1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16 #define pr_fmt(fmt) "IPv6: " fmt
17
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41
42 struct fib6_cleaner {
43 struct fib6_walker w;
44 struct net *net;
45 int (*func)(struct fib6_info *, void *arg);
46 int sernum;
47 void *arg;
48 bool skip_notify;
49 };
50
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65
66 /*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73 static void fib6_gc_timer_cb(struct timer_list *t);
74
75 #define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
fib6_walker_link(struct net * net,struct fib6_walker * w)78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84
fib6_walker_unlink(struct net * net,struct fib6_walker * w)85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91
fib6_new_sernum(struct net * net)92 static int fib6_new_sernum(struct net *net)
93 {
94 int new, old = atomic_read(&net->ipv6.fib6_sernum);
95
96 do {
97 new = old < INT_MAX ? old + 1 : 1;
98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99
100 return new;
101 }
102
103 enum {
104 FIB6_NO_SERNUM_CHANGE = 0,
105 };
106
fib6_update_sernum(struct net * net,struct fib6_info * f6i)107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 struct fib6_node *fn;
110
111 fn = rcu_dereference_protected(f6i->fib6_node,
112 lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 if (fn)
114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116
117 /*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124 /*
125 * test bit
126 */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE 0
131 #endif
132
addr_bit_set(const void * token,int fn_bit)133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145 }
146
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 struct fib6_info *f6i;
150 size_t sz = sizeof(*f6i);
151
152 if (with_fib6_nh)
153 sz += sizeof(struct fib6_nh);
154
155 f6i = kzalloc(sz, gfp_flags);
156 if (!f6i)
157 return NULL;
158
159 /* fib6_siblings is a union with nh_list, so this initializes both */
160 INIT_LIST_HEAD(&f6i->fib6_siblings);
161 refcount_set(&f6i->fib6_ref, 1);
162
163 return f6i;
164 }
165
fib6_info_destroy_rcu(struct rcu_head * head)166 void fib6_info_destroy_rcu(struct rcu_head *head)
167 {
168 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
169
170 WARN_ON(f6i->fib6_node);
171
172 if (f6i->nh)
173 nexthop_put(f6i->nh);
174 else
175 fib6_nh_release(f6i->fib6_nh);
176
177 ip_fib_metrics_put(f6i->fib6_metrics);
178 kfree(f6i);
179 }
180 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
181
node_alloc(struct net * net)182 static struct fib6_node *node_alloc(struct net *net)
183 {
184 struct fib6_node *fn;
185
186 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
187 if (fn)
188 net->ipv6.rt6_stats->fib_nodes++;
189
190 return fn;
191 }
192
node_free_immediate(struct net * net,struct fib6_node * fn)193 static void node_free_immediate(struct net *net, struct fib6_node *fn)
194 {
195 kmem_cache_free(fib6_node_kmem, fn);
196 net->ipv6.rt6_stats->fib_nodes--;
197 }
198
node_free_rcu(struct rcu_head * head)199 static void node_free_rcu(struct rcu_head *head)
200 {
201 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
202
203 kmem_cache_free(fib6_node_kmem, fn);
204 }
205
node_free(struct net * net,struct fib6_node * fn)206 static void node_free(struct net *net, struct fib6_node *fn)
207 {
208 call_rcu(&fn->rcu, node_free_rcu);
209 net->ipv6.rt6_stats->fib_nodes--;
210 }
211
fib6_free_table(struct fib6_table * table)212 static void fib6_free_table(struct fib6_table *table)
213 {
214 inetpeer_invalidate_tree(&table->tb6_peers);
215 kfree(table);
216 }
217
fib6_link_table(struct net * net,struct fib6_table * tb)218 static void fib6_link_table(struct net *net, struct fib6_table *tb)
219 {
220 unsigned int h;
221
222 /*
223 * Initialize table lock at a single place to give lockdep a key,
224 * tables aren't visible prior to being linked to the list.
225 */
226 spin_lock_init(&tb->tb6_lock);
227 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
228
229 /*
230 * No protection necessary, this is the only list mutatation
231 * operation, tables never disappear once they exist.
232 */
233 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
234 }
235
236 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
237
fib6_alloc_table(struct net * net,u32 id)238 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
239 {
240 struct fib6_table *table;
241
242 table = kzalloc(sizeof(*table), GFP_ATOMIC);
243 if (table) {
244 table->tb6_id = id;
245 rcu_assign_pointer(table->tb6_root.leaf,
246 net->ipv6.fib6_null_entry);
247 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
248 inet_peer_base_init(&table->tb6_peers);
249 }
250
251 return table;
252 }
253
fib6_new_table(struct net * net,u32 id)254 struct fib6_table *fib6_new_table(struct net *net, u32 id)
255 {
256 struct fib6_table *tb;
257
258 if (id == 0)
259 id = RT6_TABLE_MAIN;
260 tb = fib6_get_table(net, id);
261 if (tb)
262 return tb;
263
264 tb = fib6_alloc_table(net, id);
265 if (tb)
266 fib6_link_table(net, tb);
267
268 return tb;
269 }
270 EXPORT_SYMBOL_GPL(fib6_new_table);
271
fib6_get_table(struct net * net,u32 id)272 struct fib6_table *fib6_get_table(struct net *net, u32 id)
273 {
274 struct fib6_table *tb;
275 struct hlist_head *head;
276 unsigned int h;
277
278 if (id == 0)
279 id = RT6_TABLE_MAIN;
280 h = id & (FIB6_TABLE_HASHSZ - 1);
281 rcu_read_lock();
282 head = &net->ipv6.fib_table_hash[h];
283 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
284 if (tb->tb6_id == id) {
285 rcu_read_unlock();
286 return tb;
287 }
288 }
289 rcu_read_unlock();
290
291 return NULL;
292 }
293 EXPORT_SYMBOL_GPL(fib6_get_table);
294
fib6_tables_init(struct net * net)295 static void __net_init fib6_tables_init(struct net *net)
296 {
297 fib6_link_table(net, net->ipv6.fib6_main_tbl);
298 fib6_link_table(net, net->ipv6.fib6_local_tbl);
299 }
300 #else
301
fib6_new_table(struct net * net,u32 id)302 struct fib6_table *fib6_new_table(struct net *net, u32 id)
303 {
304 return fib6_get_table(net, id);
305 }
306
fib6_get_table(struct net * net,u32 id)307 struct fib6_table *fib6_get_table(struct net *net, u32 id)
308 {
309 return net->ipv6.fib6_main_tbl;
310 }
311
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)312 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
313 const struct sk_buff *skb,
314 int flags, pol_lookup_t lookup)
315 {
316 struct rt6_info *rt;
317
318 rt = pol_lookup_func(lookup,
319 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
320 if (rt->dst.error == -EAGAIN) {
321 ip6_rt_put_flags(rt, flags);
322 rt = net->ipv6.ip6_null_entry;
323 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
324 dst_hold(&rt->dst);
325 }
326
327 return &rt->dst;
328 }
329
330 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)331 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
332 struct fib6_result *res, int flags)
333 {
334 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
335 res, flags);
336 }
337
fib6_tables_init(struct net * net)338 static void __net_init fib6_tables_init(struct net *net)
339 {
340 fib6_link_table(net, net->ipv6.fib6_main_tbl);
341 }
342
343 #endif
344
fib6_tables_seq_read(struct net * net)345 unsigned int fib6_tables_seq_read(struct net *net)
346 {
347 unsigned int h, fib_seq = 0;
348
349 rcu_read_lock();
350 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
351 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
352 struct fib6_table *tb;
353
354 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
355 fib_seq += tb->fib_seq;
356 }
357 rcu_read_unlock();
358
359 return fib_seq;
360 }
361
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)362 static int call_fib6_entry_notifier(struct notifier_block *nb,
363 enum fib_event_type event_type,
364 struct fib6_info *rt,
365 struct netlink_ext_ack *extack)
366 {
367 struct fib6_entry_notifier_info info = {
368 .info.extack = extack,
369 .rt = rt,
370 };
371
372 return call_fib6_notifier(nb, event_type, &info.info);
373 }
374
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)375 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
376 enum fib_event_type event_type,
377 struct fib6_info *rt,
378 unsigned int nsiblings,
379 struct netlink_ext_ack *extack)
380 {
381 struct fib6_entry_notifier_info info = {
382 .info.extack = extack,
383 .rt = rt,
384 .nsiblings = nsiblings,
385 };
386
387 return call_fib6_notifier(nb, event_type, &info.info);
388 }
389
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)390 int call_fib6_entry_notifiers(struct net *net,
391 enum fib_event_type event_type,
392 struct fib6_info *rt,
393 struct netlink_ext_ack *extack)
394 {
395 struct fib6_entry_notifier_info info = {
396 .info.extack = extack,
397 .rt = rt,
398 };
399
400 rt->fib6_table->fib_seq++;
401 return call_fib6_notifiers(net, event_type, &info.info);
402 }
403
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)404 int call_fib6_multipath_entry_notifiers(struct net *net,
405 enum fib_event_type event_type,
406 struct fib6_info *rt,
407 unsigned int nsiblings,
408 struct netlink_ext_ack *extack)
409 {
410 struct fib6_entry_notifier_info info = {
411 .info.extack = extack,
412 .rt = rt,
413 .nsiblings = nsiblings,
414 };
415
416 rt->fib6_table->fib_seq++;
417 return call_fib6_notifiers(net, event_type, &info.info);
418 }
419
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)420 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
421 {
422 struct fib6_entry_notifier_info info = {
423 .rt = rt,
424 .nsiblings = rt->fib6_nsiblings,
425 };
426
427 rt->fib6_table->fib_seq++;
428 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
429 }
430
431 struct fib6_dump_arg {
432 struct net *net;
433 struct notifier_block *nb;
434 struct netlink_ext_ack *extack;
435 };
436
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)437 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
438 {
439 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
440 int err;
441
442 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
443 return 0;
444
445 if (rt->fib6_nsiblings)
446 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
447 rt,
448 rt->fib6_nsiblings,
449 arg->extack);
450 else
451 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
452 arg->extack);
453
454 return err;
455 }
456
fib6_node_dump(struct fib6_walker * w)457 static int fib6_node_dump(struct fib6_walker *w)
458 {
459 int err;
460
461 err = fib6_rt_dump(w->leaf, w->args);
462 w->leaf = NULL;
463 return err;
464 }
465
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)466 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
467 struct fib6_walker *w)
468 {
469 int err;
470
471 w->root = &tb->tb6_root;
472 spin_lock_bh(&tb->tb6_lock);
473 err = fib6_walk(net, w);
474 spin_unlock_bh(&tb->tb6_lock);
475 return err;
476 }
477
478 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)479 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
480 struct netlink_ext_ack *extack)
481 {
482 struct fib6_dump_arg arg;
483 struct fib6_walker *w;
484 unsigned int h;
485 int err = 0;
486
487 w = kzalloc(sizeof(*w), GFP_ATOMIC);
488 if (!w)
489 return -ENOMEM;
490
491 w->func = fib6_node_dump;
492 arg.net = net;
493 arg.nb = nb;
494 arg.extack = extack;
495 w->args = &arg;
496
497 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
498 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
499 struct fib6_table *tb;
500
501 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
502 err = fib6_table_dump(net, tb, w);
503 if (err)
504 goto out;
505 }
506 }
507
508 out:
509 kfree(w);
510
511 /* The tree traversal function should never return a positive value. */
512 return err > 0 ? -EINVAL : err;
513 }
514
fib6_dump_node(struct fib6_walker * w)515 static int fib6_dump_node(struct fib6_walker *w)
516 {
517 int res;
518 struct fib6_info *rt;
519
520 for_each_fib6_walker_rt(w) {
521 res = rt6_dump_route(rt, w->args, w->skip_in_node);
522 if (res >= 0) {
523 /* Frame is full, suspend walking */
524 w->leaf = rt;
525
526 /* We'll restart from this node, so if some routes were
527 * already dumped, skip them next time.
