1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40
41 #include "amd_iommu.h"
42 #include "../dma-iommu.h"
43 #include "../irq_remapping.h"
44
45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
46
47 #define LOOP_TIMEOUT 100000
48
49 /* IO virtual address start page frame number */
50 #define IOVA_START_PFN (1)
51 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
52
53 /* Reserved IOVA ranges */
54 #define MSI_RANGE_START (0xfee00000)
55 #define MSI_RANGE_END (0xfeefffff)
56 #define HT_RANGE_START (0xfd00000000ULL)
57 #define HT_RANGE_END (0xffffffffffULL)
58
59 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
60
61 static DEFINE_SPINLOCK(pd_bitmap_lock);
62
63 LIST_HEAD(ioapic_map);
64 LIST_HEAD(hpet_map);
65 LIST_HEAD(acpihid_map);
66
67 const struct iommu_ops amd_iommu_ops;
68
69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
70 int amd_iommu_max_glx_val = -1;
71
72 /*
73 * general struct to manage commands send to an IOMMU
74 */
75 struct iommu_cmd {
76 u32 data[4];
77 };
78
79 struct kmem_cache *amd_iommu_irq_cache;
80
81 static void detach_device(struct device *dev);
82 static int domain_enable_v2(struct protection_domain *domain, int pasids);
83
84 /****************************************************************************
85 *
86 * Helper functions
87 *
88 ****************************************************************************/
89
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)90 static inline int get_acpihid_device_id(struct device *dev,
91 struct acpihid_map_entry **entry)
92 {
93 struct acpi_device *adev = ACPI_COMPANION(dev);
94 struct acpihid_map_entry *p;
95
96 if (!adev)
97 return -ENODEV;
98
99 list_for_each_entry(p, &acpihid_map, list) {
100 if (acpi_dev_hid_uid_match(adev, p->hid,
101 p->uid[0] ? p->uid : NULL)) {
102 if (entry)
103 *entry = p;
104 return p->devid;
105 }
106 }
107 return -EINVAL;
108 }
109
get_device_sbdf_id(struct device * dev)110 static inline int get_device_sbdf_id(struct device *dev)
111 {
112 int sbdf;
113
114 if (dev_is_pci(dev))
115 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
116 else
117 sbdf = get_acpihid_device_id(dev, NULL);
118
119 return sbdf;
120 }
121
get_dev_table(struct amd_iommu * iommu)122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
123 {
124 struct dev_table_entry *dev_table;
125 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
126
127 BUG_ON(pci_seg == NULL);
128 dev_table = pci_seg->dev_table;
129 BUG_ON(dev_table == NULL);
130
131 return dev_table;
132 }
133
get_device_segment(struct device * dev)134 static inline u16 get_device_segment(struct device *dev)
135 {
136 u16 seg;
137
138 if (dev_is_pci(dev)) {
139 struct pci_dev *pdev = to_pci_dev(dev);
140
141 seg = pci_domain_nr(pdev->bus);
142 } else {
143 u32 devid = get_acpihid_device_id(dev, NULL);
144
145 seg = PCI_SBDF_TO_SEGID(devid);
146 }
147
148 return seg;
149 }
150
151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
153 {
154 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
155
156 pci_seg->rlookup_table[devid] = iommu;
157 }
158
__rlookup_amd_iommu(u16 seg,u16 devid)159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
160 {
161 struct amd_iommu_pci_seg *pci_seg;
162
163 for_each_pci_segment(pci_seg) {
164 if (pci_seg->id == seg)
165 return pci_seg->rlookup_table[devid];
166 }
167 return NULL;
168 }
169
rlookup_amd_iommu(struct device * dev)170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
171 {
172 u16 seg = get_device_segment(dev);
173 int devid = get_device_sbdf_id(dev);
174
175 if (devid < 0)
176 return NULL;
177 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
178 }
179
to_pdomain(struct iommu_domain * dom)180 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
181 {
182 return container_of(dom, struct protection_domain, domain);
183 }
184
alloc_dev_data(struct amd_iommu * iommu,u16 devid)185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
186 {
187 struct iommu_dev_data *dev_data;
188 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
189
190 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 if (!dev_data)
192 return NULL;
193
194 spin_lock_init(&dev_data->lock);
195 dev_data->devid = devid;
196 ratelimit_default_init(&dev_data->rs);
197
198 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
199 return dev_data;
200 }
201
search_dev_data(struct amd_iommu * iommu,u16 devid)202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
203 {
204 struct iommu_dev_data *dev_data;
205 struct llist_node *node;
206 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
207
208 if (llist_empty(&pci_seg->dev_data_list))
209 return NULL;
210
211 node = pci_seg->dev_data_list.first;
212 llist_for_each_entry(dev_data, node, dev_data_list) {
213 if (dev_data->devid == devid)
214 return dev_data;
215 }
216
217 return NULL;
218 }
219
clone_alias(struct pci_dev * pdev,u16 alias,void * data)220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 struct amd_iommu *iommu;
223 struct dev_table_entry *dev_table;
224 u16 devid = pci_dev_id(pdev);
225
226 if (devid == alias)
227 return 0;
228
229 iommu = rlookup_amd_iommu(&pdev->dev);
230 if (!iommu)
231 return 0;
232
233 amd_iommu_set_rlookup_table(iommu, alias);
234 dev_table = get_dev_table(iommu);
235 memcpy(dev_table[alias].data,
236 dev_table[devid].data,
237 sizeof(dev_table[alias].data));
238
239 return 0;
240 }
241
clone_aliases(struct amd_iommu * iommu,struct device * dev)242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
243 {
244 struct pci_dev *pdev;
245
246 if (!dev_is_pci(dev))
247 return;
248 pdev = to_pci_dev(dev);
249
250 /*
251 * The IVRS alias stored in the alias table may not be
252 * part of the PCI DMA aliases if it's bus differs
253 * from the original device.
254 */
255 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
256
257 pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259
setup_aliases(struct amd_iommu * iommu,struct device * dev)260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
261 {
262 struct pci_dev *pdev = to_pci_dev(dev);
263 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
264 u16 ivrs_alias;
265
266 /* For ACPI HID devices, there are no aliases */
267 if (!dev_is_pci(dev))
268 return;
269
270 /*
271 * Add the IVRS alias to the pci aliases if it is on the same
272 * bus. The IVRS table may know about a quirk that we don't.
273 */
274 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
275 if (ivrs_alias != pci_dev_id(pdev) &&
276 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
277 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
278
279 clone_aliases(iommu, dev);
280 }
281
find_dev_data(struct amd_iommu * iommu,u16 devid)282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
283 {
284 struct iommu_dev_data *dev_data;
285
286 dev_data = search_dev_data(iommu, devid);
287
288 if (dev_data == NULL) {
289 dev_data = alloc_dev_data(iommu, devid);
290 if (!dev_data)
291 return NULL;
292
293 if (translation_pre_enabled(iommu))
294 dev_data->defer_attach = true;
295 }
296
297 return dev_data;
298 }
299
300 /*
301 * Find or create an IOMMU group for a acpihid device.
302 */
acpihid_device_group(struct device * dev)303 static struct iommu_group *acpihid_device_group(struct device *dev)
304 {
305 struct acpihid_map_entry *p, *entry = NULL;
306 int devid;
307
308 devid = get_acpihid_device_id(dev, &entry);
309 if (devid < 0)
310 return ERR_PTR(devid);
311
312 list_for_each_entry(p, &acpihid_map, list) {
313 if ((devid == p->devid) && p->group)
314 entry->group = p->group;
315 }
316
317 if (!entry->group)
318 entry->group = generic_device_group(dev);
319 else
320 iommu_group_ref_get(entry->group);
321
322 return entry->group;
323 }
324
pci_iommuv2_capable(struct pci_dev * pdev)325 static bool pci_iommuv2_capable(struct pci_dev *pdev)
326 {
327 static const int caps[] = {
328 PCI_EXT_CAP_ID_PRI,
329 PCI_EXT_CAP_ID_PASID,
330 };
331 int i, pos;
332
333 if (!pci_ats_supported(pdev))
334 return false;
335
336 for (i = 0; i < 2; ++i) {
337 pos = pci_find_ext_capability(pdev, caps[i]);
338 if (pos == 0)
339 return false;
340 }
341
342 return true;
343 }
344
345 /*
346 * This function checks if the driver got a valid device from the caller to
347 * avoid dereferencing invalid pointers.
348 */
check_device(struct device * dev)349 static bool check_device(struct device *dev)
350 {
351 struct amd_iommu_pci_seg *pci_seg;
352 struct amd_iommu *iommu;
353 int devid, sbdf;
354
355 if (!dev)
356 return false;
357
358 sbdf = get_device_sbdf_id(dev);
359 if (sbdf < 0)
360 return false;
361 devid = PCI_SBDF_TO_DEVID(sbdf);
362
363 iommu = rlookup_amd_iommu(dev);
364 if (!iommu)
365 return false;
366
367 /* Out of our scope? */
368 pci_seg = iommu->pci_seg;
369 if (devid > pci_seg->last_bdf)
370 return false;
371
372 return true;
373 }
374
iommu_init_device(struct amd_iommu * iommu,struct device * dev)375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
376 {
377 struct iommu_dev_data *dev_data;
378 int devid, sbdf;
379
380 if (dev_iommu_priv_get(dev))
381 return 0;
382
383 sbdf = get_device_sbdf_id(dev);
384 if (sbdf < 0)
385 return sbdf;
386
387 devid = PCI_SBDF_TO_DEVID(sbdf);
388 dev_data = find_dev_data(iommu, devid);
389 if (!dev_data)
390 return -ENOMEM;
391
392 dev_data->dev = dev;
393 setup_aliases(iommu, dev);
394
395 /*
396 * By default we use passthrough mode for IOMMUv2 capable device.
397 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
398 * invalid address), we ignore the capability for the device so
399 * it'll be forced to go into translation mode.
400 */
401 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
402 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
403 dev_data->iommu_v2 = iommu->is_iommu_v2;
404 }
405
406 dev_iommu_priv_set(dev, dev_data);
407
408 return 0;
409 }
410
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
412 {
413 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
414 struct dev_table_entry *dev_table = get_dev_table(iommu);
415 int devid, sbdf;
416
417 sbdf = get_device_sbdf_id(dev);
418 if (sbdf < 0)
419 return;
420
421 devid = PCI_SBDF_TO_DEVID(sbdf);
422 pci_seg->rlookup_table[devid] = NULL;
423 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
424
425 setup_aliases(iommu, dev);
426 }
427
amd_iommu_uninit_device(struct device * dev)428 static void amd_iommu_uninit_device(struct device *dev)
429 {
430 struct iommu_dev_data *dev_data;
431
432 dev_data = dev_iommu_priv_get(dev);
433 if (!dev_data)
434 return;
435
436 if (dev_data->domain)
437 detach_device(dev);
438
439 dev_iommu_priv_set(dev, NULL);
440
441 /*
442 * We keep dev_data around for unplugged devices and reuse it when the
443 * device is re-plugged - not doing so would introduce a ton of races.
444 */
445 }
446
447 /****************************************************************************
448 *
449 * Interrupt handling functions
450 *
451 ****************************************************************************/
452
dump_dte_entry(struct amd_iommu * iommu,u16 devid)453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
454 {
455 int i;
456 struct dev_table_entry *dev_table = get_dev_table(iommu);
457
458 for (i = 0; i < 4; ++i)
459 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
460 }
461
dump_command(unsigned long phys_addr)462 static void dump_command(unsigned long phys_addr)
463 {
464 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
465 int i;
466
467 for (i = 0; i < 4; ++i)
468 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
469 }
470
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
472 {
473 struct iommu_dev_data *dev_data = NULL;
474 int devid, vmg_tag, flags;
475 struct pci_dev *pdev;
476 u64 spa;
477
478 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
479 vmg_tag = (event[1]) & 0xFFFF;
480 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
481 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
482
483 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
484 devid & 0xff);
485 if (pdev)
486 dev_data = dev_iommu_priv_get(&pdev->dev);
487
488 if (dev_data) {
489 if (__ratelimit(&dev_data->rs)) {
490 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
491 vmg_tag, spa, flags);
492 }
493 } else {
494 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
495 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
496 vmg_tag, spa, flags);
497 }
498
499 if (pdev)
500 pci_dev_put(pdev);
501 }
502
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
504 {
505 struct iommu_dev_data *dev_data = NULL;
506 int devid, flags_rmp, vmg_tag, flags;
507 struct pci_dev *pdev;
508 u64 gpa;
509
510 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
511 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
512 vmg_tag = (event[1]) & 0xFFFF;
513 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
514 gpa = ((u64)event[3] << 32) | event[2];
515
516 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
517 devid & 0xff);
518 if (pdev)
519 dev_data = dev_iommu_priv_get(&pdev->dev);
520
521 if (dev_data) {
522 if (__ratelimit(&dev_data->rs)) {
523 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
524 vmg_tag, gpa, flags_rmp, flags);
525 }
526 } else {
527 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
528 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 vmg_tag, gpa, flags_rmp, flags);
530 }
531
532 if (pdev)
533 pci_dev_put(pdev);
534 }
535
536 #define IS_IOMMU_MEM_TRANSACTION(flags) \
537 (((flags) & EVENT_FLAG_I) == 0)
538
539 #define IS_WRITE_REQUEST(flags) \
540 ((flags) & EVENT_FLAG_RW)
541
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
543 u16 devid, u16 domain_id,
544 u64 address, int flags)
545 {
546 struct iommu_dev_data *dev_data = NULL;
547 struct pci_dev *pdev;
548
549 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
550 devid & 0xff);
551 if (pdev)
552 dev_data = dev_iommu_priv_get(&pdev->dev);
553
554 if (dev_data) {
555 /*
556 * If this is a DMA fault (for which the I(nterrupt)
557 * bit will be unset), allow report_iommu_fault() to
558 * prevent logging it.
