1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2016 Broadcom
4 */
5
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/md5.h>
30 #include <crypto/authenc.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/hash.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/sha3.h>
36
37 #include "util.h"
38 #include "cipher.h"
39 #include "spu.h"
40 #include "spum.h"
41 #include "spu2.h"
42
43 /* ================= Device Structure ================== */
44
45 struct bcm_device_private iproc_priv;
46
47 /* ==================== Parameters ===================== */
48
49 int flow_debug_logging;
50 module_param(flow_debug_logging, int, 0644);
51 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
52
53 int packet_debug_logging;
54 module_param(packet_debug_logging, int, 0644);
55 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
56
57 int debug_logging_sleep;
58 module_param(debug_logging_sleep, int, 0644);
59 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
60
61 /*
62 * The value of these module parameters is used to set the priority for each
63 * algo type when this driver registers algos with the kernel crypto API.
64 * To use a priority other than the default, set the priority in the insmod or
65 * modprobe. Changing the module priority after init time has no effect.
66 *
67 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
68 * algos, but more preferred than generic software algos.
69 */
70 static int cipher_pri = 150;
71 module_param(cipher_pri, int, 0644);
72 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
73
74 static int hash_pri = 100;
75 module_param(hash_pri, int, 0644);
76 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
77
78 static int aead_pri = 150;
79 module_param(aead_pri, int, 0644);
80 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
81
82 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
83 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
84 * 0x60 - ring 0
85 * 0x68 - ring 1
86 * 0x70 - ring 2
87 * 0x78 - ring 3
88 */
89 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
90 /*
91 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
92 * is set dynamically after reading SPU type from device tree.
93 */
94 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len
95
96 /* min and max time to sleep before retrying when mbox queue is full. usec */
97 #define MBOX_SLEEP_MIN 800
98 #define MBOX_SLEEP_MAX 1000
99
100 /**
101 * select_channel() - Select a SPU channel to handle a crypto request. Selects
102 * channel in round robin order.
103 *
104 * Return: channel index
105 */
select_channel(void)106 static u8 select_channel(void)
107 {
108 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
109
110 return chan_idx % iproc_priv.spu.num_chan;
111 }
112
113 /**
114 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
115 * receive a SPU response message for an skcipher request. Includes buffers to
116 * catch SPU message headers and the response data.
117 * @mssg: mailbox message containing the receive sg
118 * @rctx: crypto request context
119 * @rx_frag_num: number of scatterlist elements required to hold the
120 * SPU response message
121 * @chunksize: Number of bytes of response data expected
122 * @stat_pad_len: Number of bytes required to pad the STAT field to
123 * a 4-byte boundary
124 *
125 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
126 * when the request completes, whether the request is handled successfully or
127 * there is an error.
128 *
129 * Returns:
130 * 0 if successful
131 * < 0 if an error
132 */
133 static int
spu_skcipher_rx_sg_create(struct brcm_message * mssg,struct iproc_reqctx_s * rctx,u8 rx_frag_num,unsigned int chunksize,u32 stat_pad_len)134 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
135 struct iproc_reqctx_s *rctx,
136 u8 rx_frag_num,
137 unsigned int chunksize, u32 stat_pad_len)
138 {
139 struct spu_hw *spu = &iproc_priv.spu;
140 struct scatterlist *sg; /* used to build sgs in mbox message */
141 struct iproc_ctx_s *ctx = rctx->ctx;
142 u32 datalen; /* Number of bytes of response data expected */
143
144 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
145 rctx->gfp);
146 if (!mssg->spu.dst)
147 return -ENOMEM;
148
149 sg = mssg->spu.dst;
150 sg_init_table(sg, rx_frag_num);
151 /* Space for SPU message header */
152 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
153
154 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
155 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
156 spu->spu_xts_tweak_in_payload())
157 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
158 SPU_XTS_TWEAK_SIZE);
159
160 /* Copy in each dst sg entry from request, up to chunksize */
161 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
162 rctx->dst_nents, chunksize);
163 if (datalen < chunksize) {
164 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
165 __func__, chunksize, datalen);
166 return -EFAULT;
167 }
168
169 if (stat_pad_len)
170 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
171
172 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
173 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
174
175 return 0;
176 }
177
178 /**
179 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
180 * send a SPU request message for an skcipher request. Includes SPU message
181 * headers and the request data.
182 * @mssg: mailbox message containing the transmit sg
183 * @rctx: crypto request context
184 * @tx_frag_num: number of scatterlist elements required to construct the
185 * SPU request message
186 * @chunksize: Number of bytes of request data
187 * @pad_len: Number of pad bytes
188 *
189 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
190 * when the request completes, whether the request is handled successfully or
191 * there is an error.