528 */
529 w->skip_in_node += res;
530
531 return 1;
532 }
533 w->skip_in_node = 0;
534
535 /* Multipath routes are dumped in one route with the
536 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
537 * last sibling of this route (no need to dump the
538 * sibling routes again)
539 */
540 if (rt->fib6_nsiblings)
541 rt = list_last_entry(&rt->fib6_siblings,
542 struct fib6_info,
543 fib6_siblings);
544 }
545 w->leaf = NULL;
546 return 0;
547 }
548
fib6_dump_end(struct netlink_callback * cb)549 static void fib6_dump_end(struct netlink_callback *cb)
550 {
551 struct net *net = sock_net(cb->skb->sk);
552 struct fib6_walker *w = (void *)cb->args[2];
553
554 if (w) {
555 if (cb->args[4]) {
556 cb->args[4] = 0;
557 fib6_walker_unlink(net, w);
558 }
559 cb->args[2] = 0;
560 kfree(w);
561 }
562 cb->done = (void *)cb->args[3];
563 cb->args[1] = 3;
564 }
565
fib6_dump_done(struct netlink_callback * cb)566 static int fib6_dump_done(struct netlink_callback *cb)
567 {
568 fib6_dump_end(cb);
569 return cb->done ? cb->done(cb) : 0;
570 }
571
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)572 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
573 struct netlink_callback *cb)
574 {
575 struct net *net = sock_net(skb->sk);
576 struct fib6_walker *w;
577 int res;
578
579 w = (void *)cb->args[2];
580 w->root = &table->tb6_root;
581
582 if (cb->args[4] == 0) {
583 w->count = 0;
584 w->skip = 0;
585 w->skip_in_node = 0;
586
587 spin_lock_bh(&table->tb6_lock);
588 res = fib6_walk(net, w);
589 spin_unlock_bh(&table->tb6_lock);
590 if (res > 0) {
591 cb->args[4] = 1;
592 cb->args[5] = READ_ONCE(w->root->fn_sernum);
593 }
594 } else {
595 int sernum = READ_ONCE(w->root->fn_sernum);
596 if (cb->args[5] != sernum) {
597 /* Begin at the root if the tree changed */
598 cb->args[5] = sernum;
599 w->state = FWS_INIT;
600 w->node = w->root;
601 w->skip = w->count;
602 w->skip_in_node = 0;
603 } else
604 w->skip = 0;
605
606 spin_lock_bh(&table->tb6_lock);
607 res = fib6_walk_continue(w);
608 spin_unlock_bh(&table->tb6_lock);
609 if (res <= 0) {
610 fib6_walker_unlink(net, w);
611 cb->args[4] = 0;
612 }
613 }
614
615 return res;
616 }
617
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)618 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
619 {
620 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
621 .filter.dump_routes = true };
622 const struct nlmsghdr *nlh = cb->nlh;
623 struct net *net = sock_net(skb->sk);
624 unsigned int h, s_h;
625 unsigned int e = 0, s_e;
626 struct fib6_walker *w;
627 struct fib6_table *tb;
628 struct hlist_head *head;
629 int res = 0;
630
631 if (cb->strict_check) {
632 int err;
633
634 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
635 if (err < 0)
636 return err;
637 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
638 struct rtmsg *rtm = nlmsg_data(nlh);
639
640 if (rtm->rtm_flags & RTM_F_PREFIX)
641 arg.filter.flags = RTM_F_PREFIX;
642 }
643
644 w = (void *)cb->args[2];
645 if (!w) {
646 /* New dump:
647 *
648 * 1. hook callback destructor.
649 */
650 cb->args[3] = (long)cb->done;
651 cb->done = fib6_dump_done;
652
653 /*
654 * 2. allocate and initialize walker.
655 */
656 w = kzalloc(sizeof(*w), GFP_ATOMIC);
657 if (!w)
658 return -ENOMEM;
659 w->func = fib6_dump_node;
660 cb->args[2] = (long)w;
661 }
662
663 arg.skb = skb;
664 arg.cb = cb;
665 arg.net = net;
666 w->args = &arg;
667
668 if (arg.filter.table_id) {
669 tb = fib6_get_table(net, arg.filter.table_id);
670 if (!tb) {
671 if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 goto out;
673
674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 return -ENOENT;
676 }
677
678 if (!cb->args[0]) {
679 res = fib6_dump_table(tb, skb, cb);
680 if (!res)
681 cb->args[0] = 1;
682 }
683 goto out;
684 }
685
686 s_h = cb->args[0];
687 s_e = cb->args[1];
688
689 rcu_read_lock();
690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 e = 0;
692 head = &net->ipv6.fib_table_hash[h];
693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 if (e < s_e)
695 goto next;
696 res = fib6_dump_table(tb, skb, cb);
697 if (res != 0)
698 goto out_unlock;
699 next:
700 e++;
701 }
702 }
703 out_unlock:
704 rcu_read_unlock();
705 cb->args[1] = e;
706 cb->args[0] = h;
707 out:
708 res = res < 0 ? res : skb->len;
709 if (res <= 0)
710 fib6_dump_end(cb);
711 return res;
712 }
713
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)714 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
715 {
716 if (!f6i)
717 return;
718
719 if (f6i->fib6_metrics == &dst_default_metrics) {
720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
721
722 if (!p)
723 return;
724
725 refcount_set(&p->refcnt, 1);
726 f6i->fib6_metrics = p;
727 }
728
729 f6i->fib6_metrics->metrics[metric - 1] = val;
730 }
731
732 /*
733 * Routing Table
734 *
735 * return the appropriate node for a routing tree "add" operation
736 * by either creating and inserting or by returning an existing
737 * node.
738 */
739
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)740 static struct fib6_node *fib6_add_1(struct net *net,
741 struct fib6_table *table,
742 struct fib6_node *root,
743 struct in6_addr *addr, int plen,
744 int offset, int allow_create,
745 int replace_required,
746 struct netlink_ext_ack *extack)
747 {
748 struct fib6_node *fn, *in, *ln;
749 struct fib6_node *pn = NULL;
750 struct rt6key *key;
751 int bit;
752 __be32 dir = 0;
753
754 RT6_TRACE("fib6_add_1\n");
755
756 /* insert node in tree */
757
758 fn = root;
759
760 do {
761 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
762 lockdep_is_held(&table->tb6_lock));
763 key = (struct rt6key *)((u8 *)leaf + offset);
764
765 /*
766 * Prefix match
767 */
768 if (plen < fn->fn_bit ||
769 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
770 if (!allow_create) {
771 if (replace_required) {
772 NL_SET_ERR_MSG(extack,
773 "Can not replace route - no match found");
774 pr_warn("Can't replace route, no match found\n");
775 return ERR_PTR(-ENOENT);
776 }
777 pr_warn("NLM_F_CREATE should be set when creating new route\n");
778 }
779 goto insert_above;
780 }
781
782 /*
783 * Exact match ?
784 */
785
786 if (plen == fn->fn_bit) {
787 /* clean up an intermediate node */
788 if (!(fn->fn_flags & RTN_RTINFO)) {
789 RCU_INIT_POINTER(fn->leaf, NULL);
790 fib6_info_release(leaf);
791 /* remove null_entry in the root node */
792 } else if (fn->fn_flags & RTN_TL_ROOT &&
793 rcu_access_pointer(fn->leaf) ==
794 net->ipv6.fib6_null_entry) {
795 RCU_INIT_POINTER(fn->leaf, NULL);
796 }
797
798 return fn;
799 }
800
801 /*
802 * We have more bits to go
803 */
804
805 /* Try to walk down on tree. */
806 dir = addr_bit_set(addr, fn->fn_bit);
807 pn = fn;
808 fn = dir ?
