1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
fib6_walker_link(struct net * net,struct fib6_walker * w)78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
fib6_walker_unlink(struct net * net,struct fib6_walker * w)85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
fib6_new_sernum(struct net * net)92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
fib6_update_sernum(struct net * net,struct fib6_info * f6i)107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
addr_bit_set(const void * token,int fn_bit)133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	return f6i;
164 }
165 
fib6_info_destroy_rcu(struct rcu_head * head)166 void fib6_info_destroy_rcu(struct rcu_head *head)
167 {
168 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
169 
170 	WARN_ON(f6i->fib6_node);
171 
172 	if (f6i->nh)
173 		nexthop_put(f6i->nh);
174 	else
175 		fib6_nh_release(f6i->fib6_nh);
176 
177 	ip_fib_metrics_put(f6i->fib6_metrics);
178 	kfree(f6i);
179 }
180 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
181 
node_alloc(struct net * net)182 static struct fib6_node *node_alloc(struct net *net)
183 {
184 	struct fib6_node *fn;
185 
186 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
187 	if (fn)
188 		net->ipv6.rt6_stats->fib_nodes++;
189 
190 	return fn;
191 }
192 
node_free_immediate(struct net * net,struct fib6_node * fn)193 static void node_free_immediate(struct net *net, struct fib6_node *fn)
194 {
195 	kmem_cache_free(fib6_node_kmem, fn);
196 	net->ipv6.rt6_stats->fib_nodes--;
197 }
198 
node_free_rcu(struct rcu_head * head)199 static void node_free_rcu(struct rcu_head *head)
200 {
201 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
202 
203 	kmem_cache_free(fib6_node_kmem, fn);
204 }
205 
node_free(struct net * net,struct fib6_node * fn)206 static void node_free(struct net *net, struct fib6_node *fn)
207 {
208 	call_rcu(&fn->rcu, node_free_rcu);
209 	net->ipv6.rt6_stats->fib_nodes--;
210 }
211 
fib6_free_table(struct fib6_table * table)212 static void fib6_free_table(struct fib6_table *table)
213 {
214 	inetpeer_invalidate_tree(&table->tb6_peers);
215 	kfree(table);
216 }
217 
fib6_link_table(struct net * net,struct fib6_table * tb)218 static void fib6_link_table(struct net *net, struct fib6_table *tb)
219 {
220 	unsigned int h;
221 
222 	/*
223 	 * Initialize table lock at a single place to give lockdep a key,
224 	 * tables aren't visible prior to being linked to the list.
225 	 */
226 	spin_lock_init(&tb->tb6_lock);
227 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
228 
229 	/*
230 	 * No protection necessary, this is the only list mutatation
231 	 * operation, tables never disappear once they exist.
232 	 */
233 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
234 }
235 
236 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
237 
fib6_alloc_table(struct net * net,u32 id)238 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
239 {
240 	struct fib6_table *table;
241 
242 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
243 	if (table) {
244 		table->tb6_id = id;
245 		rcu_assign_pointer(table->tb6_root.leaf,
246 				   net->ipv6.fib6_null_entry);
247 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
248 		inet_peer_base_init(&table->tb6_peers);
249 	}
250 
251 	return table;
252 }
253 
fib6_new_table(struct net * net,u32 id)254 struct fib6_table *fib6_new_table(struct net *net, u32 id)
255 {
256 	struct fib6_table *tb;
257 
258 	if (id == 0)
259 		id = RT6_TABLE_MAIN;
260 	tb = fib6_get_table(net, id);
261 	if (tb)
262 		return tb;
263 
264 	tb = fib6_alloc_table(net, id);
265 	if (tb)
266 		fib6_link_table(net, tb);
267 
268 	return tb;
269 }
270 EXPORT_SYMBOL_GPL(fib6_new_table);
271 
fib6_get_table(struct net * net,u32 id)272 struct fib6_table *fib6_get_table(struct net *net, u32 id)
273 {
274 	struct fib6_table *tb;
275 	struct hlist_head *head;
276 	unsigned int h;
277 
278 	if (id == 0)
279 		id = RT6_TABLE_MAIN;
280 	h = id & (FIB6_TABLE_HASHSZ - 1);
281 	rcu_read_lock();
282 	head = &net->ipv6.fib_table_hash[h];
283 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
284 		if (tb->tb6_id == id) {
285 			rcu_read_unlock();
286 			return tb;
287 		}
288 	}
289 	rcu_read_unlock();
290 
291 	return NULL;
292 }
293 EXPORT_SYMBOL_GPL(fib6_get_table);
294 
fib6_tables_init(struct net * net)295 static void __net_init fib6_tables_init(struct net *net)
296 {
297 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
298 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
299 }
300 #else
301 
fib6_new_table(struct net * net,u32 id)302 struct fib6_table *fib6_new_table(struct net *net, u32 id)
303 {
304 	return fib6_get_table(net, id);
305 }
306 
fib6_get_table(struct net * net,u32 id)307 struct fib6_table *fib6_get_table(struct net *net, u32 id)
308 {
309 	  return net->ipv6.fib6_main_tbl;
310 }
311 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)312 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
313 				   const struct sk_buff *skb,
314 				   int flags, pol_lookup_t lookup)
315 {
316 	struct rt6_info *rt;
317 
318 	rt = pol_lookup_func(lookup,
319 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
320 	if (rt->dst.error == -EAGAIN) {
321 		ip6_rt_put_flags(rt, flags);
322 		rt = net->ipv6.ip6_null_entry;
323 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
324 			dst_hold(&rt->dst);
325 	}
326 
327 	return &rt->dst;
328 }
329 
330 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)331 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
332 		struct fib6_result *res, int flags)
333 {
334 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
335 				 res, flags);
336 }
337 
fib6_tables_init(struct net * net)338 static void __net_init fib6_tables_init(struct net *net)
339 {
340 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
341 }
342 
343 #endif
344 
fib6_tables_seq_read(struct net * net)345 unsigned int fib6_tables_seq_read(struct net *net)
346 {
347 	unsigned int h, fib_seq = 0;
348 
349 	rcu_read_lock();
350 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
351 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
352 		struct fib6_table *tb;
353 
354 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
355 			fib_seq += tb->fib_seq;
356 	}
357 	rcu_read_unlock();
358 
359 	return fib_seq;
360 }
361 
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)362 static int call_fib6_entry_notifier(struct notifier_block *nb,
363 				    enum fib_event_type event_type,
364 				    struct fib6_info *rt,
365 				    struct netlink_ext_ack *extack)
366 {
367 	struct fib6_entry_notifier_info info = {
368 		.info.extack = extack,
369 		.rt = rt,
370 	};
371 
372 	return call_fib6_notifier(nb, event_type, &info.info);
373 }
374 
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)375 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
376 					      enum fib_event_type event_type,
377 					      struct fib6_info *rt,
378 					      unsigned int nsiblings,
379 					      struct netlink_ext_ack *extack)
380 {
381 	struct fib6_entry_notifier_info info = {
382 		.info.extack = extack,
383 		.rt = rt,
384 		.nsiblings = nsiblings,
385 	};
386 
387 	return call_fib6_notifier(nb, event_type, &info.info);
388 }
389 
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)390 int call_fib6_entry_notifiers(struct net *net,
391 			      enum fib_event_type event_type,
392 			      struct fib6_info *rt,
393 			      struct netlink_ext_ack *extack)
394 {
395 	struct fib6_entry_notifier_info info = {
396 		.info.extack = extack,
397 		.rt = rt,
398 	};
399 
400 	rt->fib6_table->fib_seq++;
401 	return call_fib6_notifiers(net, event_type, &info.info);
402 }
403 
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)404 int call_fib6_multipath_entry_notifiers(struct net *net,
405 					enum fib_event_type event_type,
406 					struct fib6_info *rt,
407 					unsigned int nsiblings,
408 					struct netlink_ext_ack *extack)
409 {
410 	struct fib6_entry_notifier_info info = {
411 		.info.extack = extack,
412 		.rt = rt,
413 		.nsiblings = nsiblings,
414 	};
415 
416 	rt->fib6_table->fib_seq++;
417 	return call_fib6_notifiers(net, event_type, &info.info);
418 }
419 
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)420 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
421 {
422 	struct fib6_entry_notifier_info info = {
423 		.rt = rt,
424 		.nsiblings = rt->fib6_nsiblings,
425 	};
426 
427 	rt->fib6_table->fib_seq++;
428 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
429 }
430 
431 struct fib6_dump_arg {
432 	struct net *net;
433 	struct notifier_block *nb;
434 	struct netlink_ext_ack *extack;
435 };
436 
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)437 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
438 {
439 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
440 	int err;
441 
442 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
443 		return 0;
444 
445 	if (rt->fib6_nsiblings)
446 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
447 							 rt,
448 							 rt->fib6_nsiblings,
449 							 arg->extack);
450 	else
451 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
452 					       arg->extack);
453 
454 	return err;
455 }
456 
fib6_node_dump(struct fib6_walker * w)457 static int fib6_node_dump(struct fib6_walker *w)
458 {
459 	int err;
460 
461 	err = fib6_rt_dump(w->leaf, w->args);
462 	w->leaf = NULL;
463 	return err;
464 }
465 
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)466 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
467 			   struct fib6_walker *w)
468 {
469 	int err;
470 
471 	w->root = &tb->tb6_root;
472 	spin_lock_bh(&tb->tb6_lock);
473 	err = fib6_walk(net, w);
474 	spin_unlock_bh(&tb->tb6_lock);
475 	return err;
476 }
477 
478 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)479 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
480 		     struct netlink_ext_ack *extack)
481 {
482 	struct fib6_dump_arg arg;
483 	struct fib6_walker *w;
484 	unsigned int h;
485 	int err = 0;
486 
487 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
488 	if (!w)
489 		return -ENOMEM;
490 
491 	w->func = fib6_node_dump;
492 	arg.net = net;
493 	arg.nb = nb;
494 	arg.extack = extack;
495 	w->args = &arg;
496 
497 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
498 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
499 		struct fib6_table *tb;
500 
501 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
502 			err = fib6_table_dump(net, tb, w);
503 			if (err)
504 				goto out;
505 		}
506 	}
507 
508 out:
509 	kfree(w);
510 
511 	/* The tree traversal function should never return a positive value. */
512 	return err > 0 ? -EINVAL : err;
513 }
514 
fib6_dump_node(struct fib6_walker * w)515 static int fib6_dump_node(struct fib6_walker *w)
516 {
517 	int res;
518 	struct fib6_info *rt;
519 
520 	for_each_fib6_walker_rt(w) {
521 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
522 		if (res >= 0) {
523 			/* Frame is full, suspend walking */
524 			w->leaf = rt;
525 
526 			/* We'll restart from this node, so if some routes were
527 			 * already dumped, skip them next time.
