1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *	Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23 
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62 
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79 
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81 
82 /*
83  * Package level MSRs for monitor/control
84  */
85 #define PLATFORM_INFO	0xce
86 #define   PLATFORM_TDP		(1<<29)
87 #define   PLATFORM_RATIO	(1<<28)
88 
89 #define IA32_MISC_ENABLE	0x1a0
90 #define   IA32_MISC_TURBO_EN	(1ULL<<38)
91 
92 #define TURBO_POWER_CURRENT_LIMIT	0x1ac
93 #define   TURBO_TDC_OVR_EN	(1UL<<31)
94 #define   TURBO_TDC_MASK	(0x000000007fff0000UL)
95 #define   TURBO_TDC_SHIFT	(16)
96 #define   TURBO_TDP_OVR_EN	(1UL<<15)
97 #define   TURBO_TDP_MASK	(0x0000000000003fffUL)
98 
99 /*
100  * Core/thread MSRs for monitoring
101  */
102 #define IA32_PERF_CTL		0x199
103 #define   IA32_PERF_TURBO_DIS	(1ULL<<32)
104 
105 /*
106  * Thermal PCI device regs
107  */
108 #define THM_CFG_TBAR	0x10
109 #define THM_CFG_TBAR_HI	0x14
110 
111 #define THM_TSIU	0x00
112 #define THM_TSE		0x01
113 #define   TSE_EN	0xb8
114 #define THM_TSS		0x02
115 #define THM_TSTR	0x03
116 #define THM_TSTTP	0x04
117 #define THM_TSCO	0x08
118 #define THM_TSES	0x0c
119 #define THM_TSGPEN	0x0d
120 #define   TSGPEN_HOT_LOHI	(1<<1)
121 #define   TSGPEN_CRIT_LOHI	(1<<2)
122 #define THM_TSPC	0x0e
123 #define THM_PPEC	0x10
124 #define THM_CTA		0x12
125 #define THM_PTA		0x14
126 #define   PTA_SLOPE_MASK	(0xff00)
127 #define   PTA_SLOPE_SHIFT	8
128 #define   PTA_OFFSET_MASK	(0x00ff)
129 #define THM_MGTA	0x16
130 #define   MGTA_SLOPE_MASK	(0xff00)
131 #define   MGTA_SLOPE_SHIFT	8
132 #define   MGTA_OFFSET_MASK	(0x00ff)
133 #define THM_TRC		0x1a
134 #define   TRC_CORE2_EN	(1<<15)
135 #define   TRC_THM_EN	(1<<12)
136 #define   TRC_C6_WAR	(1<<8)
137 #define   TRC_CORE1_EN	(1<<7)
138 #define   TRC_CORE_PWR	(1<<6)
139 #define   TRC_PCH_EN	(1<<5)
140 #define   TRC_MCH_EN	(1<<4)
141 #define   TRC_DIMM4	(1<<3)
142 #define   TRC_DIMM3	(1<<2)
143 #define   TRC_DIMM2	(1<<1)
144 #define   TRC_DIMM1	(1<<0)
145 #define THM_TES		0x20
146 #define THM_TEN		0x21
147 #define   TEN_UPDATE_EN	1
148 #define THM_PSC		0x24
149 #define   PSC_NTG	(1<<0) /* No GFX turbo support */
150 #define   PSC_NTPC	(1<<1) /* No CPU turbo support */
151 #define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
152 #define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
153 #define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
154 #define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
155 #define   PSP_PBRT	(1<<4) /* BIOS run time support */
156 #define THM_CTV1	0x30
157 #define   CTV_TEMP_ERROR (1<<15)
158 #define   CTV_TEMP_MASK	0x3f
159 #define   CTV_
160 #define THM_CTV2	0x32
161 #define THM_CEC		0x34 /* undocumented power accumulator in joules */
162 #define THM_AE		0x3f
163 #define THM_HTS		0x50 /* 32 bits */
164 #define   HTS_PCPL_MASK	(0x7fe00000)
165 #define   HTS_PCPL_SHIFT 21
166 #define   HTS_GPL_MASK  (0x001ff000)
167 #define   HTS_GPL_SHIFT 12
168 #define   HTS_PP_MASK	(0x00000c00)
169 #define   HTS_PP_SHIFT  10
170 #define   HTS_PP_DEF	0
171 #define   HTS_PP_PROC	1
172 #define   HTS_PP_BAL	2
173 #define   HTS_PP_GFX	3
174 #define   HTS_PCTD_DIS	(1<<9)
175 #define   HTS_GTD_DIS	(1<<8)
176 #define   HTS_PTL_MASK  (0x000000fe)
177 #define   HTS_PTL_SHIFT 1
178 #define   HTS_NVV	(1<<0)
179 #define THM_HTSHI	0x54 /* 16 bits */
180 #define   HTS2_PPL_MASK		(0x03ff)
181 #define   HTS2_PRST_MASK	(0x3c00)
182 #define   HTS2_PRST_SHIFT	10
183 #define   HTS2_PRST_UNLOADED	0
184 #define   HTS2_PRST_RUNNING	1
185 #define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
186 #define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
187 #define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
188 #define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
189 #define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
190 #define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
191 #define THM_PTL		0x56
192 #define THM_MGTV	0x58
193 #define   TV_MASK	0x000000000000ff00
194 #define   TV_SHIFT	8
195 #define THM_PTV		0x60
196 #define   PTV_MASK	0x00ff
197 #define THM_MMGPC	0x64
198 #define THM_MPPC	0x66
199 #define THM_MPCPC	0x68
200 #define THM_TSPIEN	0x82
201 #define   TSPIEN_AUX_LOHI	(1<<0)
202 #define   TSPIEN_HOT_LOHI	(1<<1)
203 #define   TSPIEN_CRIT_LOHI	(1<<2)
204 #define   TSPIEN_AUX2_LOHI	(1<<3)
205 #define THM_TSLOCK	0x83
206 #define THM_ATR		0x84
207 #define THM_TOF		0x87
208 #define THM_STS		0x98
209 #define   STS_PCPL_MASK		(0x7fe00000)
210 #define   STS_PCPL_SHIFT	21
211 #define   STS_GPL_MASK		(0x001ff000)
212 #define   STS_GPL_SHIFT		12
213 #define   STS_PP_MASK		(0x00000c00)
214 #define   STS_PP_SHIFT		10
215 #define   STS_PP_DEF		0
216 #define   STS_PP_PROC		1
217 #define   STS_PP_BAL		2
218 #define   STS_PP_GFX		3
219 #define   STS_PCTD_DIS		(1<<9)
220 #define   STS_GTD_DIS		(1<<8)
221 #define   STS_PTL_MASK		(0x000000fe)
222 #define   STS_PTL_SHIFT		1
223 #define   STS_NVV		(1<<0)
224 #define THM_SEC		0x9c
225 #define   SEC_ACK	(1<<0)
226 #define THM_TC3		0xa4
227 #define THM_TC1		0xa8
228 #define   STS_PPL_MASK		(0x0003ff00)
229 #define   STS_PPL_SHIFT		16
230 #define THM_TC2		0xac
231 #define THM_DTV		0xb0
232 #define THM_ITV		0xd8
233 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234 #define   ITV_ME_SEQNO_SHIFT (16)
235 #define   ITV_MCH_TEMP_MASK 0x0000ff00
236 #define   ITV_MCH_TEMP_SHIFT (8)
237 #define   ITV_PCH_TEMP_MASK 0x000000ff
238 
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
243 
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
247 
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 static bool late_i915_load = false;
250 
251 /* For initial average collection */
252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
255 
256 /* Per-SKU limits */
257 struct ips_mcp_limits {
258 	int cpu_family;