809 rcu_dereference_protected(fn->right,
810 lockdep_is_held(&table->tb6_lock)) :
811 rcu_dereference_protected(fn->left,
812 lockdep_is_held(&table->tb6_lock));
813 } while (fn);
814
815 if (!allow_create) {
816 /* We should not create new node because
817 * NLM_F_REPLACE was specified without NLM_F_CREATE
818 * I assume it is safe to require NLM_F_CREATE when
819 * REPLACE flag is used! Later we may want to remove the
820 * check for replace_required, because according
821 * to netlink specification, NLM_F_CREATE
822 * MUST be specified if new route is created.
823 * That would keep IPv6 consistent with IPv4
824 */
825 if (replace_required) {
826 NL_SET_ERR_MSG(extack,
827 "Can not replace route - no match found");
828 pr_warn("Can't replace route, no match found\n");
829 return ERR_PTR(-ENOENT);
830 }
831 pr_warn("NLM_F_CREATE should be set when creating new route\n");
832 }
833 /*
834 * We walked to the bottom of tree.
835 * Create new leaf node without children.
836 */
837
838 ln = node_alloc(net);
839
840 if (!ln)
841 return ERR_PTR(-ENOMEM);
842 ln->fn_bit = plen;
843 RCU_INIT_POINTER(ln->parent, pn);
844
845 if (dir)
846 rcu_assign_pointer(pn->right, ln);
847 else
848 rcu_assign_pointer(pn->left, ln);
849
850 return ln;
851
852
853 insert_above:
854 /*
855 * split since we don't have a common prefix anymore or
856 * we have a less significant route.
857 * we've to insert an intermediate node on the list
858 * this new node will point to the one we need to create
859 * and the current
860 */
861
862 pn = rcu_dereference_protected(fn->parent,
863 lockdep_is_held(&table->tb6_lock));
864
865 /* find 1st bit in difference between the 2 addrs.
866
867 See comment in __ipv6_addr_diff: bit may be an invalid value,
868 but if it is >= plen, the value is ignored in any case.
869 */
870
871 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
872
873 /*
874 * (intermediate)[in]
875 * / \
876 * (new leaf node)[ln] (old node)[fn]
877 */
878 if (plen > bit) {
879 in = node_alloc(net);
880 ln = node_alloc(net);
881
882 if (!in || !ln) {
883 if (in)
884 node_free_immediate(net, in);
885 if (ln)
886 node_free_immediate(net, ln);
887 return ERR_PTR(-ENOMEM);
888 }
889
890 /*
891 * new intermediate node.
892 * RTN_RTINFO will
893 * be off since that an address that chooses one of
894 * the branches would not match less specific routes
895 * in the other branch
896 */
897
898 in->fn_bit = bit;
899
900 RCU_INIT_POINTER(in->parent, pn);
901 in->leaf = fn->leaf;
902 fib6_info_hold(rcu_dereference_protected(in->leaf,
903 lockdep_is_held(&table->tb6_lock)));
904
905 /* update parent pointer */
906 if (dir)
907 rcu_assign_pointer(pn->right, in);
908 else
909 rcu_assign_pointer(pn->left, in);
910
911 ln->fn_bit = plen;
912
913 RCU_INIT_POINTER(ln->parent, in);
914 rcu_assign_pointer(fn->parent, in);
915
916 if (addr_bit_set(addr, bit)) {
917 rcu_assign_pointer(in->right, ln);
918 rcu_assign_pointer(in->left, fn);
919 } else {
920 rcu_assign_pointer(in->left, ln);
921 rcu_assign_pointer(in->right, fn);
922 }
923 } else { /* plen <= bit */
924
925 /*
926 * (new leaf node)[ln]
927 * / \
928 * (old node)[fn] NULL
929 */
930
931 ln = node_alloc(net);
932
933 if (!ln)
934 return ERR_PTR(-ENOMEM);
935
936 ln->fn_bit = plen;
937
938 RCU_INIT_POINTER(ln->parent, pn);
939
940 if (addr_bit_set(&key->addr, plen))
941 RCU_INIT_POINTER(ln->right, fn);
942 else
943 RCU_INIT_POINTER(ln->left, fn);
944
945 rcu_assign_pointer(fn->parent, ln);
946
947 if (dir)
948 rcu_assign_pointer(pn->right, ln);
949 else
950 rcu_assign_pointer(pn->left, ln);
951 }
952 return ln;
953 }
954
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)955 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
956 const struct fib6_info *match,
957 const struct fib6_table *table)
958 {
959 int cpu;
960
961 if (!fib6_nh->rt6i_pcpu)
962 return;
963
964 /* release the reference to this fib entry from
965 * all of its cached pcpu routes
966 */
967 for_each_possible_cpu(cpu) {
968 struct rt6_info **ppcpu_rt;
969 struct rt6_info *pcpu_rt;
970
971 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
972 pcpu_rt = *ppcpu_rt;
973
974 /* only dropping the 'from' reference if the cached route
975 * is using 'match'. The cached pcpu_rt->from only changes
976 * from a fib6_info to NULL (ip6_dst_destroy); it can never
977 * change from one fib6_info reference to another
978 */
979 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
980 struct fib6_info *from;
981
982 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
983 fib6_info_release(from);
984 }
985 }
986 }
987
988 struct fib6_nh_pcpu_arg {
989 struct fib6_info *from;
990 const struct fib6_table *table;
991 };
992
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)993 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
994 {
995 struct fib6_nh_pcpu_arg *arg = _arg;
996
997 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
998 return 0;
999 }
1000
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)1001 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1002 const struct fib6_table *table)
1003 {
1004 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1005 * while we are cleaning them here.
1006 */
1007 f6i->fib6_destroying = 1;
1008 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1009
1010 if (f6i->nh) {
1011 struct fib6_nh_pcpu_arg arg = {
1012 .from = f6i,
1013 .table = table
1014 };
1015
1016 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1017 &arg);
1018 } else {
1019 struct fib6_nh *fib6_nh;
1020
1021 fib6_nh = f6i->fib6_nh;
1022 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1023 }
1024 }
1025
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1026 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1027 struct net *net)
1028 {
1029 struct fib6_table *table = rt->fib6_table;
1030
1031 /* Flush all cached dst in exception table */
1032 rt6_flush_exceptions(rt);
1033 fib6_drop_pcpu_from(rt, table);
1034
1035 if (rt->nh && !list_empty(&rt->nh_list))
1036 list_del_init(&rt->nh_list);
1037
1038 if (refcount_read(&rt->fib6_ref) != 1) {
1039 /* This route is used as dummy address holder in some split
1040 * nodes. It is not leaked, but it still holds other resources,
1041 * which must be released in time. So, scan ascendant nodes
1042 * and replace dummy references to this route with references
1043 * to still alive ones.
1044 */
1045 while (fn) {
1046 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1047 lockdep_is_held(&table->tb6_lock));
1048 struct fib6_info *new_leaf;
1049 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1050 new_leaf = fib6_find_prefix(net, table, fn);
1051 fib6_info_hold(new_leaf);
1052
1053 rcu_assign_pointer(fn->leaf, new_leaf);
1054 fib6_info_release(rt);
1055 }
1056 fn = rcu_dereference_protected(fn->parent,
1057 lockdep_is_held(&table->tb6_lock));
1058 }
1059 }
1060 }
1061
1062 /*
1063 * Insert routing information in a node.
1064 */
1065
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1066 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1067 struct nl_info *info,
1068 struct netlink_ext_ack *extack)
1069 {
1070 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1071 lockdep_is_held(&rt->fib6_table->tb6_lock));
1072 struct fib6_info *iter = NULL;
1073 struct fib6_info __rcu **ins;
1074 struct fib6_info __rcu **fallback_ins = NULL;
1075 int replace = (info->nlh &&
1076 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1077 int add = (!info->nlh ||
1078 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1079 int found = 0;
1080 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1081 bool notify_sibling_rt = false;
1082 u16 nlflags = NLM_F_EXCL;
1083 int err;
1084
1085 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1086 nlflags |= NLM_F_APPEND;
1087
1088 ins = &fn->leaf;
1089
1090 for (iter = leaf; iter;
1091 iter = rcu_dereference_protected(iter->fib6_next,
1092 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1093 /*
1094 * Search for duplicates
1095 */
1096
1097 if (iter->fib6_metric == rt->fib6_metric) {
1098 /*
1099 * Same priority level
1100 */
1101 if (info->nlh &&
1102 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1103 return -EEXIST;
1104
1105 nlflags &= ~NLM_F_EXCL;
1106 if (replace) {
1107 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1108 found++;
1109 break;
1110 }
1111 fallback_ins = fallback_ins ?: ins;
1112 goto next_iter;
1113 }
1114
1115 if (rt6_duplicate_nexthop(iter, rt)) {
1116 if (rt->fib6_nsiblings)
1117 rt->fib6_nsiblings = 0;
1118 if (!(iter->fib6_flags & RTF_EXPIRES))
1119 return -EEXIST;
1120 if (!(rt->fib6_flags & RTF_EXPIRES))
1121 fib6_clean_expires(iter);
1122 else
1123 fib6_set_expires(iter, rt->expires);
1124
1125 if (rt->fib6_pmtu)
1126 fib6_metric_set(iter, RTAX_MTU,
1127 rt->fib6_pmtu);
1128 return -EEXIST;
1129 }
1130 /* If we have the same destination and the same metric,
1131 * but not the same gateway, then the route we try to
1132 * add is sibling to this route, increment our counter
1133 * of siblings, and later we will add our route to the
1134 * list.