528 			 */
529 			w->skip_in_node += res;
530 
531 			return 1;
532 		}
533 		w->skip_in_node = 0;
534 
535 		/* Multipath routes are dumped in one route with the
536 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
537 		 * last sibling of this route (no need to dump the
538 		 * sibling routes again)
539 		 */
540 		if (rt->fib6_nsiblings)
541 			rt = list_last_entry(&rt->fib6_siblings,
542 					     struct fib6_info,
543 					     fib6_siblings);
544 	}
545 	w->leaf = NULL;
546 	return 0;
547 }
548 
fib6_dump_end(struct netlink_callback * cb)549 static void fib6_dump_end(struct netlink_callback *cb)
550 {
551 	struct net *net = sock_net(cb->skb->sk);
552 	struct fib6_walker *w = (void *)cb->args[2];
553 
554 	if (w) {
555 		if (cb->args[4]) {
556 			cb->args[4] = 0;
557 			fib6_walker_unlink(net, w);
558 		}
559 		cb->args[2] = 0;
560 		kfree(w);
561 	}
562 	cb->done = (void *)cb->args[3];
563 	cb->args[1] = 3;
564 }
565 
fib6_dump_done(struct netlink_callback * cb)566 static int fib6_dump_done(struct netlink_callback *cb)
567 {
568 	fib6_dump_end(cb);
569 	return cb->done ? cb->done(cb) : 0;
570 }
571 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)572 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
573 			   struct netlink_callback *cb)
574 {
575 	struct net *net = sock_net(skb->sk);
576 	struct fib6_walker *w;
577 	int res;
578 
579 	w = (void *)cb->args[2];
580 	w->root = &table->tb6_root;
581 
582 	if (cb->args[4] == 0) {
583 		w->count = 0;
584 		w->skip = 0;
585 		w->skip_in_node = 0;
586 
587 		spin_lock_bh(&table->tb6_lock);
588 		res = fib6_walk(net, w);
589 		spin_unlock_bh(&table->tb6_lock);
590 		if (res > 0) {
591 			cb->args[4] = 1;
592 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
593 		}
594 	} else {
595 		int sernum = READ_ONCE(w->root->fn_sernum);
596 		if (cb->args[5] != sernum) {
597 			/* Begin at the root if the tree changed */
598 			cb->args[5] = sernum;
599 			w->state = FWS_INIT;
600 			w->node = w->root;
601 			w->skip = w->count;
602 			w->skip_in_node = 0;
603 		} else
604 			w->skip = 0;
605 
606 		spin_lock_bh(&table->tb6_lock);
607 		res = fib6_walk_continue(w);
608 		spin_unlock_bh(&table->tb6_lock);
609 		if (res <= 0) {
610 			fib6_walker_unlink(net, w);
611 			cb->args[4] = 0;
612 		}
613 	}
614 
615 	return res;
616 }
617 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)618 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
619 {
620 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
621 					 .filter.dump_routes = true };
622 	const struct nlmsghdr *nlh = cb->nlh;
623 	struct net *net = sock_net(skb->sk);
624 	unsigned int h, s_h;
625 	unsigned int e = 0, s_e;
626 	struct fib6_walker *w;
627 	struct fib6_table *tb;
628 	struct hlist_head *head;
629 	int res = 0;
630 
631 	if (cb->strict_check) {
632 		int err;
633 
634 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
635 		if (err < 0)
636 			return err;
637 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
638 		struct rtmsg *rtm = nlmsg_data(nlh);
639 
640 		if (rtm->rtm_flags & RTM_F_PREFIX)
641 			arg.filter.flags = RTM_F_PREFIX;
642 	}
643 
644 	w = (void *)cb->args[2];
645 	if (!w) {
646 		/* New dump:
647 		 *
648 		 * 1. hook callback destructor.
649 		 */
650 		cb->args[3] = (long)cb->done;
651 		cb->done = fib6_dump_done;
652 
653 		/*
654 		 * 2. allocate and initialize walker.
655 		 */
656 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
657 		if (!w)
658 			return -ENOMEM;
659 		w->func = fib6_dump_node;
660 		cb->args[2] = (long)w;
661 	}
662 
663 	arg.skb = skb;
664 	arg.cb = cb;
665 	arg.net = net;
666 	w->args = &arg;
667 
668 	if (arg.filter.table_id) {
669 		tb = fib6_get_table(net, arg.filter.table_id);
670 		if (!tb) {
671 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 				goto out;
673 
674 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 			return -ENOENT;
676 		}
677 
678 		if (!cb->args[0]) {
679 			res = fib6_dump_table(tb, skb, cb);
680 			if (!res)
681 				cb->args[0] = 1;
682 		}
683 		goto out;
684 	}
685 
686 	s_h = cb->args[0];
687 	s_e = cb->args[1];
688 
689 	rcu_read_lock();
690 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 		e = 0;
692 		head = &net->ipv6.fib_table_hash[h];
693 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 			if (e < s_e)
695 				goto next;
696 			res = fib6_dump_table(tb, skb, cb);
697 			if (res != 0)
698 				goto out_unlock;
699 next:
700 			e++;
701 		}
702 	}
703 out_unlock:
704 	rcu_read_unlock();
705 	cb->args[1] = e;
706 	cb->args[0] = h;
707 out:
708 	res = res < 0 ? res : skb->len;
709 	if (res <= 0)
710 		fib6_dump_end(cb);
711 	return res;
712 }
713 
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)714 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
715 {
716 	if (!f6i)
717 		return;
718 
719 	if (f6i->fib6_metrics == &dst_default_metrics) {
720 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
721 
722 		if (!p)
723 			return;
724 
725 		refcount_set(&p->refcnt, 1);
726 		f6i->fib6_metrics = p;
727 	}
728 
729 	f6i->fib6_metrics->metrics[metric - 1] = val;
730 }
731 
732 /*
733  *	Routing Table
734  *
735  *	return the appropriate node for a routing tree "add" operation
736  *	by either creating and inserting or by returning an existing
737  *	node.
738  */
739 
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)740 static struct fib6_node *fib6_add_1(struct net *net,
741 				    struct fib6_table *table,
742 				    struct fib6_node *root,
743 				    struct in6_addr *addr, int plen,
744 				    int offset, int allow_create,
745 				    int replace_required,
746 				    struct netlink_ext_ack *extack)
747 {
748 	struct fib6_node *fn, *in, *ln;
749 	struct fib6_node *pn = NULL;
750 	struct rt6key *key;
751 	int	bit;
752 	__be32	dir = 0;
753 
754 	RT6_TRACE("fib6_add_1\n");
755 
756 	/* insert node in tree */
757 
758 	fn = root;
759 
760 	do {
761 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
762 					    lockdep_is_held(&table->tb6_lock));
763 		key = (struct rt6key *)((u8 *)leaf + offset);
764 
765 		/*
766 		 *	Prefix match
767 		 */
768 		if (plen < fn->fn_bit ||
769 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
770 			if (!allow_create) {
771 				if (replace_required) {
772 					NL_SET_ERR_MSG(extack,
773 						       "Can not replace route - no match found");
774 					pr_warn("Can't replace route, no match found\n");
775 					return ERR_PTR(-ENOENT);
776 				}
777 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
778 			}
779 			goto insert_above;
780 		}
781 
782 		/*
783 		 *	Exact match ?
784 		 */
785 
786 		if (plen == fn->fn_bit) {
787 			/* clean up an intermediate node */
788 			if (!(fn->fn_flags & RTN_RTINFO)) {
789 				RCU_INIT_POINTER(fn->leaf, NULL);
790 				fib6_info_release(leaf);
791 			/* remove null_entry in the root node */
792 			} else if (fn->fn_flags & RTN_TL_ROOT &&
793 				   rcu_access_pointer(fn->leaf) ==
794 				   net->ipv6.fib6_null_entry) {
795 				RCU_INIT_POINTER(fn->leaf, NULL);
796 			}
797 
798 			return fn;
799 		}
800 
801 		/*
802 		 *	We have more bits to go
803 		 */
804 
805 		/* Try to walk down on tree. */
806 		dir = addr_bit_set(addr, fn->fn_bit);
807 		pn = fn;
808 		fn = dir ?
809 		     rcu_dereference_protected(fn->right,
810 					lockdep_is_held(&table->tb6_lock)) :
811 		     rcu_dereference_protected(fn->left,
812 					lockdep_is_held(&table->tb6_lock));
813 	} while (fn);
814 
815 	if (!allow_create) {
816 		/* We should not create new node because
817 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
818 		 * I assume it is safe to require NLM_F_CREATE when
819 		 * REPLACE flag is used! Later we may want to remove the
820 		 * check for replace_required, because according
821 		 * to netlink specification, NLM_F_CREATE
822 		 * MUST be specified if new route is created.