259 	int cpu_model; /* includes extended model... */
260 	int mcp_power_limit; /* mW units */
261 	int core_power_limit;
262 	int mch_power_limit;
263 	int core_temp_limit; /* degrees C */
264 	int mch_temp_limit;
265 };
266 
267 /* Max temps are -10 degrees C to avoid PROCHOT# */
268 
269 struct ips_mcp_limits ips_sv_limits = {
270 	.mcp_power_limit = 35000,
271 	.core_power_limit = 29000,
272 	.mch_power_limit = 20000,
273 	.core_temp_limit = 95,
274 	.mch_temp_limit = 90
275 };
276 
277 struct ips_mcp_limits ips_lv_limits = {
278 	.mcp_power_limit = 25000,
279 	.core_power_limit = 21000,
280 	.mch_power_limit = 13000,
281 	.core_temp_limit = 95,
282 	.mch_temp_limit = 90
283 };
284 
285 struct ips_mcp_limits ips_ulv_limits = {
286 	.mcp_power_limit = 18000,
287 	.core_power_limit = 14000,
288 	.mch_power_limit = 11000,
289 	.core_temp_limit = 95,
290 	.mch_temp_limit = 90
291 };
292 
293 struct ips_driver {
294 	struct pci_dev *dev;
295 	void *regmap;
296 	struct task_struct *monitor;
297 	struct task_struct *adjust;
298 	struct dentry *debug_root;
299 
300 	/* Average CPU core temps (all averages in .01 degrees C for precision) */
301 	u16 ctv1_avg_temp;
302 	u16 ctv2_avg_temp;
303 	/* GMCH average */
304 	u16 mch_avg_temp;
305 	/* Average for the CPU (both cores?) */
306 	u16 mcp_avg_temp;
307 	/* Average power consumption (in mW) */
308 	u32 cpu_avg_power;
309 	u32 mch_avg_power;
310 
311 	/* Offset values */
312 	u16 cta_val;
313 	u16 pta_val;
314 	u16 mgta_val;
315 
316 	/* Maximums & prefs, protected by turbo status lock */
317 	spinlock_t turbo_status_lock;
318 	u16 mcp_temp_limit;
319 	u16 mcp_power_limit;
320 	u16 core_power_limit;
321 	u16 mch_power_limit;
322 	bool cpu_turbo_enabled;
323 	bool __cpu_turbo_on;
324 	bool gpu_turbo_enabled;
325 	bool __gpu_turbo_on;
326 	bool gpu_preferred;
327 	bool poll_turbo_status;
328 	bool second_cpu;
329 	bool turbo_toggle_allowed;
330 	struct ips_mcp_limits *limits;
331 
332 	/* Optional MCH interfaces for if i915 is in use */
333 	unsigned long (*read_mch_val)(void);
334 	bool (*gpu_raise)(void);
335 	bool (*gpu_lower)(void);
336 	bool (*gpu_busy)(void);
337 	bool (*gpu_turbo_disable)(void);
338 
339 	/* For restoration at unload */
340 	u64 orig_turbo_limit;
341 	u64 orig_turbo_ratios;
342 };
343 
344 static bool
345 ips_gpu_turbo_enabled(struct ips_driver *ips);
346 
347 /**
348  * ips_cpu_busy - is CPU busy?
349  * @ips: IPS driver struct
350  *
351  * Check CPU for load to see whether we should increase its thermal budget.
352  *
353  * RETURNS:
354  * True if the CPU could use more power, false otherwise.
355  */
ips_cpu_busy(struct ips_driver * ips)356 static bool ips_cpu_busy(struct ips_driver *ips)
357 {
358 	if ((avenrun[0] >> FSHIFT) > 1)
359 		return true;
360 
361 	return false;
362 }
363 
364 /**
365  * ips_cpu_raise - raise CPU power clamp
366  * @ips: IPS driver struct
367  *
368  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
369  * this platform.
370  *
371  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
372  * long as we haven't hit the TDP limit for the SKU).
373  */
ips_cpu_raise(struct ips_driver * ips)374 static void ips_cpu_raise(struct ips_driver *ips)
375 {
376 	u64 turbo_override;
377 	u16 cur_tdp_limit, new_tdp_limit;
378 
379 	if (!ips->cpu_turbo_enabled)
380 		return;
381 
382 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
383 
384 	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
385 	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
386 
387 	/* Clamp to SKU TDP limit */
388 	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
389 		new_tdp_limit = cur_tdp_limit;
390 
391 	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
392 
393 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
394 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
395 
396 	turbo_override &= ~TURBO_TDP_MASK;
397 	turbo_override |= new_tdp_limit;
398 
399 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
400 }
401 
402 /**
403  * ips_cpu_lower - lower CPU power clamp
404  * @ips: IPS driver struct
405  *
406  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
407  *
408  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
409  * as low as the platform limits will allow (though we could go lower there
410  * wouldn't be much point).
411  */
ips_cpu_lower(struct ips_driver * ips)412 static void ips_cpu_lower(struct ips_driver *ips)
413 {
414 	u64 turbo_override;
415 	u16 cur_limit, new_limit;
416 
417 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
418 
419 	cur_limit = turbo_override & TURBO_TDP_MASK;
420 	new_limit = cur_limit - 8; /* 1W decrease */
421 
422 	/* Clamp to SKU TDP limit */
423 	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
424 		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
425 
426 	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
427 
428 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
429 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
430 
431 	turbo_override &= ~TURBO_TDP_MASK;
432 	turbo_override |= new_limit;
433 
434 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
435 }
436 
437 /**
438  * do_enable_cpu_turbo - internal turbo enable function
439  * @data: unused
440  *
441  * Internal function for actually updating MSRs.  When we enable/disable
442  * turbo, we need to do it on each CPU; this function is the one called
443  * by on_each_cpu() when needed.
444  */
do_enable_cpu_turbo(void * data)445 static void do_enable_cpu_turbo(void *data)
446 {
447 	u64 perf_ctl;
448 
449 	rdmsrl(IA32_PERF_CTL, perf_ctl);
450 	if (perf_ctl & IA32_PERF_TURBO_DIS) {
451 		perf_ctl &= ~IA32_PERF_TURBO_DIS;
452 		wrmsrl(IA32_PERF_CTL, perf_ctl);
453 	}
454 }
455 
456 /**
457  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
458  * @ips: IPS driver struct
459  *
460  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
461  * all logical threads.