1135 * Only static routes (which don't have flag
1136 * RTF_EXPIRES) are used for ECMPv6.
1137 *
1138 * To avoid long list, we only had siblings if the
1139 * route have a gateway.
1140 */
1141 if (rt_can_ecmp &&
1142 rt6_qualify_for_ecmp(iter))
1143 rt->fib6_nsiblings++;
1144 }
1145
1146 if (iter->fib6_metric > rt->fib6_metric)
1147 break;
1148
1149 next_iter:
1150 ins = &iter->fib6_next;
1151 }
1152
1153 if (fallback_ins && !found) {
1154 /* No matching route with same ecmp-able-ness found, replace
1155 * first matching route
1156 */
1157 ins = fallback_ins;
1158 iter = rcu_dereference_protected(*ins,
1159 lockdep_is_held(&rt->fib6_table->tb6_lock));
1160 found++;
1161 }
1162
1163 /* Reset round-robin state, if necessary */
1164 if (ins == &fn->leaf)
1165 fn->rr_ptr = NULL;
1166
1167 /* Link this route to others same route. */
1168 if (rt->fib6_nsiblings) {
1169 unsigned int fib6_nsiblings;
1170 struct fib6_info *sibling, *temp_sibling;
1171
1172 /* Find the first route that have the same metric */
1173 sibling = leaf;
1174 notify_sibling_rt = true;
1175 while (sibling) {
1176 if (sibling->fib6_metric == rt->fib6_metric &&
1177 rt6_qualify_for_ecmp(sibling)) {
1178 list_add_tail(&rt->fib6_siblings,
1179 &sibling->fib6_siblings);
1180 break;
1181 }
1182 sibling = rcu_dereference_protected(sibling->fib6_next,
1183 lockdep_is_held(&rt->fib6_table->tb6_lock));
1184 notify_sibling_rt = false;
1185 }
1186 /* For each sibling in the list, increment the counter of
1187 * siblings. BUG() if counters does not match, list of siblings
1188 * is broken!
1189 */
1190 fib6_nsiblings = 0;
1191 list_for_each_entry_safe(sibling, temp_sibling,
1192 &rt->fib6_siblings, fib6_siblings) {
1193 sibling->fib6_nsiblings++;
1194 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1195 fib6_nsiblings++;
1196 }
1197 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1198 rt6_multipath_rebalance(temp_sibling);
1199 }
1200
1201 /*
1202 * insert node
1203 */
1204 if (!replace) {
1205 if (!add)
1206 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1207
1208 add:
1209 nlflags |= NLM_F_CREATE;
1210
1211 /* The route should only be notified if it is the first
1212 * route in the node or if it is added as a sibling
1213 * route to the first route in the node.
1214 */
1215 if (!info->skip_notify_kernel &&
1216 (notify_sibling_rt || ins == &fn->leaf)) {
1217 enum fib_event_type fib_event;
1218
1219 if (notify_sibling_rt)
1220 fib_event = FIB_EVENT_ENTRY_APPEND;
1221 else
1222 fib_event = FIB_EVENT_ENTRY_REPLACE;
1223 err = call_fib6_entry_notifiers(info->nl_net,
1224 fib_event, rt,
1225 extack);
1226 if (err) {
1227 struct fib6_info *sibling, *next_sibling;
1228
1229 /* If the route has siblings, then it first
1230 * needs to be unlinked from them.
1231 */
1232 if (!rt->fib6_nsiblings)
1233 return err;
1234
1235 list_for_each_entry_safe(sibling, next_sibling,
1236 &rt->fib6_siblings,
1237 fib6_siblings)
1238 sibling->fib6_nsiblings--;
1239 rt->fib6_nsiblings = 0;
1240 list_del_init(&rt->fib6_siblings);
1241 rt6_multipath_rebalance(next_sibling);
1242 return err;
1243 }
1244 }
1245
1246 rcu_assign_pointer(rt->fib6_next, iter);
1247 fib6_info_hold(rt);
1248 rcu_assign_pointer(rt->fib6_node, fn);
1249 rcu_assign_pointer(*ins, rt);
1250 if (!info->skip_notify)
1251 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1252 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1253
1254 if (!(fn->fn_flags & RTN_RTINFO)) {
1255 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1256 fn->fn_flags |= RTN_RTINFO;
1257 }
1258
1259 } else {
1260 int nsiblings;
1261
1262 if (!found) {
1263 if (add)
1264 goto add;
1265 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1266 return -ENOENT;
1267 }
1268
1269 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1270 err = call_fib6_entry_notifiers(info->nl_net,
1271 FIB_EVENT_ENTRY_REPLACE,
1272 rt, extack);
1273 if (err)
1274 return err;
1275 }
1276
1277 fib6_info_hold(rt);
1278 rcu_assign_pointer(rt->fib6_node, fn);
1279 rt->fib6_next = iter->fib6_next;
1280 rcu_assign_pointer(*ins, rt);
1281 if (!info->skip_notify)
1282 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1283 if (!(fn->fn_flags & RTN_RTINFO)) {
1284 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1285 fn->fn_flags |= RTN_RTINFO;
1286 }
1287 nsiblings = iter->fib6_nsiblings;
1288 iter->fib6_node = NULL;
1289 fib6_purge_rt(iter, fn, info->nl_net);
1290 if (rcu_access_pointer(fn->rr_ptr) == iter)
1291 fn->rr_ptr = NULL;
1292 fib6_info_release(iter);
1293
1294 if (nsiblings) {
1295 /* Replacing an ECMP route, remove all siblings */
1296 ins = &rt->fib6_next;
1297 iter = rcu_dereference_protected(*ins,
1298 lockdep_is_held(&rt->fib6_table->tb6_lock));
1299 while (iter) {
1300 if (iter->fib6_metric > rt->fib6_metric)
1301 break;
1302 if (rt6_qualify_for_ecmp(iter)) {
1303 *ins = iter->fib6_next;
1304 iter->fib6_node = NULL;
1305 fib6_purge_rt(iter, fn, info->nl_net);
1306 if (rcu_access_pointer(fn->rr_ptr) == iter)
1307 fn->rr_ptr = NULL;
1308 fib6_info_release(iter);
1309 nsiblings--;
1310 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1311 } else {
1312 ins = &iter->fib6_next;
1313 }
1314 iter = rcu_dereference_protected(*ins,
1315 lockdep_is_held(&rt->fib6_table->tb6_lock));
1316 }
1317 WARN_ON(nsiblings != 0);
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
fib6_start_gc(struct net * net,struct fib6_info * rt)1324 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1325 {
1326 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1327 (rt->fib6_flags & RTF_EXPIRES))
1328 mod_timer(&net->ipv6.ip6_fib_timer,
1329 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1330 }
1331
fib6_force_start_gc(struct net * net)1332 void fib6_force_start_gc(struct net *net)
1333 {
1334 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1335 mod_timer(&net->ipv6.ip6_fib_timer,
1336 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1337 }
1338
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1339 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1340 int sernum)
1341 {
1342 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1343 lockdep_is_held(&rt->fib6_table->tb6_lock));
1344
1345 /* paired with smp_rmb() in fib6_get_cookie_safe() */
1346 smp_wmb();
1347 while (fn) {
1348 WRITE_ONCE(fn->fn_sernum, sernum);
1349 fn = rcu_dereference_protected(fn->parent,
1350 lockdep_is_held(&rt->fib6_table->tb6_lock));
1351 }
1352 }
1353
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1354 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1355 {
1356 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1357 }
1358
1359 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1360 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1361 {
1362 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1363 fib6_update_sernum_upto_root(net, f6i);
1364 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1365 }
1366
1367 /*
1368 * Add routing information to the routing tree.
1369 * <destination addr>/<source addr>
1370 * with source addr info in sub-trees
1371 * Need to own table->tb6_lock
1372 */
1373
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1374 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1375 struct nl_info *info, struct netlink_ext_ack *extack)
1376 {
1377 struct fib6_table *table = rt->fib6_table;
1378 struct fib6_node *fn, *pn = NULL;
1379 int err = -ENOMEM;
1380 int allow_create = 1;
1381 int replace_required = 0;
1382
1383 if (info->nlh) {
1384 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1385 allow_create = 0;
1386 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1387 replace_required = 1;
1388 }
1389 if (!allow_create && !replace_required)
1390 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1391
1392 fn = fib6_add_1(info->nl_net, table, root,
1393 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1394 offsetof(struct fib6_info, fib6_dst), allow_create,
1395 replace_required, extack);
1396 if (IS_ERR(fn)) {
1397 err = PTR_ERR(fn);
1398 fn = NULL;
1399 goto out;
1400 }
1401
1402 pn = fn;
1403
1404 #ifdef CONFIG_IPV6_SUBTREES
1405 if (rt->fib6_src.plen) {
1406 struct fib6_node *sn;
1407
1408 if (!rcu_access_pointer(fn->subtree)) {
1409 struct fib6_node *sfn;
1410
1411 /*
1412 * Create subtree.