192 *
193 * Returns:
194 * 0 if successful
195 * < 0 if an error
196 */
197 static int
spu_skcipher_tx_sg_create(struct brcm_message * mssg,struct iproc_reqctx_s * rctx,u8 tx_frag_num,unsigned int chunksize,u32 pad_len)198 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
199 struct iproc_reqctx_s *rctx,
200 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
201 {
202 struct spu_hw *spu = &iproc_priv.spu;
203 struct scatterlist *sg; /* used to build sgs in mbox message */
204 struct iproc_ctx_s *ctx = rctx->ctx;
205 u32 datalen; /* Number of bytes of response data expected */
206 u32 stat_len;
207
208 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
209 rctx->gfp);
210 if (unlikely(!mssg->spu.src))
211 return -ENOMEM;
212
213 sg = mssg->spu.src;
214 sg_init_table(sg, tx_frag_num);
215
216 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
217 BCM_HDR_LEN + ctx->spu_req_hdr_len);
218
219 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
220 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
221 spu->spu_xts_tweak_in_payload())
222 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
223
224 /* Copy in each src sg entry from request, up to chunksize */
225 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
226 rctx->src_nents, chunksize);
227 if (unlikely(datalen < chunksize)) {
228 pr_err("%s(): failed to copy src sg to mbox msg",
229 __func__);
230 return -EFAULT;
231 }
232
233 if (pad_len)
234 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
235
236 stat_len = spu->spu_tx_status_len();
237 if (stat_len) {
238 memset(rctx->msg_buf.tx_stat, 0, stat_len);
239 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
240 }
241 return 0;
242 }
243
mailbox_send_message(struct brcm_message * mssg,u32 flags,u8 chan_idx)244 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
245 u8 chan_idx)
246 {
247 int err;
248 int retry_cnt = 0;
249 struct device *dev = &(iproc_priv.pdev->dev);
250
251 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
252 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
253 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
254 /*
255 * Mailbox queue is full. Since MAY_SLEEP is set, assume
256 * not in atomic context and we can wait and try again.
257 */
258 retry_cnt++;
259 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
260 err = mbox_send_message(iproc_priv.mbox[chan_idx],
261 mssg);
262 atomic_inc(&iproc_priv.mb_no_spc);
263 }
264 }
265 if (err < 0) {
266 atomic_inc(&iproc_priv.mb_send_fail);
267 return err;
268 }
269
270 /* Check error returned by mailbox controller */
271 err = mssg->error;
272 if (unlikely(err < 0)) {
273 dev_err(dev, "message error %d", err);
274 /* Signal txdone for mailbox channel */
275 }
276
277 /* Signal txdone for mailbox channel */
278 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
279 return err;
280 }
281
282 /**
283 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
284 * a single SPU request message, starting at the current position in the request
285 * data.
286 * @rctx: Crypto request context
287 *
288 * This may be called on the crypto API thread, or, when a request is so large
289 * it must be broken into multiple SPU messages, on the thread used to invoke
290 * the response callback. When requests are broken into multiple SPU
291 * messages, we assume subsequent messages depend on previous results, and
292 * thus always wait for previous results before submitting the next message.
293 * Because requests are submitted in lock step like this, there is no need
294 * to synchronize access to request data structures.
295 *
296 * Return: -EINPROGRESS: request has been accepted and result will be returned
297 * asynchronously
298 * Any other value indicates an error
299 */
handle_skcipher_req(struct iproc_reqctx_s * rctx)300 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
301 {
302 struct spu_hw *spu = &iproc_priv.spu;
303 struct crypto_async_request *areq = rctx->parent;
304 struct skcipher_request *req =
305 container_of(areq, struct skcipher_request, base);
306 struct iproc_ctx_s *ctx = rctx->ctx;
307 struct spu_cipher_parms cipher_parms;
308 int err;
309 unsigned int chunksize; /* Num bytes of request to submit */
310 int remaining; /* Bytes of request still to process */
311 int chunk_start; /* Beginning of data for current SPU msg */
312
313 /* IV or ctr value to use in this SPU msg */
314 u8 local_iv_ctr[MAX_IV_SIZE];
315 u32 stat_pad_len; /* num bytes to align status field */
316 u32 pad_len; /* total length of all padding */
317 struct brcm_message *mssg; /* mailbox message */
318
319 /* number of entries in src and dst sg in mailbox message. */
320 u8 rx_frag_num = 2; /* response header and STATUS */
321 u8 tx_frag_num = 1; /* request header */
322
323 flow_log("%s\n", __func__);
324
325 cipher_parms.alg = ctx->cipher.alg;
326 cipher_parms.mode = ctx->cipher.mode;
327 cipher_parms.type = ctx->cipher_type;
328 cipher_parms.key_len = ctx->enckeylen;
329 cipher_parms.key_buf = ctx->enckey;
330 cipher_parms.iv_buf = local_iv_ctr;
331 cipher_parms.iv_len = rctx->iv_ctr_len;
332
333 mssg = &rctx->mb_mssg;
334 chunk_start = rctx->src_sent;
335 remaining = rctx->total_todo - chunk_start;
336
337 /* determine the chunk we are breaking off and update the indexes */
338 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
339 (remaining > ctx->max_payload))
340 chunksize = ctx->max_payload;
341 else
342 chunksize = remaining;
343
344 rctx->src_sent += chunksize;
345 rctx->total_sent = rctx->src_sent;
346
347 /* Count number of sg entries to be included in this request */
348 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
349 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
350
351 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
352 rctx->is_encrypt && chunk_start)
353 /*
354 * Encrypting non-first first chunk. Copy last block of
355 * previous result to IV for this chunk.
356 */
357 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
358 rctx->iv_ctr_len,
359 chunk_start - rctx->iv_ctr_len);
360
361 if (rctx->iv_ctr_len) {
362 /* get our local copy of the iv */
363 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
364 rctx->iv_ctr_len);
365
366 /* generate the next IV if possible */
367 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
368 !rctx->is_encrypt) {
369 /*
370 * CBC Decrypt: next IV is the last ciphertext block in
371 * this chunk
372 */
373 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
374 rctx->iv_ctr_len,
375 rctx->src_sent - rctx->iv_ctr_len);
376 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
377 /*
378 * The SPU hardware increments the counter once for
379 * each AES block of 16 bytes. So update the counter
380 * for the next chunk, if there is one. Note that for
381 * this chunk, the counter has already been copied to
382 * local_iv_ctr. We can assume a block size of 16,
383 * because we only support CTR mode for AES, not for
384 * any other cipher alg.