823 		 * That would keep IPv6 consistent with IPv4
824 		 */
825 		if (replace_required) {
826 			NL_SET_ERR_MSG(extack,
827 				       "Can not replace route - no match found");
828 			pr_warn("Can't replace route, no match found\n");
829 			return ERR_PTR(-ENOENT);
830 		}
831 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
832 	}
833 	/*
834 	 *	We walked to the bottom of tree.
835 	 *	Create new leaf node without children.
836 	 */
837 
838 	ln = node_alloc(net);
839 
840 	if (!ln)
841 		return ERR_PTR(-ENOMEM);
842 	ln->fn_bit = plen;
843 	RCU_INIT_POINTER(ln->parent, pn);
844 
845 	if (dir)
846 		rcu_assign_pointer(pn->right, ln);
847 	else
848 		rcu_assign_pointer(pn->left, ln);
849 
850 	return ln;
851 
852 
853 insert_above:
854 	/*
855 	 * split since we don't have a common prefix anymore or
856 	 * we have a less significant route.
857 	 * we've to insert an intermediate node on the list
858 	 * this new node will point to the one we need to create
859 	 * and the current
860 	 */
861 
862 	pn = rcu_dereference_protected(fn->parent,
863 				       lockdep_is_held(&table->tb6_lock));
864 
865 	/* find 1st bit in difference between the 2 addrs.
866 
867 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
868 	   but if it is >= plen, the value is ignored in any case.
869 	 */
870 
871 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
872 
873 	/*
874 	 *		(intermediate)[in]
875 	 *	          /	   \
876 	 *	(new leaf node)[ln] (old node)[fn]
877 	 */
878 	if (plen > bit) {
879 		in = node_alloc(net);
880 		ln = node_alloc(net);
881 
882 		if (!in || !ln) {
883 			if (in)
884 				node_free_immediate(net, in);
885 			if (ln)
886 				node_free_immediate(net, ln);
887 			return ERR_PTR(-ENOMEM);
888 		}
889 
890 		/*
891 		 * new intermediate node.
892 		 * RTN_RTINFO will
893 		 * be off since that an address that chooses one of
894 		 * the branches would not match less specific routes
895 		 * in the other branch
896 		 */
897 
898 		in->fn_bit = bit;
899 
900 		RCU_INIT_POINTER(in->parent, pn);
901 		in->leaf = fn->leaf;
902 		fib6_info_hold(rcu_dereference_protected(in->leaf,
903 				lockdep_is_held(&table->tb6_lock)));
904 
905 		/* update parent pointer */
906 		if (dir)
907 			rcu_assign_pointer(pn->right, in);
908 		else
909 			rcu_assign_pointer(pn->left, in);
910 
911 		ln->fn_bit = plen;
912 
913 		RCU_INIT_POINTER(ln->parent, in);
914 		rcu_assign_pointer(fn->parent, in);
915 
916 		if (addr_bit_set(addr, bit)) {
917 			rcu_assign_pointer(in->right, ln);
918 			rcu_assign_pointer(in->left, fn);
919 		} else {
920 			rcu_assign_pointer(in->left, ln);
921 			rcu_assign_pointer(in->right, fn);
922 		}
923 	} else { /* plen <= bit */
924 
925 		/*
926 		 *		(new leaf node)[ln]
927 		 *	          /	   \
928 		 *	     (old node)[fn] NULL
929 		 */
930 
931 		ln = node_alloc(net);
932 
933 		if (!ln)
934 			return ERR_PTR(-ENOMEM);
935 
936 		ln->fn_bit = plen;
937 
938 		RCU_INIT_POINTER(ln->parent, pn);
939 
940 		if (addr_bit_set(&key->addr, plen))
941 			RCU_INIT_POINTER(ln->right, fn);
942 		else
943 			RCU_INIT_POINTER(ln->left, fn);
944 
945 		rcu_assign_pointer(fn->parent, ln);
946 
947 		if (dir)
948 			rcu_assign_pointer(pn->right, ln);
949 		else
950 			rcu_assign_pointer(pn->left, ln);
951 	}
952 	return ln;
953 }
954 
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)955 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
956 				  const struct fib6_info *match,
957 				  const struct fib6_table *table)
958 {
959 	int cpu;
960 
961 	if (!fib6_nh->rt6i_pcpu)
962 		return;
963 
964 	/* release the reference to this fib entry from
965 	 * all of its cached pcpu routes
966 	 */
967 	for_each_possible_cpu(cpu) {
968 		struct rt6_info **ppcpu_rt;
969 		struct rt6_info *pcpu_rt;
970 
971 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
972 		pcpu_rt = *ppcpu_rt;
973 
974 		/* only dropping the 'from' reference if the cached route
975 		 * is using 'match'. The cached pcpu_rt->from only changes
976 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
977 		 * change from one fib6_info reference to another
978 		 */
979 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
980 			struct fib6_info *from;
981 
982 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
983 			fib6_info_release(from);
984 		}
985 	}
986 }
987 
988 struct fib6_nh_pcpu_arg {
989 	struct fib6_info	*from;
990 	const struct fib6_table *table;
991 };
992 
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)993 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
994 {
995 	struct fib6_nh_pcpu_arg *arg = _arg;
996 
997 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
998 	return 0;
999 }
1000 
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)1001 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1002 				const struct fib6_table *table)
1003 {
1004 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1005 	 * while we are cleaning them here.
1006 	 */
1007 	f6i->fib6_destroying = 1;
1008 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1009 
1010 	if (f6i->nh) {
1011 		struct fib6_nh_pcpu_arg arg = {
1012 			.from = f6i,
1013 			.table = table
1014 		};
1015 
1016 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1017 					 &arg);
1018 	} else {
1019 		struct fib6_nh *fib6_nh;
1020 
1021 		fib6_nh = f6i->fib6_nh;
1022 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1023 	}
1024 }
1025 
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1026 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1027 			  struct net *net)
1028 {
1029 	struct fib6_table *table = rt->fib6_table;
1030 
1031 	/* Flush all cached dst in exception table */
1032 	rt6_flush_exceptions(rt);
1033 	fib6_drop_pcpu_from(rt, table);
1034 
1035 	if (rt->nh && !list_empty(&rt->nh_list))
1036 		list_del_init(&rt->nh_list);
1037 
1038 	if (refcount_read(&rt->fib6_ref) != 1) {
1039 		/* This route is used as dummy address holder in some split
1040 		 * nodes. It is not leaked, but it still holds other resources,
1041 		 * which must be released in time. So, scan ascendant nodes
1042 		 * and replace dummy references to this route with references
1043 		 * to still alive ones.
1044 		 */
1045 		while (fn) {
1046 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1047 					    lockdep_is_held(&table->tb6_lock));
1048 			struct fib6_info *new_leaf;
1049 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1050 				new_leaf = fib6_find_prefix(net, table, fn);
1051 				fib6_info_hold(new_leaf);
1052 
1053 				rcu_assign_pointer(fn->leaf, new_leaf);
1054 				fib6_info_release(rt);
1055 			}
1056 			fn = rcu_dereference_protected(fn->parent,
1057 				    lockdep_is_held(&table->tb6_lock));
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  *	Insert routing information in a node.
1064  */
1065 
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1066 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1067 			    struct nl_info *info,
1068 			    struct netlink_ext_ack *extack)
1069 {
1070 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1071 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1072 	struct fib6_info *iter = NULL;
1073 	struct fib6_info __rcu **ins;
1074 	struct fib6_info __rcu **fallback_ins = NULL;
1075 	int replace = (info->nlh &&
1076 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1077 	int add = (!info->nlh ||
1078 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1079 	int found = 0;
1080 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1081 	bool notify_sibling_rt = false;
1082 	u16 nlflags = NLM_F_EXCL;
1083 	int err;
1084 
1085 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1086 		nlflags |= NLM_F_APPEND;
1087 
1088 	ins = &fn->leaf;
1089 
1090 	for (iter = leaf; iter;
1091 	     iter = rcu_dereference_protected(iter->fib6_next,
1092 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1093 		/*
1094 		 *	Search for duplicates
1095 		 */
1096 
1097 		if (iter->fib6_metric == rt->fib6_metric) {
1098 			/*
1099 			 *	Same priority level
1100 			 */
1101 			if (info->nlh &&
1102 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1103 				return -EEXIST;
1104 
1105 			nlflags &= ~NLM_F_EXCL;
1106 			if (replace) {
1107 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1108 					found++;
1109 					break;
1110 				}
1111 				fallback_ins = fallback_ins ?: ins;
1112 				goto next_iter;
1113 			}
1114 
1115 			if (rt6_duplicate_nexthop(iter, rt)) {
1116 				if (rt->fib6_nsiblings)
1117 					rt->fib6_nsiblings = 0;
1118 				if (!(iter->fib6_flags & RTF_EXPIRES))
1119 					return -EEXIST;
1120 				if (!(rt->fib6_flags & RTF_EXPIRES))
1121 					fib6_clean_expires(iter);
1122 				else
1123 					fib6_set_expires(iter, rt->expires);
1124 
1125 				if (rt->fib6_pmtu)
1126 					fib6_metric_set(iter, RTAX_MTU,
1127 							rt->fib6_pmtu);
1128 				return -EEXIST;
1129 			}
1130 			/* If we have the same destination and the same metric,
1131 			 * but not the same gateway, then the route we try to
1132 			 * add is sibling to this route, increment our counter
1133 			 * of siblings, and later we will add our route to the
1134 			 * list.
1135 			 * Only static routes (which don't have flag
1136 			 * RTF_EXPIRES) are used for ECMPv6.
1137 			 *
1138 			 * To avoid long list, we only had siblings if the
1139 			 * route have a gateway.