1413 *
1414 * fn[main tree]
1415 * |
1416 * sfn[subtree root]
1417 * \
1418 * sn[new leaf node]
1419 */
1420
1421 /* Create subtree root node */
1422 sfn = node_alloc(info->nl_net);
1423 if (!sfn)
1424 goto failure;
1425
1426 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1427 rcu_assign_pointer(sfn->leaf,
1428 info->nl_net->ipv6.fib6_null_entry);
1429 sfn->fn_flags = RTN_ROOT;
1430
1431 /* Now add the first leaf node to new subtree */
1432
1433 sn = fib6_add_1(info->nl_net, table, sfn,
1434 &rt->fib6_src.addr, rt->fib6_src.plen,
1435 offsetof(struct fib6_info, fib6_src),
1436 allow_create, replace_required, extack);
1437
1438 if (IS_ERR(sn)) {
1439 /* If it is failed, discard just allocated
1440 root, and then (in failure) stale node
1441 in main tree.
1442 */
1443 node_free_immediate(info->nl_net, sfn);
1444 err = PTR_ERR(sn);
1445 goto failure;
1446 }
1447
1448 /* Now link new subtree to main tree */
1449 rcu_assign_pointer(sfn->parent, fn);
1450 rcu_assign_pointer(fn->subtree, sfn);
1451 } else {
1452 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1453 &rt->fib6_src.addr, rt->fib6_src.plen,
1454 offsetof(struct fib6_info, fib6_src),
1455 allow_create, replace_required, extack);
1456
1457 if (IS_ERR(sn)) {
1458 err = PTR_ERR(sn);
1459 goto failure;
1460 }
1461 }
1462
1463 if (!rcu_access_pointer(fn->leaf)) {
1464 if (fn->fn_flags & RTN_TL_ROOT) {
1465 /* put back null_entry for root node */
1466 rcu_assign_pointer(fn->leaf,
1467 info->nl_net->ipv6.fib6_null_entry);
1468 } else {
1469 fib6_info_hold(rt);
1470 rcu_assign_pointer(fn->leaf, rt);
1471 }
1472 }
1473 fn = sn;
1474 }
1475 #endif
1476
1477 err = fib6_add_rt2node(fn, rt, info, extack);
1478 if (!err) {
1479 if (rt->nh)
1480 list_add(&rt->nh_list, &rt->nh->f6i_list);
1481 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1482 fib6_start_gc(info->nl_net, rt);
1483 }
1484
1485 out:
1486 if (err) {
1487 #ifdef CONFIG_IPV6_SUBTREES
1488 /*
1489 * If fib6_add_1 has cleared the old leaf pointer in the
1490 * super-tree leaf node we have to find a new one for it.
1491 */
1492 if (pn != fn) {
1493 struct fib6_info *pn_leaf =
1494 rcu_dereference_protected(pn->leaf,
1495 lockdep_is_held(&table->tb6_lock));
1496 if (pn_leaf == rt) {
1497 pn_leaf = NULL;
1498 RCU_INIT_POINTER(pn->leaf, NULL);
1499 fib6_info_release(rt);
1500 }
1501 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1502 pn_leaf = fib6_find_prefix(info->nl_net, table,
1503 pn);
1504 if (!pn_leaf)
1505 pn_leaf =
1506 info->nl_net->ipv6.fib6_null_entry;
1507 fib6_info_hold(pn_leaf);
1508 rcu_assign_pointer(pn->leaf, pn_leaf);
1509 }
1510 }
1511 #endif
1512 goto failure;
1513 } else if (fib6_requires_src(rt)) {
1514 fib6_routes_require_src_inc(info->nl_net);
1515 }
1516 return err;
1517
1518 failure:
1519 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520 * 1. fn is an intermediate node and we failed to add the new
1521 * route to it in both subtree creation failure and fib6_add_rt2node()
1522 * failure case.
1523 * 2. fn is the root node in the table and we fail to add the first
1524 * default route to it.
1525 */
1526 if (fn &&
1527 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528 (fn->fn_flags & RTN_TL_ROOT &&
1529 !rcu_access_pointer(fn->leaf))))
1530 fib6_repair_tree(info->nl_net, table, fn);
1531 return err;
1532 }
1533
1534 /*
1535 * Routing tree lookup
1536 *
1537 */
1538
1539 struct lookup_args {
1540 int offset; /* key offset on fib6_info */
1541 const struct in6_addr *addr; /* search key */
1542 };
1543
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1544 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545 struct lookup_args *args)
1546 {
1547 struct fib6_node *fn;
1548 __be32 dir;
1549
1550 if (unlikely(args->offset == 0))
1551 return NULL;
1552
1553 /*
1554 * Descend on a tree
1555 */
1556
1557 fn = root;
1558
1559 for (;;) {
1560 struct fib6_node *next;
1561
1562 dir = addr_bit_set(args->addr, fn->fn_bit);
1563
1564 next = dir ? rcu_dereference(fn->right) :
1565 rcu_dereference(fn->left);
1566
1567 if (next) {
1568 fn = next;
1569 continue;
1570 }
1571 break;
1572 }
1573
1574 while (fn) {
1575 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576
1577 if (subtree || fn->fn_flags & RTN_RTINFO) {
1578 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579 struct rt6key *key;
1580
1581 if (!leaf)
1582 goto backtrack;
1583
1584 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585
1586 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587 #ifdef CONFIG_IPV6_SUBTREES
1588 if (subtree) {
1589 struct fib6_node *sfn;
1590 sfn = fib6_node_lookup_1(subtree,
1591 args + 1);
1592 if (!sfn)
1593 goto backtrack;
1594 fn = sfn;
1595 }
1596 #endif
1597 if (fn->fn_flags & RTN_RTINFO)
1598 return fn;
1599 }
1600 }
1601 backtrack:
1602 if (fn->fn_flags & RTN_ROOT)
1603 break;
1604
1605 fn = rcu_dereference(fn->parent);
1606 }
1607
1608 return NULL;
1609 }
1610
1611 /* called with rcu_read_lock() held
1612 */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1613 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614 const struct in6_addr *daddr,
1615 const struct in6_addr *saddr)
1616 {
1617 struct fib6_node *fn;
1618 struct lookup_args args[] = {
1619 {
1620 .offset = offsetof(struct fib6_info, fib6_dst),
1621 .addr = daddr,
1622 },
1623 #ifdef CONFIG_IPV6_SUBTREES
1624 {
1625 .offset = offsetof(struct fib6_info, fib6_src),
1626 .addr = saddr,
1627 },
1628 #endif
1629 {
1630 .offset = 0, /* sentinel */
1631 }
1632 };
1633
1634 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1636 fn = root;
1637
1638 return fn;
1639 }
1640
1641 /*
1642 * Get node with specified destination prefix (and source prefix,
1643 * if subtrees are used)
1644 * exact_match == true means we try to find fn with exact match of
1645 * the passed in prefix addr
1646 * exact_match == false means we try to find fn with longest prefix
1647 * match of the passed in prefix addr. This is useful for finding fn
1648 * for cached route as it will be stored in the exception table under
1649 * the node with longest prefix length.
1650 */
1651
1652
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1653 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654 const struct in6_addr *addr,
1655 int plen, int offset,
1656 bool exact_match)
1657 {
1658 struct fib6_node *fn, *prev = NULL;
1659
1660 for (fn = root; fn ; ) {
1661 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662 struct rt6key *key;
1663
1664 /* This node is being deleted */
1665 if (!leaf) {
1666 if (plen <= fn->fn_bit)
1667 goto out;
1668 else
1669 goto next;
1670 }
1671
1672 key = (struct rt6key *)((u8 *)leaf + offset);
1673
1674 /*
1675 * Prefix match
1676 */
1677 if (plen < fn->fn_bit ||
1678 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679 goto out;
1680
1681 if (plen == fn->fn_bit)
1682 return fn;
1683
1684 if (fn->fn_flags & RTN_RTINFO)
1685 prev = fn;
1686
1687 next:
1688 /*
1689 * We have more bits to go
1690 */
1691 if (addr_bit_set(addr, fn->fn_bit))
1692 fn = rcu_dereference(fn->right);
1693 else
1694 fn = rcu_dereference(fn->left);
1695 }
1696 out:
1697 if (exact_match)
1698 return NULL;
1699 else
1700 return prev;
1701 }
1702
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1703 struct fib6_node *fib6_locate(struct fib6_node *root,
1704 const struct in6_addr *daddr, int dst_len,
1705 const struct in6_addr *saddr, int src_len,
1706 bool exact_match)
1707 {
1708 struct fib6_node *fn;
1709
1710 fn = fib6_locate_1(root, daddr, dst_len,
1711 offsetof(struct fib6_info, fib6_dst),
1712 exact_match);
1713
1714 #ifdef CONFIG_IPV6_SUBTREES
1715 if (src_len) {
1716 WARN_ON(saddr == NULL);
1717 if (fn) {
1718 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719
1720 if (subtree) {
1721 fn = fib6_locate_1(subtree, saddr, src_len,
1722 offsetof(struct fib6_info, fib6_src),
1723 exact_match);
1724 }
1725 }
1726 }
1727 #endif
1728
1729 if (fn && fn->fn_flags & RTN_RTINFO)
1730 return fn;
1731
1732 return NULL;
1733 }
1734
1735
1736 /*
1737 * Deletion
1738 *
1739 */
1740
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1741 static struct fib6_info *fib6_find_prefix(struct net *net,
1742 struct fib6_table *table,
1743 struct fib6_node *fn)
1744 {
1745 struct fib6_node *child_left, *child_right;
1746
1747 if (fn->fn_flags & RTN_ROOT)
1748 return net->ipv6.fib6_null_entry;
1749
1750 while (fn) {
1751 child_left = rcu_dereference_protected(fn->left,
1752 lockdep_is_held(&table->tb6_lock));
1753 child_right = rcu_dereference_protected(fn->right,
1754 lockdep_is_held(&table->tb6_lock));
1755 if (child_left)
1756 return rcu_dereference_protected(child_left->leaf,
1757 lockdep_is_held(&table->tb6_lock));
1758 if (child_right)
1759 return rcu_dereference_protected(child_right->leaf,
1760 lockdep_is_held(&table->tb6_lock));
1761
1762 fn = FIB6_SUBTREE(fn);
1763 }
1764 return NULL;
1765 }
1766
1767 /*
1768 * Called to trim the tree of intermediate nodes when possible. "fn"
1769 * is the node we want to try and remove.