385 */
386 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
387 }
388 }
389
390 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
391 flow_log("max_payload infinite\n");
392 else
393 flow_log("max_payload %u\n", ctx->max_payload);
394
395 flow_log("sent:%u start:%u remains:%u size:%u\n",
396 rctx->src_sent, chunk_start, remaining, chunksize);
397
398 /* Copy SPU header template created at setkey time */
399 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
400 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
401
402 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
403 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
404 &cipher_parms, chunksize);
405
406 atomic64_add(chunksize, &iproc_priv.bytes_out);
407
408 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
409 if (stat_pad_len)
410 rx_frag_num++;
411 pad_len = stat_pad_len;
412 if (pad_len) {
413 tx_frag_num++;
414 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
415 0, ctx->auth.alg, ctx->auth.mode,
416 rctx->total_sent, stat_pad_len);
417 }
418
419 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
420 ctx->spu_req_hdr_len);
421 packet_log("payload:\n");
422 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
423 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
424
425 /*
426 * Build mailbox message containing SPU request msg and rx buffers
427 * to catch response message
428 */
429 memset(mssg, 0, sizeof(*mssg));
430 mssg->type = BRCM_MESSAGE_SPU;
431 mssg->ctx = rctx; /* Will be returned in response */
432
433 /* Create rx scatterlist to catch result */
434 rx_frag_num += rctx->dst_nents;
435
436 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
437 spu->spu_xts_tweak_in_payload())
438 rx_frag_num++; /* extra sg to insert tweak */
439
440 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
441 stat_pad_len);
442 if (err)
443 return err;
444
445 /* Create tx scatterlist containing SPU request message */
446 tx_frag_num += rctx->src_nents;
447 if (spu->spu_tx_status_len())
448 tx_frag_num++;
449
450 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
451 spu->spu_xts_tweak_in_payload())
452 tx_frag_num++; /* extra sg to insert tweak */
453
454 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
455 pad_len);
456 if (err)
457 return err;
458
459 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
460 if (unlikely(err < 0))
461 return err;
462
463 return -EINPROGRESS;
464 }
465
466 /**
467 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
468 * total received count for the request and updates global stats.
469 * @rctx: Crypto request context
470 */
handle_skcipher_resp(struct iproc_reqctx_s * rctx)471 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
472 {
473 struct spu_hw *spu = &iproc_priv.spu;
474 struct crypto_async_request *areq = rctx->parent;
475 struct skcipher_request *req = skcipher_request_cast(areq);
476 struct iproc_ctx_s *ctx = rctx->ctx;
477 u32 payload_len;
478
479 /* See how much data was returned */
480 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
481
482 /*
483 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
484 * encrypted tweak ("i") value; we don't count those.
485 */
486 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
487 spu->spu_xts_tweak_in_payload() &&
488 (payload_len >= SPU_XTS_TWEAK_SIZE))
489 payload_len -= SPU_XTS_TWEAK_SIZE;
490
491 atomic64_add(payload_len, &iproc_priv.bytes_in);
492
493 flow_log("%s() offset: %u, bd_len: %u BD:\n",
494 __func__, rctx->total_received, payload_len);
495
496 dump_sg(req->dst, rctx->total_received, payload_len);
497
498 rctx->total_received += payload_len;
499 if (rctx->total_received == rctx->total_todo) {
500 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
501 atomic_inc(
502 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
503 }
504 }
505
506 /**
507 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
508 * receive a SPU response message for an ahash request.
509 * @mssg: mailbox message containing the receive sg
510 * @rctx: crypto request context
511 * @rx_frag_num: number of scatterlist elements required to hold the
512 * SPU response message
513 * @digestsize: length of hash digest, in bytes
514 * @stat_pad_len: Number of bytes required to pad the STAT field to
515 * a 4-byte boundary
516 *
517 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
518 * when the request completes, whether the request is handled successfully or
519 * there is an error.
520 *
521 * Return:
522 * 0 if successful
523 * < 0 if an error
524 */
525 static int
spu_ahash_rx_sg_create(struct brcm_message * mssg,struct iproc_reqctx_s * rctx,u8 rx_frag_num,unsigned int digestsize,u32 stat_pad_len)526 spu_ahash_rx_sg_create(struct brcm_message *mssg,
527 struct iproc_reqctx_s *rctx,
528 u8 rx_frag_num, unsigned int digestsize,
529 u32 stat_pad_len)
530 {
531 struct spu_hw *spu = &iproc_priv.spu;
532 struct scatterlist *sg; /* used to build sgs in mbox message */
533 struct iproc_ctx_s *ctx = rctx->ctx;
534
535 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
536 rctx->gfp);
537 if (!mssg->spu.dst)
538 return -ENOMEM;
539
540 sg = mssg->spu.dst;
541 sg_init_table(sg, rx_frag_num);
542 /* Space for SPU message header */
543 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
544
545 /* Space for digest */
546 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
547
548 if (stat_pad_len)
549 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
550
551 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
552 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
553 return 0;
554 }
555
556 /**
557 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
558 * a SPU request message for an ahash request. Includes SPU message headers and
559 * the request data.
560 * @mssg: mailbox message containing the transmit sg
561 * @rctx: crypto request context
562 * @tx_frag_num: number of scatterlist elements required to construct the
563 * SPU request message
564 * @spu_hdr_len: length in bytes of SPU message header
565 * @hash_carry_len: Number of bytes of data carried over from previous req
566 * @new_data_len: Number of bytes of new request data
567 * @pad_len: Number of pad bytes
568 *
569 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
570 * when the request completes, whether the request is handled successfully or
571 * there is an error.