1140 			 */
1141 			if (rt_can_ecmp &&
1142 			    rt6_qualify_for_ecmp(iter))
1143 				rt->fib6_nsiblings++;
1144 		}
1145 
1146 		if (iter->fib6_metric > rt->fib6_metric)
1147 			break;
1148 
1149 next_iter:
1150 		ins = &iter->fib6_next;
1151 	}
1152 
1153 	if (fallback_ins && !found) {
1154 		/* No matching route with same ecmp-able-ness found, replace
1155 		 * first matching route
1156 		 */
1157 		ins = fallback_ins;
1158 		iter = rcu_dereference_protected(*ins,
1159 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1160 		found++;
1161 	}
1162 
1163 	/* Reset round-robin state, if necessary */
1164 	if (ins == &fn->leaf)
1165 		fn->rr_ptr = NULL;
1166 
1167 	/* Link this route to others same route. */
1168 	if (rt->fib6_nsiblings) {
1169 		unsigned int fib6_nsiblings;
1170 		struct fib6_info *sibling, *temp_sibling;
1171 
1172 		/* Find the first route that have the same metric */
1173 		sibling = leaf;
1174 		notify_sibling_rt = true;
1175 		while (sibling) {
1176 			if (sibling->fib6_metric == rt->fib6_metric &&
1177 			    rt6_qualify_for_ecmp(sibling)) {
1178 				list_add_tail(&rt->fib6_siblings,
1179 					      &sibling->fib6_siblings);
1180 				break;
1181 			}
1182 			sibling = rcu_dereference_protected(sibling->fib6_next,
1183 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1184 			notify_sibling_rt = false;
1185 		}
1186 		/* For each sibling in the list, increment the counter of
1187 		 * siblings. BUG() if counters does not match, list of siblings
1188 		 * is broken!
1189 		 */
1190 		fib6_nsiblings = 0;
1191 		list_for_each_entry_safe(sibling, temp_sibling,
1192 					 &rt->fib6_siblings, fib6_siblings) {
1193 			sibling->fib6_nsiblings++;
1194 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1195 			fib6_nsiblings++;
1196 		}
1197 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1198 		rt6_multipath_rebalance(temp_sibling);
1199 	}
1200 
1201 	/*
1202 	 *	insert node
1203 	 */
1204 	if (!replace) {
1205 		if (!add)
1206 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1207 
1208 add:
1209 		nlflags |= NLM_F_CREATE;
1210 
1211 		/* The route should only be notified if it is the first
1212 		 * route in the node or if it is added as a sibling
1213 		 * route to the first route in the node.
1214 		 */
1215 		if (!info->skip_notify_kernel &&
1216 		    (notify_sibling_rt || ins == &fn->leaf)) {
1217 			enum fib_event_type fib_event;
1218 
1219 			if (notify_sibling_rt)
1220 				fib_event = FIB_EVENT_ENTRY_APPEND;
1221 			else
1222 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1223 			err = call_fib6_entry_notifiers(info->nl_net,
1224 							fib_event, rt,
1225 							extack);
1226 			if (err) {
1227 				struct fib6_info *sibling, *next_sibling;
1228 
1229 				/* If the route has siblings, then it first
1230 				 * needs to be unlinked from them.
1231 				 */
1232 				if (!rt->fib6_nsiblings)
1233 					return err;
1234 
1235 				list_for_each_entry_safe(sibling, next_sibling,
1236 							 &rt->fib6_siblings,
1237 							 fib6_siblings)
1238 					sibling->fib6_nsiblings--;
1239 				rt->fib6_nsiblings = 0;
1240 				list_del_init(&rt->fib6_siblings);
1241 				rt6_multipath_rebalance(next_sibling);
1242 				return err;
1243 			}
1244 		}
1245 
1246 		rcu_assign_pointer(rt->fib6_next, iter);
1247 		fib6_info_hold(rt);
1248 		rcu_assign_pointer(rt->fib6_node, fn);
1249 		rcu_assign_pointer(*ins, rt);
1250 		if (!info->skip_notify)
1251 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1252 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1253 
1254 		if (!(fn->fn_flags & RTN_RTINFO)) {
1255 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1256 			fn->fn_flags |= RTN_RTINFO;
1257 		}
1258 
1259 	} else {
1260 		int nsiblings;
1261 
1262 		if (!found) {
1263 			if (add)
1264 				goto add;
1265 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1266 			return -ENOENT;
1267 		}
1268 
1269 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1270 			err = call_fib6_entry_notifiers(info->nl_net,
1271 							FIB_EVENT_ENTRY_REPLACE,
1272 							rt, extack);
1273 			if (err)
1274 				return err;
1275 		}
1276 
1277 		fib6_info_hold(rt);
1278 		rcu_assign_pointer(rt->fib6_node, fn);
1279 		rt->fib6_next = iter->fib6_next;
1280 		rcu_assign_pointer(*ins, rt);
1281 		if (!info->skip_notify)
1282 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1283 		if (!(fn->fn_flags & RTN_RTINFO)) {
1284 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1285 			fn->fn_flags |= RTN_RTINFO;
1286 		}
1287 		nsiblings = iter->fib6_nsiblings;
1288 		iter->fib6_node = NULL;
1289 		fib6_purge_rt(iter, fn, info->nl_net);
1290 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1291 			fn->rr_ptr = NULL;
1292 		fib6_info_release(iter);
1293 
1294 		if (nsiblings) {
1295 			/* Replacing an ECMP route, remove all siblings */
1296 			ins = &rt->fib6_next;
1297 			iter = rcu_dereference_protected(*ins,
1298 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1299 			while (iter) {
1300 				if (iter->fib6_metric > rt->fib6_metric)
1301 					break;
1302 				if (rt6_qualify_for_ecmp(iter)) {
1303 					*ins = iter->fib6_next;
1304 					iter->fib6_node = NULL;
1305 					fib6_purge_rt(iter, fn, info->nl_net);
1306 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1307 						fn->rr_ptr = NULL;
1308 					fib6_info_release(iter);
1309 					nsiblings--;
1310 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1311 				} else {
1312 					ins = &iter->fib6_next;
1313 				}
1314 				iter = rcu_dereference_protected(*ins,
1315 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1316 			}
1317 			WARN_ON(nsiblings != 0);
1318 		}
1319 	}
1320 
1321 	return 0;
1322 }
1323 
fib6_start_gc(struct net * net,struct fib6_info * rt)1324 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1325 {
1326 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1327 	    (rt->fib6_flags & RTF_EXPIRES))
1328 		mod_timer(&net->ipv6.ip6_fib_timer,
1329 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1330 }
1331 
fib6_force_start_gc(struct net * net)1332 void fib6_force_start_gc(struct net *net)
1333 {
1334 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1335 		mod_timer(&net->ipv6.ip6_fib_timer,
1336 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1337 }
1338 
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1339 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1340 					   int sernum)
1341 {
1342 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1343 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1344 
1345 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1346 	smp_wmb();
1347 	while (fn) {
1348 		WRITE_ONCE(fn->fn_sernum, sernum);
1349 		fn = rcu_dereference_protected(fn->parent,
1350 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1351 	}
1352 }
1353 
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1354 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1355 {
1356 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1357 }
1358 
1359 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1360 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1361 {
1362 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1363 	fib6_update_sernum_upto_root(net, f6i);
1364 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1365 }
1366 
1367 /*
1368  *	Add routing information to the routing tree.
1369  *	<destination addr>/<source addr>
1370  *	with source addr info in sub-trees
1371  *	Need to own table->tb6_lock
1372  */
1373 
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1374 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1375 	     struct nl_info *info, struct netlink_ext_ack *extack)
1376 {
1377 	struct fib6_table *table = rt->fib6_table;
1378 	struct fib6_node *fn, *pn = NULL;
1379 	int err = -ENOMEM;
1380 	int allow_create = 1;
1381 	int replace_required = 0;
1382 
1383 	if (info->nlh) {
1384 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1385 			allow_create = 0;
1386 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1387 			replace_required = 1;
1388 	}
1389 	if (!allow_create && !replace_required)
1390 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1391 
1392 	fn = fib6_add_1(info->nl_net, table, root,
1393 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1394 			offsetof(struct fib6_info, fib6_dst), allow_create,
1395 			replace_required, extack);
1396 	if (IS_ERR(fn)) {
1397 		err = PTR_ERR(fn);
1398 		fn = NULL;
1399 		goto out;
1400 	}
1401 
1402 	pn = fn;
1403 
1404 #ifdef CONFIG_IPV6_SUBTREES
1405 	if (rt->fib6_src.plen) {
1406 		struct fib6_node *sn;
1407 
1408 		if (!rcu_access_pointer(fn->subtree)) {
1409 			struct fib6_node *sfn;
1410 
1411 			/*
1412 			 * Create subtree.
1413 			 *
1414 			 *		fn[main tree]
1415 			 *		|
1416 			 *		sfn[subtree root]
1417 			 *		   \
1418 			 *		    sn[new leaf node]
1419 			 */
1420 
1421 			/* Create subtree root node */
1422 			sfn = node_alloc(info->nl_net);
1423 			if (!sfn)
1424 				goto failure;
1425 
1426 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1427 			rcu_assign_pointer(sfn->leaf,
1428 					   info->nl_net->ipv6.fib6_null_entry);
1429 			sfn->fn_flags = RTN_ROOT;
1430 
1431 			/* Now add the first leaf node to new subtree */
1432 
1433 			sn = fib6_add_1(info->nl_net, table, sfn,
1434 					&rt->fib6_src.addr, rt->fib6_src.plen,
1435 					offsetof(struct fib6_info, fib6_src),
1436 					allow_create, replace_required, extack);
1437 
1438 			if (IS_ERR(sn)) {
1439 				/* If it is failed, discard just allocated
1440 				   root, and then (in failure) stale node
1441 				   in main tree.