1770 * Need to own table->tb6_lock
1771 */
1772
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1773 static struct fib6_node *fib6_repair_tree(struct net *net,
1774 struct fib6_table *table,
1775 struct fib6_node *fn)
1776 {
1777 int children;
1778 int nstate;
1779 struct fib6_node *child;
1780 struct fib6_walker *w;
1781 int iter = 0;
1782
1783 /* Set fn->leaf to null_entry for root node. */
1784 if (fn->fn_flags & RTN_TL_ROOT) {
1785 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786 return fn;
1787 }
1788
1789 for (;;) {
1790 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791 lockdep_is_held(&table->tb6_lock));
1792 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793 lockdep_is_held(&table->tb6_lock));
1794 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795 lockdep_is_held(&table->tb6_lock));
1796 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797 lockdep_is_held(&table->tb6_lock));
1798 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799 lockdep_is_held(&table->tb6_lock));
1800 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801 lockdep_is_held(&table->tb6_lock));
1802 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803 lockdep_is_held(&table->tb6_lock));
1804 struct fib6_info *new_fn_leaf;
1805
1806 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807 iter++;
1808
1809 WARN_ON(fn->fn_flags & RTN_RTINFO);
1810 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811 WARN_ON(fn_leaf);
1812
1813 children = 0;
1814 child = NULL;
1815 if (fn_r) {
1816 child = fn_r;
1817 children |= 1;
1818 }
1819 if (fn_l) {
1820 child = fn_l;
1821 children |= 2;
1822 }
1823
1824 if (children == 3 || FIB6_SUBTREE(fn)
1825 #ifdef CONFIG_IPV6_SUBTREES
1826 /* Subtree root (i.e. fn) may have one child */
1827 || (children && fn->fn_flags & RTN_ROOT)
1828 #endif
1829 ) {
1830 new_fn_leaf = fib6_find_prefix(net, table, fn);
1831 #if RT6_DEBUG >= 2
1832 if (!new_fn_leaf) {
1833 WARN_ON(!new_fn_leaf);
1834 new_fn_leaf = net->ipv6.fib6_null_entry;
1835 }
1836 #endif
1837 fib6_info_hold(new_fn_leaf);
1838 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1839 return pn;
1840 }
1841
1842 #ifdef CONFIG_IPV6_SUBTREES
1843 if (FIB6_SUBTREE(pn) == fn) {
1844 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1845 RCU_INIT_POINTER(pn->subtree, NULL);
1846 nstate = FWS_L;
1847 } else {
1848 WARN_ON(fn->fn_flags & RTN_ROOT);
1849 #endif
1850 if (pn_r == fn)
1851 rcu_assign_pointer(pn->right, child);
1852 else if (pn_l == fn)
1853 rcu_assign_pointer(pn->left, child);
1854 #if RT6_DEBUG >= 2
1855 else
1856 WARN_ON(1);
1857 #endif
1858 if (child)
1859 rcu_assign_pointer(child->parent, pn);
1860 nstate = FWS_R;
1861 #ifdef CONFIG_IPV6_SUBTREES
1862 }
1863 #endif
1864
1865 read_lock(&net->ipv6.fib6_walker_lock);
1866 FOR_WALKERS(net, w) {
1867 if (!child) {
1868 if (w->node == fn) {
1869 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1870 w->node = pn;
1871 w->state = nstate;
1872 }
1873 } else {
1874 if (w->node == fn) {
1875 w->node = child;
1876 if (children&2) {
1877 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1878 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1879 } else {
1880 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1881 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1882 }
1883 }
1884 }
1885 }
1886 read_unlock(&net->ipv6.fib6_walker_lock);
1887
1888 node_free(net, fn);
1889 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1890 return pn;
1891
1892 RCU_INIT_POINTER(pn->leaf, NULL);
1893 fib6_info_release(pn_leaf);
1894 fn = pn;
1895 }
1896 }
1897
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1898 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1899 struct fib6_info __rcu **rtp, struct nl_info *info)
1900 {
1901 struct fib6_info *leaf, *replace_rt = NULL;
1902 struct fib6_walker *w;
1903 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1904 lockdep_is_held(&table->tb6_lock));
1905 struct net *net = info->nl_net;
1906 bool notify_del = false;
1907
1908 RT6_TRACE("fib6_del_route\n");
1909
1910 /* If the deleted route is the first in the node and it is not part of
1911 * a multipath route, then we need to replace it with the next route
1912 * in the node, if exists.
1913 */
1914 leaf = rcu_dereference_protected(fn->leaf,
1915 lockdep_is_held(&table->tb6_lock));
1916 if (leaf == rt && !rt->fib6_nsiblings) {
1917 if (rcu_access_pointer(rt->fib6_next))
1918 replace_rt = rcu_dereference_protected(rt->fib6_next,
1919 lockdep_is_held(&table->tb6_lock));
1920 else
1921 notify_del = true;
1922 }
1923
1924 /* Unlink it */
1925 *rtp = rt->fib6_next;
1926 rt->fib6_node = NULL;
1927 net->ipv6.rt6_stats->fib_rt_entries--;
1928 net->ipv6.rt6_stats->fib_discarded_routes++;
1929
1930 /* Reset round-robin state, if necessary */
1931 if (rcu_access_pointer(fn->rr_ptr) == rt)
1932 fn->rr_ptr = NULL;
1933
1934 /* Remove this entry from other siblings */
1935 if (rt->fib6_nsiblings) {
1936 struct fib6_info *sibling, *next_sibling;
1937
1938 /* The route is deleted from a multipath route. If this
1939 * multipath route is the first route in the node, then we need
1940 * to emit a delete notification. Otherwise, we need to skip
1941 * the notification.
1942 */
1943 if (rt->fib6_metric == leaf->fib6_metric &&
1944 rt6_qualify_for_ecmp(leaf))
1945 notify_del = true;
1946 list_for_each_entry_safe(sibling, next_sibling,
1947 &rt->fib6_siblings, fib6_siblings)
1948 sibling->fib6_nsiblings--;
1949 rt->fib6_nsiblings = 0;
1950 list_del_init(&rt->fib6_siblings);
1951 rt6_multipath_rebalance(next_sibling);
1952 }
1953
1954 /* Adjust walkers */
1955 read_lock(&net->ipv6.fib6_walker_lock);
1956 FOR_WALKERS(net, w) {
1957 if (w->state == FWS_C && w->leaf == rt) {
1958 RT6_TRACE("walker %p adjusted by delroute\n", w);
1959 w->leaf = rcu_dereference_protected(rt->fib6_next,
1960 lockdep_is_held(&table->tb6_lock));
1961 if (!w->leaf)
1962 w->state = FWS_U;
1963 }
1964 }
1965 read_unlock(&net->ipv6.fib6_walker_lock);
1966
1967 /* If it was last route, call fib6_repair_tree() to:
1968 * 1. For root node, put back null_entry as how the table was created.
1969 * 2. For other nodes, expunge its radix tree node.
1970 */
1971 if (!rcu_access_pointer(fn->leaf)) {
1972 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1973 fn->fn_flags &= ~RTN_RTINFO;
1974 net->ipv6.rt6_stats->fib_route_nodes--;
1975 }
1976 fn = fib6_repair_tree(net, table, fn);
1977 }
1978
1979 fib6_purge_rt(rt, fn, net);
1980
1981 if (!info->skip_notify_kernel) {
1982 if (notify_del)
1983 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1984 rt, NULL);
1985 else if (replace_rt)
1986 call_fib6_entry_notifiers_replace(net, replace_rt);
1987 }
1988 if (!info->skip_notify)
1989 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1990
1991 fib6_info_release(rt);
1992 }
1993
1994 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)1995 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1996 {
1997 struct net *net = info->nl_net;
1998 struct fib6_info __rcu **rtp;
1999 struct fib6_info __rcu **rtp_next;
2000 struct fib6_table *table;
2001 struct fib6_node *fn;
2002
2003 if (rt == net->ipv6.fib6_null_entry)
2004 return -ENOENT;
2005
2006 table = rt->fib6_table;
2007 fn = rcu_dereference_protected(rt->fib6_node,
2008 lockdep_is_held(&table->tb6_lock));
2009 if (!fn)
2010 return -ENOENT;
2011
2012 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2013
2014 /*
2015 * Walk the leaf entries looking for ourself
2016 */
2017
2018 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2019 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2020 lockdep_is_held(&table->tb6_lock));
2021 if (rt == cur) {
2022 if (fib6_requires_src(cur))
2023 fib6_routes_require_src_dec(info->nl_net);
2024 fib6_del_route(table, fn, rtp, info);
2025 return 0;
2026 }
2027 rtp_next = &cur->fib6_next;
2028 }
2029 return -ENOENT;
2030 }
2031
2032 /*
2033 * Tree traversal function.
2034 *
2035 * Certainly, it is not interrupt safe.
2036 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2037 * It means, that we can modify tree during walking
2038 * and use this function for garbage collection, clone pruning,
2039 * cleaning tree when a device goes down etc. etc.
2040 *
2041 * It guarantees that every node will be traversed,
2042 * and that it will be traversed only once.
2043 *
2044 * Callback function w->func may return:
2045 * 0 -> continue walking.
2046 * positive value -> walking is suspended (used by tree dumps,
2047 * and probably by gc, if it will be split to several slices)
2048 * negative value -> terminate walking.
