of the maximum size of the rx_sdu
1726 			 */
1727 			if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1728 				IRDA_DEBUG(4, "%s(), queueing frag\n",
1729 					   __func__);
1730 				skb_queue_tail(&self->rx_fragments, skb);
1731 			} else {
1732 				/* Free the part of the SDU that is too big */
1733 				dev_kfree_skb(skb);
1734 			}
1735 			continue;
1736 		}
1737 		/*
1738 		 *  This is the last fragment, so time to reassemble!
1739 		 */
1740 		if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1741 		    (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1742 		{
1743 			/*
1744 			 * A little optimizing. Only queue the fragment if
1745 			 * there are other fragments. Since if this is the
1746 			 * last and only fragment, there is no need to
1747 			 * reassemble :-)
1748 			 */
1749 			if (!skb_queue_empty(&self->rx_fragments)) {
1750 				skb_queue_tail(&self->rx_fragments,
1751 					       skb);
1752 
1753 				skb = irttp_reassemble_skb(self);
1754 			}
1755 
1756 			/* Now we can deliver the reassembled skb */
1757 			irttp_do_data_indication(self, skb);
1758 		} else {
1759 			IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1760 
1761 			/* Free the part of the SDU that is too big */
1762 			dev_kfree_skb(skb);
1763 
1764 			/* Deliver only the valid but truncated part of SDU */
1765 			skb = irttp_reassemble_skb(self);
1766 
1767 			irttp_do_data_indication(self, skb);
1768 		}
1769 		self->rx_sdu_size = 0;
1770 	}
1771 
1772 	/*
1773 	 * It's not trivial to keep track of how many credits are available
1774 	 * by incrementing at each packet, because delivery may fail
1775 	 * (irttp_do_data_indication() may requeue the frame) and because
1776 	 * we need to take care of fragmentation.
1777 	 * We want the other side to send up to initial_credit packets.
1778 	 * We have some frames in our queues, and we have already allowed it
1779 	 * to send remote_credit.
1780 	 * No need to spinlock, write is atomic and self correcting...
1781 	 * Jean II
1782 	 */
1783 	self->avail_credit = (self->initial_credit -
1784 			      (self->remote_credit +
1785 			       skb_queue_len(&self->rx_queue) +
1786 			       skb_queue_len(&self->rx_fragments)));
1787 
1788 	/* Do we have too much credits to send to peer ? */
1789 	if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1790 	    (self->avail_credit > 0)) {
1791 		/* Send explicit credit frame */
1792 		irttp_give_credit(self);
1793 		/* Note : do *NOT* check if tx_queue is non-empty, that
1794 		 * will produce deadlocks. I repeat : send a credit frame
1795 		 * even if we have something to send in our Tx queue.
1796 		 * If we have credits, it means that our Tx queue is blocked.
1797 		 *
1798 		 * Let's suppose the peer can't keep up with our Tx. He will
1799 		 * flow control us by not sending us any credits, and we
1800 		 * will stop Tx and start accumulating credits here.
1801 		 * Up to the point where the peer will stop its Tx queue,
1802 		 * for lack of credits.
1803 		 * Let's assume the peer application is single threaded.
1804 		 * It will block on Tx and never consume any Rx buffer.