572 *
573 * Return:
574 * 0 if successful
575 * < 0 if an error
576 */
577 static int
spu_ahash_tx_sg_create(struct brcm_message * mssg,struct iproc_reqctx_s * rctx,u8 tx_frag_num,u32 spu_hdr_len,unsigned int hash_carry_len,unsigned int new_data_len,u32 pad_len)578 spu_ahash_tx_sg_create(struct brcm_message *mssg,
579 struct iproc_reqctx_s *rctx,
580 u8 tx_frag_num,
581 u32 spu_hdr_len,
582 unsigned int hash_carry_len,
583 unsigned int new_data_len, u32 pad_len)
584 {
585 struct spu_hw *spu = &iproc_priv.spu;
586 struct scatterlist *sg; /* used to build sgs in mbox message */
587 u32 datalen; /* Number of bytes of response data expected */
588 u32 stat_len;
589
590 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
591 rctx->gfp);
592 if (!mssg->spu.src)
593 return -ENOMEM;
594
595 sg = mssg->spu.src;
596 sg_init_table(sg, tx_frag_num);
597
598 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
599 BCM_HDR_LEN + spu_hdr_len);
600
601 if (hash_carry_len)
602 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
603
604 if (new_data_len) {
605 /* Copy in each src sg entry from request, up to chunksize */
606 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
607 rctx->src_nents, new_data_len);
608 if (datalen < new_data_len) {
609 pr_err("%s(): failed to copy src sg to mbox msg",
610 __func__);
611 return -EFAULT;
612 }
613 }
614
615 if (pad_len)
616 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
617
618 stat_len = spu->spu_tx_status_len();
619 if (stat_len) {
620 memset(rctx->msg_buf.tx_stat, 0, stat_len);
621 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
622 }
623
624 return 0;
625 }
626
627 /**
628 * handle_ahash_req() - Process an asynchronous hash request from the crypto
629 * API.
630 * @rctx: Crypto request context
631 *
632 * Builds a SPU request message embedded in a mailbox message and submits the
633 * mailbox message on a selected mailbox channel. The SPU request message is
634 * constructed as a scatterlist, including entries from the crypto API's
635 * src scatterlist to avoid copying the data to be hashed. This function is
636 * called either on the thread from the crypto API, or, in the case that the
637 * crypto API request is too large to fit in a single SPU request message,
638 * on the thread that invokes the receive callback with a response message.
639 * Because some operations require the response from one chunk before the next
640 * chunk can be submitted, we always wait for the response for the previous
641 * chunk before submitting the next chunk. Because requests are submitted in
642 * lock step like this, there is no need to synchronize access to request data
643 * structures.
644 *
645 * Return:
646 * -EINPROGRESS: request has been submitted to SPU and response will be
647 * returned asynchronously
648 * -EAGAIN: non-final request included a small amount of data, which for
649 * efficiency we did not submit to the SPU, but instead stored
650 * to be submitted to the SPU with the next part of the request
651 * other: an error code
652 */
handle_ahash_req(struct iproc_reqctx_s * rctx)653 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
654 {
655 struct spu_hw *spu = &iproc_priv.spu;
656 struct crypto_async_request *areq = rctx->parent;
657 struct ahash_request *req = ahash_request_cast(areq);
658 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
659 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
660 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
661 struct iproc_ctx_s *ctx = rctx->ctx;
662
663 /* number of bytes still to be hashed in this req */
664 unsigned int nbytes_to_hash = 0;
665 int err;
666 unsigned int chunksize = 0; /* length of hash carry + new data */
667 /*
668 * length of new data, not from hash carry, to be submitted in
669 * this hw request
670 */
671 unsigned int new_data_len;
672
673 unsigned int __maybe_unused chunk_start = 0;
674 u32 db_size; /* Length of data field, incl gcm and hash padding */
675 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
676 u32 data_pad_len = 0; /* length of GCM/CCM padding */
677 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
678 struct brcm_message *mssg; /* mailbox message */
679 struct spu_request_opts req_opts;
680 struct spu_cipher_parms cipher_parms;
681 struct spu_hash_parms hash_parms;
682 struct spu_aead_parms aead_parms;
683 unsigned int local_nbuf;
684 u32 spu_hdr_len;
685 unsigned int digestsize;
686 u16 rem = 0;
687
688 /*
689 * number of entries in src and dst sg. Always includes SPU msg header.
690 * rx always includes a buffer to catch digest and STATUS.
691 */
692 u8 rx_frag_num = 3;
693 u8 tx_frag_num = 1;
694
695 flow_log("total_todo %u, total_sent %u\n",
696 rctx->total_todo, rctx->total_sent);
697
698 memset(&req_opts, 0, sizeof(req_opts));
699 memset(&cipher_parms, 0, sizeof(cipher_parms));
700 memset(&hash_parms, 0, sizeof(hash_parms));
701 memset(&aead_parms, 0, sizeof(aead_parms));
702
703 req_opts.bd_suppress = true;
704 hash_parms.alg = ctx->auth.alg;
705 hash_parms.mode = ctx->auth.mode;
706 hash_parms.type = HASH_TYPE_NONE;
707 hash_parms.key_buf = (u8 *)ctx->authkey;
708 hash_parms.key_len = ctx->authkeylen;
709
710 /*
711 * For hash algorithms below assignment looks bit odd but
712 * it's needed for AES-XCBC and AES-CMAC hash algorithms
713 * to differentiate between 128, 192, 256 bit key values.
714 * Based on the key values, hash algorithm is selected.
715 * For example for 128 bit key, hash algorithm is AES-128.
716 */
717 cipher_parms.type = ctx->cipher_type;
718
719 mssg = &rctx->mb_mssg;
720 chunk_start = rctx->src_sent;
721
722 /*
723 * Compute the amount remaining to hash. This may include data
724 * carried over from previous requests.