462  */
ips_enable_cpu_turbo(struct ips_driver * ips)463 static void ips_enable_cpu_turbo(struct ips_driver *ips)
464 {
465 	/* Already on, no need to mess with MSRs */
466 	if (ips->__cpu_turbo_on)
467 		return;
468 
469 	if (ips->turbo_toggle_allowed)
470 		on_each_cpu(do_enable_cpu_turbo, ips, 1);
471 
472 	ips->__cpu_turbo_on = true;
473 }
474 
475 /**
476  * do_disable_cpu_turbo - internal turbo disable function
477  * @data: unused
478  *
479  * Internal function for actually updating MSRs.  When we enable/disable
480  * turbo, we need to do it on each CPU; this function is the one called
481  * by on_each_cpu() when needed.
482  */
do_disable_cpu_turbo(void * data)483 static void do_disable_cpu_turbo(void *data)
484 {
485 	u64 perf_ctl;
486 
487 	rdmsrl(IA32_PERF_CTL, perf_ctl);
488 	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
489 		perf_ctl |= IA32_PERF_TURBO_DIS;
490 		wrmsrl(IA32_PERF_CTL, perf_ctl);
491 	}
492 }
493 
494 /**
495  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
496  * @ips: IPS driver struct
497  *
498  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
499  * all logical threads.
500  */
ips_disable_cpu_turbo(struct ips_driver * ips)501 static void ips_disable_cpu_turbo(struct ips_driver *ips)
502 {
503 	/* Already off, leave it */
504 	if (!ips->__cpu_turbo_on)
505 		return;
506 
507 	if (ips->turbo_toggle_allowed)
508 		on_each_cpu(do_disable_cpu_turbo, ips, 1);
509 
510 	ips->__cpu_turbo_on = false;
511 }
512 
513 /**
514  * ips_gpu_busy - is GPU busy?
515  * @ips: IPS driver struct
516  *
517  * Check GPU for load to see whether we should increase its thermal budget.
518  * We need to call into the i915 driver in this case.
519  *
520  * RETURNS:
521  * True if the GPU could use more power, false otherwise.
522  */
ips_gpu_busy(struct ips_driver * ips)523 static bool ips_gpu_busy(struct ips_driver *ips)
524 {
525 	if (!ips_gpu_turbo_enabled(ips))
526 		return false;
527 
528 	return ips->gpu_busy();
529 }
530 
531 /**
532  * ips_gpu_raise - raise GPU power clamp
533  * @ips: IPS driver struct
534  *
535  * Raise the GPU frequency/power if possible.  We need to call into the
536  * i915 driver in this case.
537  */
ips_gpu_raise(struct ips_driver * ips)538 static void ips_gpu_raise(struct ips_driver *ips)
539 {
540 	if (!ips_gpu_turbo_enabled(ips))
541 		return;
542 
543 	if (!ips->gpu_raise())
544 		ips->gpu_turbo_enabled = false;
545 
546 	return;
547 }
548 
549 /**
550  * ips_gpu_lower - lower GPU power clamp
551  * @ips: IPS driver struct
552  *
553  * Lower GPU frequency/power if possible.  Need to call i915.
554  */
ips_gpu_lower(struct ips_driver * ips)555 static void ips_gpu_lower(struct ips_driver *ips)
556 {
557 	if (!ips_gpu_turbo_enabled(ips))
558 		return;
559 
560 	if (!ips->gpu_lower())
561 		ips->gpu_turbo_enabled = false;
562 
563 	return;
564 }
565 
566 /**
567  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
568  * @ips: IPS driver struct
569  *
570  * Call into the graphics driver indicating that it can safely use
571  * turbo mode.
572  */
ips_enable_gpu_turbo(struct ips_driver * ips)573 static void ips_enable_gpu_turbo(struct ips_driver *ips)
574 {
575 	if (ips->__gpu_turbo_on)
576 		return;
577 	ips->__gpu_turbo_on = true;
578 }
579 
580 /**
581  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
582  * @ips: IPS driver struct
583  *
584  * Request that the graphics driver disable turbo mode.
585  */
ips_disable_gpu_turbo(struct ips_driver * ips)586 static void ips_disable_gpu_turbo(struct ips_driver *ips)
587 {
588 	/* Avoid calling i915 if turbo is already disabled */
589 	if (!ips->__gpu_turbo_on)
590 		return;
591 
592 	if (!ips->gpu_turbo_disable())
593 		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
594 	else
595 		ips->__gpu_turbo_on = false;
596 }
597 
598 /**
599  * mcp_exceeded - check whether we're outside our thermal & power limits
600  * @ips: IPS driver struct
601  *
602  * Check whether the MCP is over its thermal or power budget.
603  */
mcp_exceeded(struct ips_driver * ips)604 static bool mcp_exceeded(struct ips_driver *ips)
605 {
606 	unsigned long flags;
607 	bool ret = false;
608 	u32 temp_limit;
609 	u32 avg_power;
610 	const char *msg = "MCP limit exceeded: ";
611 
612 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
613 
614 	temp_limit = ips->mcp_temp_limit * 100;
615 	if (ips->mcp_avg_temp > temp_limit) {
616 		dev_info(&ips->dev->dev,
617 			"%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
618 			temp_limit);
619 		ret = true;
620 	}
621 
622 	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
623 	if (avg_power > ips->mcp_power_limit) {
624 		dev_info(&ips->dev->dev,
625 			"%sAvg power %u, limit %u\n", msg, avg_power,
626 			ips->mcp_power_limit);
627 		ret = true;
628 	}
629 
630 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
631 
632 	return ret;
633 }
634 
635 /**
636  * cpu_exceeded - check whether a CPU core is outside its limits
637  * @ips: IPS driver struct
638  * @cpu: CPU number to check
639  *
640  * Check a given CPU's average temp or power is over its limit.
641  */
cpu_exceeded(struct ips_driver * ips,int cpu)642 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
643 {
644 	unsigned long flags;
645 	int avg;
646 	bool ret = false;
647 
648 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
649 	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
650 	if (avg > (ips->limits->core_temp_limit * 100))
651 		ret = true;
652 	if (ips->cpu_avg_power > ips->core_power_limit * 100)
653 		ret = true;
654 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
655 
656 	if (ret)
657 		dev_info(&ips->dev->dev,
658 			 "CPU power or thermal limit exceeded\n");
659 
660 	return ret;
661 }
662 
663 /**
664  * mch_exceeded - check whether the GPU is over budget
665  * @ips: IPS driver struct
666  *
667  * Check the MCH temp & power against their maximums.