559 */
560 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
561 if (!report_iommu_fault(&dev_data->domain->domain,
562 &pdev->dev, address,
563 IS_WRITE_REQUEST(flags) ?
564 IOMMU_FAULT_WRITE :
565 IOMMU_FAULT_READ))
566 goto out;
567 }
568
569 if (__ratelimit(&dev_data->rs)) {
570 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
571 domain_id, address, flags);
572 }
573 } else {
574 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
575 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
576 domain_id, address, flags);
577 }
578
579 out:
580 if (pdev)
581 pci_dev_put(pdev);
582 }
583
iommu_print_event(struct amd_iommu * iommu,void * __evt)584 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
585 {
586 struct device *dev = iommu->iommu.dev;
587 int type, devid, flags, tag;
588 volatile u32 *event = __evt;
589 int count = 0;
590 u64 address;
591 u32 pasid;
592
593 retry:
594 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
595 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
596 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
597 (event[1] & EVENT_DOMID_MASK_LO);
598 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
599 address = (u64)(((u64)event[3]) << 32) | event[2];
600
601 if (type == 0) {
602 /* Did we hit the erratum? */
603 if (++count == LOOP_TIMEOUT) {
604 pr_err("No event written to event log\n");
605 return;
606 }
607 udelay(1);
608 goto retry;
609 }
610
611 if (type == EVENT_TYPE_IO_FAULT) {
612 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
613 return;
614 }
615
616 switch (type) {
617 case EVENT_TYPE_ILL_DEV:
618 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
619 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
620 pasid, address, flags);
621 dump_dte_entry(iommu, devid);
622 break;
623 case EVENT_TYPE_DEV_TAB_ERR:
624 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
625 "address=0x%llx flags=0x%04x]\n",
626 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627 address, flags);
628 break;
629 case EVENT_TYPE_PAGE_TAB_ERR:
630 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
631 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
632 pasid, address, flags);
633 break;
634 case EVENT_TYPE_ILL_CMD:
635 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
636 dump_command(address);
637 break;
638 case EVENT_TYPE_CMD_HARD_ERR:
639 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
640 address, flags);
641 break;
642 case EVENT_TYPE_IOTLB_INV_TO:
643 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
644 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
645 address);
646 break;
647 case EVENT_TYPE_INV_DEV_REQ:
648 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
649 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 pasid, address, flags);
651 break;
652 case EVENT_TYPE_RMP_FAULT:
653 amd_iommu_report_rmp_fault(iommu, event);
654 break;
655 case EVENT_TYPE_RMP_HW_ERR:
656 amd_iommu_report_rmp_hw_error(iommu, event);
657 break;
658 case EVENT_TYPE_INV_PPR_REQ:
659 pasid = PPR_PASID(*((u64 *)__evt));
660 tag = event[1] & 0x03FF;
661 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
662 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
663 pasid, address, flags, tag);
664 break;
665 default:
666 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
667 event[0], event[1], event[2], event[3]);
668 }
669
670 memset(__evt, 0, 4 * sizeof(u32));
671 }
672
iommu_poll_events(struct amd_iommu * iommu)673 static void iommu_poll_events(struct amd_iommu *iommu)
674 {
675 u32 head, tail;
676
677 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
678 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
679
680 while (head != tail) {
681 iommu_print_event(iommu, iommu->evt_buf + head);
682 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
683 }
684
685 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
686 }
687
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)688 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
689 {
690 struct amd_iommu_fault fault;
691
692 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
693 pr_err_ratelimited("Unknown PPR request received\n");
694 return;
695 }
696
697 fault.address = raw[1];
698 fault.pasid = PPR_PASID(raw[0]);
699 fault.sbdf = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
700 fault.tag = PPR_TAG(raw[0]);
701 fault.flags = PPR_FLAGS(raw[0]);
702
703 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
704 }
705
iommu_poll_ppr_log(struct amd_iommu * iommu)706 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
707 {
708 u32 head, tail;
709
710 if (iommu->ppr_log == NULL)
711 return;
712
713 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
714 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
715
716 while (head != tail) {
717 volatile u64 *raw;
718 u64 entry[2];
719 int i;
720
721 raw = (u64 *)(iommu->ppr_log + head);
722
723 /*
724 * Hardware bug: Interrupt may arrive before the entry is
725 * written to memory. If this happens we need to wait for the
726 * entry to arrive.
727 */
728 for (i = 0; i < LOOP_TIMEOUT; ++i) {
729 if (PPR_REQ_TYPE(raw[0]) != 0)
730 break;
731 udelay(1);
732 }
733
734 /* Avoid memcpy function-call overhead */
735 entry[0] = raw[0];
736 entry[1] = raw[1];
737
738 /*
739 * To detect the hardware bug we need to clear the entry
740 * back to zero.
741 */
742 raw[0] = raw[1] = 0UL;
743
744 /* Update head pointer of hardware ring-buffer */
745 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
746 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
747
748 /* Handle PPR entry */
749 iommu_handle_ppr_entry(iommu, entry);
750
751 /* Refresh ring-buffer information */
752 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
753 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
754 }
755 }
756
757 #ifdef CONFIG_IRQ_REMAP
758 static int (*iommu_ga_log_notifier)(u32);
759
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))760 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
761 {
762 iommu_ga_log_notifier = notifier;
763
764 return 0;
765 }
766 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
767
iommu_poll_ga_log(struct amd_iommu * iommu)768 static void iommu_poll_ga_log(struct amd_iommu *iommu)
769 {
770 u32 head, tail, cnt = 0;
771
772 if (iommu->ga_log == NULL)
773 return;
774
775 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
776 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
777
778 while (head != tail) {
779 volatile u64 *raw;
780 u64 log_entry;
781
782 raw = (u64 *)(iommu->ga_log + head);
783 cnt++;
784
785 /* Avoid memcpy function-call overhead */
786 log_entry = *raw;
787
788 /* Update head pointer of hardware ring-buffer */
789 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
790 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
791
792 /* Handle GA entry */
793 switch (GA_REQ_TYPE(log_entry)) {
794 case GA_GUEST_NR:
795 if (!iommu_ga_log_notifier)
796 break;
797
798 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
799 __func__, GA_DEVID(log_entry),
800 GA_TAG(log_entry));
801
802 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
803 pr_err("GA log notifier failed.\n");
804 break;
805 default:
806 break;
807 }
808 }
809 }
810
811 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)812 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
813 {
814 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
815 pci_dev_has_special_msi_domain(to_pci_dev(dev)))
816 return;
817
818 dev_set_msi_domain(dev, iommu->msi_domain);
819 }
820
821 #else /* CONFIG_IRQ_REMAP */
822 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)823 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
824 #endif /* !CONFIG_IRQ_REMAP */
825
826 #define AMD_IOMMU_INT_MASK \
827 (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
828 MMIO_STATUS_EVT_INT_MASK | \
829 MMIO_STATUS_PPR_INT_MASK | \
830 MMIO_STATUS_GALOG_INT_MASK)
831
amd_iommu_int_thread(int irq,void * data)832 irqreturn_t amd_iommu_int_thread(int irq, void *data)
833 {
834 struct amd_iommu *iommu = (struct amd_iommu *) data;
835 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
836
837 while (status & AMD_IOMMU_INT_MASK) {
838 /* Enable interrupt sources again */
839 writel(AMD_IOMMU_INT_MASK,
840 iommu->mmio_base + MMIO_STATUS_OFFSET);
841
842 if (status & MMIO_STATUS_EVT_INT_MASK) {
843 pr_devel("Processing IOMMU Event Log\n");
844 iommu_poll_events(iommu);
845 }
846
847 if (status & MMIO_STATUS_PPR_INT_MASK) {
848 pr_devel("Processing IOMMU PPR Log\n");
849 iommu_poll_ppr_log(iommu);
850 }
851
852 #ifdef CONFIG_IRQ_REMAP
853 if (status & MMIO_STATUS_GALOG_INT_MASK) {
854 pr_devel("Processing IOMMU GA Log\n");
855 iommu_poll_ga_log(iommu);
856 }
857 #endif
858
859 if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
860 pr_info_ratelimited("IOMMU event log overflow\n");
861 amd_iommu_restart_event_logging(iommu);
862 }
863
864 /*
865 * Hardware bug: ERBT1312
866 * When re-enabling interrupt (by writing 1
867 * to clear the bit), the hardware might also try to set
868 * the interrupt bit in the event status register.
869 * In this scenario, the bit will be set, and disable
870 * subsequent interrupts.
871 *
872 * Workaround: The IOMMU driver should read back the
873 * status register and check if the interrupt bits are cleared.
874 * If not, driver will need to go through the interrupt handler
875 * again and re-clear the bits
876 */
877 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
878 }
879 return IRQ_HANDLED;
880 }
881
amd_iommu_int_handler(int irq,void * data)882 irqreturn_t amd_iommu_int_handler(int irq, void *data)
883 {
884 return IRQ_WAKE_THREAD;
885 }
886
887 /****************************************************************************
888 *
889 * IOMMU command queuing functions
890 *
891 ****************************************************************************/
892
wait_on_sem(struct amd_iommu * iommu,u64 data)893 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
894 {
895 int i = 0;
896
897 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
898 udelay(1);
899 i += 1;
900 }
901
902 if (i == LOOP_TIMEOUT) {
903 pr_alert("Completion-Wait loop timed out\n");
904 return -EIO;
905 }
906
907 return 0;
908 }
909
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)910 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
911 struct iommu_cmd *cmd)
912 {
913 u8 *target;
914 u32 tail;
915
916 /* Copy command to buffer */
917 tail = iommu->cmd_buf_tail;
918 target = iommu->cmd_buf + tail;
919 memcpy(target, cmd, sizeof(*cmd));
920
921 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
922 iommu->cmd_buf_tail = tail;
923
924 /* Tell the IOMMU about it */
925 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
926 }
927
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)928 static void build_completion_wait(struct iommu_cmd *cmd,
929 struct amd_iommu *iommu,
930 u64 data)
931 {
932 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
933
934 memset(cmd, 0, sizeof(*cmd));
935 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
936 cmd->data[1] = upper_32_bits(paddr);
937 cmd->data[2] = lower_32_bits(data);
938 cmd->data[3] = upper_32_bits(data);
939 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
940 }
941
build_inv_dte(struct iommu_cmd * cmd,u16 devid)942 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
943 {
944 memset(cmd, 0, sizeof(*cmd));
945 cmd->data[0] = devid;
946 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
947 }
948
949 /*
950 * Builds an invalidation address which is suitable for one page or multiple
951 * pages. Sets the size bit (S) as needed is more than one page is flushed.
952 */
build_inv_address(u64 address,size_t size)953 static inline u64 build_inv_address(u64 address, size_t size)
954 {
955 u64 pages, end, msb_diff;
956
957 pages = iommu_num_pages(address, size, PAGE_SIZE);
958
959 if (pages == 1)
960 return address & PAGE_MASK;
961
962 end = address + size - 1;
963
964 /*
965 * msb_diff would hold the index of the most significant bit that
966 * flipped between the start and end.
967 */
968 msb_diff = fls64(end ^ address) - 1;
969
970 /*
971 * Bits 63:52 are sign extended. If for some reason bit 51 is different
972 * between the start and the end, invalidate everything.
973 */
974 if (unlikely(msb_diff > 51)) {
975 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
976 } else {
977 /*
978 * The msb-bit must be clear on the address. Just set all the
979 * lower bits.
980 */
981 address |= (1ull << msb_diff) - 1;
982 }
983
984 /* Clear bits 11:0 */
985 address &= PAGE_MASK;
986
987 /* Set the size bit - we flush more than one 4kb page */
988 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
989 }
990
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)991 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
992 size_t size, u16 domid, int pde)
993 {
994 u64 inv_address = build_inv_address(address, size);
995
996 memset(cmd, 0, sizeof(*cmd));
997 cmd->data[1] |= domid;
998 cmd->data[2] = lower_32_bits(inv_address);
999 cmd->data[3] = upper_32_bits(inv_address);
1000 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1001 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1002 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1003 }
1004
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)1005 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1006 u64 address, size_t size)
1007 {
1008 u64 inv_address = build_inv_address(address, size);
1009
1010 memset(cmd, 0, sizeof(*cmd));
1011 cmd->data[0] = devid;
1012 cmd->data[0] |= (qdep & 0xff) << 24;
1013 cmd->data[1] = devid;
1014 cmd->data[2] = lower_32_bits(inv_address);
1015 cmd->data[3] = upper_32_bits(inv_address);
1016 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1017 }
1018
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)1019 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1020 u64 address, bool size)
1021 {
1022 memset(cmd, 0, sizeof(*cmd));
1023
1024 address &= ~(0xfffULL);
1025
1026 cmd->data[0] = pasid;
1027 cmd->data[1] = domid;
1028 cmd->data[2] = lower_32_bits(address);
1029 cmd->data[3] = upper_32_bits(address);
1030 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1031 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1032 if (size)
1033 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1034 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1035 }
1036
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)1037 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1038 int qdep, u64 address, bool size)
1039 {
1040 memset(cmd, 0, sizeof(*cmd));
1041
1042 address &= ~(0xfffULL);
1043
1044 cmd->data[0] = devid;
1045 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1046 cmd->data[0] |= (qdep & 0xff) << 24;
1047 cmd->data[1] = devid;
1048 cmd->data[1] |= (pasid & 0xff) << 16;
1049 cmd->data[2] = lower_32_bits(address);
1050 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1051 cmd->data[3] = upper_32_bits(address);
1052 if (size)
1053 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1054 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1055 }
1056
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)1057 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1058 int status, int tag, bool gn)
1059 {
1060 memset(cmd, 0, sizeof(*cmd));
1061
1062 cmd->data[0] = devid;
1063 if (gn) {
1064 cmd->data[1] = pasid;
1065 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1066 }
1067 cmd->data[3] = tag & 0x1ff;
1068 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1069
1070 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1071 }
1072
build_inv_all(struct iommu_cmd * cmd)1073 static void build_inv_all(struct iommu_cmd *cmd)
1074 {
1075 memset(cmd, 0, sizeof(*cmd));
1076 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1077 }
1078
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1079 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1080 {
1081 memset(cmd, 0, sizeof(*cmd));
1082 cmd->data[0] = devid;
1083 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1084 }
1085
1086 /*
1087 * Writes the command to the IOMMUs command buffer and informs the
1088 * hardware about the new command.