725 */
726 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
727 chunksize = nbytes_to_hash;
728 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
729 (chunksize > ctx->max_payload))
730 chunksize = ctx->max_payload;
731
732 /*
733 * If this is not a final request and the request data is not a multiple
734 * of a full block, then simply park the extra data and prefix it to the
735 * data for the next request.
736 */
737 if (!rctx->is_final) {
738 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
739 u16 new_len; /* len of data to add to hash carry */
740
741 rem = chunksize % blocksize; /* remainder */
742 if (rem) {
743 /* chunksize not a multiple of blocksize */
744 chunksize -= rem;
745 if (chunksize == 0) {
746 /* Don't have a full block to submit to hw */
747 new_len = rem - rctx->hash_carry_len;
748 sg_copy_part_to_buf(req->src, dest, new_len,
749 rctx->src_sent);
750 rctx->hash_carry_len = rem;
751 flow_log("Exiting with hash carry len: %u\n",
752 rctx->hash_carry_len);
753 packet_dump(" buf: ",
754 rctx->hash_carry,
755 rctx->hash_carry_len);
756 return -EAGAIN;
757 }
758 }
759 }
760
761 /* if we have hash carry, then prefix it to the data in this request */
762 local_nbuf = rctx->hash_carry_len;
763 rctx->hash_carry_len = 0;
764 if (local_nbuf)
765 tx_frag_num++;
766 new_data_len = chunksize - local_nbuf;
767
768 /* Count number of sg entries to be used in this request */
769 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
770 new_data_len);
771
772 /* AES hashing keeps key size in type field, so need to copy it here */
773 if (hash_parms.alg == HASH_ALG_AES)
774 hash_parms.type = (enum hash_type)cipher_parms.type;
775 else
776 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
777
778 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
779 hash_parms.type);
780 hash_parms.digestsize = digestsize;
781
782 /* update the indexes */
783 rctx->total_sent += chunksize;
784 /* if you sent a prebuf then that wasn't from this req->src */
785 rctx->src_sent += new_data_len;
786
787 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
788 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
789 hash_parms.mode,
790 chunksize,
791 blocksize);
792
793 /*
794 * If a non-first chunk, then include the digest returned from the
795 * previous chunk so that hw can add to it (except for AES types).
796 */
797 if ((hash_parms.type == HASH_TYPE_UPDT) &&
798 (hash_parms.alg != HASH_ALG_AES)) {
799 hash_parms.key_buf = rctx->incr_hash;
800 hash_parms.key_len = digestsize;
801 }
802
803 atomic64_add(chunksize, &iproc_priv.bytes_out);
804
805 flow_log("%s() final: %u nbuf: %u ",
806 __func__, rctx->is_final, local_nbuf);
807
808 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
809 flow_log("max_payload infinite\n");
810 else
811 flow_log("max_payload %u\n", ctx->max_payload);
812
813 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
814
815 /* Prepend SPU header with type 3 BCM header */
816 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
817
818 hash_parms.prebuf_len = local_nbuf;
819 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
820 BCM_HDR_LEN,
821 &req_opts, &cipher_parms,
822 &hash_parms, &aead_parms,
823 new_data_len);
824
825 if (spu_hdr_len == 0) {
826 pr_err("Failed to create SPU request header\n");
827 return -EFAULT;
828 }
829
830 /*
831 * Determine total length of padding required. Put all padding in one
832 * buffer.
833 */
834 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
835 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
836 0, 0, hash_parms.pad_len);
837 if (spu->spu_tx_status_len())
838 stat_pad_len = spu->spu_wordalign_padlen(db_size);
839 if (stat_pad_len)
840 rx_frag_num++;
841 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
842 if (pad_len) {
843 tx_frag_num++;
844 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
845 hash_parms.pad_len, ctx->auth.alg,
846 ctx->auth.mode, rctx->total_sent,
847 stat_pad_len);
848 }
849
850 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
851 spu_hdr_len);
852 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
853 flow_log("Data:\n");
854 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
855 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
856
857 /*
858 * Build mailbox message containing SPU request msg and rx buffers
859 * to catch response message
860 */
861 memset(mssg, 0, sizeof(*mssg));
862 mssg->type = BRCM_MESSAGE_SPU;
863 mssg->ctx = rctx; /* Will be returned in response */
864
865 /* Create rx scatterlist to catch result */
866 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
867 stat_pad_len);
868 if (err)
869 return err;
870
871 /* Create tx scatterlist containing SPU request message */
872 tx_frag_num += rctx->src_nents;
873 if (spu->spu_tx_status_len())
874 tx_frag_num++;
875 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
876 local_nbuf, new_data_len, pad_len);
877 if (err)
878 return err;
879
880 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
881 if (unlikely(err < 0))
882 return err;
883
884 return -EINPROGRESS;
885 }
886
887 /**
888 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
889 * for an HMAC request.