2049 *
2050 * The function itself returns:
2051 * 0 -> walk is complete.
2052 * >0 -> walk is incomplete (i.e. suspended)
2053 * <0 -> walk is terminated by an error.
2054 *
2055 * This function is called with tb6_lock held.
2056 */
2057
fib6_walk_continue(struct fib6_walker * w)2058 static int fib6_walk_continue(struct fib6_walker *w)
2059 {
2060 struct fib6_node *fn, *pn, *left, *right;
2061
2062 /* w->root should always be table->tb6_root */
2063 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2064
2065 for (;;) {
2066 fn = w->node;
2067 if (!fn)
2068 return 0;
2069
2070 switch (w->state) {
2071 #ifdef CONFIG_IPV6_SUBTREES
2072 case FWS_S:
2073 if (FIB6_SUBTREE(fn)) {
2074 w->node = FIB6_SUBTREE(fn);
2075 continue;
2076 }
2077 w->state = FWS_L;
2078 fallthrough;
2079 #endif
2080 case FWS_L:
2081 left = rcu_dereference_protected(fn->left, 1);
2082 if (left) {
2083 w->node = left;
2084 w->state = FWS_INIT;
2085 continue;
2086 }
2087 w->state = FWS_R;
2088 fallthrough;
2089 case FWS_R:
2090 right = rcu_dereference_protected(fn->right, 1);
2091 if (right) {
2092 w->node = right;
2093 w->state = FWS_INIT;
2094 continue;
2095 }
2096 w->state = FWS_C;
2097 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2098 fallthrough;
2099 case FWS_C:
2100 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2101 int err;
2102
2103 if (w->skip) {
2104 w->skip--;
2105 goto skip;
2106 }
2107
2108 err = w->func(w);
2109 if (err)
2110 return err;
2111
2112 w->count++;
2113 continue;
2114 }
2115 skip:
2116 w->state = FWS_U;
2117 fallthrough;
2118 case FWS_U:
2119 if (fn == w->root)
2120 return 0;
2121 pn = rcu_dereference_protected(fn->parent, 1);
2122 left = rcu_dereference_protected(pn->left, 1);
2123 right = rcu_dereference_protected(pn->right, 1);
2124 w->node = pn;
2125 #ifdef CONFIG_IPV6_SUBTREES
2126 if (FIB6_SUBTREE(pn) == fn) {
2127 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2128 w->state = FWS_L;
2129 continue;
2130 }
2131 #endif
2132 if (left == fn) {
2133 w->state = FWS_R;
2134 continue;
2135 }
2136 if (right == fn) {
2137 w->state = FWS_C;
2138 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2139 continue;
2140 }
2141 #if RT6_DEBUG >= 2
2142 WARN_ON(1);
2143 #endif
2144 }
2145 }
2146 }
2147
fib6_walk(struct net * net,struct fib6_walker * w)2148 static int fib6_walk(struct net *net, struct fib6_walker *w)
2149 {
2150 int res;
2151
2152 w->state = FWS_INIT;
2153 w->node = w->root;
2154
2155 fib6_walker_link(net, w);
2156 res = fib6_walk_continue(w);
2157 if (res <= 0)
2158 fib6_walker_unlink(net, w);
2159 return res;
2160 }
2161
fib6_clean_node(struct fib6_walker * w)2162 static int fib6_clean_node(struct fib6_walker *w)
2163 {
2164 int res;
2165 struct fib6_info *rt;
2166 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2167 struct nl_info info = {
2168 .nl_net = c->net,
2169 .skip_notify = c->skip_notify,
2170 };
2171
2172 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2173 READ_ONCE(w->node->fn_sernum) != c->sernum)
2174 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2175
2176 if (!c->func) {
2177 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2178 w->leaf = NULL;
2179 return 0;
2180 }
2181
2182 for_each_fib6_walker_rt(w) {
2183 res = c->func(rt, c->arg);
2184 if (res == -1) {
2185 w->leaf = rt;
2186 res = fib6_del(rt, &info);
2187 if (res) {
2188 #if RT6_DEBUG >= 2
2189 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2190 __func__, rt,
2191 rcu_access_pointer(rt->fib6_node),
2192 res);
2193 #endif
2194 continue;
2195 }
2196 return 0;
2197 } else if (res == -2) {
2198 if (WARN_ON(!rt->fib6_nsiblings))
2199 continue;
2200 rt = list_last_entry(&rt->fib6_siblings,
2201 struct fib6_info, fib6_siblings);
2202 continue;
2203 }
2204 WARN_ON(res != 0);
2205 }
2206 w->leaf = rt;
2207 return 0;
2208 }
2209
2210 /*
2211 * Convenient frontend to tree walker.
2212 *
2213 * func is called on each route.
2214 * It may return -2 -> skip multipath route.
2215 * -1 -> delete this route.
2216 * 0 -> continue walking
2217 */
2218
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2219 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2220 int (*func)(struct fib6_info *, void *arg),
2221 int sernum, void *arg, bool skip_notify)
2222 {
2223 struct fib6_cleaner c;
2224
2225 c.w.root = root;
2226 c.w.func = fib6_clean_node;
2227 c.w.count = 0;
2228 c.w.skip = 0;
2229 c.w.skip_in_node = 0;
2230 c.func = func;
2231 c.sernum = sernum;
2232 c.arg = arg;
2233 c.net = net;
2234 c.skip_notify = skip_notify;
2235
2236 fib6_walk(net, &c.w);
2237 }
2238
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2239 static void __fib6_clean_all(struct net *net,
2240 int (*func)(struct fib6_info *, void *),
2241 int sernum, void *arg, bool skip_notify)
2242 {
2243 struct fib6_table *table;
2244 struct hlist_head *head;
2245 unsigned int h;
2246
2247 rcu_read_lock();
2248 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2249 head = &net->ipv6.fib_table_hash[h];
2250 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2251 spin_lock_bh(&table->tb6_lock);
2252 fib6_clean_tree(net, &table->tb6_root,
2253 func, sernum, arg, skip_notify);
2254 spin_unlock_bh(&table->tb6_lock);
2255 }
2256 }
2257 rcu_read_unlock();
2258 }
2259
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2260 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2261 void *arg)
2262 {
2263 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2264 }
2265
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2266 void fib6_clean_all_skip_notify(struct net *net,
2267 int (*func)(struct fib6_info *, void *),
2268 void *arg)
2269 {
2270 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2271 }
2272
fib6_flush_trees(struct net * net)2273 static void fib6_flush_trees(struct net *net)
2274 {
2275 int new_sernum = fib6_new_sernum(net);
2276
2277 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2278 }
2279
2280 /*
2281 * Garbage collection
2282 */
2283
fib6_age(struct fib6_info * rt,void * arg)2284 static int fib6_age(struct fib6_info *rt, void *arg)
2285 {
2286 struct fib6_gc_args *gc_args = arg;
2287 unsigned long now = jiffies;
2288
2289 /*
2290 * check addrconf expiration here.
2291 * Routes are expired even if they are in use.
2292 */
2293
2294 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2295 if (time_after(now, rt->expires)) {
2296 RT6_TRACE("expiring %p\n", rt);
2297 return -1;
2298 }
2299 gc_args->more++;
2300 }
2301
2302 /* Also age clones in the exception table.
2303 * Note, that clones are aged out
2304 * only if they are not in use now.