668  */
mch_exceeded(struct ips_driver * ips)669 static bool mch_exceeded(struct ips_driver *ips)
670 {
671 	unsigned long flags;
672 	bool ret = false;
673 
674 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
675 	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
676 		ret = true;
677 	if (ips->mch_avg_power > ips->mch_power_limit)
678 		ret = true;
679 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
680 
681 	return ret;
682 }
683 
684 /**
685  * verify_limits - verify BIOS provided limits
686  * @ips: IPS structure
687  *
688  * BIOS can optionally provide non-default limits for power and temp.  Check
689  * them here and use the defaults if the BIOS values are not provided or
690  * are otherwise unusable.
691  */
verify_limits(struct ips_driver * ips)692 static void verify_limits(struct ips_driver *ips)
693 {
694 	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
695 	    ips->mcp_power_limit > 35000)
696 		ips->mcp_power_limit = ips->limits->mcp_power_limit;
697 
698 	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
699 	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
700 	    ips->mcp_temp_limit > 150)
701 		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
702 					  ips->limits->mch_temp_limit);
703 }
704 
705 /**
706  * update_turbo_limits - get various limits & settings from regs
707  * @ips: IPS driver struct
708  *
709  * Update the IPS power & temp limits, along with turbo enable flags,
710  * based on latest register contents.
711  *
712  * Used at init time and for runtime BIOS support, which requires polling
713  * the regs for updates (as a result of AC->DC transition for example).
714  *
715  * LOCKING:
716  * Caller must hold turbo_status_lock (outside of init)
717  */
update_turbo_limits(struct ips_driver * ips)718 static void update_turbo_limits(struct ips_driver *ips)
719 {
720 	u32 hts = thm_readl(THM_HTS);
721 
722 	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
723 	/*
724 	 * Disable turbo for now, until we can figure out why the power figures
725 	 * are wrong
726 	 */
727 	ips->cpu_turbo_enabled = false;
728 
729 	if (ips->gpu_busy)
730 		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
731 
732 	ips->core_power_limit = thm_readw(THM_MPCPC);
733 	ips->mch_power_limit = thm_readw(THM_MMGPC);
734 	ips->mcp_temp_limit = thm_readw(THM_PTL);
735 	ips->mcp_power_limit = thm_readw(THM_MPPC);
736 
737 	verify_limits(ips);
738 	/* Ignore BIOS CPU vs GPU pref */
739 }
740 
741 /**
742  * ips_adjust - adjust power clamp based on thermal state
743  * @data: ips driver structure
744  *
745  * Wake up every 5s or so and check whether we should adjust the power clamp.
746  * Check CPU and GPU load to determine which needs adjustment.  There are
747  * several things to consider here:
748  *   - do we need to adjust up or down?
749  *   - is CPU busy?
750  *   - is GPU busy?
751  *   - is CPU in turbo?
752  *   - is GPU in turbo?
753  *   - is CPU or GPU preferred? (CPU is default)
754  *
755  * So, given the above, we do the following:
756  *   - up (TDP available)
757  *     - CPU not busy, GPU not busy - nothing
758  *     - CPU busy, GPU not busy - adjust CPU up
759  *     - CPU not busy, GPU busy - adjust GPU up
760  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
761  *       non-preferred unit if necessary
762  *   - down (at TDP limit)
763  *     - adjust both CPU and GPU down if possible
764  *
765 		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
766 cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
767 cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
768 cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
769 cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
770  *
771  */
ips_adjust(void * data)772 static int ips_adjust(void *data)
773 {
774 	struct ips_driver *ips = data;
775 	unsigned long flags;
776 
777 	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
778 
779 	/*
780 	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
781 	 * often isn't recommended due to ME interaction.
782 	 */
783 	do {
784 		bool cpu_busy = ips_cpu_busy(ips);
785 		bool gpu_busy = ips_gpu_busy(ips);
786 
787 		spin_lock_irqsave(&ips->turbo_status_lock, flags);
788 		if (ips->poll_turbo_status)
789 			update_turbo_limits(ips);
790 		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
791 
792 		/* Update turbo status if necessary */
793 		if (ips->cpu_turbo_enabled)
794 			ips_enable_cpu_turbo(ips);
795 		else
796 			ips_disable_cpu_turbo(ips);
797 
798 		if (ips->gpu_turbo_enabled)
799 			ips_enable_gpu_turbo(ips);
800 		else
801 			ips_disable_gpu_turbo(ips);
802 
803 		/* We're outside our comfort zone, crank them down */
804 		if (mcp_exceeded(ips)) {
805 			ips_cpu_lower(ips);
806 			ips_gpu_lower(ips);
807 			goto sleep;
808 		}
809 
810 		if (!cpu_exceeded(ips, 0) && cpu_busy)
811 			ips_cpu_raise(ips);
812 		else
813 			ips_cpu_lower(ips);
814 
815 		if (!mch_exceeded(ips) && gpu_busy)
816 			ips_gpu_raise(ips);
817 		else
818 			ips_gpu_lower(ips);
819 
820 sleep:
821 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
822 	} while (!kthread_should_stop());
823 
824 	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
825 
826 	return 0;
827 }
828 
829 /*
830  * Helpers for reading out temp/power values and calculating their
831  * averages for the decision making and monitoring functions.
832  */
833 
calc_avg_temp(struct ips_driver * ips,u16 * array)834 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
835 {
836 	u64 total = 0;
837 	int i;
838 	u16 avg;
839 
840 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
841 		total += (u64)(array[i] * 100);
842 
843 	do_div(total, IPS_SAMPLE_COUNT);
844 
845 	avg = (u16)total;
846 
847 	return avg;
848 }
849 
read_mgtv(struct ips_driver * ips)850 static u16 read_mgtv(struct ips_driver *ips)
851 {
852 	u16 ret;
853 	u64 slope, offset;
854 	u64 val;
855 
856 	val = thm_readq(THM_MGTV);
857 	val = (val & TV_MASK) >> TV_SHIFT;
858 
859 	slope = offset = thm_readw(THM_MGTA);
860 	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
861 	offset = offset & MGTA_OFFSET_MASK;
862 
863 	ret = ((val * slope + 0x40) >> 7) + offset;
864 
865 	return 0; /* MCH temp reporting buggy */
866 }
867 
read_ptv(struct ips_driver * ips)868 static u16 read_ptv(struct ips_driver *ips)
869 {
870 	u16 val, slope, offset;
871 
872 	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
873 	offset = ips->pta_val & PTA_OFFSET_MASK;
874 
875 	val = thm_readw(THM_PTV) & PTV_MASK;
876 
877 	return val;
878 }
879 
read_ctv(struct ips_driver * ips,int cpu)880 static u16 read_ctv(struct ips_driver *ips, int cpu)
881 {
882 	int reg = cpu ? THM_CTV2 : THM_CTV1;
883 	u16 val;
884 
885 	val = thm_readw(reg);
886 	if (!(val & CTV_TEMP_ERROR))
887 		val = (val) >> 6; /* discard fractional component */
888 	else
889 		val = 0;
890 
891 	return val;
892 }
893 
get_cpu_power(struct ips_driver * ips,u32 * last,int period)894 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
895 {
896 	u32 val;
897 	u32 ret;
898 
899 	/*
900 	 * CEC is in joules/65535.  Take difference over time to
901 	 * get watts.