1442 				 */
1443 				node_free_immediate(info->nl_net, sfn);
1444 				err = PTR_ERR(sn);
1445 				goto failure;
1446 			}
1447 
1448 			/* Now link new subtree to main tree */
1449 			rcu_assign_pointer(sfn->parent, fn);
1450 			rcu_assign_pointer(fn->subtree, sfn);
1451 		} else {
1452 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1453 					&rt->fib6_src.addr, rt->fib6_src.plen,
1454 					offsetof(struct fib6_info, fib6_src),
1455 					allow_create, replace_required, extack);
1456 
1457 			if (IS_ERR(sn)) {
1458 				err = PTR_ERR(sn);
1459 				goto failure;
1460 			}
1461 		}
1462 
1463 		if (!rcu_access_pointer(fn->leaf)) {
1464 			if (fn->fn_flags & RTN_TL_ROOT) {
1465 				/* put back null_entry for root node */
1466 				rcu_assign_pointer(fn->leaf,
1467 					    info->nl_net->ipv6.fib6_null_entry);
1468 			} else {
1469 				fib6_info_hold(rt);
1470 				rcu_assign_pointer(fn->leaf, rt);
1471 			}
1472 		}
1473 		fn = sn;
1474 	}
1475 #endif
1476 
1477 	err = fib6_add_rt2node(fn, rt, info, extack);
1478 	if (!err) {
1479 		if (rt->nh)
1480 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1481 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1482 		fib6_start_gc(info->nl_net, rt);
1483 	}
1484 
1485 out:
1486 	if (err) {
1487 #ifdef CONFIG_IPV6_SUBTREES
1488 		/*
1489 		 * If fib6_add_1 has cleared the old leaf pointer in the
1490 		 * super-tree leaf node we have to find a new one for it.
1491 		 */
1492 		if (pn != fn) {
1493 			struct fib6_info *pn_leaf =
1494 				rcu_dereference_protected(pn->leaf,
1495 				    lockdep_is_held(&table->tb6_lock));
1496 			if (pn_leaf == rt) {
1497 				pn_leaf = NULL;
1498 				RCU_INIT_POINTER(pn->leaf, NULL);
1499 				fib6_info_release(rt);
1500 			}
1501 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1502 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1503 							   pn);
1504 				if (!pn_leaf)
1505 					pn_leaf =
1506 					    info->nl_net->ipv6.fib6_null_entry;
1507 				fib6_info_hold(pn_leaf);
1508 				rcu_assign_pointer(pn->leaf, pn_leaf);
1509 			}
1510 		}
1511 #endif
1512 		goto failure;
1513 	} else if (fib6_requires_src(rt)) {
1514 		fib6_routes_require_src_inc(info->nl_net);
1515 	}
1516 	return err;
1517 
1518 failure:
1519 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520 	 * 1. fn is an intermediate node and we failed to add the new
1521 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1522 	 * failure case.
1523 	 * 2. fn is the root node in the table and we fail to add the first
1524 	 * default route to it.
1525 	 */
1526 	if (fn &&
1527 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528 	     (fn->fn_flags & RTN_TL_ROOT &&
1529 	      !rcu_access_pointer(fn->leaf))))
1530 		fib6_repair_tree(info->nl_net, table, fn);
1531 	return err;
1532 }
1533 
1534 /*
1535  *	Routing tree lookup
1536  *
1537  */
1538 
1539 struct lookup_args {
1540 	int			offset;		/* key offset on fib6_info */
1541 	const struct in6_addr	*addr;		/* search key			*/
1542 };
1543 
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1544 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545 					    struct lookup_args *args)
1546 {
1547 	struct fib6_node *fn;
1548 	__be32 dir;
1549 
1550 	if (unlikely(args->offset == 0))
1551 		return NULL;
1552 
1553 	/*
1554 	 *	Descend on a tree
1555 	 */
1556 
1557 	fn = root;
1558 
1559 	for (;;) {
1560 		struct fib6_node *next;
1561 
1562 		dir = addr_bit_set(args->addr, fn->fn_bit);
1563 
1564 		next = dir ? rcu_dereference(fn->right) :
1565 			     rcu_dereference(fn->left);
1566 
1567 		if (next) {
1568 			fn = next;
1569 			continue;
1570 		}
1571 		break;
1572 	}
1573 
1574 	while (fn) {
1575 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576 
1577 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1578 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579 			struct rt6key *key;
1580 
1581 			if (!leaf)
1582 				goto backtrack;
1583 
1584 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585 
1586 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587 #ifdef CONFIG_IPV6_SUBTREES
1588 				if (subtree) {
1589 					struct fib6_node *sfn;
1590 					sfn = fib6_node_lookup_1(subtree,
1591 								 args + 1);
1592 					if (!sfn)
1593 						goto backtrack;
1594 					fn = sfn;
1595 				}
1596 #endif
1597 				if (fn->fn_flags & RTN_RTINFO)
1598 					return fn;
1599 			}
1600 		}
1601 backtrack:
1602 		if (fn->fn_flags & RTN_ROOT)
1603 			break;
1604 
1605 		fn = rcu_dereference(fn->parent);
1606 	}
1607 
1608 	return NULL;
1609 }
1610 
1611 /* called with rcu_read_lock() held
1612  */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1613 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614 				   const struct in6_addr *daddr,
1615 				   const struct in6_addr *saddr)
1616 {
1617 	struct fib6_node *fn;
1618 	struct lookup_args args[] = {
1619 		{
1620 			.offset = offsetof(struct fib6_info, fib6_dst),
1621 			.addr = daddr,
1622 		},
1623 #ifdef CONFIG_IPV6_SUBTREES
1624 		{
1625 			.offset = offsetof(struct fib6_info, fib6_src),
1626 			.addr = saddr,
1627 		},
1628 #endif
1629 		{
1630 			.offset = 0,	/* sentinel */
1631 		}
1632 	};
1633 
1634 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1636 		fn = root;
1637 
1638 	return fn;
1639 }
1640 
1641 /*
1642  *	Get node with specified destination prefix (and source prefix,
1643  *	if subtrees are used)
1644  *	exact_match == true means we try to find fn with exact match of
1645  *	the passed in prefix addr
1646  *	exact_match == false means we try to find fn with longest prefix
1647  *	match of the passed in prefix addr. This is useful for finding fn
1648  *	for cached route as it will be stored in the exception table under
1649  *	the node with longest prefix length.
1650  */
1651 
1652 
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1653 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654 				       const struct in6_addr *addr,
1655 				       int plen, int offset,
1656 				       bool exact_match)
1657 {
1658 	struct fib6_node *fn, *prev = NULL;
1659 
1660 	for (fn = root; fn ; ) {
1661 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662 		struct rt6key *key;
1663 
1664 		/* This node is being deleted */
1665 		if (!leaf) {
1666 			if (plen <= fn->fn_bit)
1667 				goto out;
1668 			else
1669 				goto next;
1670 		}
1671 
1672 		key = (struct rt6key *)((u8 *)leaf + offset);
1673 
1674 		/*
1675 		 *	Prefix match
1676 		 */
1677 		if (plen < fn->fn_bit ||
1678 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679 			goto out;
1680 
1681 		if (plen == fn->fn_bit)
1682 			return fn;
1683 
1684 		if (fn->fn_flags & RTN_RTINFO)
1685 			prev = fn;
1686 
1687 next:
1688 		/*
1689 		 *	We have more bits to go
1690 		 */
1691 		if (addr_bit_set(addr, fn->fn_bit))
1692 			fn = rcu_dereference(fn->right);
1693 		else
1694 			fn = rcu_dereference(fn->left);
1695 	}
1696 out:
1697 	if (exact_match)
1698 		return NULL;
1699 	else
1700 		return prev;
1701 }
1702 
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1703 struct fib6_node *fib6_locate(struct fib6_node *root,
1704 			      const struct in6_addr *daddr, int dst_len,
1705 			      const struct in6_addr *saddr, int src_len,
1706 			      bool exact_match)
1707 {
1708 	struct fib6_node *fn;
1709 
1710 	fn = fib6_locate_1(root, daddr, dst_len,
1711 			   offsetof(struct fib6_info, fib6_dst),
1712 			   exact_match);
1713 
1714 #ifdef CONFIG_IPV6_SUBTREES
1715 	if (src_len) {
1716 		WARN_ON(saddr == NULL);
1717 		if (fn) {
1718 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719 
1720 			if (subtree) {
1721 				fn = fib6_locate_1(subtree, saddr, src_len,
1722 					   offsetof(struct fib6_info, fib6_src),
1723 					   exact_match);
1724 			}
1725 		}
1726 	}
1727 #endif
1728 
1729 	if (fn && fn->fn_flags & RTN_RTINFO)
1730 		return fn;
1731 
1732 	return NULL;
1733 }
1734 
1735 
1736 /*
1737  *	Deletion
1738  *
1739  */
1740 
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1741 static struct fib6_info *fib6_find_prefix(struct net *net,
1742 					 struct fib6_table *table,
1743 					 struct fib6_node *fn)
1744 {
1745 	struct fib6_node *child_left, *child_right;
1746 
1747 	if (fn->fn_flags & RTN_ROOT)
1748 		return net->ipv6.fib6_null_entry;
1749 
1750 	while (fn) {
1751 		child_left = rcu_dereference_protected(fn->left,
1752 				    lockdep_is_held(&table->tb6_lock));
1753 		child_right = rcu_dereference_protected(fn->right,
1754 				    lockdep_is_held(&table->tb6_lock));
1755 		if (child_left)
1756 			return rcu_dereference_protected(child_left->leaf,
1757 					lockdep_is_held(&table->tb6_lock));
1758 		if (child_right)
1759 			return rcu_dereference_protected(child_right->leaf,
1760 					lockdep_is_held(&table->tb6_lock));
1761 
1762 		fn = FIB6_SUBTREE(fn);
1763 	}
1764 	return NULL;
1765 }
1766 
1767 /*
1768  *	Called to trim the tree of intermediate nodes when possible. "fn"
1769  *	is the node we want to try and remove.