1805 		 * Deadlock. Guaranteed. - Jean II
1806 		 */
1807 	}
1808 
1809 	/* Reset lock */
1810 	self->rx_queue_lock = 0;
1811 }
1812 
1813 #ifdef CONFIG_PROC_FS
1814 struct irttp_iter_state {
1815 	int id;
1816 };
1817 
irttp_seq_start(struct seq_file * seq,loff_t * pos)1818 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1819 {
1820 	struct irttp_iter_state *iter = seq->private;
1821 	struct tsap_cb *self;
1822 
1823 	/* Protect our access to the tsap list */
1824 	spin_lock_irq(&irttp->tsaps->hb_spinlock);
1825 	iter->id = 0;
1826 
1827 	for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1828 	     self != NULL;
1829 	     self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1830 		if (iter->id == *pos)
1831 			break;
1832 		++iter->id;
1833 	}
1834 
1835 	return self;
1836 }
1837 
irttp_seq_next(struct seq_file * seq,void * v,loff_t * pos)1838 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1839 {
1840 	struct irttp_iter_state *iter = seq->private;
1841 
1842 	++*pos;
1843 	++iter->id;
1844 	return (void *) hashbin_get_next(irttp->tsaps);
1845 }
1846 
irttp_seq_stop(struct seq_file * seq,void * v)1847 static void irttp_seq_stop(struct seq_file *seq, void *v)
1848 {
1849 	spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1850 }
1851 
irttp_seq_show(struct seq_file * seq,void * v)1852 static int irttp_seq_show(struct seq_file *seq, void *v)
1853 {
1854 	const struct irttp_iter_state *iter = seq->private;
1855 	const struct tsap_cb *self = v;
1856 
1857 	seq_printf(seq, "TSAP %d, ", iter->id);
1858 	seq_printf(seq, "stsap_sel: %02x, ",
1859 		   self->stsap_sel);
1860 	seq_printf(seq, "dtsap_sel: %02x\n",
1861 		   self->dtsap_sel);
1862 	seq_printf(seq, "  connected: %s, ",
1863 		   self->connected? "TRUE":"FALSE");
1864 	seq_printf(seq, "avail credit: %d, ",
1865 		   self->avail_credit);
1866 	seq_printf(seq, "remote credit: %d, ",
1867 		   self->remote_credit);
1868 	seq_printf(seq, "send credit: %d\n",
1869 		   self->send_credit);
1870 	seq_printf(seq, "  tx packets: %lu, ",
1871 		   self->stats.tx_packets);
1872 	seq_printf(seq, "rx packets: %lu, ",
1873 		   self->stats.rx_packets);
1874 	seq_printf(seq, "tx_queue len: %u ",
1875 		   skb_queue_len(&self->tx_queue));
1876 	seq_printf(seq, "rx_queue len: %u\n",
1877 		   skb_queue_len(&self->rx_queue));
1878 	seq_printf(seq, "  tx_sdu_busy: %s, ",
1879 		   self->tx_sdu_busy? "TRUE":"FALSE");
1880 	seq_printf(seq, "rx_sdu_busy: %s\n",
1881 		   self->rx_sdu_busy? "TRUE":"FALSE");
1882 	seq_printf(seq, "  max_seg_size: %u, ",
1883 		   self->max_seg_size);
1884 	seq_printf(seq, "tx_max_sdu_size: %u, ",
1885 		   self->tx_max_sdu_size);
1886 	seq_printf(seq, "rx_max_sdu_size: %u\n",
1887 		   self->rx_max_sdu_size);
1888 
1889 	seq_printf(seq, "  Used by (%s)\n\n",
1890 		   self->notify.name);
1891 	return 0;
1892 }
1893 
1894 static const struct seq_operations irttp_seq_ops = {
1895 	.start  = irttp_seq_start,
1896 	.next   = irttp_seq_next,
1897 	.stop   = irttp_seq_stop,
1898 	.show   = irttp_seq_show,
1899 };
1900 
irttp_seq_open(struct inode * inode,struct file * file)1901 static int irttp_seq_open(struct inode *inode, struct file *file)
1902 {
1903 	return seq_open_private(file, &irttp_seq_ops,
1904 			sizeof(struct irttp_iter_state));
1905 }
1906 
1907 const struct file_operations irttp_seq_fops = {
1908 	.owner		= THIS_MODULE,
1909 	.open           = irttp_seq_open,
1910 	.read           = seq_read,
1911 	.llseek         = seq_lseek,
1912 	.release	= seq_release_private,
1913 };
1914 
1915 #endif /* PROC_FS */
1916