1089 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1090 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1091 struct iommu_cmd *cmd,
1092 bool sync)
1093 {
1094 unsigned int count = 0;
1095 u32 left, next_tail;
1096
1097 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1098 again:
1099 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1100
1101 if (left <= 0x20) {
1102 /* Skip udelay() the first time around */
1103 if (count++) {
1104 if (count == LOOP_TIMEOUT) {
1105 pr_err("Command buffer timeout\n");
1106 return -EIO;
1107 }
1108
1109 udelay(1);
1110 }
1111
1112 /* Update head and recheck remaining space */
1113 iommu->cmd_buf_head = readl(iommu->mmio_base +
1114 MMIO_CMD_HEAD_OFFSET);
1115
1116 goto again;
1117 }
1118
1119 copy_cmd_to_buffer(iommu, cmd);
1120
1121 /* Do we need to make sure all commands are processed? */
1122 iommu->need_sync = sync;
1123
1124 return 0;
1125 }
1126
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1127 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1128 struct iommu_cmd *cmd,
1129 bool sync)
1130 {
1131 unsigned long flags;
1132 int ret;
1133
1134 raw_spin_lock_irqsave(&iommu->lock, flags);
1135 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1136 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1137
1138 return ret;
1139 }
1140
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1141 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1142 {
1143 return iommu_queue_command_sync(iommu, cmd, true);
1144 }
1145
1146 /*
1147 * This function queues a completion wait command into the command
1148 * buffer of an IOMMU
1149 */
iommu_completion_wait(struct amd_iommu * iommu)1150 static int iommu_completion_wait(struct amd_iommu *iommu)
1151 {
1152 struct iommu_cmd cmd;
1153 unsigned long flags;
1154 int ret;
1155 u64 data;
1156
1157 if (!iommu->need_sync)
1158 return 0;
1159
1160 raw_spin_lock_irqsave(&iommu->lock, flags);
1161
1162 data = ++iommu->cmd_sem_val;
1163 build_completion_wait(&cmd, iommu, data);
1164
1165 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1166 if (ret)
1167 goto out_unlock;
1168
1169 ret = wait_on_sem(iommu, data);
1170
1171 out_unlock:
1172 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1173
1174 return ret;
1175 }
1176
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1177 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1178 {
1179 struct iommu_cmd cmd;
1180
1181 build_inv_dte(&cmd, devid);
1182
1183 return iommu_queue_command(iommu, &cmd);
1184 }
1185
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1186 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1187 {
1188 u32 devid;
1189 u16 last_bdf = iommu->pci_seg->last_bdf;
1190
1191 for (devid = 0; devid <= last_bdf; ++devid)
1192 iommu_flush_dte(iommu, devid);
1193
1194 iommu_completion_wait(iommu);
1195 }
1196
1197 /*
1198 * This function uses heavy locking and may disable irqs for some time. But
1199 * this is no issue because it is only called during resume.
1200 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1201 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1202 {
1203 u32 dom_id;
1204 u16 last_bdf = iommu->pci_seg->last_bdf;
1205
1206 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1207 struct iommu_cmd cmd;
1208 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1209 dom_id, 1);
1210 iommu_queue_command(iommu, &cmd);
1211 }
1212
1213 iommu_completion_wait(iommu);
1214 }
1215
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1216 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1217 {
1218 struct iommu_cmd cmd;
1219
1220 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1221 dom_id, 1);
1222 iommu_queue_command(iommu, &cmd);
1223
1224 iommu_completion_wait(iommu);
1225 }
1226
amd_iommu_flush_all(struct amd_iommu * iommu)1227 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1228 {
1229 struct iommu_cmd cmd;
1230
1231 build_inv_all(&cmd);
1232
1233 iommu_queue_command(iommu, &cmd);
1234 iommu_completion_wait(iommu);
1235 }
1236
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1237 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1238 {
1239 struct iommu_cmd cmd;
1240
1241 build_inv_irt(&cmd, devid);
1242
1243 iommu_queue_command(iommu, &cmd);
1244 }
1245
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1246 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1247 {
1248 u32 devid;
1249 u16 last_bdf = iommu->pci_seg->last_bdf;
1250
1251 for (devid = 0; devid <= last_bdf; devid++)
1252 iommu_flush_irt(iommu, devid);
1253
1254 iommu_completion_wait(iommu);
1255 }
1256
iommu_flush_all_caches(struct amd_iommu * iommu)1257 void iommu_flush_all_caches(struct amd_iommu *iommu)
1258 {
1259 if (iommu_feature(iommu, FEATURE_IA)) {
1260 amd_iommu_flush_all(iommu);
1261 } else {
1262 amd_iommu_flush_dte_all(iommu);
1263 amd_iommu_flush_irt_all(iommu);
1264 amd_iommu_flush_tlb_all(iommu);
1265 }
1266 }
1267
1268 /*
1269 * Command send function for flushing on-device TLB
1270 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1271 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1272 u64 address, size_t size)
1273 {
1274 struct amd_iommu *iommu;
1275 struct iommu_cmd cmd;
1276 int qdep;
1277
1278 qdep = dev_data->ats.qdep;
1279 iommu = rlookup_amd_iommu(dev_data->dev);
1280 if (!iommu)
1281 return -EINVAL;
1282
1283 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1284
1285 return iommu_queue_command(iommu, &cmd);
1286 }
1287
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1288 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1289 {
1290 struct amd_iommu *iommu = data;
1291
1292 return iommu_flush_dte(iommu, alias);
1293 }
1294
1295 /*
1296 * Command send function for invalidating a device table entry
1297 */
device_flush_dte(struct iommu_dev_data * dev_data)1298 static int device_flush_dte(struct iommu_dev_data *dev_data)
1299 {
1300 struct amd_iommu *iommu;
1301 struct pci_dev *pdev = NULL;
1302 struct amd_iommu_pci_seg *pci_seg;
1303 u16 alias;
1304 int ret;
1305
1306 iommu = rlookup_amd_iommu(dev_data->dev);
1307 if (!iommu)
1308 return -EINVAL;
1309
1310 if (dev_is_pci(dev_data->dev))
1311 pdev = to_pci_dev(dev_data->dev);
1312
1313 if (pdev)
1314 ret = pci_for_each_dma_alias(pdev,
1315 device_flush_dte_alias, iommu);
1316 else
1317 ret = iommu_flush_dte(iommu, dev_data->devid);
1318 if (ret)
1319 return ret;
1320
1321 pci_seg = iommu->pci_seg;
1322 alias = pci_seg->alias_table[dev_data->devid];
1323 if (alias != dev_data->devid) {
1324 ret = iommu_flush_dte(iommu, alias);
1325 if (ret)
1326 return ret;
1327 }
1328
1329 if (dev_data->ats.enabled)
1330 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1331
1332 return ret;
1333 }
1334
1335 /*
1336 * TLB invalidation function which is called from the mapping functions.
1337 * It invalidates a single PTE if the range to flush is within a single
1338 * page. Otherwise it flushes the whole TLB of the IOMMU.
1339 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1340 static void __domain_flush_pages(struct protection_domain *domain,
1341 u64 address, size_t size, int pde)
1342 {
1343 struct iommu_dev_data *dev_data;
1344 struct iommu_cmd cmd;
1345 int ret = 0, i;
1346
1347 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1348
1349 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1350 if (!domain->dev_iommu[i])
1351 continue;
1352
1353 /*
1354 * Devices of this domain are behind this IOMMU
1355 * We need a TLB flush
1356 */
1357 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1358 }
1359
1360 list_for_each_entry(dev_data, &domain->dev_list, list) {
1361
1362 if (!dev_data->ats.enabled)
1363 continue;
1364
1365 ret |= device_flush_iotlb(dev_data, address, size);
1366 }
1367
1368 WARN_ON(ret);
1369 }
1370
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1371 static void domain_flush_pages(struct protection_domain *domain,
1372 u64 address, size_t size, int pde)
1373 {
1374 if (likely(!amd_iommu_np_cache)) {
1375 __domain_flush_pages(domain, address, size, pde);
1376 return;
1377 }
1378
1379 /*
1380 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1381 * In such setups it is best to avoid flushes of ranges which are not
1382 * naturally aligned, since it would lead to flushes of unmodified
1383 * PTEs. Such flushes would require the hypervisor to do more work than
1384 * necessary. Therefore, perform repeated flushes of aligned ranges
1385 * until you cover the range. Each iteration flushes the smaller
1386 * between the natural alignment of the address that we flush and the
1387 * greatest naturally aligned region that fits in the range.
1388 */
1389 while (size != 0) {
1390 int addr_alignment = __ffs(address);
1391 int size_alignment = __fls(size);
1392 int min_alignment;
1393 size_t flush_size;
1394
1395 /*
1396 * size is always non-zero, but address might be zero, causing
1397 * addr_alignment to be negative. As the casting of the
1398 * argument in __ffs(address) to long might trim the high bits
1399 * of the address on x86-32, cast to long when doing the check.
1400 */
1401 if (likely((unsigned long)address != 0))
1402 min_alignment = min(addr_alignment, size_alignment);
1403 else
1404 min_alignment = size_alignment;
1405
1406 flush_size = 1ul << min_alignment;
1407
1408 __domain_flush_pages(domain, address, flush_size, pde);
1409 address += flush_size;
1410 size -= flush_size;
1411 }
1412 }
1413
1414 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_tlb_pde(struct protection_domain * domain)1415 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1416 {
1417 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1418 }
1419
amd_iommu_domain_flush_complete(struct protection_domain * domain)1420 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1421 {
1422 int i;
1423
1424 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1425 if (domain && !domain->dev_iommu[i])
1426 continue;
1427
1428 /*
1429 * Devices of this domain are behind this IOMMU
1430 * We need to wait for completion of all commands.
1431 */
1432 iommu_completion_wait(amd_iommus[i]);
1433 }
1434 }
1435
1436 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1437 static void domain_flush_np_cache(struct protection_domain *domain,
1438 dma_addr_t iova, size_t size)
1439 {
1440 if (unlikely(amd_iommu_np_cache)) {
1441 unsigned long flags;
1442
1443 spin_lock_irqsave(&domain->lock, flags);
1444 domain_flush_pages(domain, iova, size, 1);
1445 amd_iommu_domain_flush_complete(domain);
1446 spin_unlock_irqrestore(&domain->lock, flags);
1447 }
1448 }
1449
1450
1451 /*
1452 * This function flushes the DTEs for all devices in domain
1453 */
domain_flush_devices(struct protection_domain * domain)1454 static void domain_flush_devices(struct protection_domain *domain)
1455 {
1456 struct iommu_dev_data *dev_data;
1457
1458 list_for_each_entry(dev_data, &domain->dev_list, list)
1459 device_flush_dte(dev_data);
1460 }
1461
1462 /****************************************************************************
1463 *
1464 * The next functions belong to the domain allocation. A domain is
1465 * allocated for every IOMMU as the default domain. If device isolation
1466 * is enabled, every device get its own domain. The most important thing
1467 * about domains is the page table mapping the DMA address space they
1468 * contain.