1770  *	Need to own table->tb6_lock
1771  */
1772 
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1773 static struct fib6_node *fib6_repair_tree(struct net *net,
1774 					  struct fib6_table *table,
1775 					  struct fib6_node *fn)
1776 {
1777 	int children;
1778 	int nstate;
1779 	struct fib6_node *child;
1780 	struct fib6_walker *w;
1781 	int iter = 0;
1782 
1783 	/* Set fn->leaf to null_entry for root node. */
1784 	if (fn->fn_flags & RTN_TL_ROOT) {
1785 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786 		return fn;
1787 	}
1788 
1789 	for (;;) {
1790 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791 					    lockdep_is_held(&table->tb6_lock));
1792 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793 					    lockdep_is_held(&table->tb6_lock));
1794 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795 					    lockdep_is_held(&table->tb6_lock));
1796 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797 					    lockdep_is_held(&table->tb6_lock));
1798 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799 					    lockdep_is_held(&table->tb6_lock));
1800 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801 					    lockdep_is_held(&table->tb6_lock));
1802 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803 					    lockdep_is_held(&table->tb6_lock));
1804 		struct fib6_info *new_fn_leaf;
1805 
1806 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807 		iter++;
1808 
1809 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1810 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811 		WARN_ON(fn_leaf);
1812 
1813 		children = 0;
1814 		child = NULL;
1815 		if (fn_r) {
1816 			child = fn_r;
1817 			children |= 1;
1818 		}
1819 		if (fn_l) {
1820 			child = fn_l;
1821 			children |= 2;
1822 		}
1823 
1824 		if (children == 3 || FIB6_SUBTREE(fn)
1825 #ifdef CONFIG_IPV6_SUBTREES
1826 		    /* Subtree root (i.e. fn) may have one child */
1827 		    || (children && fn->fn_flags & RTN_ROOT)
1828 #endif
1829 		    ) {
1830 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1831 #if RT6_DEBUG >= 2
1832 			if (!new_fn_leaf) {
1833 				WARN_ON(!new_fn_leaf);
1834 				new_fn_leaf = net->ipv6.fib6_null_entry;
1835 			}
1836 #endif
1837 			fib6_info_hold(new_fn_leaf);
1838 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1839 			return pn;
1840 		}
1841 
1842 #ifdef CONFIG_IPV6_SUBTREES
1843 		if (FIB6_SUBTREE(pn) == fn) {
1844 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1845 			RCU_INIT_POINTER(pn->subtree, NULL);
1846 			nstate = FWS_L;
1847 		} else {
1848 			WARN_ON(fn->fn_flags & RTN_ROOT);
1849 #endif
1850 			if (pn_r == fn)
1851 				rcu_assign_pointer(pn->right, child);
1852 			else if (pn_l == fn)
1853 				rcu_assign_pointer(pn->left, child);
1854 #if RT6_DEBUG >= 2
1855 			else
1856 				WARN_ON(1);
1857 #endif
1858 			if (child)
1859 				rcu_assign_pointer(child->parent, pn);
1860 			nstate = FWS_R;
1861 #ifdef CONFIG_IPV6_SUBTREES
1862 		}
1863 #endif
1864 
1865 		read_lock(&net->ipv6.fib6_walker_lock);
1866 		FOR_WALKERS(net, w) {
1867 			if (!child) {
1868 				if (w->node == fn) {
1869 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1870 					w->node = pn;
1871 					w->state = nstate;
1872 				}
1873 			} else {
1874 				if (w->node == fn) {
1875 					w->node = child;
1876 					if (children&2) {
1877 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1878 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1879 					} else {
1880 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1881 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1882 					}
1883 				}
1884 			}
1885 		}
1886 		read_unlock(&net->ipv6.fib6_walker_lock);
1887 
1888 		node_free(net, fn);
1889 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1890 			return pn;
1891 
1892 		RCU_INIT_POINTER(pn->leaf, NULL);
1893 		fib6_info_release(pn_leaf);
1894 		fn = pn;
1895 	}
1896 }
1897 
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1898 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1899 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1900 {
1901 	struct fib6_info *leaf, *replace_rt = NULL;
1902 	struct fib6_walker *w;
1903 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1904 				    lockdep_is_held(&table->tb6_lock));
1905 	struct net *net = info->nl_net;
1906 	bool notify_del = false;
1907 
1908 	RT6_TRACE("fib6_del_route\n");
1909 
1910 	/* If the deleted route is the first in the node and it is not part of
1911 	 * a multipath route, then we need to replace it with the next route
1912 	 * in the node, if exists.
1913 	 */
1914 	leaf = rcu_dereference_protected(fn->leaf,
1915 					 lockdep_is_held(&table->tb6_lock));
1916 	if (leaf == rt && !rt->fib6_nsiblings) {
1917 		if (rcu_access_pointer(rt->fib6_next))
1918 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1919 					    lockdep_is_held(&table->tb6_lock));
1920 		else
1921 			notify_del = true;
1922 	}
1923 
1924 	/* Unlink it */
1925 	*rtp = rt->fib6_next;
1926 	rt->fib6_node = NULL;
1927 	net->ipv6.rt6_stats->fib_rt_entries--;
1928 	net->ipv6.rt6_stats->fib_discarded_routes++;
1929 
1930 	/* Reset round-robin state, if necessary */
1931 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1932 		fn->rr_ptr = NULL;
1933 
1934 	/* Remove this entry from other siblings */
1935 	if (rt->fib6_nsiblings) {
1936 		struct fib6_info *sibling, *next_sibling;
1937 
1938 		/* The route is deleted from a multipath route. If this
1939 		 * multipath route is the first route in the node, then we need
1940 		 * to emit a delete notification. Otherwise, we need to skip
1941 		 * the notification.
1942 		 */
1943 		if (rt->fib6_metric == leaf->fib6_metric &&
1944 		    rt6_qualify_for_ecmp(leaf))
1945 			notify_del = true;
1946 		list_for_each_entry_safe(sibling, next_sibling,
1947 					 &rt->fib6_siblings, fib6_siblings)
1948 			sibling->fib6_nsiblings--;
1949 		rt->fib6_nsiblings = 0;
1950 		list_del_init(&rt->fib6_siblings);
1951 		rt6_multipath_rebalance(next_sibling);
1952 	}
1953 
1954 	/* Adjust walkers */
1955 	read_lock(&net->ipv6.fib6_walker_lock);
1956 	FOR_WALKERS(net, w) {
1957 		if (w->state == FWS_C && w->leaf == rt) {
1958 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1959 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1960 					    lockdep_is_held(&table->tb6_lock));
1961 			if (!w->leaf)
1962 				w->state = FWS_U;
1963 		}
1964 	}
1965 	read_unlock(&net->ipv6.fib6_walker_lock);
1966 
1967 	/* If it was last route, call fib6_repair_tree() to:
1968 	 * 1. For root node, put back null_entry as how the table was created.
1969 	 * 2. For other nodes, expunge its radix tree node.
1970 	 */
1971 	if (!rcu_access_pointer(fn->leaf)) {
1972 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1973 			fn->fn_flags &= ~RTN_RTINFO;
1974 			net->ipv6.rt6_stats->fib_route_nodes--;
1975 		}
1976 		fn = fib6_repair_tree(net, table, fn);
1977 	}
1978 
1979 	fib6_purge_rt(rt, fn, net);
1980 
1981 	if (!info->skip_notify_kernel) {
1982 		if (notify_del)
1983 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1984 						  rt, NULL);
1985 		else if (replace_rt)
1986 			call_fib6_entry_notifiers_replace(net, replace_rt);
1987 	}
1988 	if (!info->skip_notify)
1989 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1990 
1991 	fib6_info_release(rt);
1992 }
1993 
1994 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)1995 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1996 {
1997 	struct net *net = info->nl_net;
1998 	struct fib6_info __rcu **rtp;
1999 	struct fib6_info __rcu **rtp_next;
2000 	struct fib6_table *table;
2001 	struct fib6_node *fn;
2002 
2003 	if (rt == net->ipv6.fib6_null_entry)
2004 		return -ENOENT;
2005 
2006 	table = rt->fib6_table;
2007 	fn = rcu_dereference_protected(rt->fib6_node,
2008 				       lockdep_is_held(&table->tb6_lock));
2009 	if (!fn)
2010 		return -ENOENT;
2011 
2012 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2013 
2014 	/*
2015 	 *	Walk the leaf entries looking for ourself
2016 	 */
2017 
2018 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2019 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2020 					lockdep_is_held(&table->tb6_lock));
2021 		if (rt == cur) {
2022 			if (fib6_requires_src(cur))
2023 				fib6_routes_require_src_dec(info->nl_net);
2024 			fib6_del_route(table, fn, rtp, info);
2025 			return 0;
2026 		}
2027 		rtp_next = &cur->fib6_next;
2028 	}
2029 	return -ENOENT;
2030 }
2031 
2032 /*
2033  *	Tree traversal function.
2034  *
2035  *	Certainly, it is not interrupt safe.
2036  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2037  *	It means, that we can modify tree during walking
2038  *	and use this function for garbage collection, clone pruning,
2039  *	cleaning tree when a device goes down etc. etc.
2040  *
2041  *	It guarantees that every node will be traversed,
2042  *	and that it will be traversed only once.
2043  *
2044  *	Callback function w->func may return:
2045  *	0 -> continue walking.
2046  *	positive value -> walking is suspended (used by tree dumps,
2047  *	and probably by gc, if it will be split to several slices)
2048  *	negative value -> terminate walking.
2049  *
2050  *	The function itself returns:
2051  *	0   -> walk is complete.
2052  *	>0  -> walk is incomplete (i.e. suspended)
2053  *	<0  -> walk is terminated by an error.
2054  *
2055  *	This function is called with tb6_lock held.