902 	 */
903 	val = thm_readl(THM_CEC);
904 
905 	/* period is in ms and we want mW */
906 	ret = (((val - *last) * 1000) / period);
907 	ret = (ret * 1000) / 65535;
908 	*last = val;
909 
910 	return 0;
911 }
912 
913 static const u16 temp_decay_factor = 2;
update_average_temp(u16 avg,u16 val)914 static u16 update_average_temp(u16 avg, u16 val)
915 {
916 	u16 ret;
917 
918 	/* Multiply by 100 for extra precision */
919 	ret = (val * 100 / temp_decay_factor) +
920 		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
921 	return ret;
922 }
923 
924 static const u16 power_decay_factor = 2;
update_average_power(u32 avg,u32 val)925 static u16 update_average_power(u32 avg, u32 val)
926 {
927 	u32 ret;
928 
929 	ret = (val / power_decay_factor) +
930 		(((power_decay_factor - 1) * avg) / power_decay_factor);
931 
932 	return ret;
933 }
934 
calc_avg_power(struct ips_driver * ips,u32 * array)935 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
936 {
937 	u64 total = 0;
938 	u32 avg;
939 	int i;
940 
941 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
942 		total += array[i];
943 
944 	do_div(total, IPS_SAMPLE_COUNT);
945 	avg = (u32)total;
946 
947 	return avg;
948 }
949 
monitor_timeout(unsigned long arg)950 static void monitor_timeout(unsigned long arg)
951 {
952 	wake_up_process((struct task_struct *)arg);
953 }
954 
955 /**
956  * ips_monitor - temp/power monitoring thread
957  * @data: ips driver structure
958  *
959  * This is the main function for the IPS driver.  It monitors power and
960  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
961  *
962  * We keep a 5s moving average of power consumption and tempurature.  Using
963  * that data, along with CPU vs GPU preference, we adjust the power clamps
964  * up or down.
965  */
ips_monitor(void * data)966 static int ips_monitor(void *data)
967 {
968 	struct ips_driver *ips = data;
969 	struct timer_list timer;
970 	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
971 	int i;
972 	u32 *cpu_samples, *mchp_samples, old_cpu_power;
973 	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
974 	u8 cur_seqno, last_seqno;
975 
976 	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
977 	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
978 	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
979 	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
980 	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
981 	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
982 	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
983 			!cpu_samples || !mchp_samples) {
984 		dev_err(&ips->dev->dev,
985 			"failed to allocate sample array, ips disabled\n");
986 		kfree(mcp_samples);
987 		kfree(ctv1_samples);
988 		kfree(ctv2_samples);
989 		kfree(mch_samples);
990 		kfree(cpu_samples);
991 		kfree(mchp_samples);
992 		return -ENOMEM;
993 	}
994 
995 	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
996 		ITV_ME_SEQNO_SHIFT;
997 	seqno_timestamp = get_jiffies_64();
998 
999 	old_cpu_power = thm_readl(THM_CEC);
1000 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1001 
1002 	/* Collect an initial average */
1003 	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
1004 		u32 mchp, cpu_power;
1005 		u16 val;
1006 
1007 		mcp_samples[i] = read_ptv(ips);
1008 
1009 		val = read_ctv(ips, 0);
1010 		ctv1_samples[i] = val;
1011 
1012 		val = read_ctv(ips, 1);
1013 		ctv2_samples[i] = val;
1014 
1015 		val = read_mgtv(ips);
1016 		mch_samples[i] = val;
1017 
1018 		cpu_power = get_cpu_power(ips, &old_cpu_power,
1019 					  IPS_SAMPLE_PERIOD);
1020 		cpu_samples[i] = cpu_power;
1021 
1022 		if (ips->read_mch_val) {
1023 			mchp = ips->read_mch_val();
1024 			mchp_samples[i] = mchp;
1025 		}
1026 
1027 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1028 		if (kthread_should_stop())
1029 			break;
1030 	}
1031 
1032 	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1033 	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1034 	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1035 	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1036 	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1037 	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1038 	kfree(mcp_samples);
1039 	kfree(ctv1_samples);
1040 	kfree(ctv2_samples);
1041 	kfree(mch_samples);
1042 	kfree(cpu_samples);
1043 	kfree(mchp_samples);
1044 
1045 	/* Start the adjustment thread now that we have data */
1046 	wake_up_process(ips->adjust);
1047 
1048 	/*
1049 	 * Ok, now we have an initial avg.  From here on out, we track the
1050 	 * running avg using a decaying average calculation.  This allows
1051 	 * us to reduce the sample frequency if the CPU and GPU are idle.
1052 	 */
1053 	old_cpu_power = thm_readl(THM_CEC);
1054 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1055 	last_sample_period = IPS_SAMPLE_PERIOD;
1056 
1057 	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1058 					(unsigned long)current);
1059 	do {
1060 		u32 cpu_val, mch_val;
1061 		u16 val;
1062 
1063 		/* MCP itself */
1064 		val = read_ptv(ips);
1065 		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1066 
1067 		/* Processor 0 */
1068 		val = read_ctv(ips, 0);
1069 		ips->ctv1_avg_temp =
1070 			update_average_temp(ips->ctv1_avg_temp, val);
1071 		/* Power */
1072 		cpu_val = get_cpu_power(ips, &old_cpu_power,
1073 					last_sample_period);
1074 		ips->cpu_avg_power =
1075 			update_average_power(ips->cpu_avg_power, cpu_val);
1076 
1077 		if (ips->second_cpu) {
1078 			/* Processor 1 */
1079 			val = read_ctv(ips, 1);
1080 			ips->ctv2_avg_temp =
1081 				update_average_temp(ips->ctv2_avg_temp, val);
1082 		}
1083 
1084 		/* MCH */
1085 		val = read_mgtv(ips);
1086 		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1087 		/* Power */
1088 		if (ips->read_mch_val) {
1089 			mch_val = ips->read_mch_val();
1090 			ips->mch_avg_power =
1091 				update_average_power(ips->mch_avg_power,
1092 						     mch_val);
1093 		}
1094 
1095 		/*
1096 		 * Make sure ME is updating thermal regs.
1097 		 * Note:
1098 		 * If it's been more than a second since the last update,
1099 		 * the ME is probably hung.