1469 *
1470 ****************************************************************************/
1471
domain_id_alloc(void)1472 static u16 domain_id_alloc(void)
1473 {
1474 int id;
1475
1476 spin_lock(&pd_bitmap_lock);
1477 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1478 BUG_ON(id == 0);
1479 if (id > 0 && id < MAX_DOMAIN_ID)
1480 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1481 else
1482 id = 0;
1483 spin_unlock(&pd_bitmap_lock);
1484
1485 return id;
1486 }
1487
domain_id_free(int id)1488 static void domain_id_free(int id)
1489 {
1490 spin_lock(&pd_bitmap_lock);
1491 if (id > 0 && id < MAX_DOMAIN_ID)
1492 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1493 spin_unlock(&pd_bitmap_lock);
1494 }
1495
free_gcr3_tbl_level1(u64 * tbl)1496 static void free_gcr3_tbl_level1(u64 *tbl)
1497 {
1498 u64 *ptr;
1499 int i;
1500
1501 for (i = 0; i < 512; ++i) {
1502 if (!(tbl[i] & GCR3_VALID))
1503 continue;
1504
1505 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1506
1507 free_page((unsigned long)ptr);
1508 }
1509 }
1510
free_gcr3_tbl_level2(u64 * tbl)1511 static void free_gcr3_tbl_level2(u64 *tbl)
1512 {
1513 u64 *ptr;
1514 int i;
1515
1516 for (i = 0; i < 512; ++i) {
1517 if (!(tbl[i] & GCR3_VALID))
1518 continue;
1519
1520 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1521
1522 free_gcr3_tbl_level1(ptr);
1523 }
1524 }
1525
free_gcr3_table(struct protection_domain * domain)1526 static void free_gcr3_table(struct protection_domain *domain)
1527 {
1528 if (domain->glx == 2)
1529 free_gcr3_tbl_level2(domain->gcr3_tbl);
1530 else if (domain->glx == 1)
1531 free_gcr3_tbl_level1(domain->gcr3_tbl);
1532 else
1533 BUG_ON(domain->glx != 0);
1534
1535 free_page((unsigned long)domain->gcr3_tbl);
1536 }
1537
set_dte_entry(struct amd_iommu * iommu,u16 devid,struct protection_domain * domain,bool ats,bool ppr)1538 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1539 struct protection_domain *domain, bool ats, bool ppr)
1540 {
1541 u64 pte_root = 0;
1542 u64 flags = 0;
1543 u32 old_domid;
1544 struct dev_table_entry *dev_table = get_dev_table(iommu);
1545
1546 if (domain->iop.mode != PAGE_MODE_NONE)
1547 pte_root = iommu_virt_to_phys(domain->iop.root);
1548
1549 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1550 << DEV_ENTRY_MODE_SHIFT;
1551
1552 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1553
1554 /*
1555 * When SNP is enabled, Only set TV bit when IOMMU
1556 * page translation is in use.
1557 */
1558 if (!amd_iommu_snp_en || (domain->id != 0))
1559 pte_root |= DTE_FLAG_TV;
1560
1561 flags = dev_table[devid].data[1];
1562
1563 if (ats)
1564 flags |= DTE_FLAG_IOTLB;
1565
1566 if (ppr) {
1567 if (iommu_feature(iommu, FEATURE_EPHSUP))
1568 pte_root |= 1ULL << DEV_ENTRY_PPR;
1569 }
1570
1571 if (domain->flags & PD_IOMMUV2_MASK) {
1572 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1573 u64 glx = domain->glx;
1574 u64 tmp;
1575
1576 pte_root |= DTE_FLAG_GV;
1577 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1578
1579 /* First mask out possible old values for GCR3 table */
1580 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1581 flags &= ~tmp;
1582
1583 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1584 flags &= ~tmp;
1585
1586 /* Encode GCR3 table into DTE */
1587 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1588 pte_root |= tmp;
1589
1590 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1591 flags |= tmp;
1592
1593 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1594 flags |= tmp;
1595
1596 if (domain->flags & PD_GIOV_MASK)
1597 pte_root |= DTE_FLAG_GIOV;
1598 }
1599
1600 flags &= ~DEV_DOMID_MASK;
1601 flags |= domain->id;
1602
1603 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1604 dev_table[devid].data[1] = flags;
1605 dev_table[devid].data[0] = pte_root;
1606
1607 /*
1608 * A kdump kernel might be replacing a domain ID that was copied from
1609 * the previous kernel--if so, it needs to flush the translation cache
1610 * entries for the old domain ID that is being overwritten
1611 */
1612 if (old_domid) {
1613 amd_iommu_flush_tlb_domid(iommu, old_domid);
1614 }
1615 }
1616
clear_dte_entry(struct amd_iommu * iommu,u16 devid)1617 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1618 {
1619 struct dev_table_entry *dev_table = get_dev_table(iommu);
1620
1621 /* remove entry from the device table seen by the hardware */
1622 dev_table[devid].data[0] = DTE_FLAG_V;
1623
1624 if (!amd_iommu_snp_en)
1625 dev_table[devid].data[0] |= DTE_FLAG_TV;
1626
1627 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1628
1629 amd_iommu_apply_erratum_63(iommu, devid);
1630 }
1631
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1632 static void do_attach(struct iommu_dev_data *dev_data,
1633 struct protection_domain *domain)
1634 {
1635 struct amd_iommu *iommu;
1636 bool ats;
1637
1638 iommu = rlookup_amd_iommu(dev_data->dev);
1639 if (!iommu)
1640 return;
1641 ats = dev_data->ats.enabled;
1642
1643 /* Update data structures */
1644 dev_data->domain = domain;
1645 list_add(&dev_data->list, &domain->dev_list);
1646
1647 /* Do reference counting */
1648 domain->dev_iommu[iommu->index] += 1;
1649 domain->dev_cnt += 1;
1650
1651 /* Override supported page sizes */
1652 if (domain->flags & PD_GIOV_MASK)
1653 domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
1654
1655 /* Update device table */
1656 set_dte_entry(iommu, dev_data->devid, domain,
1657 ats, dev_data->iommu_v2);
1658 clone_aliases(iommu, dev_data->dev);
1659
1660 device_flush_dte(dev_data);
1661 }
1662
do_detach(struct iommu_dev_data * dev_data)1663 static void do_detach(struct iommu_dev_data *dev_data)
1664 {
1665 struct protection_domain *domain = dev_data->domain;
1666 struct amd_iommu *iommu;
1667
1668 iommu = rlookup_amd_iommu(dev_data->dev);
1669 if (!iommu)
1670 return;
1671
1672 /* Update data structures */
1673 dev_data->domain = NULL;
1674 list_del(&dev_data->list);
1675 clear_dte_entry(iommu, dev_data->devid);
1676 clone_aliases(iommu, dev_data->dev);
1677
1678 /* Flush the DTE entry */
1679 device_flush_dte(dev_data);
1680
1681 /* Flush IOTLB */
1682 amd_iommu_domain_flush_tlb_pde(domain);
1683
1684 /* Wait for the flushes to finish */
1685 amd_iommu_domain_flush_complete(domain);
1686
1687 /* decrease reference counters - needs to happen after the flushes */
1688 domain->dev_iommu[iommu->index] -= 1;
1689 domain->dev_cnt -= 1;
1690 }
1691
pdev_iommuv2_disable(struct pci_dev * pdev)1692 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1693 {
1694 pci_disable_ats(pdev);
1695 pci_disable_pri(pdev);
1696 pci_disable_pasid(pdev);
1697 }
1698
pdev_pri_ats_enable(struct pci_dev * pdev)1699 static int pdev_pri_ats_enable(struct pci_dev *pdev)
1700 {
1701 int ret;
1702
1703 /* Only allow access to user-accessible pages */
1704 ret = pci_enable_pasid(pdev, 0);
1705 if (ret)
1706 goto out_err;
1707
1708 /* First reset the PRI state of the device */
1709 ret = pci_reset_pri(pdev);
1710 if (ret)
1711 goto out_err;
1712
1713 /* Enable PRI */
1714 /* FIXME: Hardcode number of outstanding requests for now */
1715 ret = pci_enable_pri(pdev, 32);
1716 if (ret)
1717 goto out_err;
1718
1719 ret = pci_enable_ats(pdev, PAGE_SHIFT);
1720 if (ret)
1721 goto out_err;
1722
1723 return 0;
1724
1725 out_err:
1726 pci_disable_pri(pdev);
1727 pci_disable_pasid(pdev);
1728
1729 return ret;
1730 }
1731
1732 /*
1733 * If a device is not yet associated with a domain, this function makes the
1734 * device visible in the domain
1735 */
attach_device(struct device * dev,struct protection_domain * domain)1736 static int attach_device(struct device *dev,
1737 struct protection_domain *domain)
1738 {
1739 struct iommu_dev_data *dev_data;
1740 struct pci_dev *pdev;
1741 unsigned long flags;
1742 int ret;
1743
1744 spin_lock_irqsave(&domain->lock, flags);
1745
1746 dev_data = dev_iommu_priv_get(dev);
1747
1748 spin_lock(&dev_data->lock);
1749
1750 ret = -EBUSY;
1751 if (dev_data->domain != NULL)
1752 goto out;
1753
1754 if (!dev_is_pci(dev))
1755 goto skip_ats_check;
1756
1757 pdev = to_pci_dev(dev);
1758 if (domain->flags & PD_IOMMUV2_MASK) {
1759 struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1760
1761 ret = -EINVAL;
1762
1763 /*
1764 * In case of using AMD_IOMMU_V1 page table mode and the device
1765 * is enabling for PPR/ATS support (using v2 table),
1766 * we need to make sure that the domain type is identity map.
1767 */
1768 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
1769 def_domain->type != IOMMU_DOMAIN_IDENTITY) {
1770 goto out;
1771 }
1772
1773 if (dev_data->iommu_v2) {
1774 if (pdev_pri_ats_enable(pdev) != 0)
1775 goto out;
1776
1777 dev_data->ats.enabled = true;
1778 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1779 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
1780 }
1781 } else if (amd_iommu_iotlb_sup &&
1782 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1783 dev_data->ats.enabled = true;
1784 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1785 }
1786
1787 skip_ats_check:
1788 ret = 0;
1789
1790 do_attach(dev_data, domain);
1791
1792 /*
1793 * We might boot into a crash-kernel here. The crashed kernel
1794 * left the caches in the IOMMU dirty. So we have to flush
1795 * here to evict all dirty stuff.
1796 */
1797 amd_iommu_domain_flush_tlb_pde(domain);
1798
1799 amd_iommu_domain_flush_complete(domain);
1800
1801 out:
1802 spin_unlock(&dev_data->lock);
1803
1804 spin_unlock_irqrestore(&domain->lock, flags);
1805
1806 return ret;
1807 }
1808
1809 /*
1810 * Removes a device from a protection domain (with devtable_lock held)
1811 */
detach_device(struct device * dev)1812 static void detach_device(struct device *dev)
1813 {
1814 struct protection_domain *domain;
1815 struct iommu_dev_data *dev_data;
1816 unsigned long flags;
1817
1818 dev_data = dev_iommu_priv_get(dev);
1819 domain = dev_data->domain;
1820
1821 spin_lock_irqsave(&domain->lock, flags);
1822
1823 spin_lock(&dev_data->lock);
1824
1825 /*
1826 * First check if the device is still attached. It might already
1827 * be detached from its domain because the generic
1828 * iommu_detach_group code detached it and we try again here in
1829 * our alias handling.
1830 */
1831 if (WARN_ON(!dev_data->domain))
1832 goto out;
1833
1834 do_detach(dev_data);
1835
1836 if (!dev_is_pci(dev))
1837 goto out;
1838
1839 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1840 pdev_iommuv2_disable(to_pci_dev(dev));
1841 else if (dev_data->ats.enabled)
1842 pci_disable_ats(to_pci_dev(dev));
1843
1844 dev_data->ats.enabled = false;
1845
1846 out:
1847 spin_unlock(&dev_data->lock);
1848
1849 spin_unlock_irqrestore(&domain->lock, flags);
1850 }
1851
amd_iommu_probe_device(struct device * dev)1852 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1853 {
1854 struct iommu_device *iommu_dev;
1855 struct amd_iommu *iommu;
1856 int ret;
1857
1858 if (!check_device(dev))
1859 return ERR_PTR(-ENODEV);
1860
1861 iommu = rlookup_amd_iommu(dev);
1862 if (!iommu)
1863 return ERR_PTR(-ENODEV);
1864
1865 /* Not registered yet? */
1866 if (!iommu->iommu.ops)
1867 return ERR_PTR(-ENODEV);
1868
1869 if (dev_iommu_priv_get(dev))
1870 return &iommu->iommu;
1871
1872 ret = iommu_init_device(iommu, dev);
1873 if (ret) {
1874 if (ret != -ENOTSUPP)
1875 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1876 iommu_dev = ERR_PTR(ret);
1877 iommu_ignore_device(iommu, dev);
1878 } else {
1879 amd_iommu_set_pci_msi_domain(dev, iommu);
1880 iommu_dev = &iommu->iommu;
1881 }
1882
1883 iommu_completion_wait(iommu);
1884
1885 return iommu_dev;
1886 }
1887
amd_iommu_probe_finalize(struct device * dev)1888 static void amd_iommu_probe_finalize(struct device *dev)
1889 {
1890 /* Domains are initialized for this device - have a look what we ended up with */
1891 set_dma_ops(dev, NULL);
1892 iommu_setup_dma_ops(dev, 0, U64_MAX);
1893 }
1894
amd_iommu_release_device(struct device * dev)1895 static void amd_iommu_release_device(struct device *dev)
1896 {
1897 struct amd_iommu *iommu;
1898
1899 if (!check_device(dev))
1900 return;
1901
1902 iommu = rlookup_amd_iommu(dev);
1903 if (!iommu)
1904 return;
1905
1906 amd_iommu_uninit_device(dev);
1907 iommu_completion_wait(iommu);
1908 }
1909
amd_iommu_device_group(struct device * dev)1910 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1911 {
1912 if (dev_is_pci(dev))
1913 return pci_device_group(dev);
1914
1915 return acpihid_device_group(dev);
1916 }
1917
1918 /*****************************************************************************
1919 *
1920 * The next functions belong to the dma_ops mapping/unmapping code.