2305 */
2306 rt6_age_exceptions(rt, gc_args, now);
2307
2308 return 0;
2309 }
2310
fib6_run_gc(unsigned long expires,struct net * net,bool force)2311 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2312 {
2313 struct fib6_gc_args gc_args;
2314 unsigned long now;
2315
2316 if (force) {
2317 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2318 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2319 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2320 return;
2321 }
2322 gc_args.timeout = expires ? (int)expires :
2323 net->ipv6.sysctl.ip6_rt_gc_interval;
2324 gc_args.more = 0;
2325
2326 fib6_clean_all(net, fib6_age, &gc_args);
2327 now = jiffies;
2328 net->ipv6.ip6_rt_last_gc = now;
2329
2330 if (gc_args.more)
2331 mod_timer(&net->ipv6.ip6_fib_timer,
2332 round_jiffies(now
2333 + net->ipv6.sysctl.ip6_rt_gc_interval));
2334 else
2335 del_timer(&net->ipv6.ip6_fib_timer);
2336 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2337 }
2338
fib6_gc_timer_cb(struct timer_list * t)2339 static void fib6_gc_timer_cb(struct timer_list *t)
2340 {
2341 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2342
2343 fib6_run_gc(0, arg, true);
2344 }
2345
fib6_net_init(struct net * net)2346 static int __net_init fib6_net_init(struct net *net)
2347 {
2348 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2349 int err;
2350
2351 err = fib6_notifier_init(net);
2352 if (err)
2353 return err;
2354
2355 /* Default to 3-tuple */
2356 net->ipv6.sysctl.multipath_hash_fields =
2357 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2358
2359 spin_lock_init(&net->ipv6.fib6_gc_lock);
2360 rwlock_init(&net->ipv6.fib6_walker_lock);
2361 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2362 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2363
2364 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2365 if (!net->ipv6.rt6_stats)
2366 goto out_notifier;
2367
2368 /* Avoid false sharing : Use at least a full cache line */
2369 size = max_t(size_t, size, L1_CACHE_BYTES);
2370
2371 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2372 if (!net->ipv6.fib_table_hash)
2373 goto out_rt6_stats;
2374
2375 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2376 GFP_KERNEL);
2377 if (!net->ipv6.fib6_main_tbl)
2378 goto out_fib_table_hash;
2379
2380 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2381 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2382 net->ipv6.fib6_null_entry);
2383 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2384 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2385 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2386
2387 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2388 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2389 GFP_KERNEL);
2390 if (!net->ipv6.fib6_local_tbl)
2391 goto out_fib6_main_tbl;
2392 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2393 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2394 net->ipv6.fib6_null_entry);
2395 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2396 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2397 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2398 #endif
2399 fib6_tables_init(net);
2400
2401 return 0;
2402
2403 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2404 out_fib6_main_tbl:
2405 kfree(net->ipv6.fib6_main_tbl);
2406 #endif
2407 out_fib_table_hash:
2408 kfree(net->ipv6.fib_table_hash);
2409 out_rt6_stats:
2410 kfree(net->ipv6.rt6_stats);
2411 out_notifier:
2412 fib6_notifier_exit(net);
2413 return -ENOMEM;
2414 }
2415
fib6_net_exit(struct net * net)2416 static void fib6_net_exit(struct net *net)
2417 {
2418 unsigned int i;
2419
2420 del_timer_sync(&net->ipv6.ip6_fib_timer);
2421
2422 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2423 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2424 struct hlist_node *tmp;
2425 struct fib6_table *tb;
2426
2427 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2428 hlist_del(&tb->tb6_hlist);
2429 fib6_free_table(tb);
2430 }
2431 }
2432
2433 kfree(net->ipv6.fib_table_hash);
2434 kfree(net->ipv6.rt6_stats);
2435 fib6_notifier_exit(net);
2436 }
2437
2438 static struct pernet_operations fib6_net_ops = {
2439 .init = fib6_net_init,
2440 .exit = fib6_net_exit,
2441 };
2442
fib6_init(void)2443 int __init fib6_init(void)
2444 {
2445 int ret = -ENOMEM;
2446
2447 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2448 sizeof(struct fib6_node), 0,
2449 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2450 NULL);
2451 if (!fib6_node_kmem)
2452 goto out;
2453
2454 ret = register_pernet_subsys(&fib6_net_ops);
2455 if (ret)
2456 goto out_kmem_cache_create;
2457
2458 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2459 inet6_dump_fib, 0);
2460 if (ret)
2461 goto out_unregister_subsys;
2462
2463 __fib6_flush_trees = fib6_flush_trees;
2464 out:
2465 return ret;
2466
2467 out_unregister_subsys:
2468 unregister_pernet_subsys(&fib6_net_ops);
2469 out_kmem_cache_create:
2470 kmem_cache_destroy(fib6_node_kmem);
2471 goto out;
2472 }
2473
fib6_gc_cleanup(void)2474 void fib6_gc_cleanup(void)
2475 {
2476 unregister_pernet_subsys(&fib6_net_ops);
2477 kmem_cache_destroy(fib6_node_kmem);
2478 }
2479
2480 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2481 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2482 {
2483 struct fib6_info *rt = v;
2484 struct ipv6_route_iter *iter = seq->private;
2485 struct fib6_nh *fib6_nh = rt->fib6_nh;
2486 unsigned int flags = rt->fib6_flags;
2487 const struct net_device *dev;
2488
2489 if (rt->nh)
2490 fib6_nh = nexthop_fib6_nh(rt->nh);
2491
2492 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2493
2494 #ifdef CONFIG_IPV6_SUBTREES
2495 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2496 #else
2497 seq_puts(seq, "00000000000000000000000000000000 00 ");
2498 #endif
2499 if (fib6_nh->fib_nh_gw_family) {
2500 flags |= RTF_GATEWAY;
2501 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2502 } else {
2503 seq_puts(seq, "00000000000000000000000000000000");
2504 }
2505
2506 dev = fib6_nh->fib_nh_dev;
2507 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2508 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2509 flags, dev ? dev->name : "");
2510 iter->w.leaf = NULL;
2511 return 0;
2512 }
2513
ipv6_route_yield(struct fib6_walker * w)2514 static int ipv6_route_yield(struct fib6_walker *w)
2515 {
2516 struct ipv6_route_iter *iter = w->args;
2517
2518 if (!iter->skip)
2519 return 1;
2520
2521 do {
2522 iter->w.leaf = rcu_dereference_protected(
2523 iter->w.leaf->fib6_next,
2524 lockdep_is_held(&iter->tbl->tb6_lock));
2525 iter->skip--;
2526 if (!iter->skip && iter->w.leaf)
2527 return 1;
2528 } while (iter->w.leaf);
2529
2530 return 0;
2531 }
2532
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2533 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2534 struct net *net)
2535 {
2536 memset(&iter->w, 0, sizeof(iter->w));
2537 iter->w.func = ipv6_route_yield;
2538 iter->w.root = &iter->tbl->tb6_root;
2539 iter->w.state = FWS_INIT;
2540 iter->w.node = iter->w.root;
2541 iter->w.args = iter;
2542 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2543 INIT_LIST_HEAD(&iter->w.lh);
2544 fib6_walker_link(net, &iter->w);
2545 }
2546
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2547 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2548 struct net *net)
2549 {
2550 unsigned int h;
2551 struct hlist_node *node;
2552
2553 if (tbl) {
2554 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2555 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2556 } else {
2557 h = 0;
2558 node = NULL;
2559 }
2560
2561 while (!node && h < FIB6_TABLE_HASHSZ) {
2562 node = rcu_dereference(
2563 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2564 }
2565 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2566 }
2567
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2568 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2569 {
2570 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2571
2572 if (iter->sernum != sernum) {
2573 iter->sernum = sernum;
2574 iter->w.state = FWS_INIT;
2575 iter->w.node = iter->w.root;
2576 WARN_ON(iter->w.skip);
2577 iter->w.skip = iter->w.count;
2578 }
2579 }
2580
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2581 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2582 {
2583 int r;
2584 struct fib6_info *n;
2585 struct net *net = seq_file_net(seq);
2586 struct ipv6_route_iter *iter = seq->private;
2587
2588 ++(*pos);
2589 if (!v)
2590 goto iter_table;
2591
2592 n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2593 if (n)
2594 return n;
2595
2596 iter_table:
2597 ipv6_route_check_sernum(iter);
2598 spin_lock_bh(&iter->tbl->tb6_lock);
2599 r = fib6_walk_continue(&iter->w);
2600 spin_unlock_bh(&iter->tbl->tb6_lock);
2601 if (r > 0) {
2602 return iter->w.leaf;
2603 } else if (r < 0) {
2604 fib6_walker_unlink(net, &iter->w);
2605 return NULL;
2606 }
2607 fib6_walker_unlink(net, &iter->w);
2608
2609 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2610 if (!iter->tbl)
2611 return NULL;
2612
2613 ipv6_route_seq_setup_walk(iter, net);
2614 goto iter_table;
2615 }
2616
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2617 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2618 __acquires(RCU)
2619 {
2620 struct net *net = seq_file_net(seq);
2621 struct ipv6_route_iter *iter = seq->private;
2622
2623 rcu_read_lock();
2624 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2625 iter->skip = *pos;
2626
2627 if (iter->tbl) {
2628 loff_t p = 0;
2629
2630 ipv6_route_seq_setup_walk(iter, net);
2631 return ipv6_route_seq_next(seq, NULL, &p);
2632 } else {
2633 return NULL;
2634 }
2635 }
2636
ipv6_route_iter_active(struct ipv6_route_iter * iter)2637 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2638 {
2639 struct fib6_walker *w = &iter->w;
2640 return w->node && !(w->state == FWS_U && w->node == w->root);
2641 }
2642
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2643 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2644 __releases(RCU)
2645 {
2646 struct net *net = seq_file_net(seq);
2647 struct ipv6_route_iter *iter = seq->private;
2648
2649 if (ipv6_route_iter_active(iter))
2650 fib6_walker_unlink(net, &iter->w);
2651
2652 rcu_read_unlock();
2653 }
2654
2655 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2656 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2657 struct bpf_iter_meta *meta,
2658 void *v)
2659 {
2660 struct bpf_iter__ipv6_route ctx;
2661
2662 ctx.meta = meta;
2663 ctx.rt = v;
2664 return bpf_iter_run_prog(prog, &ctx);
2665 }
2666
ipv6_route_seq_show(struct seq_file * seq,void * v)2667 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2668 {
2669 struct ipv6_route_iter *iter = seq->private;
2670 struct bpf_iter_meta meta;
2671 struct bpf_prog *prog;
2672 int ret;
2673
2674 meta.seq = seq;
2675 prog = bpf_iter_get_info(&meta, false);
2676 if (!prog)
2677 return ipv6_route_native_seq_show(seq, v);
2678
2679 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2680 iter->w.leaf = NULL;
2681
2682 return ret;
2683 }
2684
ipv6_route_seq_stop(struct seq_file * seq,void * v)2685 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2686 {
2687 struct bpf_iter_meta meta;
2688 struct bpf_prog *prog;
2689
2690 if (!v) {
2691 meta.seq = seq;
2692 prog = bpf_iter_get_info(&meta, true);
2693 if (prog)
2694 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2695 }
2696
2697 ipv6_route_native_seq_stop(seq, v);
2698 }
2699 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2700 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2701 {
2702 return ipv6_route_native_seq_show(seq, v);
2703 }
2704
ipv6_route_seq_stop(struct seq_file * seq,void * v)2705 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2706 {
2707 ipv6_route_native_seq_stop(seq, v);
2708 }
2709 #endif
2710
2711 const struct seq_operations ipv6_route_seq_ops = {
2712 .start = ipv6_route_seq_start,
2713 .next = ipv6_route_seq_next,
2714 .stop = ipv6_route_seq_stop,
2715 .show = ipv6_route_seq_show
2716 };
2717 #endif /* CONFIG_PROC_FS */
2718