1100 		 */
1101 		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1102 			ITV_ME_SEQNO_SHIFT;
1103 		if (cur_seqno == last_seqno &&
1104 		    time_after(jiffies, seqno_timestamp + HZ)) {
1105 			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1106 		} else {
1107 			seqno_timestamp = get_jiffies_64();
1108 			last_seqno = cur_seqno;
1109 		}
1110 
1111 		last_msecs = jiffies_to_msecs(jiffies);
1112 		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1113 
1114 		__set_current_state(TASK_INTERRUPTIBLE);
1115 		mod_timer(&timer, expire);
1116 		schedule();
1117 
1118 		/* Calculate actual sample period for power averaging */
1119 		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1120 		if (!last_sample_period)
1121 			last_sample_period = 1;
1122 	} while (!kthread_should_stop());
1123 
1124 	del_timer_sync(&timer);
1125 	destroy_timer_on_stack(&timer);
1126 
1127 	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1128 
1129 	return 0;
1130 }
1131 
1132 #if 0
1133 #define THM_DUMPW(reg) \
1134 	{ \
1135 	u16 val = thm_readw(reg); \
1136 	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1137 	}
1138 #define THM_DUMPL(reg) \
1139 	{ \
1140 	u32 val = thm_readl(reg); \
1141 	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1142 	}
1143 #define THM_DUMPQ(reg) \
1144 	{ \
1145 	u64 val = thm_readq(reg); \
1146 	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1147 	}
1148 
1149 static void dump_thermal_info(struct ips_driver *ips)
1150 {
1151 	u16 ptl;
1152 
1153 	ptl = thm_readw(THM_PTL);
1154 	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1155 
1156 	THM_DUMPW(THM_CTA);
1157 	THM_DUMPW(THM_TRC);
1158 	THM_DUMPW(THM_CTV1);
1159 	THM_DUMPL(THM_STS);
1160 	THM_DUMPW(THM_PTV);
1161 	THM_DUMPQ(THM_MGTV);
1162 }
1163 #endif
1164 
1165 /**
1166  * ips_irq_handler - handle temperature triggers and other IPS events
1167  * @irq: irq number
1168  * @arg: unused
1169  *
1170  * Handle temperature limit trigger events, generally by lowering the clamps.
1171  * If we're at a critical limit, we clamp back to the lowest possible value
1172  * to prevent emergency shutdown.
1173  */
ips_irq_handler(int irq,void * arg)1174 static irqreturn_t ips_irq_handler(int irq, void *arg)
1175 {
1176 	struct ips_driver *ips = arg;
1177 	u8 tses = thm_readb(THM_TSES);
1178 	u8 tes = thm_readb(THM_TES);
1179 
1180 	if (!tses && !tes)
1181 		return IRQ_NONE;
1182 
1183 	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1184 	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1185 
1186 	/* STS update from EC? */
1187 	if (tes & 1) {
1188 		u32 sts, tc1;
1189 
1190 		sts = thm_readl(THM_STS);
1191 		tc1 = thm_readl(THM_TC1);
1192 
1193 		if (sts & STS_NVV) {
1194 			spin_lock(&ips->turbo_status_lock);
1195 			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1196 				STS_PCPL_SHIFT;
1197 			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1198 				STS_GPL_SHIFT;
1199 			/* ignore EC CPU vs GPU pref */
1200 			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1201 			/*
1202 			 * Disable turbo for now, until we can figure
1203 			 * out why the power figures are wrong
1204 			 */
1205 			ips->cpu_turbo_enabled = false;
1206 			if (ips->gpu_busy)
1207 				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1208 			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1209 				STS_PTL_SHIFT;
1210 			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1211 				STS_PPL_SHIFT;
1212 			verify_limits(ips);
1213 			spin_unlock(&ips->turbo_status_lock);
1214 
1215 			thm_writeb(THM_SEC, SEC_ACK);
1216 		}
1217 		thm_writeb(THM_TES, tes);
1218 	}
1219 
1220 	/* Thermal trip */
1221 	if (tses) {
1222 		dev_warn(&ips->dev->dev,
1223 			 "thermal trip occurred, tses: 0x%04x\n", tses);
1224 		thm_writeb(THM_TSES, tses);
1225 	}
1226 
1227 	return IRQ_HANDLED;
1228 }
1229 
1230 #ifndef CONFIG_DEBUG_FS
ips_debugfs_init(struct ips_driver * ips)1231 static void ips_debugfs_init(struct ips_driver *ips) { return; }
ips_debugfs_cleanup(struct ips_driver * ips)1232 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1233 #else
1234 
1235 /* Expose current state and limits in debugfs if possible */
1236 
1237 struct ips_debugfs_node {
1238 	struct ips_driver *ips;
1239 	char *name;
1240 	int (*show)(struct seq_file *m, void *data);
1241 };
1242 
show_cpu_temp(struct seq_file * m,void * data)1243 static int show_cpu_temp(struct seq_file *m, void *data)
1244 {
1245 	struct ips_driver *ips = m->private;
1246 
1247 	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1248 		   ips->ctv1_avg_temp % 100);
1249 
1250 	return 0;
1251 }
1252 
show_cpu_power(struct seq_file * m,void * data)1253 static int show_cpu_power(struct seq_file *m, void *data)
1254 {
1255 	struct ips_driver *ips = m->private;
1256 
1257 	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1258 
1259 	return 0;
1260 }
1261 
show_cpu_clamp(struct seq_file * m,void * data)1262 static int show_cpu_clamp(struct seq_file *m, void *data)
1263 {
1264 	u64 turbo_override;
1265 	int tdp, tdc;
1266 
1267 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1268 
1269 	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1270 	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1271 
1272 	/* Convert to .1W/A units */
1273 	tdp = tdp * 10 / 8;
1274 	tdc = tdc * 10 / 8;
1275 
1276 	/* Watts Amperes */
1277 	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1278 		   tdc / 10, tdc % 10);
1279 
1280 	return 0;
1281 }
1282 
show_mch_temp(struct seq_file * m,void * data)1283 static int show_mch_temp(struct seq_file *m, void *data)
1284 {
1285 	struct ips_driver *ips = m->private;
1286 
1287 	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1288 		   ips->mch_avg_temp % 100);
1289 
1290 	return 0;
1291 }
1292 
show_mch_power(struct seq_file * m,void * data)1293 static int show_mch_power(struct seq_file *m, void *data)
1294 {
1295 	struct ips_driver *ips = m->private;
1296 
1297 	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1298 
1299 	return 0;
1300 }
1301 
1302 static struct ips_debugfs_node ips_debug_files[] = {
1303 	{ NULL, "cpu_temp", show_cpu_temp },
1304 	{ NULL, "cpu_power", show_cpu_power },
1305 	{ NULL, "cpu_clamp", show_cpu_clamp },
1306 	{ NULL, "mch_temp", show_mch_temp },
1307 	{ NULL, "mch_power", show_mch_power },
1308 };
1309 
ips_debugfs_open(struct inode * inode,struct file * file)1310 static int ips_debugfs_open(struct inode *inode, struct file *file)
1311 {
1312 	struct ips_debugfs_node *node = inode->i_private;
1313 
1314 	return single_open(file, node->show, node->ips);
1315 }
1316 
1317 static const struct file_operations ips_debugfs_ops = {
1318 	.owner = THIS_MODULE,
1319 	.open = ips_debugfs_open,
1320 	.read = seq_read,
1321 	.llseek = seq_lseek,
1322 	.release = single_release,
1323 };
1324 
ips_debugfs_cleanup(struct ips_driver * ips)1325 static void ips_debugfs_cleanup(struct ips_driver *ips)
1326 {
1327 	if (ips->debug_root)
1328 		debugfs_remove_recursive(ips->debug_root);
1329 	return;
1330 }
1331 
ips_debugfs_init(struct ips_driver * ips)1332 static void ips_debugfs_init(struct ips_driver *ips)
1333 {
1334 	int i;
1335 
1336 	ips->debug_root = debugfs_create_dir("ips", NULL);
1337 	if (!ips->debug_root) {
1338 		dev_err(&ips->dev->dev,
1339 			"failed to create debugfs entries: %ld\n",
1340 			PTR_ERR(ips->debug_root));
1341 		return;
1342 	}
1343 
1344 	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1345 		struct dentry *ent;
1346 		struct ips_debugfs_node *node = &ips_debug_files[i];
1347 
1348 		node->ips = ips;
1349 		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1350 					  ips->debug_root, node,
1351 					  &ips_debugfs_ops);
1352 		if (!ent) {
1353 			dev_err(&ips->dev->dev,
1354 				"failed to create debug file: %ld\n",
1355 				PTR_ERR(ent));
1356 			goto err_cleanup;
1357 		}
1358 	}
1359 
1360 	return;
1361 
1362 err_cleanup:
1363 	ips_debugfs_cleanup(ips);
1364 	return;
1365 }
1366 #endif /* CONFIG_DEBUG_FS */
1367 
1368 /**
1369  * ips_detect_cpu - detect whether CPU supports IPS
1370  *
1371  * Walk our list and see if we're on a supported CPU.  If we find one,
1372  * return the limits for it.