890 * @req: The HMAC request from the crypto API
891 * @ctx: The session context
892 *
893 * Return: 0 if synchronous hash operation successful
894 * -EINVAL if the hash algo is unrecognized
895 * any other value indicates an error
896 */
spu_hmac_outer_hash(struct ahash_request * req,struct iproc_ctx_s * ctx)897 static int spu_hmac_outer_hash(struct ahash_request *req,
898 struct iproc_ctx_s *ctx)
899 {
900 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
901 unsigned int blocksize =
902 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
903 int rc;
904
905 switch (ctx->auth.alg) {
906 case HASH_ALG_MD5:
907 rc = do_shash("md5", req->result, ctx->opad, blocksize,
908 req->result, ctx->digestsize, NULL, 0);
909 break;
910 case HASH_ALG_SHA1:
911 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
912 req->result, ctx->digestsize, NULL, 0);
913 break;
914 case HASH_ALG_SHA224:
915 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
916 req->result, ctx->digestsize, NULL, 0);
917 break;
918 case HASH_ALG_SHA256:
919 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
920 req->result, ctx->digestsize, NULL, 0);
921 break;
922 case HASH_ALG_SHA384:
923 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
924 req->result, ctx->digestsize, NULL, 0);
925 break;
926 case HASH_ALG_SHA512:
927 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
928 req->result, ctx->digestsize, NULL, 0);
929 break;
930 default:
931 pr_err("%s() Error : unknown hmac type\n", __func__);
932 rc = -EINVAL;
933 }
934 return rc;
935 }
936
937 /**
938 * ahash_req_done() - Process a hash result from the SPU hardware.
939 * @rctx: Crypto request context
940 *
941 * Return: 0 if successful
942 * < 0 if an error
943 */
ahash_req_done(struct iproc_reqctx_s * rctx)944 static int ahash_req_done(struct iproc_reqctx_s *rctx)
945 {
946 struct spu_hw *spu = &iproc_priv.spu;
947 struct crypto_async_request *areq = rctx->parent;
948 struct ahash_request *req = ahash_request_cast(areq);
949 struct iproc_ctx_s *ctx = rctx->ctx;
950 int err;
951
952 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
953
954 if (spu->spu_type == SPU_TYPE_SPUM) {
955 /* byte swap the output from the UPDT function to network byte
956 * order
957 */
958 if (ctx->auth.alg == HASH_ALG_MD5) {
959 __swab32s((u32 *)req->result);
960 __swab32s(((u32 *)req->result) + 1);
961 __swab32s(((u32 *)req->result) + 2);
962 __swab32s(((u32 *)req->result) + 3);
963 __swab32s(((u32 *)req->result) + 4);
964 }
965 }
966
967 flow_dump(" digest ", req->result, ctx->digestsize);
968
969 /* if this an HMAC then do the outer hash */
970 if (rctx->is_sw_hmac) {
971 err = spu_hmac_outer_hash(req, ctx);
972 if (err < 0)
973 return err;
974 flow_dump(" hmac: ", req->result, ctx->digestsize);
975 }
976
977 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
978 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
979 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
980 } else {
981 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
982 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
983 }
984
985 return 0;
986 }
987
988 /**
989 * handle_ahash_resp() - Process a SPU response message for a hash request.
990 * Checks if the entire crypto API request has been processed, and if so,
991 * invokes post processing on the result.
992 * @rctx: Crypto request context
993 */
handle_ahash_resp(struct iproc_reqctx_s * rctx)994 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
995 {
996 struct iproc_ctx_s *ctx = rctx->ctx;
997 struct crypto_async_request *areq = rctx->parent;
998 struct ahash_request *req = ahash_request_cast(areq);
999 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1000 unsigned int blocksize =
1001 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1002 /*
1003 * Save hash to use as input to next op if incremental. Might be copying
1004 * too much, but that's easier than figuring out actual digest size here
1005 */
1006 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1007
1008 flow_log("%s() blocksize:%u digestsize:%u\n",
1009 __func__, blocksize, ctx->digestsize);
1010
1011 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1012
1013 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1014 ahash_req_done(rctx);
1015 }
1016
1017 /**
1018 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1019 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1020 * message headers and the response data.
1021 * @mssg: mailbox message containing the receive sg
1022 * @req: Crypto API request
1023 * @rctx: crypto request context
1024 * @rx_frag_num: number of scatterlist elements required to hold the
1025 * SPU response message
1026 * @assoc_len: Length of associated data included in the crypto request
1027 * @ret_iv_len: Length of IV returned in response
1028 * @resp_len: Number of bytes of response data expected to be written to
1029 * dst buffer from crypto API
1030 * @digestsize: Length of hash digest, in bytes
1031 * @stat_pad_len: Number of bytes required to pad the STAT field to
1032 * a 4-byte boundary
1033 *
1034 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1035 * when the request completes, whether the request is handled successfully or
1036 * there is an error.
1037 *
1038 * Returns:
1039 * 0 if successful
1040 * < 0 if an error
1041 */
spu_aead_rx_sg_create(struct brcm_message * mssg,struct aead_request * req,struct iproc_reqctx_s * rctx,u8 rx_frag_num,unsigned int assoc_len,u32 ret_iv_len,unsigned int resp_len,unsigned int digestsize,u32 stat_pad_len)1042 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1043 struct aead_request *req,
1044 struct iproc_reqctx_s *rctx,
1045 u8 rx_frag_num,
1046 unsigned int assoc_len,
1047 u32 ret_iv_len, unsigned int resp_len,
1048 unsigned int digestsize, u32 stat_pad_len)
1049 {
1050 struct spu_hw *spu = &iproc_priv.spu;
1051 struct scatterlist *sg; /* used to build sgs in mbox message */
1052 struct iproc_ctx_s *ctx = rctx->ctx;
1053 u32 datalen; /* Number of bytes of response data expected */
1054 u32 assoc_buf_len;
1055 u8 data_padlen = 0;
1056
1057 if (ctx->is_rfc4543) {
1058 /* RFC4543: only pad after data, not after AAD */
1059 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1060 assoc_len + resp_len);
1061 assoc_buf_len = assoc_len;
1062 } else {
1063 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1064 resp_len);
1065 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1066 assoc_len, ret_iv_len,
1067 rctx->is_encrypt);
1068 }
1069
1070 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1071 /* ICV (after data) must be in the next 32-bit word for CCM */
1072 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1073 resp_len +
1074 data_padlen);
1075
1076 if (data_padlen)
1077 /* have to catch gcm pad in separate buffer */
1078 rx_frag_num++;
1079
1080 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1081 rctx->gfp);
1082 if (!mssg->spu.dst)
1083 return -ENOMEM;
1084
1085 sg = mssg->spu.dst;
1086 sg_init_table(sg, rx_frag_num);
1087
1088 /* Space for SPU message header */
1089 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1090
1091 if (assoc_buf_len) {
1092 /*
1093 * Don't write directly to req->dst, because SPU may pad the
1094 * assoc data in the response
1095 */
1096 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1097 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1098 }
1099
1100 if (resp_len) {
1101 /*
1102 * Copy in each dst sg entry from request, up to chunksize.