1921 *
1922 *****************************************************************************/
1923
update_device_table(struct protection_domain * domain)1924 static void update_device_table(struct protection_domain *domain)
1925 {
1926 struct iommu_dev_data *dev_data;
1927
1928 list_for_each_entry(dev_data, &domain->dev_list, list) {
1929 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1930
1931 if (!iommu)
1932 continue;
1933 set_dte_entry(iommu, dev_data->devid, domain,
1934 dev_data->ats.enabled, dev_data->iommu_v2);
1935 clone_aliases(iommu, dev_data->dev);
1936 }
1937 }
1938
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1939 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1940 {
1941 update_device_table(domain);
1942 domain_flush_devices(domain);
1943 }
1944
amd_iommu_domain_update(struct protection_domain * domain)1945 void amd_iommu_domain_update(struct protection_domain *domain)
1946 {
1947 /* Update device table */
1948 amd_iommu_update_and_flush_device_table(domain);
1949
1950 /* Flush domain TLB(s) and wait for completion */
1951 amd_iommu_domain_flush_tlb_pde(domain);
1952 amd_iommu_domain_flush_complete(domain);
1953 }
1954
1955 /*****************************************************************************
1956 *
1957 * The following functions belong to the exported interface of AMD IOMMU
1958 *
1959 * This interface allows access to lower level functions of the IOMMU
1960 * like protection domain handling and assignement of devices to domains
1961 * which is not possible with the dma_ops interface.
1962 *
1963 *****************************************************************************/
1964
cleanup_domain(struct protection_domain * domain)1965 static void cleanup_domain(struct protection_domain *domain)
1966 {
1967 struct iommu_dev_data *entry;
1968 unsigned long flags;
1969
1970 spin_lock_irqsave(&domain->lock, flags);
1971
1972 while (!list_empty(&domain->dev_list)) {
1973 entry = list_first_entry(&domain->dev_list,
1974 struct iommu_dev_data, list);
1975 BUG_ON(!entry->domain);
1976 do_detach(entry);
1977 }
1978
1979 spin_unlock_irqrestore(&domain->lock, flags);
1980 }
1981
protection_domain_free(struct protection_domain * domain)1982 static void protection_domain_free(struct protection_domain *domain)
1983 {
1984 if (!domain)
1985 return;
1986
1987 if (domain->iop.pgtbl_cfg.tlb)
1988 free_io_pgtable_ops(&domain->iop.iop.ops);
1989
1990 if (domain->id)
1991 domain_id_free(domain->id);
1992
1993 kfree(domain);
1994 }
1995
protection_domain_init_v1(struct protection_domain * domain,int mode)1996 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
1997 {
1998 u64 *pt_root = NULL;
1999
2000 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2001
2002 spin_lock_init(&domain->lock);
2003 domain->id = domain_id_alloc();
2004 if (!domain->id)
2005 return -ENOMEM;
2006 INIT_LIST_HEAD(&domain->dev_list);
2007
2008 if (mode != PAGE_MODE_NONE) {
2009 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2010 if (!pt_root) {
2011 domain_id_free(domain->id);
2012 return -ENOMEM;
2013 }
2014 }
2015
2016 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2017
2018 return 0;
2019 }
2020
protection_domain_init_v2(struct protection_domain * domain)2021 static int protection_domain_init_v2(struct protection_domain *domain)
2022 {
2023 spin_lock_init(&domain->lock);
2024 domain->id = domain_id_alloc();
2025 if (!domain->id)
2026 return -ENOMEM;
2027 INIT_LIST_HEAD(&domain->dev_list);
2028
2029 domain->flags |= PD_GIOV_MASK;
2030
2031 if (domain_enable_v2(domain, 1)) {
2032 domain_id_free(domain->id);
2033 return -ENOMEM;
2034 }
2035
2036 return 0;
2037 }
2038
protection_domain_alloc(unsigned int type)2039 static struct protection_domain *protection_domain_alloc(unsigned int type)
2040 {
2041 struct io_pgtable_ops *pgtbl_ops;
2042 struct protection_domain *domain;
2043 int pgtable = amd_iommu_pgtable;
2044 int mode = DEFAULT_PGTABLE_LEVEL;
2045 int ret;
2046
2047 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2048 if (!domain)
2049 return NULL;
2050
2051 /*
2052 * Force IOMMU v1 page table when iommu=pt and
2053 * when allocating domain for pass-through devices.
2054 */
2055 if (type == IOMMU_DOMAIN_IDENTITY) {
2056 pgtable = AMD_IOMMU_V1;
2057 mode = PAGE_MODE_NONE;
2058 } else if (type == IOMMU_DOMAIN_UNMANAGED) {
2059 pgtable = AMD_IOMMU_V1;
2060 }
2061
2062 switch (pgtable) {
2063 case AMD_IOMMU_V1:
2064 ret = protection_domain_init_v1(domain, mode);
2065 break;
2066 case AMD_IOMMU_V2:
2067 ret = protection_domain_init_v2(domain);
2068 break;
2069 default:
2070 ret = -EINVAL;
2071 }
2072
2073 if (ret)
2074 goto out_err;
2075
2076 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2077 if (!pgtbl_ops) {
2078 domain_id_free(domain->id);
2079 goto out_err;
2080 }
2081
2082 return domain;
2083 out_err:
2084 kfree(domain);
2085 return NULL;
2086 }
2087
amd_iommu_domain_alloc(unsigned type)2088 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2089 {
2090 struct protection_domain *domain;
2091
2092 /*
2093 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2094 * default to use IOMMU_DOMAIN_DMA[_FQ].
2095 */
2096 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2097 return NULL;
2098
2099 domain = protection_domain_alloc(type);
2100 if (!domain)
2101 return NULL;
2102
2103 domain->domain.geometry.aperture_start = 0;
2104 domain->domain.geometry.aperture_end = ~0ULL;
2105 domain->domain.geometry.force_aperture = true;
2106
2107 return &domain->domain;
2108 }
2109
amd_iommu_domain_free(struct iommu_domain * dom)2110 static void amd_iommu_domain_free(struct iommu_domain *dom)
2111 {
2112 struct protection_domain *domain;
2113
2114 domain = to_pdomain(dom);
2115
2116 if (domain->dev_cnt > 0)
2117 cleanup_domain(domain);
2118
2119 BUG_ON(domain->dev_cnt != 0);
2120
2121 if (!dom)
2122 return;
2123
2124 if (domain->flags & PD_IOMMUV2_MASK)
2125 free_gcr3_table(domain);
2126
2127 protection_domain_free(domain);
2128 }
2129
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2130 static void amd_iommu_detach_device(struct iommu_domain *dom,
2131 struct device *dev)
2132 {
2133 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2134 struct amd_iommu *iommu;
2135
2136 if (!check_device(dev))
2137 return;
2138
2139 if (dev_data->domain != NULL)
2140 detach_device(dev);
2141
2142 iommu = rlookup_amd_iommu(dev);
2143 if (!iommu)
2144 return;
2145
2146 #ifdef CONFIG_IRQ_REMAP
2147 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2148 (dom->type == IOMMU_DOMAIN_UNMANAGED))
2149 dev_data->use_vapic = 0;
2150 #endif
2151
2152 iommu_completion_wait(iommu);
2153 }
2154
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2155 static int amd_iommu_attach_device(struct iommu_domain *dom,
2156 struct device *dev)
2157 {
2158 struct protection_domain *domain = to_pdomain(dom);
2159 struct iommu_dev_data *dev_data;
2160 struct amd_iommu *iommu;
2161 int ret;
2162
2163 if (!check_device(dev))
2164 return -EINVAL;
2165
2166 dev_data = dev_iommu_priv_get(dev);
2167 dev_data->defer_attach = false;
2168
2169 iommu = rlookup_amd_iommu(dev);
2170 if (!iommu)
2171 return -EINVAL;
2172
2173 if (dev_data->domain)
2174 detach_device(dev);
2175
2176 ret = attach_device(dev, domain);
2177
2178 #ifdef CONFIG_IRQ_REMAP
2179 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2180 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2181 dev_data->use_vapic = 1;
2182 else
2183 dev_data->use_vapic = 0;
2184 }
2185 #endif
2186
2187 iommu_completion_wait(iommu);
2188
2189 return ret;
2190 }
2191
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2192 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2193 unsigned long iova, size_t size)
2194 {
2195 struct protection_domain *domain = to_pdomain(dom);
2196 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2197
2198 if (ops->map_pages)
2199 domain_flush_np_cache(domain, iova, size);
2200 }
2201
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2202 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2203 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2204 int iommu_prot, gfp_t gfp, size_t *mapped)
2205 {
2206 struct protection_domain *domain = to_pdomain(dom);
2207 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2208 int prot = 0;
2209 int ret = -EINVAL;
2210
2211 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2212 (domain->iop.mode == PAGE_MODE_NONE))
2213 return -EINVAL;
2214
2215 if (iommu_prot & IOMMU_READ)
2216 prot |= IOMMU_PROT_IR;
2217 if (iommu_prot & IOMMU_WRITE)
2218 prot |= IOMMU_PROT_IW;
2219
2220 if (ops->map_pages) {
2221 ret = ops->map_pages(ops, iova, paddr, pgsize,
2222 pgcount, prot, gfp, mapped);
2223 }
2224
2225 return ret;
2226 }
2227
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2228 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2229 struct iommu_iotlb_gather *gather,
2230 unsigned long iova, size_t size)
2231 {
2232 /*
2233 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2234 * Unless we run in a virtual machine, which can be inferred according
2235 * to whether "non-present cache" is on, it is probably best to prefer
2236 * (potentially) too extensive TLB flushing (i.e., more misses) over
2237 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2238 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2239 * the guest, and the trade-off is different: unnecessary TLB flushes
2240 * should be avoided.
2241 */
2242 if (amd_iommu_np_cache &&
2243 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2244 iommu_iotlb_sync(domain, gather);
2245
2246 iommu_iotlb_gather_add_range(gather, iova, size);
2247 }
2248
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2249 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2250 size_t pgsize, size_t pgcount,
2251 struct iommu_iotlb_gather *gather)
2252 {
2253 struct protection_domain *domain = to_pdomain(dom);
2254 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2255 size_t r;
2256
2257 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2258 (domain->iop.mode == PAGE_MODE_NONE))
2259 return 0;
2260
2261 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2262
2263 if (r)
2264 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2265
2266 return r;
2267 }
2268
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2269 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2270 dma_addr_t iova)
2271 {
2272 struct protection_domain *domain = to_pdomain(dom);
2273 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2274
2275 return ops->iova_to_phys(ops, iova);
2276 }
2277
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2278 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2279 {
2280 switch (cap) {
2281 case IOMMU_CAP_CACHE_COHERENCY:
2282 return true;
2283 case IOMMU_CAP_INTR_REMAP:
2284 return (irq_remapping_enabled == 1);
2285 case IOMMU_CAP_NOEXEC:
2286 return false;
2287 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2288 return amdr_ivrs_remap_support;
2289 default:
2290 break;
2291 }
2292
2293 return false;
2294 }
2295
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2296 static void amd_iommu_get_resv_regions(struct device *dev,
2297 struct list_head *head)
2298 {
2299 struct iommu_resv_region *region;
2300 struct unity_map_entry *entry;
2301 struct amd_iommu *iommu;
2302 struct amd_iommu_pci_seg *pci_seg;
2303 int devid, sbdf;
2304
2305 sbdf = get_device_sbdf_id(dev);
2306 if (sbdf < 0)
2307 return;
2308
2309 devid = PCI_SBDF_TO_DEVID(sbdf);
2310 iommu = rlookup_amd_iommu(dev);
2311 if (!iommu)
2312 return;
2313 pci_seg = iommu->pci_seg;
2314
2315 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2316 int type, prot = 0;
2317 size_t length;
2318
2319 if (devid < entry->devid_start || devid > entry->devid_end)
2320 continue;
2321
2322 type = IOMMU_RESV_DIRECT;
2323 length = entry->address_end - entry->address_start;
2324 if (entry->prot & IOMMU_PROT_IR)
2325 prot |= IOMMU_READ;
2326 if (entry->prot & IOMMU_PROT_IW)
2327 prot |= IOMMU_WRITE;
2328 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2329 /* Exclusion range */
2330 type = IOMMU_RESV_RESERVED;
2331
2332 region = iommu_alloc_resv_region(entry->address_start,
2333 length, prot, type,
2334 GFP_KERNEL);
2335 if (!region) {
2336 dev_err(dev, "Out of memory allocating dm-regions\n");
2337 return;
2338 }
2339 list_add_tail(®ion->list, head);
2340 }
2341
2342 region = iommu_alloc_resv_region(MSI_RANGE_START,
2343 MSI_RANGE_END - MSI_RANGE_START + 1,
2344 0, IOMMU_RESV_MSI, GFP_KERNEL);
2345 if (!region)
2346 return;
2347 list_add_tail(®ion->list, head);
2348
2349 region = iommu_alloc_resv_region(HT_RANGE_START,
2350 HT_RANGE_END - HT_RANGE_START + 1,
2351 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2352 if (!region)
2353 return;
2354 list_add_tail(®ion->list, head);
2355 }
2356
amd_iommu_is_attach_deferred(struct device * dev)2357 bool amd_iommu_is_attach_deferred(struct device *dev)
2358 {
2359 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2360
2361 return dev_data->defer_attach;
2362 }
2363 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2364
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2365 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2366 {
2367 struct protection_domain *dom = to_pdomain(domain);
2368 unsigned long flags;
2369
2370 spin_lock_irqsave(&dom->lock, flags);
2371 amd_iommu_domain_flush_tlb_pde(dom);
2372 amd_iommu_domain_flush_complete(dom);
2373 spin_unlock_irqrestore(&dom->lock, flags);
2374 }
2375
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2376 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2377 struct iommu_iotlb_gather *gather)
2378 {
2379 struct protection_domain *dom = to_pdomain(domain);
2380 unsigned long flags;
2381
2382 spin_lock_irqsave(&dom->lock, flags);
2383 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2384 amd_iommu_domain_flush_complete(dom);
2385 spin_unlock_irqrestore(&dom->lock, flags);
2386 }
2387
amd_iommu_def_domain_type(struct device * dev)2388 static int amd_iommu_def_domain_type(struct device *dev)
2389 {
2390 struct iommu_dev_data *dev_data;
2391
2392 dev_data = dev_iommu_priv_get(dev);
2393 if (!dev_data)
2394 return 0;
2395
2396 /*
2397 * Do not identity map IOMMUv2 capable devices when memory encryption is
2398 * active, because some of those devices (AMD GPUs) don't have the
2399 * encryption bit in their DMA-mask and require remapping.