2056  */
2057 
fib6_walk_continue(struct fib6_walker * w)2058 static int fib6_walk_continue(struct fib6_walker *w)
2059 {
2060 	struct fib6_node *fn, *pn, *left, *right;
2061 
2062 	/* w->root should always be table->tb6_root */
2063 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2064 
2065 	for (;;) {
2066 		fn = w->node;
2067 		if (!fn)
2068 			return 0;
2069 
2070 		switch (w->state) {
2071 #ifdef CONFIG_IPV6_SUBTREES
2072 		case FWS_S:
2073 			if (FIB6_SUBTREE(fn)) {
2074 				w->node = FIB6_SUBTREE(fn);
2075 				continue;
2076 			}
2077 			w->state = FWS_L;
2078 			fallthrough;
2079 #endif
2080 		case FWS_L:
2081 			left = rcu_dereference_protected(fn->left, 1);
2082 			if (left) {
2083 				w->node = left;
2084 				w->state = FWS_INIT;
2085 				continue;
2086 			}
2087 			w->state = FWS_R;
2088 			fallthrough;
2089 		case FWS_R:
2090 			right = rcu_dereference_protected(fn->right, 1);
2091 			if (right) {
2092 				w->node = right;
2093 				w->state = FWS_INIT;
2094 				continue;
2095 			}
2096 			w->state = FWS_C;
2097 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2098 			fallthrough;
2099 		case FWS_C:
2100 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2101 				int err;
2102 
2103 				if (w->skip) {
2104 					w->skip--;
2105 					goto skip;
2106 				}
2107 
2108 				err = w->func(w);
2109 				if (err)
2110 					return err;
2111 
2112 				w->count++;
2113 				continue;
2114 			}
2115 skip:
2116 			w->state = FWS_U;
2117 			fallthrough;
2118 		case FWS_U:
2119 			if (fn == w->root)
2120 				return 0;
2121 			pn = rcu_dereference_protected(fn->parent, 1);
2122 			left = rcu_dereference_protected(pn->left, 1);
2123 			right = rcu_dereference_protected(pn->right, 1);
2124 			w->node = pn;
2125 #ifdef CONFIG_IPV6_SUBTREES
2126 			if (FIB6_SUBTREE(pn) == fn) {
2127 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2128 				w->state = FWS_L;
2129 				continue;
2130 			}
2131 #endif
2132 			if (left == fn) {
2133 				w->state = FWS_R;
2134 				continue;
2135 			}
2136 			if (right == fn) {
2137 				w->state = FWS_C;
2138 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2139 				continue;
2140 			}
2141 #if RT6_DEBUG >= 2
2142 			WARN_ON(1);
2143 #endif
2144 		}
2145 	}
2146 }
2147 
fib6_walk(struct net * net,struct fib6_walker * w)2148 static int fib6_walk(struct net *net, struct fib6_walker *w)
2149 {
2150 	int res;
2151 
2152 	w->state = FWS_INIT;
2153 	w->node = w->root;
2154 
2155 	fib6_walker_link(net, w);
2156 	res = fib6_walk_continue(w);
2157 	if (res <= 0)
2158 		fib6_walker_unlink(net, w);
2159 	return res;
2160 }
2161 
fib6_clean_node(struct fib6_walker * w)2162 static int fib6_clean_node(struct fib6_walker *w)
2163 {
2164 	int res;
2165 	struct fib6_info *rt;
2166 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2167 	struct nl_info info = {
2168 		.nl_net = c->net,
2169 		.skip_notify = c->skip_notify,
2170 	};
2171 
2172 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2173 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2174 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2175 
2176 	if (!c->func) {
2177 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2178 		w->leaf = NULL;
2179 		return 0;
2180 	}
2181 
2182 	for_each_fib6_walker_rt(w) {
2183 		res = c->func(rt, c->arg);
2184 		if (res == -1) {
2185 			w->leaf = rt;
2186 			res = fib6_del(rt, &info);
2187 			if (res) {
2188 #if RT6_DEBUG >= 2
2189 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2190 					 __func__, rt,
2191 					 rcu_access_pointer(rt->fib6_node),
2192 					 res);
2193 #endif
2194 				continue;
2195 			}
2196 			return 0;
2197 		} else if (res == -2) {
2198 			if (WARN_ON(!rt->fib6_nsiblings))
2199 				continue;
2200 			rt = list_last_entry(&rt->fib6_siblings,
2201 					     struct fib6_info, fib6_siblings);
2202 			continue;
2203 		}
2204 		WARN_ON(res != 0);
2205 	}
2206 	w->leaf = rt;
2207 	return 0;
2208 }
2209 
2210 /*
2211  *	Convenient frontend to tree walker.
2212  *
2213  *	func is called on each route.
2214  *		It may return -2 -> skip multipath route.
2215  *			      -1 -> delete this route.
2216  *		              0  -> continue walking
2217  */
2218 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2219 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2220 			    int (*func)(struct fib6_info *, void *arg),
2221 			    int sernum, void *arg, bool skip_notify)
2222 {
2223 	struct fib6_cleaner c;
2224 
2225 	c.w.root = root;
2226 	c.w.func = fib6_clean_node;
2227 	c.w.count = 0;
2228 	c.w.skip = 0;
2229 	c.w.skip_in_node = 0;
2230 	c.func = func;
2231 	c.sernum = sernum;
2232 	c.arg = arg;
2233 	c.net = net;
2234 	c.skip_notify = skip_notify;
2235 
2236 	fib6_walk(net, &c.w);
2237 }
2238 
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2239 static void __fib6_clean_all(struct net *net,
2240 			     int (*func)(struct fib6_info *, void *),
2241 			     int sernum, void *arg, bool skip_notify)
2242 {
2243 	struct fib6_table *table;
2244 	struct hlist_head *head;
2245 	unsigned int h;
2246 
2247 	rcu_read_lock();
2248 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2249 		head = &net->ipv6.fib_table_hash[h];
2250 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2251 			spin_lock_bh(&table->tb6_lock);
2252 			fib6_clean_tree(net, &table->tb6_root,
2253 					func, sernum, arg, skip_notify);
2254 			spin_unlock_bh(&table->tb6_lock);
2255 		}
2256 	}
2257 	rcu_read_unlock();
2258 }
2259 
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2260 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2261 		    void *arg)
2262 {
2263 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2264 }
2265 
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2266 void fib6_clean_all_skip_notify(struct net *net,
2267 				int (*func)(struct fib6_info *, void *),
2268 				void *arg)
2269 {
2270 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2271 }
2272 
fib6_flush_trees(struct net * net)2273 static void fib6_flush_trees(struct net *net)
2274 {
2275 	int new_sernum = fib6_new_sernum(net);
2276 
2277 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2278 }
2279 
2280 /*
2281  *	Garbage collection
2282  */
2283 
fib6_age(struct fib6_info * rt,void * arg)2284 static int fib6_age(struct fib6_info *rt, void *arg)
2285 {
2286 	struct fib6_gc_args *gc_args = arg;
2287 	unsigned long now = jiffies;
2288 
2289 	/*
2290 	 *	check addrconf expiration here.
2291 	 *	Routes are expired even if they are in use.
2292 	 */
2293 
2294 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2295 		if (time_after(now, rt->expires)) {
2296 			RT6_TRACE("expiring %p\n", rt);
2297 			return -1;
2298 		}
2299 		gc_args->more++;
2300 	}
2301 
2302 	/*	Also age clones in the exception table.
2303 	 *	Note, that clones are aged out
2304 	 *	only if they are not in use now.