1103 * dst sg catches just the data. digest caught in separate buf.
1104 */
1105 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1106 rctx->dst_nents, resp_len);
1107 if (datalen < (resp_len)) {
1108 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1109 __func__, resp_len, datalen);
1110 return -EFAULT;
1111 }
1112 }
1113
1114 /* If GCM/CCM data is padded, catch padding in separate buffer */
1115 if (data_padlen) {
1116 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1117 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1118 }
1119
1120 /* Always catch ICV in separate buffer */
1121 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1122
1123 flow_log("stat_pad_len %u\n", stat_pad_len);
1124 if (stat_pad_len) {
1125 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1126 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1127 }
1128
1129 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1130 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1137 * SPU request message for an AEAD request. Includes SPU message headers and the
1138 * request data.
1139 * @mssg: mailbox message containing the transmit sg
1140 * @rctx: crypto request context
1141 * @tx_frag_num: number of scatterlist elements required to construct the
1142 * SPU request message
1143 * @spu_hdr_len: length of SPU message header in bytes
1144 * @assoc: crypto API associated data scatterlist
1145 * @assoc_len: length of associated data
1146 * @assoc_nents: number of scatterlist entries containing assoc data
1147 * @aead_iv_len: length of AEAD IV, if included
1148 * @chunksize: Number of bytes of request data
1149 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1150 * @pad_len: Number of pad bytes
1151 * @incl_icv: If true, write separate ICV buffer after data and
1152 * any padding
1153 *
1154 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1155 * when the request completes, whether the request is handled successfully or
1156 * there is an error.
1157 *
1158 * Return:
1159 * 0 if successful
1160 * < 0 if an error
1161 */
spu_aead_tx_sg_create(struct brcm_message * mssg,struct iproc_reqctx_s * rctx,u8 tx_frag_num,u32 spu_hdr_len,struct scatterlist * assoc,unsigned int assoc_len,int assoc_nents,unsigned int aead_iv_len,unsigned int chunksize,u32 aad_pad_len,u32 pad_len,bool incl_icv)1162 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1163 struct iproc_reqctx_s *rctx,
1164 u8 tx_frag_num,
1165 u32 spu_hdr_len,
1166 struct scatterlist *assoc,
1167 unsigned int assoc_len,
1168 int assoc_nents,
1169 unsigned int aead_iv_len,
1170 unsigned int chunksize,
1171 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1172 {
1173 struct spu_hw *spu = &iproc_priv.spu;
1174 struct scatterlist *sg; /* used to build sgs in mbox message */
1175 struct scatterlist *assoc_sg = assoc;
1176 struct iproc_ctx_s *ctx = rctx->ctx;
1177 u32 datalen; /* Number of bytes of data to write */
1178 u32 written; /* Number of bytes of data written */
1179 u32 assoc_offset = 0;
1180 u32 stat_len;
1181
1182 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1183 rctx->gfp);
1184 if (!mssg->spu.src)
1185 return -ENOMEM;
1186
1187 sg = mssg->spu.src;
1188 sg_init_table(sg, tx_frag_num);
1189
1190 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1191 BCM_HDR_LEN + spu_hdr_len);
1192
1193 if (assoc_len) {
1194 /* Copy in each associated data sg entry from request */
1195 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1196 assoc_nents, assoc_len);
1197 if (written < assoc_len) {
1198 pr_err("%s(): failed to copy assoc sg to mbox msg",
1199 __func__);
1200 return -EFAULT;
1201 }
1202 }
1203
1204 if (aead_iv_len)
1205 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1206
1207 if (aad_pad_len) {
1208 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1209 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1210 }
1211
1212 datalen = chunksize;
1213 if ((chunksize > ctx->digestsize) && incl_icv)
1214 datalen -= ctx->digestsize;
1215 if (datalen) {
1216 /* For aead, a single msg should consume the entire src sg */
1217 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1218 rctx->src_nents, datalen);
1219 if (written < datalen) {
1220 pr_err("%s(): failed to copy src sg to mbox msg",
1221 __func__);
1222 return -EFAULT;
1223 }
1224 }
1225
1226 if (pad_len) {
1227 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1228 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1229 }
1230
1231 if (incl_icv)
1232 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1233
1234 stat_len = spu->spu_tx_status_len();
1235 if (stat_len) {
1236 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1237 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1238 }
1239 return 0;
1240 }
1241
1242 /**
1243 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1244 * current AEAD request.
1245 * @rctx: Crypto request context
1246 *
1247 * Unlike other operation types, we assume the length of the request fits in
1248 * a single SPU request message. aead_enqueue() makes sure this is true.
1249 * Comments for other op types regarding threads applies here as well.
1250 *
1251 * Unlike incremental hash ops, where the spu returns the entire hash for
1252 * truncated algs like sha-224, the SPU returns just the truncated hash in
1253 * response to aead requests. So digestsize is always ctx->digestsize here.