2400 */
2401 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
2402 return IOMMU_DOMAIN_IDENTITY;
2403
2404 return 0;
2405 }
2406
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2407 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2408 {
2409 /* IOMMU_PTE_FC is always set */
2410 return true;
2411 }
2412
2413 const struct iommu_ops amd_iommu_ops = {
2414 .capable = amd_iommu_capable,
2415 .domain_alloc = amd_iommu_domain_alloc,
2416 .probe_device = amd_iommu_probe_device,
2417 .release_device = amd_iommu_release_device,
2418 .probe_finalize = amd_iommu_probe_finalize,
2419 .device_group = amd_iommu_device_group,
2420 .get_resv_regions = amd_iommu_get_resv_regions,
2421 .is_attach_deferred = amd_iommu_is_attach_deferred,
2422 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2423 .def_domain_type = amd_iommu_def_domain_type,
2424 .default_domain_ops = &(const struct iommu_domain_ops) {
2425 .attach_dev = amd_iommu_attach_device,
2426 .detach_dev = amd_iommu_detach_device,
2427 .map_pages = amd_iommu_map_pages,
2428 .unmap_pages = amd_iommu_unmap_pages,
2429 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2430 .iova_to_phys = amd_iommu_iova_to_phys,
2431 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2432 .iotlb_sync = amd_iommu_iotlb_sync,
2433 .free = amd_iommu_domain_free,
2434 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2435 }
2436 };
2437
2438 /*****************************************************************************
2439 *
2440 * The next functions do a basic initialization of IOMMU for pass through
2441 * mode
2442 *
2443 * In passthrough mode the IOMMU is initialized and enabled but not used for
2444 * DMA-API translation.
2445 *
2446 *****************************************************************************/
2447
2448 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2449 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2450 {
2451 return atomic_notifier_chain_register(&ppr_notifier, nb);
2452 }
2453 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2454
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2455 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2456 {
2457 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2458 }
2459 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2460
amd_iommu_domain_direct_map(struct iommu_domain * dom)2461 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2462 {
2463 struct protection_domain *domain = to_pdomain(dom);
2464 unsigned long flags;
2465
2466 spin_lock_irqsave(&domain->lock, flags);
2467
2468 if (domain->iop.pgtbl_cfg.tlb)
2469 free_io_pgtable_ops(&domain->iop.iop.ops);
2470
2471 spin_unlock_irqrestore(&domain->lock, flags);
2472 }
2473 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2474
2475 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
domain_enable_v2(struct protection_domain * domain,int pasids)2476 static int domain_enable_v2(struct protection_domain *domain, int pasids)
2477 {
2478 int levels;
2479
2480 /* Number of GCR3 table levels required */
2481 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2482 levels += 1;
2483
2484 if (levels > amd_iommu_max_glx_val)
2485 return -EINVAL;
2486
2487 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2488 if (domain->gcr3_tbl == NULL)
2489 return -ENOMEM;
2490
2491 domain->glx = levels;
2492 domain->flags |= PD_IOMMUV2_MASK;
2493
2494 amd_iommu_domain_update(domain);
2495
2496 return 0;
2497 }
2498
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2499 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2500 {
2501 struct protection_domain *pdom = to_pdomain(dom);
2502 unsigned long flags;
2503 int ret;
2504
2505 spin_lock_irqsave(&pdom->lock, flags);
2506
2507 /*
2508 * Save us all sanity checks whether devices already in the
2509 * domain support IOMMUv2. Just force that the domain has no
2510 * devices attached when it is switched into IOMMUv2 mode.
2511 */
2512 ret = -EBUSY;
2513 if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK)
2514 goto out;
2515
2516 if (!pdom->gcr3_tbl)
2517 ret = domain_enable_v2(pdom, pasids);
2518
2519 out:
2520 spin_unlock_irqrestore(&pdom->lock, flags);
2521 return ret;
2522 }
2523 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2524
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2525 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2526 u64 address, bool size)
2527 {
2528 struct iommu_dev_data *dev_data;
2529 struct iommu_cmd cmd;
2530 int i, ret;
2531
2532 if (!(domain->flags & PD_IOMMUV2_MASK))
2533 return -EINVAL;
2534
2535 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2536
2537 /*
2538 * IOMMU TLB needs to be flushed before Device TLB to
2539 * prevent device TLB refill from IOMMU TLB
2540 */
2541 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2542 if (domain->dev_iommu[i] == 0)
2543 continue;
2544
2545 ret = iommu_queue_command(amd_iommus[i], &cmd);
2546 if (ret != 0)
2547 goto out;
2548 }
2549
2550 /* Wait until IOMMU TLB flushes are complete */
2551 amd_iommu_domain_flush_complete(domain);
2552
2553 /* Now flush device TLBs */
2554 list_for_each_entry(dev_data, &domain->dev_list, list) {
2555 struct amd_iommu *iommu;
2556 int qdep;
2557
2558 /*
2559 There might be non-IOMMUv2 capable devices in an IOMMUv2
2560 * domain.
2561 */
2562 if (!dev_data->ats.enabled)
2563 continue;
2564
2565 qdep = dev_data->ats.qdep;
2566 iommu = rlookup_amd_iommu(dev_data->dev);
2567 if (!iommu)
2568 continue;
2569 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2570 qdep, address, size);
2571
2572 ret = iommu_queue_command(iommu, &cmd);
2573 if (ret != 0)
2574 goto out;
2575 }
2576
2577 /* Wait until all device TLBs are flushed */
2578 amd_iommu_domain_flush_complete(domain);
2579
2580 ret = 0;
2581
2582 out:
2583
2584 return ret;
2585 }
2586
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2587 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2588 u64 address)
2589 {
2590 return __flush_pasid(domain, pasid, address, false);
2591 }
2592
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2593 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2594 u64 address)
2595 {
2596 struct protection_domain *domain = to_pdomain(dom);
2597 unsigned long flags;
2598 int ret;
2599
2600 spin_lock_irqsave(&domain->lock, flags);
2601 ret = __amd_iommu_flush_page(domain, pasid, address);
2602 spin_unlock_irqrestore(&domain->lock, flags);
2603
2604 return ret;
2605 }
2606 EXPORT_SYMBOL(amd_iommu_flush_page);
2607
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2608 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2609 {
2610 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2611 true);
2612 }
2613
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2614 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2615 {
2616 struct protection_domain *domain = to_pdomain(dom);
2617 unsigned long flags;
2618 int ret;
2619
2620 spin_lock_irqsave(&domain->lock, flags);
2621 ret = __amd_iommu_flush_tlb(domain, pasid);
2622 spin_unlock_irqrestore(&domain->lock, flags);
2623
2624 return ret;
2625 }
2626 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2627
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2628 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2629 {
2630 int index;
2631 u64 *pte;
2632
2633 while (true) {
2634
2635 index = (pasid >> (9 * level)) & 0x1ff;
2636 pte = &root[index];
2637
2638 if (level == 0)
2639 break;
2640
2641 if (!(*pte & GCR3_VALID)) {
2642 if (!alloc)
2643 return NULL;
2644
2645 root = (void *)get_zeroed_page(GFP_ATOMIC);
2646 if (root == NULL)
2647 return NULL;
2648
2649 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2650 }
2651
2652 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2653
2654 level -= 1;
2655 }
2656
2657 return pte;
2658 }
2659
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)2660 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2661 unsigned long cr3)
2662 {
2663 u64 *pte;
2664
2665 if (domain->iop.mode != PAGE_MODE_NONE)
2666 return -EINVAL;
2667
2668 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2669 if (pte == NULL)
2670 return -ENOMEM;
2671
2672 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2673
2674 return __amd_iommu_flush_tlb(domain, pasid);
2675 }
2676
__clear_gcr3(struct protection_domain * domain,u32 pasid)2677 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2678 {
2679 u64 *pte;
2680
2681 if (domain->iop.mode != PAGE_MODE_NONE)
2682 return -EINVAL;
2683
2684 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2685 if (pte == NULL)
2686 return 0;
2687
2688 *pte = 0;
2689
2690 return __amd_iommu_flush_tlb(domain, pasid);
2691 }
2692
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)2693 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2694 unsigned long cr3)
2695 {
2696 struct protection_domain *domain = to_pdomain(dom);
2697 unsigned long flags;
2698 int ret;
2699
2700 spin_lock_irqsave(&domain->lock, flags);
2701 ret = __set_gcr3(domain, pasid, cr3);
2702 spin_unlock_irqrestore(&domain->lock, flags);
2703
2704 return ret;
2705 }
2706 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2707
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)2708 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2709 {
2710 struct protection_domain *domain = to_pdomain(dom);
2711 unsigned long flags;
2712 int ret;
2713
2714 spin_lock_irqsave(&domain->lock, flags);
2715 ret = __clear_gcr3(domain, pasid);
2716 spin_unlock_irqrestore(&domain->lock, flags);
2717
2718 return ret;
2719 }
2720 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2721
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)2722 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2723 int status, int tag)
2724 {
2725 struct iommu_dev_data *dev_data;
2726 struct amd_iommu *iommu;
2727 struct iommu_cmd cmd;
2728
2729 dev_data = dev_iommu_priv_get(&pdev->dev);
2730 iommu = rlookup_amd_iommu(&pdev->dev);
2731 if (!iommu)
2732 return -ENODEV;
2733
2734 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2735 tag, dev_data->pri_tlp);
2736
2737 return iommu_queue_command(iommu, &cmd);
2738 }
2739 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2740
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)2741 int amd_iommu_device_info(struct pci_dev *pdev,
2742 struct amd_iommu_device_info *info)
2743 {
2744 int max_pasids;
2745 int pos;
2746
2747 if (pdev == NULL || info == NULL)
2748 return -EINVAL;
2749
2750 if (!amd_iommu_v2_supported())
2751 return -EINVAL;
2752
2753 memset(info, 0, sizeof(*info));
2754
2755 if (pci_ats_supported(pdev))
2756 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2757
2758 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2759 if (pos)
2760 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2761
2762 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2763 if (pos) {
2764 int features;
2765
2766 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2767 max_pasids = min(max_pasids, (1 << 20));
2768
2769 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2770 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2771
2772 features = pci_pasid_features(pdev);
2773 if (features & PCI_PASID_CAP_EXEC)
2774 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2775 if (features & PCI_PASID_CAP_PRIV)
2776 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2777 }
2778
2779 return 0;
2780 }
2781 EXPORT_SYMBOL(amd_iommu_device_info);
2782
2783 #ifdef CONFIG_IRQ_REMAP
2784
2785 /*****************************************************************************
2786 *
2787 * Interrupt Remapping Implementation
2788 *
2789 *****************************************************************************/
2790
2791 static struct irq_chip amd_ir_chip;
2792 static DEFINE_SPINLOCK(iommu_table_lock);
2793
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2794 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2795 struct irq_remap_table *table)
2796 {
2797 u64 dte;
2798 struct dev_table_entry *dev_table = get_dev_table(iommu);
2799
2800 dte = dev_table[devid].data[2];
2801 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2802 dte |= iommu_virt_to_phys(table->table);
2803 dte |= DTE_IRQ_REMAP_INTCTL;
2804 dte |= DTE_INTTABLEN;
2805 dte |= DTE_IRQ_REMAP_ENABLE;
2806
2807 dev_table[devid].data[2] = dte;
2808 }
2809
get_irq_table(struct amd_iommu * iommu,u16 devid)2810 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2811 {
2812 struct irq_remap_table *table;
2813 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2814
2815 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2816 "%s: no iommu for devid %x:%x\n",
2817 __func__, pci_seg->id, devid))
2818 return NULL;
2819
2820 table = pci_seg->irq_lookup_table[devid];
2821 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2822 __func__, pci_seg->id, devid))
2823 return NULL;
2824
2825 return table;
2826 }
2827
__alloc_irq_table(void)2828 static struct irq_remap_table *__alloc_irq_table(void)
2829 {
2830 struct irq_remap_table *table;
2831
2832 table = kzalloc(sizeof(*table), GFP_KERNEL);
2833 if (!table)
2834 return NULL;
2835
2836 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2837 if (!table->table) {
2838 kfree(table);
2839 return NULL;
2840 }
2841 raw_spin_lock_init(&table->lock);
2842
2843 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2844 memset(table->table, 0,
2845 MAX_IRQS_PER_TABLE * sizeof(u32));
2846 else
2847 memset(table->table, 0,
2848 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2849 return table;
2850 }
2851
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2852 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2853 struct irq_remap_table *table)
2854 {
2855 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2856