2305 	 */
2306 	rt6_age_exceptions(rt, gc_args, now);
2307 
2308 	return 0;
2309 }
2310 
fib6_run_gc(unsigned long expires,struct net * net,bool force)2311 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2312 {
2313 	struct fib6_gc_args gc_args;
2314 	unsigned long now;
2315 
2316 	if (force) {
2317 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2318 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2319 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2320 		return;
2321 	}
2322 	gc_args.timeout = expires ? (int)expires :
2323 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2324 	gc_args.more = 0;
2325 
2326 	fib6_clean_all(net, fib6_age, &gc_args);
2327 	now = jiffies;
2328 	net->ipv6.ip6_rt_last_gc = now;
2329 
2330 	if (gc_args.more)
2331 		mod_timer(&net->ipv6.ip6_fib_timer,
2332 			  round_jiffies(now
2333 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2334 	else
2335 		del_timer(&net->ipv6.ip6_fib_timer);
2336 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2337 }
2338 
fib6_gc_timer_cb(struct timer_list * t)2339 static void fib6_gc_timer_cb(struct timer_list *t)
2340 {
2341 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2342 
2343 	fib6_run_gc(0, arg, true);
2344 }
2345 
fib6_net_init(struct net * net)2346 static int __net_init fib6_net_init(struct net *net)
2347 {
2348 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2349 	int err;
2350 
2351 	err = fib6_notifier_init(net);
2352 	if (err)
2353 		return err;
2354 
2355 	/* Default to 3-tuple */
2356 	net->ipv6.sysctl.multipath_hash_fields =
2357 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2358 
2359 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2360 	rwlock_init(&net->ipv6.fib6_walker_lock);
2361 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2362 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2363 
2364 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2365 	if (!net->ipv6.rt6_stats)
2366 		goto out_notifier;
2367 
2368 	/* Avoid false sharing : Use at least a full cache line */
2369 	size = max_t(size_t, size, L1_CACHE_BYTES);
2370 
2371 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2372 	if (!net->ipv6.fib_table_hash)
2373 		goto out_rt6_stats;
2374 
2375 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2376 					  GFP_KERNEL);
2377 	if (!net->ipv6.fib6_main_tbl)
2378 		goto out_fib_table_hash;
2379 
2380 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2381 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2382 			   net->ipv6.fib6_null_entry);
2383 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2384 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2385 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2386 
2387 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2388 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2389 					   GFP_KERNEL);
2390 	if (!net->ipv6.fib6_local_tbl)
2391 		goto out_fib6_main_tbl;
2392 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2393 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2394 			   net->ipv6.fib6_null_entry);
2395 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2396 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2397 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2398 #endif
2399 	fib6_tables_init(net);
2400 
2401 	return 0;
2402 
2403 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2404 out_fib6_main_tbl:
2405 	kfree(net->ipv6.fib6_main_tbl);
2406 #endif
2407 out_fib_table_hash:
2408 	kfree(net->ipv6.fib_table_hash);
2409 out_rt6_stats:
2410 	kfree(net->ipv6.rt6_stats);
2411 out_notifier:
2412 	fib6_notifier_exit(net);
2413 	return -ENOMEM;
2414 }
2415 
fib6_net_exit(struct net * net)2416 static void fib6_net_exit(struct net *net)
2417 {
2418 	unsigned int i;
2419 
2420 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2421 
2422 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2423 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2424 		struct hlist_node *tmp;
2425 		struct fib6_table *tb;
2426 
2427 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2428 			hlist_del(&tb->tb6_hlist);
2429 			fib6_free_table(tb);
2430 		}
2431 	}
2432 
2433 	kfree(net->ipv6.fib_table_hash);
2434 	kfree(net->ipv6.rt6_stats);
2435 	fib6_notifier_exit(net);
2436 }
2437 
2438 static struct pernet_operations fib6_net_ops = {
2439 	.init = fib6_net_init,
2440 	.exit = fib6_net_exit,
2441 };
2442 
fib6_init(void)2443 int __init fib6_init(void)
2444 {
2445 	int ret = -ENOMEM;
2446 
2447 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2448 					   sizeof(struct fib6_node), 0,
2449 					   SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2450 					   NULL);
2451 	if (!fib6_node_kmem)
2452 		goto out;
2453 
2454 	ret = register_pernet_subsys(&fib6_net_ops);
2455 	if (ret)
2456 		goto out_kmem_cache_create;
2457 
2458 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2459 				   inet6_dump_fib, 0);
2460 	if (ret)
2461 		goto out_unregister_subsys;
2462 
2463 	__fib6_flush_trees = fib6_flush_trees;
2464 out:
2465 	return ret;
2466 
2467 out_unregister_subsys:
2468 	unregister_pernet_subsys(&fib6_net_ops);
2469 out_kmem_cache_create:
2470 	kmem_cache_destroy(fib6_node_kmem);
2471 	goto out;
2472 }
2473 
fib6_gc_cleanup(void)2474 void fib6_gc_cleanup(void)
2475 {
2476 	unregister_pernet_subsys(&fib6_net_ops);
2477 	kmem_cache_destroy(fib6_node_kmem);
2478 }
2479 
2480 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2481 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2482 {
2483 	struct fib6_info *rt = v;
2484 	struct ipv6_route_iter *iter = seq->private;
2485 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2486 	unsigned int flags = rt->fib6_flags;
2487 	const struct net_device *dev;
2488 
2489 	if (rt->nh)
2490 		fib6_nh = nexthop_fib6_nh(rt->nh);
2491 
2492 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2493 
2494 #ifdef CONFIG_IPV6_SUBTREES
2495 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2496 #else
2497 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2498 #endif
2499 	if (fib6_nh->fib_nh_gw_family) {
2500 		flags |= RTF_GATEWAY;
2501 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2502 	} else {
2503 		seq_puts(seq, "00000000000000000000000000000000");
2504 	}
2505 
2506 	dev = fib6_nh->fib_nh_dev;
2507 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2508 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2509 		   flags, dev ? dev->name : "");
2510 	iter->w.leaf = NULL;
2511 	return 0;
2512 }
2513 
ipv6_route_yield(struct fib6_walker * w)2514 static int ipv6_route_yield(struct fib6_walker *w)
2515 {
2516 	struct ipv6_route_iter *iter = w->args;
2517 
2518 	if (!iter->skip)
2519 		return 1;
2520 
2521 	do {
2522 		iter->w.leaf = rcu_dereference_protected(
2523 				iter->w.leaf->fib6_next,
2524 				lockdep_is_held(&iter->tbl->tb6_lock));
2525 		iter->skip--;
2526 		if (!iter->skip && iter->w.leaf)
2527 			return 1;
2528 	} while (iter->w.leaf);
2529 
2530 	return 0;
2531 }
2532 
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2533 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2534 				      struct net *net)
2535 {
2536 	memset(&iter->w, 0, sizeof(iter->w));
2537 	iter->w.func = ipv6_route_yield;
2538 	iter->w.root = &iter->tbl->tb6_root;
2539 	iter->w.state = FWS_INIT;
2540 	iter->w.node = iter->w.root;
2541 	iter->w.args = iter;
2542 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2543 	INIT_LIST_HEAD(&iter->w.lh);
2544 	fib6_walker_link(net, &iter->w);
2545 }
2546 
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2547 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2548 						    struct net *net)
2549 {
2550 	unsigned int h;
2551 	struct hlist_node *node;
2552 
2553 	if (tbl) {
2554 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2555 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2556 	} else {
2557 		h = 0;
2558 		node = NULL;
2559 	}
2560 
2561 	while (!node && h < FIB6_TABLE_HASHSZ) {
2562 		node = rcu_dereference(
2563 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2564 	}
2565 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2566 }
2567 
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2568 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2569 {
2570 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2571 
2572 	if (iter->sernum != sernum) {
2573 		iter->sernum = sernum;
2574 		iter->w.state = FWS_INIT;
2575 		iter->w.node = iter->w.root;
2576 		WARN_ON(iter->w.skip);
2577 		iter->w.skip = iter->w.count;
2578 	}
2579 }
2580 
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2581 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2582 {
2583 	int r;
2584 	struct fib6_info *n;
2585 	struct net *net = seq_file_net(seq);
2586 	struct ipv6_route_iter *iter = seq->private;
2587 
2588 	++(*pos);
2589 	if (!v)
2590 		goto iter_table;
2591 
2592 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2593 	if (n)
2594 		return n;
2595 
2596 iter_table:
2597 	ipv6_route_check_sernum(iter);
2598 	spin_lock_bh(&iter->tbl->tb6_lock);
2599 	r = fib6_walk_continue(&iter->w);
2600 	spin_unlock_bh(&iter->tbl->tb6_lock);
2601 	if (r > 0) {
2602 		return iter->w.leaf;
2603 	} else if (r < 0) {
2604 		fib6_walker_unlink(net, &iter->w);
2605 		return NULL;
2606 	}
2607 	fib6_walker_unlink(net, &iter->w);
2608 
2609 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2610 	if (!iter->tbl)
2611 		return NULL;
2612 
2613 	ipv6_route_seq_setup_walk(iter, net);
2614 	goto iter_table;
2615 }
2616 
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2617 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2618 	__acquires(RCU)
2619 {
2620 	struct net *net = seq_file_net(seq);
2621 	struct ipv6_route_iter *iter = seq->private;
2622 
2623 	rcu_read_lock();
2624 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2625 	iter->skip = *pos;
2626 
2627 	if (iter->tbl) {
2628 		loff_t p = 0;
2629 
2630 		ipv6_route_seq_setup_walk(iter, net);
2631 		return ipv6_route_seq_next(seq, NULL, &p);
2632 	} else {
2633 		return NULL;
2634 	}
2635 }
2636 
ipv6_route_iter_active(struct ipv6_route_iter * iter)2637 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2638 {
2639 	struct fib6_walker *w = &iter->w;
2640 	return w->node && !(w->state == FWS_U && w->node == w->root);
2641 }
2642 
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2643 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2644 	__releases(RCU)
2645 {
2646 	struct net *net = seq_file_net(seq);
2647 	struct ipv6_route_iter *iter = seq->private;
2648 
2649 	if (ipv6_route_iter_active(iter))
2650 		fib6_walker_unlink(net, &iter->w);
2651 
2652 	rcu_read_unlock();
2653 }
2654 
2655 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2656 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2657 				    struct bpf_iter_meta *meta,
2658 				    void *v)
2659 {
2660 	struct bpf_iter__ipv6_route ctx;
2661 
2662 	ctx.meta = meta;
2663 	ctx.rt = v;
2664 	return bpf_iter_run_prog(prog, &ctx);
2665 }
2666 
ipv6_route_seq_show(struct seq_file * seq,void * v)2667 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2668 {
2669 	struct ipv6_route_iter *iter = seq->private;
2670 	struct bpf_iter_meta meta;
2671 	struct bpf_prog *prog;
2672 	int ret;
2673 
2674 	meta.seq = seq;
2675 	prog = bpf_iter_get_info(&meta, false);
2676 	if (!prog)
2677 		return ipv6_route_native_seq_show(seq, v);
2678 
2679 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2680 	iter->w.leaf = NULL;
2681 
2682 	return ret;
2683 }
2684 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2685 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2686 {
2687 	struct bpf_iter_meta meta;
2688 	struct bpf_prog *prog;
2689 
2690 	if (!v) {
2691 		meta.seq = seq;
2692 		prog = bpf_iter_get_info(&meta, true);
2693 		if (prog)
2694 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2695 	}
2696 
2697 	ipv6_route_native_seq_stop(seq, v);
2698 }
2699 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2700 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2701 {
2702 	return ipv6_route_native_seq_show(seq, v);
2703 }
2704 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2705 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2706 {
2707 	ipv6_route_native_seq_stop(seq, v);
2708 }
2709 #endif
2710 
2711 const struct seq_operations ipv6_route_seq_ops = {
2712 	.start	= ipv6_route_seq_start,
2713 	.next	= ipv6_route_seq_next,
2714 	.stop	= ipv6_route_seq_stop,
2715 	.show	= ipv6_route_seq_show
2716 };
2717 #endif /* CONFIG_PROC_FS */
2718