1373  */
ips_detect_cpu(struct ips_driver * ips)1374 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1375 {
1376 	u64 turbo_power, misc_en;
1377 	struct ips_mcp_limits *limits = NULL;
1378 	u16 tdp;
1379 
1380 	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1381 		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1382 		goto out;
1383 	}
1384 
1385 	rdmsrl(IA32_MISC_ENABLE, misc_en);
1386 	/*
1387 	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1388 	 * turbo manually or we'll get an illegal MSR access, even though
1389 	 * turbo will still be available.
1390 	 */
1391 	if (misc_en & IA32_MISC_TURBO_EN)
1392 		ips->turbo_toggle_allowed = true;
1393 	else
1394 		ips->turbo_toggle_allowed = false;
1395 
1396 	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1397 		limits = &ips_sv_limits;
1398 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1399 		limits = &ips_lv_limits;
1400 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1401 		limits = &ips_ulv_limits;
1402 	else {
1403 		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1404 		goto out;
1405 	}
1406 
1407 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1408 	tdp = turbo_power & TURBO_TDP_MASK;
1409 
1410 	/* Sanity check TDP against CPU */
1411 	if (limits->core_power_limit != (tdp / 8) * 1000) {
1412 		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1413 			 tdp / 8, limits->core_power_limit / 1000);
1414 		limits->core_power_limit = (tdp / 8) * 1000;
1415 	}
1416 
1417 out:
1418 	return limits;
1419 }
1420 
1421 /**
1422  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1423  * @ips: IPS driver
1424  *
1425  * The i915 driver exports several interfaces to allow the IPS driver to
1426  * monitor and control graphics turbo mode.  If we can find them, we can
1427  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1428  * thermal and power limits in the MCP.
1429  */
ips_get_i915_syms(struct ips_driver * ips)1430 static bool ips_get_i915_syms(struct ips_driver *ips)
1431 {
1432 	ips->read_mch_val = symbol_get(i915_read_mch_val);
1433 	if (!ips->read_mch_val)
1434 		goto out_err;
1435 	ips->gpu_raise = symbol_get(i915_gpu_raise);
1436 	if (!ips->gpu_raise)
1437 		goto out_put_mch;
1438 	ips->gpu_lower = symbol_get(i915_gpu_lower);
1439 	if (!ips->gpu_lower)
1440 		goto out_put_raise;
1441 	ips->gpu_busy = symbol_get(i915_gpu_busy);
1442 	if (!ips->gpu_busy)
1443 		goto out_put_lower;
1444 	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1445 	if (!ips->gpu_turbo_disable)
1446 		goto out_put_busy;
1447 
1448 	return true;
1449 
1450 out_put_busy:
1451 	symbol_put(i915_gpu_busy);
1452 out_put_lower:
1453 	symbol_put(i915_gpu_lower);
1454 out_put_raise:
1455 	symbol_put(i915_gpu_raise);
1456 out_put_mch:
1457 	symbol_put(i915_read_mch_val);
1458 out_err:
1459 	return false;
1460 }
1461 
1462 static bool
ips_gpu_turbo_enabled(struct ips_driver * ips)1463 ips_gpu_turbo_enabled(struct ips_driver *ips)
1464 {
1465 	if (!ips->gpu_busy && late_i915_load) {
1466 		if (ips_get_i915_syms(ips)) {
1467 			dev_info(&ips->dev->dev,
1468 				 "i915 driver attached, reenabling gpu turbo\n");
1469 			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1470 		}
1471 	}
1472 
1473 	return ips->gpu_turbo_enabled;
1474 }
1475 
1476 void
ips_link_to_i915_driver(void)1477 ips_link_to_i915_driver(void)
1478 {
1479 	/* We can't cleanly get at the various ips_driver structs from
1480 	 * this caller (the i915 driver), so just set a flag saying
1481 	 * that it's time to try getting the symbols again.