2857 pci_seg->irq_lookup_table[devid] = table;
2858 set_dte_irq_entry(iommu, devid, table);
2859 iommu_flush_dte(iommu, devid);
2860 }
2861
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)2862 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2863 void *data)
2864 {
2865 struct irq_remap_table *table = data;
2866 struct amd_iommu_pci_seg *pci_seg;
2867 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2868
2869 if (!iommu)
2870 return -EINVAL;
2871
2872 pci_seg = iommu->pci_seg;
2873 pci_seg->irq_lookup_table[alias] = table;
2874 set_dte_irq_entry(iommu, alias, table);
2875 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2876
2877 return 0;
2878 }
2879
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev)2880 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2881 u16 devid, struct pci_dev *pdev)
2882 {
2883 struct irq_remap_table *table = NULL;
2884 struct irq_remap_table *new_table = NULL;
2885 struct amd_iommu_pci_seg *pci_seg;
2886 unsigned long flags;
2887 u16 alias;
2888
2889 spin_lock_irqsave(&iommu_table_lock, flags);
2890
2891 pci_seg = iommu->pci_seg;
2892 table = pci_seg->irq_lookup_table[devid];
2893 if (table)
2894 goto out_unlock;
2895
2896 alias = pci_seg->alias_table[devid];
2897 table = pci_seg->irq_lookup_table[alias];
2898 if (table) {
2899 set_remap_table_entry(iommu, devid, table);
2900 goto out_wait;
2901 }
2902 spin_unlock_irqrestore(&iommu_table_lock, flags);
2903
2904 /* Nothing there yet, allocate new irq remapping table */
2905 new_table = __alloc_irq_table();
2906 if (!new_table)
2907 return NULL;
2908
2909 spin_lock_irqsave(&iommu_table_lock, flags);
2910
2911 table = pci_seg->irq_lookup_table[devid];
2912 if (table)
2913 goto out_unlock;
2914
2915 table = pci_seg->irq_lookup_table[alias];
2916 if (table) {
2917 set_remap_table_entry(iommu, devid, table);
2918 goto out_wait;
2919 }
2920
2921 table = new_table;
2922 new_table = NULL;
2923
2924 if (pdev)
2925 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2926 table);
2927 else
2928 set_remap_table_entry(iommu, devid, table);
2929
2930 if (devid != alias)
2931 set_remap_table_entry(iommu, alias, table);
2932
2933 out_wait:
2934 iommu_completion_wait(iommu);
2935
2936 out_unlock:
2937 spin_unlock_irqrestore(&iommu_table_lock, flags);
2938
2939 if (new_table) {
2940 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2941 kfree(new_table);
2942 }
2943 return table;
2944 }
2945
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev)2946 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2947 bool align, struct pci_dev *pdev)
2948 {
2949 struct irq_remap_table *table;
2950 int index, c, alignment = 1;
2951 unsigned long flags;
2952
2953 table = alloc_irq_table(iommu, devid, pdev);
2954 if (!table)
2955 return -ENODEV;
2956
2957 if (align)
2958 alignment = roundup_pow_of_two(count);
2959
2960 raw_spin_lock_irqsave(&table->lock, flags);
2961
2962 /* Scan table for free entries */
2963 for (index = ALIGN(table->min_index, alignment), c = 0;
2964 index < MAX_IRQS_PER_TABLE;) {
2965 if (!iommu->irte_ops->is_allocated(table, index)) {
2966 c += 1;
2967 } else {
2968 c = 0;
2969 index = ALIGN(index + 1, alignment);
2970 continue;
2971 }
2972
2973 if (c == count) {
2974 for (; c != 0; --c)
2975 iommu->irte_ops->set_allocated(table, index - c + 1);
2976
2977 index -= count - 1;
2978 goto out;
2979 }
2980
2981 index++;
2982 }
2983
2984 index = -ENOSPC;
2985
2986 out:
2987 raw_spin_unlock_irqrestore(&table->lock, flags);
2988
2989 return index;
2990 }
2991
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)2992 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
2993 struct irte_ga *irte, struct amd_ir_data *data)
2994 {
2995 bool ret;
2996 struct irq_remap_table *table;
2997 unsigned long flags;
2998 struct irte_ga *entry;
2999
3000 table = get_irq_table(iommu, devid);
3001 if (!table)
3002 return -ENOMEM;
3003
3004 raw_spin_lock_irqsave(&table->lock, flags);
3005
3006 entry = (struct irte_ga *)table->table;
3007 entry = &entry[index];
3008
3009 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3010 entry->lo.val, entry->hi.val,
3011 irte->lo.val, irte->hi.val);
3012 /*
3013 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3014 * and it cannot be updated by the hardware or other processors
3015 * behind us, so the return value of cmpxchg16 should be the
3016 * same as the old value.
3017 */
3018 WARN_ON(!ret);
3019
3020 if (data)
3021 data->ref = entry;
3022
3023 raw_spin_unlock_irqrestore(&table->lock, flags);
3024
3025 iommu_flush_irt(iommu, devid);
3026 iommu_completion_wait(iommu);
3027
3028 return 0;
3029 }
3030
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3031 static int modify_irte(struct amd_iommu *iommu,
3032 u16 devid, int index, union irte *irte)
3033 {
3034 struct irq_remap_table *table;
3035 unsigned long flags;
3036
3037 table = get_irq_table(iommu, devid);
3038 if (!table)
3039 return -ENOMEM;
3040
3041 raw_spin_lock_irqsave(&table->lock, flags);
3042 table->table[index] = irte->val;
3043 raw_spin_unlock_irqrestore(&table->lock, flags);
3044
3045 iommu_flush_irt(iommu, devid);
3046 iommu_completion_wait(iommu);
3047
3048 return 0;
3049 }
3050
free_irte(struct amd_iommu * iommu,u16 devid,int index)3051 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3052 {
3053 struct irq_remap_table *table;
3054 unsigned long flags;
3055
3056 table = get_irq_table(iommu, devid);
3057 if (!table)
3058 return;
3059
3060 raw_spin_lock_irqsave(&table->lock, flags);
3061 iommu->irte_ops->clear_allocated(table, index);
3062 raw_spin_unlock_irqrestore(&table->lock, flags);
3063
3064 iommu_flush_irt(iommu, devid);
3065 iommu_completion_wait(iommu);
3066 }
3067
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3068 static void irte_prepare(void *entry,
3069 u32 delivery_mode, bool dest_mode,
3070 u8 vector, u32 dest_apicid, int devid)
3071 {
3072 union irte *irte = (union irte *) entry;
3073
3074 irte->val = 0;
3075 irte->fields.vector = vector;
3076 irte->fields.int_type = delivery_mode;
3077 irte->fields.destination = dest_apicid;
3078 irte->fields.dm = dest_mode;
3079 irte->fields.valid = 1;
3080 }
3081
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3082 static void irte_ga_prepare(void *entry,
3083 u32 delivery_mode, bool dest_mode,
3084 u8 vector, u32 dest_apicid, int devid)
3085 {
3086 struct irte_ga *irte = (struct irte_ga *) entry;
3087
3088 irte->lo.val = 0;
3089 irte->hi.val = 0;
3090 irte->lo.fields_remap.int_type = delivery_mode;
3091 irte->lo.fields_remap.dm = dest_mode;
3092 irte->hi.fields.vector = vector;
3093 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3094 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3095 irte->lo.fields_remap.valid = 1;
3096 }
3097
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3098 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3099 {
3100 union irte *irte = (union irte *) entry;
3101
3102 irte->fields.valid = 1;
3103 modify_irte(iommu, devid, index, irte);
3104 }
3105
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3106 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3107 {
3108 struct irte_ga *irte = (struct irte_ga *) entry;
3109
3110 irte->lo.fields_remap.valid = 1;
3111 modify_irte_ga(iommu, devid, index, irte, NULL);
3112 }
3113
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3114 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3115 {
3116 union irte *irte = (union irte *) entry;
3117
3118 irte->fields.valid = 0;
3119 modify_irte(iommu, devid, index, irte);
3120 }
3121
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3122 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3123 {
3124 struct irte_ga *irte = (struct irte_ga *) entry;
3125
3126 irte->lo.fields_remap.valid = 0;
3127 modify_irte_ga(iommu, devid, index, irte, NULL);
3128 }
3129
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3130 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3131 u8 vector, u32 dest_apicid)
3132 {
3133 union irte *irte = (union irte *) entry;
3134
3135 irte->fields.vector = vector;
3136 irte->fields.destination = dest_apicid;
3137 modify_irte(iommu, devid, index, irte);
3138 }
3139
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3140 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3141 u8 vector, u32 dest_apicid)
3142 {
3143 struct irte_ga *irte = (struct irte_ga *) entry;
3144
3145 if (!irte->lo.fields_remap.guest_mode) {
3146 irte->hi.fields.vector = vector;
3147 irte->lo.fields_remap.destination =
3148 APICID_TO_IRTE_DEST_LO(dest_apicid);
3149 irte->hi.fields.destination =
3150 APICID_TO_IRTE_DEST_HI(dest_apicid);
3151 modify_irte_ga(iommu, devid, index, irte, NULL);
3152 }
3153 }
3154
3155 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3156 static void irte_set_allocated(struct irq_remap_table *table, int index)
3157 {
3158 table->table[index] = IRTE_ALLOCATED;
3159 }
3160
irte_ga_set_allocated(struct irq_remap_table * table,int index)3161 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3162 {
3163 struct irte_ga *ptr = (struct irte_ga *)table->table;
3164 struct irte_ga *irte = &ptr[index];
3165
3166 memset(&irte->lo.val, 0, sizeof(u64));
3167 memset(&irte->hi.val, 0, sizeof(u64));
3168 irte->hi.fields.vector = 0xff;
3169 }
3170
irte_is_allocated(struct irq_remap_table * table,int index)3171 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3172 {
3173 union irte *ptr = (union irte *)table->table;
3174 union irte *irte = &ptr[index];
3175
3176 return irte->val != 0;
3177 }
3178
irte_ga_is_allocated(struct irq_remap_table * table,int index)3179 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3180 {
3181 struct irte_ga *ptr = (struct irte_ga *)table->table;
3182 struct irte_ga *irte = &ptr[index];
3183
3184 return irte->hi.fields.vector != 0;
3185 }
3186
irte_clear_allocated(struct irq_remap_table * table,int index)3187 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3188 {
3189 table->table[index] = 0;
3190 }
3191
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3192 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3193 {
3194 struct irte_ga *ptr = (struct irte_ga *)table->table;
3195 struct irte_ga *irte = &ptr[index];
3196
3197 memset(&irte->lo.val, 0, sizeof(u64));
3198 memset(&irte->hi.val, 0, sizeof(u64));
3199 }
3200
get_devid(struct irq_alloc_info * info)3201 static int get_devid(struct irq_alloc_info *info)
3202 {
3203 switch (info->type) {
3204 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3205 return get_ioapic_devid(info->devid);
3206 case X86_IRQ_ALLOC_TYPE_HPET:
3207 return get_hpet_devid(info->devid);
3208 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3209 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3210 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3211 default:
3212 WARN_ON_ONCE(1);
3213 return -1;
3214 }
3215 }
3216
3217 struct irq_remap_ops amd_iommu_irq_ops = {
3218 .prepare = amd_iommu_prepare,
3219 .enable = amd_iommu_enable,
3220 .disable = amd_iommu_disable,
3221 .reenable = amd_iommu_reenable,
3222 .enable_faulting = amd_iommu_enable_faulting,
3223 };
3224
fill_msi_msg(struct msi_msg * msg,u32 index)3225 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3226 {
3227 msg->data = index;
3228 msg->address_lo = 0;
3229 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3230 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3231 }
3232
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3233 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3234 struct irq_cfg *irq_cfg,
3235 struct irq_alloc_info *info,
3236 int devid, int index, int sub_handle)
3237 {
3238 struct irq_2_irte *irte_info = &data->irq_2_irte;
3239 struct amd_iommu *iommu = data->iommu;
3240
3241 if (!iommu)
3242 return;
3243
3244 data->irq_2_irte.devid = devid;
3245 data->irq_2_irte.index = index + sub_handle;
3246 iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3247 apic->dest_mode_logical, irq_cfg->vector,
3248 irq_cfg->dest_apicid, devid);
3249
3250 switch (info->type) {
3251 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3252 case X86_IRQ_ALLOC_TYPE_HPET:
3253 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3254 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3255 fill_msi_msg(&data->msi_entry, irte_info->index);
3256 break;
3257
3258 default:
3259 BUG_ON(1);
3260 break;
3261 }
3262 }
3263
3264 struct amd_irte_ops irte_32_ops = {
3265 .prepare = irte_prepare,
3266 .activate = irte_activate,
3267 .deactivate = irte_deactivate,
3268 .set_affinity = irte_set_affinity,
3269 .set_allocated = irte_set_allocated,
3270 .is_allocated = irte_is_allocated,
3271 .clear_allocated = irte_clear_allocated,
3272 };
3273
3274 struct amd_irte_ops irte_128_ops = {
3275 .prepare = irte_ga_prepare,
3276 .activate = irte_ga_activate,
3277 .deactivate = irte_ga_deactivate,
3278 .set_affinity = irte_ga_set_affinity,
3279 .set_allocated = irte_ga_set_allocated,
3280 .is_allocated = irte_ga_is_allocated,
3281 .clear_allocated = irte_ga_clear_allocated,
3282 };
3283
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3284 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3285 unsigned int nr_irqs, void *arg)
3286 {
3287 struct irq_alloc_info *info = arg;
3288 struct irq_data *irq_data;
3289 struct amd_ir_data *data = NULL;
3290 struct amd_iommu *iommu;
3291 struct irq_cfg *cfg;
3292 int i, ret, devid, seg, sbdf;
3293 int index;
3294
3295 if (!info)
3296 return -EINVAL;
3297 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3298 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3299 return -EINVAL;
3300
3301 /*
3302 * With IRQ remapping enabled, don't need contiguous CPU vectors
3303 * to support multiple MSI interrupts.
3304 */
3305 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3306 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3307
3308 sbdf = get_devid(info);
3309 if (sbdf < 0)
3310 return -EINVAL;
3311
3312 seg = PCI_SBDF_TO_SEGID(sbdf);
3313 devid = PCI_SBDF_TO_DEVID(sbdf);
3314 iommu = __rlookup_amd_iommu(seg, devid);
3315 if (!iommu)
3316 return -EINVAL;
3317
3318 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3319 if (ret < 0)
3320 return ret;
3321
3322 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3323 struct irq_remap_table *table;
3324
3325 table = alloc_irq_table(iommu, devid, NULL);
3326 if (table) {
3327 if (!table->min_index) {
3328 /*
3329 * Keep the first 32 indexes free for IOAPIC
3330 * interrupts.
3331 */
3332 table->min_index = 32;
3333 for (i = 0; i < 32; ++i)
3334 iommu->irte_ops->set_allocated(table, i);
3335 }
3336 WARN_ON(table->min_index != 32);
3337 index = info->ioapic.pin;
3338 } else {
3339 index = -ENOMEM;
3340 }
3341 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3342 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3343 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3344
3345 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3346 msi_desc_to_pci_dev(info->desc));
3347 } else {
3348 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3349 }
3350
3351 if (index < 0) {
3352 pr_warn("Failed to allocate IRTE\n");
3353 ret = index;
3354 goto out_free_parent;
3355 }
3356
3357 for (i = 0; i < nr_irqs; i++) {
3358 irq_data = irq_domain_get_irq_data(domain, virq + i);
3359 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3360 if (!cfg) {
3361 ret = -EINVAL;
3362 goto out_free_data;
3363 }
3364
3365 ret = -ENOMEM;
3366 data = kzalloc(sizeof(*data), GFP_KERNEL);
3367 if (!data)
3368 goto out_free_data;
3369
3370 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3371 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3372 else
3373 data->entry = kzalloc(sizeof(struct irte_ga),
3374 GFP_KERNEL);
3375 if (!data->entry) {
3376 kfree(data);
3377 goto out_free_data;
3378 }
3379
3380 data->iommu = iommu;
3381 irq_data->hwirq = (devid << 16) + i;
3382 irq_data->chip_data = data;
3383 irq_data->chip = &amd_ir_chip;
3384 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3385 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3386 }
3387
3388 return 0;
3389
3390 out_free_data:
3391 for (i--; i >= 0; i--) {
3392 irq_data = irq_domain_get_irq_data(domain, virq + i);
3393 if (irq_data)
3394 kfree(irq_data->chip_data);
3395 }
3396 for (i = 0; i < nr_irqs; i++)
3397 free_irte(iommu, devid, index + i);
3398 out_free_parent:
3399 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3400 return ret;
3401 }
3402
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3403 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3404 unsigned int nr_irqs)
3405 {
3406 struct irq_2_irte *irte_info;
3407 struct irq_data *irq_data;
3408 struct amd_ir_data *data;
3409 int i;
3410
3411 for (i = 0; i < nr_irqs; i++) {
3412 irq_data = irq_domain_get_irq_data(domain, virq + i);
3413 if (irq_data && irq_data->chip_data) {
3414 data = irq_data->chip_data;
3415 irte_info = &data->irq_2_irte;
3416 free_irte(data->iommu, irte_info->devid, irte_info->index);
3417 kfree(data->entry);
3418 kfree(data);
3419 }
3420 }
3421 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3422 }
3423
3424 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3425 struct amd_ir_data *ir_data,
3426 struct irq_2_irte *irte_info,
3427 struct irq_cfg *cfg);
3428
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3429 static int irq_remapping_activate(struct irq_domain *domain,
3430 struct irq_data *irq_data, bool reserve)
3431 {
3432 struct amd_ir_data *data = irq_data->chip_data;
3433 struct irq_2_irte *irte_info = &data->irq_2_irte;
3434 struct amd_iommu *iommu = data->iommu;
3435 struct irq_cfg *cfg = irqd_cfg(irq_data);
3436
3437 if (!iommu)
3438 return 0;
3439
3440 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3441 irte_info->index);
3442 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3443 return 0;
3444 }
3445
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3446 static void irq_remapping_deactivate(struct irq_domain *domain,
3447 struct irq_data *irq_data)
3448 {
3449 struct amd_ir_data *data = irq_data->chip_data;
3450 struct irq_2_irte *irte_info = &data->irq_2_irte;
3451 struct amd_iommu *iommu = data->iommu;
3452
3453 if (iommu)
3454 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3455 irte_info->index);
3456 }
3457
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3458 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3459 enum irq_domain_bus_token bus_token)
3460 {
3461 struct amd_iommu *iommu;
3462 int devid = -1;
3463
3464 if (!amd_iommu_irq_remap)
3465 return 0;
3466
3467 if (x86_fwspec_is_ioapic(fwspec))
3468 devid = get_ioapic_devid(fwspec->param[0]);
3469 else if (x86_fwspec_is_hpet(fwspec))
3470 devid = get_hpet_devid(fwspec->param[0]);
3471
3472 if (devid < 0)
3473 return 0;
3474 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3475
3476 return iommu && iommu->ir_domain == d;
3477 }
3478
3479 static const struct irq_domain_ops amd_ir_domain_ops = {
3480 .select = irq_remapping_select,
3481 .alloc = irq_remapping_alloc,
3482 .free = irq_remapping_free,
3483 .activate = irq_remapping_activate,
3484 .deactivate = irq_remapping_deactivate,
3485 };
3486
amd_iommu_activate_guest_mode(void * data)3487 int amd_iommu_activate_guest_mode(void *data)
3488 {
3489 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3490 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3491 u64 valid;
3492
3493 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3494 !entry || entry->lo.fields_vapic.guest_mode)
3495 return 0;
3496
3497 valid = entry->lo.fields_vapic.valid;
3498
3499 entry->lo.val = 0;
3500 entry->hi.val = 0;
3501
3502 entry->lo.fields_vapic.valid = valid;
3503 entry->lo.fields_vapic.guest_mode = 1;
3504 entry->lo.fields_vapic.ga_log_intr = 1;
3505 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3506 entry->hi.fields.vector = ir_data->ga_vector;
3507 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3508
3509 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3510 ir_data->irq_2_irte.index, entry, ir_data);
3511 }
3512 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3513
amd_iommu_deactivate_guest_mode(void * data)3514 int amd_iommu_deactivate_guest_mode(void *data)
3515 {
3516 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3517 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3518 struct irq_cfg *cfg = ir_data->cfg;
3519 u64 valid;
3520
3521 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3522 !entry || !entry->lo.fields_vapic.guest_mode)
3523 return 0;
3524
3525 valid = entry->lo.fields_remap.valid;
3526
3527 entry->lo.val = 0;
3528 entry->hi.val = 0;
3529
3530 entry->lo.fields_remap.valid = valid;
3531 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3532 entry->lo.fields_remap.int_type = apic->delivery_mode;
3533 entry->hi.fields.vector = cfg->vector;
3534 entry->lo.fields_remap.destination =
3535 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3536 entry->hi.fields.destination =
3537 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3538
3539 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3540 ir_data->irq_2_irte.index, entry, ir_data);
3541 }
3542 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3543
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3544 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3545 {
3546 int ret;
3547 struct amd_iommu_pi_data *pi_data = vcpu_info;
3548 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3549 struct amd_ir_data *ir_data = data->chip_data;
3550 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3551 struct iommu_dev_data *dev_data;
3552
3553 if (ir_data->iommu == NULL)
3554 return -EINVAL;
3555
3556 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3557
3558 /* Note:
3559 * This device has never been set up for guest mode.
3560 * we should not modify the IRTE
3561 */
3562 if (!dev_data || !dev_data->use_vapic)
3563 return 0;
3564
3565 ir_data->cfg = irqd_cfg(data);
3566 pi_data->ir_data = ir_data;
3567
3568 /* Note:
3569 * SVM tries to set up for VAPIC mode, but we are in
3570 * legacy mode. So, we force legacy mode instead.
3571 */
3572 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3573 pr_debug("%s: Fall back to using intr legacy remap\n",
3574 __func__);
3575 pi_data->is_guest_mode = false;
3576 }
3577
3578 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3579 if (pi_data->is_guest_mode) {
3580 ir_data->ga_root_ptr = (pi_data->base >> 12);
3581 ir_data->ga_vector = vcpu_pi_info->vector;
3582 ir_data->ga_tag = pi_data->ga_tag;
3583 ret = amd_iommu_activate_guest_mode(ir_data);
3584 if (!ret)
3585 ir_data->cached_ga_tag = pi_data->ga_tag;
3586 } else {
3587 ret = amd_iommu_deactivate_guest_mode(ir_data);
3588
3589 /*
3590 * This communicates the ga_tag back to the caller
3591 * so that it can do all the necessary clean up.
3592 */
3593 if (!ret)
3594 ir_data->cached_ga_tag = 0;
3595 }
3596
3597 return ret;
3598 }
3599
3600
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3601 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3602 struct amd_ir_data *ir_data,
3603 struct irq_2_irte *irte_info,
3604 struct irq_cfg *cfg)
3605 {
3606
3607 /*
3608 * Atomically updates the IRTE with the new destination, vector
3609 * and flushes the interrupt entry cache.
3610 */
3611 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3612 irte_info->index, cfg->vector,
3613 cfg->dest_apicid);
3614 }
3615
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3616 static int amd_ir_set_affinity(struct irq_data *data,
3617 const struct cpumask *mask, bool force)
3618 {
3619 struct amd_ir_data *ir_data = data->chip_data;
3620 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3621 struct irq_cfg *cfg = irqd_cfg(data);
3622 struct irq_data *parent = data->parent_data;
3623 struct amd_iommu *iommu = ir_data->iommu;
3624 int ret;
3625
3626 if (!iommu)
3627 return -ENODEV;
3628
3629 ret = parent->chip->irq_set_affinity(parent, mask, force);
3630 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3631 return ret;
3632
3633 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3634 /*
3635 * After this point, all the interrupts will start arriving
3636 * at the new destination. So, time to cleanup the previous
3637 * vector allocation.
3638 */
3639 send_cleanup_vector(cfg);
3640
3641 return IRQ_SET_MASK_OK_DONE;
3642 }
3643
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3644 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3645 {
3646 struct amd_ir_data *ir_data = irq_data->chip_data;
3647
3648 *msg = ir_data->msi_entry;
3649 }
3650
3651 static struct irq_chip amd_ir_chip = {
3652 .name = "AMD-IR",
3653 .irq_ack = apic_ack_irq,
3654 .irq_set_affinity = amd_ir_set_affinity,
3655 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3656 .irq_compose_msi_msg = ir_compose_msi_msg,
3657 };
3658
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3659 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3660 {
3661 struct fwnode_handle *fn;
3662
3663 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3664 if (!fn)
3665 return -ENOMEM;
3666 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3667 if (!iommu->ir_domain) {
3668 irq_domain_free_fwnode(fn);
3669 return -ENOMEM;
3670 }
3671
3672 iommu->ir_domain->parent = arch_get_ir_parent_domain();
3673 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3674 "AMD-IR-MSI",
3675 iommu->index);
3676 return 0;
3677 }
3678
amd_iommu_update_ga(int cpu,bool is_run,void * data)3679 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3680 {
3681 unsigned long flags;
3682 struct amd_iommu *iommu;
3683 struct irq_remap_table *table;
3684 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3685 int devid = ir_data->irq_2_irte.devid;
3686 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3687 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3688
3689 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3690 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3691 return 0;
3692
3693 iommu = ir_data->iommu;
3694 if (!iommu)
3695 return -ENODEV;
3696
3697 table = get_irq_table(iommu, devid);
3698 if (!table)
3699 return -ENODEV;
3700
3701 raw_spin_lock_irqsave(&table->lock, flags);
3702
3703 if (ref->lo.fields_vapic.guest_mode) {
3704 if (cpu >= 0) {
3705 ref->lo.fields_vapic.destination =
3706 APICID_TO_IRTE_DEST_LO(cpu);
3707 ref->hi.fields.destination =
3708 APICID_TO_IRTE_DEST_HI(cpu);
3709 }
3710 ref->lo.fields_vapic.is_run = is_run;
3711 barrier();
3712 }
3713
3714 raw_spin_unlock_irqrestore(&table->lock, flags);
3715
3716 iommu_flush_irt(iommu, devid);
3717 iommu_completion_wait(iommu);
3718 return 0;
3719 }
3720 EXPORT_SYMBOL(amd_iommu_update_ga);
3721 #endif
3722