1482 	 */
1483 	late_i915_load = true;
1484 }
1485 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1486 
1487 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1488 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1489 		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1490 	{ 0, }
1491 };
1492 
1493 MODULE_DEVICE_TABLE(pci, ips_id_table);
1494 
ips_probe(struct pci_dev * dev,const struct pci_device_id * id)1495 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1496 {
1497 	u64 platform_info;
1498 	struct ips_driver *ips;
1499 	u32 hts;
1500 	int ret = 0;
1501 	u16 htshi, trc, trc_required_mask;
1502 	u8 tse;
1503 
1504 	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1505 	if (!ips)
1506 		return -ENOMEM;
1507 
1508 	pci_set_drvdata(dev, ips);
1509 	ips->dev = dev;
1510 
1511 	ips->limits = ips_detect_cpu(ips);
1512 	if (!ips->limits) {
1513 		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1514 		ret = -ENXIO;
1515 		goto error_free;
1516 	}
1517 
1518 	spin_lock_init(&ips->turbo_status_lock);
1519 
1520 	ret = pci_enable_device(dev);
1521 	if (ret) {
1522 		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1523 		goto error_free;
1524 	}
1525 
1526 	if (!pci_resource_start(dev, 0)) {
1527 		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1528 		ret = -ENXIO;
1529 		goto error_free;
1530 	}
1531 
1532 	ret = pci_request_regions(dev, "ips thermal sensor");
1533 	if (ret) {
1534 		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1535 		goto error_free;
1536 	}
1537 
1538 
1539 	ips->regmap = ioremap(pci_resource_start(dev, 0),
1540 			      pci_resource_len(dev, 0));
1541 	if (!ips->regmap) {
1542 		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1543 		ret = -EBUSY;
1544 		goto error_release;
1545 	}
1546 
1547 	tse = thm_readb(THM_TSE);
1548 	if (tse != TSE_EN) {
1549 		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1550 		ret = -ENXIO;
1551 		goto error_unmap;
1552 	}
1553 
1554 	trc = thm_readw(THM_TRC);
1555 	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1556 	if ((trc & trc_required_mask) != trc_required_mask) {
1557 		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1558 		ret = -ENXIO;
1559 		goto error_unmap;
1560 	}
1561 
1562 	if (trc & TRC_CORE2_EN)
1563 		ips->second_cpu = true;
1564 
1565 	update_turbo_limits(ips);
1566 	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1567 		ips->mcp_power_limit / 10);
1568 	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1569 		ips->core_power_limit / 10);
1570 	/* BIOS may update limits at runtime */
1571 	if (thm_readl(THM_PSC) & PSP_PBRT)
1572 		ips->poll_turbo_status = true;
1573 
1574 	if (!ips_get_i915_syms(ips)) {
1575 		dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1576 		ips->gpu_turbo_enabled = false;
1577 	} else {
1578 		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1579 		ips->gpu_turbo_enabled = true;
1580 	}
1581 
1582 	/*
1583 	 * Check PLATFORM_INFO MSR to make sure this chip is
1584 	 * turbo capable.
1585 	 */
1586 	rdmsrl(PLATFORM_INFO, platform_info);
1587 	if (!(platform_info & PLATFORM_TDP)) {
1588 		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1589 		ret = -ENODEV;
1590 		goto error_unmap;
1591 	}
1592 
1593 	/*
1594 	 * IRQ handler for ME interaction
1595 	 * Note: don't use MSI here as the PCH has bugs.
1596 	 */
1597 	pci_disable_msi(dev);
1598 	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1599 			  ips);
1600 	if (ret) {
1601 		dev_err(&dev->dev, "request irq failed, aborting\n");
1602 		goto error_unmap;
1603 	}
1604 
1605 	/* Enable aux, hot & critical interrupts */
1606 	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1607 		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1608 	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1609 
1610 	/* Collect adjustment values */
1611 	ips->cta_val = thm_readw(THM_CTA);
1612 	ips->pta_val = thm_readw(THM_PTA);
1613 	ips->mgta_val = thm_readw(THM_MGTA);
1614 
1615 	/* Save turbo limits & ratios */
1616 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1617 
1618 	ips_disable_cpu_turbo(ips);
1619 	ips->cpu_turbo_enabled = false;
1620 
1621 	/* Create thermal adjust thread */
1622 	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1623 	if (IS_ERR(ips->adjust)) {
1624 		dev_err(&dev->dev,
1625 			"failed to create thermal adjust thread, aborting\n");
1626 		ret = -ENOMEM;
1627 		goto error_free_irq;
1628 
1629 	}
1630 
1631 	/*
1632 	 * Set up the work queue and monitor thread. The monitor thread
1633 	 * will wake up ips_adjust thread.
1634 	 */
1635 	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1636 	if (IS_ERR(ips->monitor)) {
1637 		dev_err(&dev->dev,
1638 			"failed to create thermal monitor thread, aborting\n");
1639 		ret = -ENOMEM;
1640 		goto error_thread_cleanup;
1641 	}
1642 
1643 	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1644 		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1645 	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1646 
1647 	thm_writew(THM_HTSHI, htshi);
1648 	thm_writel(THM_HTS, hts);
1649 
1650 	ips_debugfs_init(ips);
1651 
1652 	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1653 		 ips->mcp_temp_limit);
1654 	return ret;
1655 
1656 error_thread_cleanup:
1657 	kthread_stop(ips->adjust);
1658 error_free_irq:
1659 	free_irq(ips->dev->irq, ips);
1660 error_unmap:
1661 	iounmap(ips->regmap);
1662 error_release:
1663 	pci_release_regions(dev);
1664 error_free:
1665 	kfree(ips);
1666 	return ret;
1667 }
1668 
ips_remove(struct pci_dev * dev)1669 static void ips_remove(struct pci_dev *dev)
1670 {
1671 	struct ips_driver *ips = pci_get_drvdata(dev);
1672 	u64 turbo_override;
1673 
1674 	if (!ips)
1675 		return;
1676 
1677 	ips_debugfs_cleanup(ips);
1678 
1679 	/* Release i915 driver */
1680 	if (ips->read_mch_val)
1681 		symbol_put(i915_read_mch_val);
1682 	if (ips->gpu_raise)
1683 		symbol_put(i915_gpu_raise);
1684 	if (ips->gpu_lower)
1685 		symbol_put(i915_gpu_lower);
1686 	if (ips->gpu_busy)
1687 		symbol_put(i915_gpu_busy);
1688 	if (ips->gpu_turbo_disable)
1689 		symbol_put(i915_gpu_turbo_disable);
1690 
1691 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1692 	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1693 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1694 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1695 
1696 	free_irq(ips->dev->irq, ips);
1697 	if (ips->adjust)
1698 		kthread_stop(ips->adjust);
1699 	if (ips->monitor)
1700 		kthread_stop(ips->monitor);
1701 	iounmap(ips->regmap);
1702 	pci_release_regions(dev);
1703 	kfree(ips);
1704 	dev_dbg(&dev->dev, "IPS driver removed\n");
1705 }
1706 
1707 #ifdef CONFIG_PM
ips_suspend(struct pci_dev * dev,pm_message_t state)1708 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1709 {
1710 	return 0;
1711 }
1712 
ips_resume(struct pci_dev * dev)1713 static int ips_resume(struct pci_dev *dev)
1714 {
1715 	return 0;
1716 }
1717 #else
1718 #define ips_suspend NULL
1719 #define ips_resume NULL
1720 #endif /* CONFIG_PM */
1721 
ips_shutdown(struct pci_dev * dev)1722 static void ips_shutdown(struct pci_dev *dev)
1723 {
1724 }
1725 
1726 static struct pci_driver ips_pci_driver = {
1727 	.name = "intel ips",
1728 	.id_table = ips_id_table,
1729 	.probe = ips_probe,
1730 	.remove = ips_remove,
1731 	.suspend = ips_suspend,
1732 	.resume = ips_resume,
1733 	.shutdown = ips_shutdown,
1734 };
1735 
ips_init(void)1736 static int __init ips_init(void)
1737 {
1738 	return pci_register_driver(&ips_pci_driver);
1739 }
1740 module_init(ips_init);
1741 
ips_exit(void)1742 static void ips_exit(void)
1743 {
1744 	pci_unregister_driver(&ips_pci_driver);
1745 	return;
1746 }
1747 module_exit(ips_exit);
1748 
1749 MODULE_LICENSE("GPL");
1750 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1751 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1752