1254 *
1255 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1256 * returned asynchronously
1257 * Any other value indicates an error
1258 */
handle_aead_req(struct iproc_reqctx_s * rctx)1259 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1260 {
1261 struct spu_hw *spu = &iproc_priv.spu;
1262 struct crypto_async_request *areq = rctx->parent;
1263 struct aead_request *req = container_of(areq,
1264 struct aead_request, base);
1265 struct iproc_ctx_s *ctx = rctx->ctx;
1266 int err;
1267 unsigned int chunksize;
1268 unsigned int resp_len;
1269 u32 spu_hdr_len;
1270 u32 db_size;
1271 u32 stat_pad_len;
1272 u32 pad_len;
1273 struct brcm_message *mssg; /* mailbox message */
1274 struct spu_request_opts req_opts;
1275 struct spu_cipher_parms cipher_parms;
1276 struct spu_hash_parms hash_parms;
1277 struct spu_aead_parms aead_parms;
1278 int assoc_nents = 0;
1279 bool incl_icv = false;
1280 unsigned int digestsize = ctx->digestsize;
1281
1282 /* number of entries in src and dst sg. Always includes SPU msg header.
1283 */
1284 u8 rx_frag_num = 2; /* and STATUS */
1285 u8 tx_frag_num = 1;
1286
1287 /* doing the whole thing at once */
1288 chunksize = rctx->total_todo;
1289
1290 flow_log("%s: chunksize %u\n", __func__, chunksize);
1291
1292 memset(&req_opts, 0, sizeof(req_opts));
1293 memset(&hash_parms, 0, sizeof(hash_parms));
1294 memset(&aead_parms, 0, sizeof(aead_parms));
1295
1296 req_opts.is_inbound = !(rctx->is_encrypt);
1297 req_opts.auth_first = ctx->auth_first;
1298 req_opts.is_aead = true;
1299 req_opts.is_esp = ctx->is_esp;
1300
1301 cipher_parms.alg = ctx->cipher.alg;
1302 cipher_parms.mode = ctx->cipher.mode;
1303 cipher_parms.type = ctx->cipher_type;
1304 cipher_parms.key_buf = ctx->enckey;
1305 cipher_parms.key_len = ctx->enckeylen;
1306 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1307 cipher_parms.iv_len = rctx->iv_ctr_len;
1308
1309 hash_parms.alg = ctx->auth.alg;
1310 hash_parms.mode = ctx->auth.mode;
1311 hash_parms.type = HASH_TYPE_NONE;
1312 hash_parms.key_buf = (u8 *)ctx->authkey;
1313 hash_parms.key_len = ctx->authkeylen;
1314 hash_parms.digestsize = digestsize;
1315
1316 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1317 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1318 hash_parms.key_len = SHA224_DIGEST_SIZE;
1319
1320 aead_parms.assoc_size = req->assoclen;
1321 if (ctx->is_esp && !ctx->is_rfc4543) {
1322 /*
1323 * 8-byte IV is included assoc data in request. SPU2
1324 * expects AAD to include just SPI and seqno. So
1325 * subtract off the IV len.
1326 */
1327 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1328
1329 if (rctx->is_encrypt) {
1330 aead_parms.return_iv = true;
1331 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1332 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1333 }
1334 } else {
1335 aead_parms.ret_iv_len = 0;
1336 }
1337
1338 /*
1339 * Count number of sg entries from the crypto API request that are to
1340 * be included in this mailbox message. For dst sg, don't count space
1341 * for digest. Digest gets caught in a separate buffer and copied back
1342 * to dst sg when processing response.
1343 */
1344 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1345 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1346 if (aead_parms.assoc_size)
1347 assoc_nents = spu_sg_count(rctx->assoc, 0,
1348 aead_parms.assoc_size);
1349
1350 mssg = &rctx->mb_mssg;
1351
1352 rctx->total_sent = chunksize;
1353 rctx->src_sent = chunksize;
1354 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1355 aead_parms.assoc_size,
1356 aead_parms.ret_iv_len,
1357 rctx->is_encrypt))
1358 rx_frag_num++;
1359
1360 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1361 rctx->iv_ctr_len);
1362
1363 if (ctx->auth.alg == HASH_ALG_AES)
1364 hash_parms.type = (enum hash_type)ctx->cipher_type;
1365
1366 /* General case AAD padding (CCM and RFC4543 special cases below) */
1367 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1368 aead_parms.assoc_size);
1369
1370 /* General case data padding (CCM decrypt special case below) */
1371 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1372 chunksize);
1373
1374 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1375 /*
1376 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1377 * 128-bit aligned
1378 */
1379 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1380 ctx->cipher.mode,
1381 aead_parms.assoc_size + 2);
1382
1383 /*
1384 * And when decrypting CCM, need to pad without including
1385 * size of ICV which is tacked on to end of chunk
1386 */
1387 if (!rctx->is_encrypt)
1388 aead_parms.data_pad_len =
1389 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1390 chunksize - digestsize);
1391
1392 /* CCM also requires software to rewrite portions of IV: */
1393 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1394 chunksize, rctx->is_encrypt,
1395 ctx->is_esp);
1396 }
1397
1398 if (ctx->is_rfc4543) {
1399 /*
1400 * RFC4543: data is included in AAD, so don't pad after AAD
1401 * and pad data based on both AAD + data size
1402 */
1403 aead_parms.aad_pad_len = 0;
1404 if (!rctx->is_encrypt)
1405 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1406 ctx->cipher.mode,
1407 aead_parms.assoc_size + chunksize -
1408 digestsize);
1409 else
1410 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1411 ctx->cipher.mode,
1412 aead_parms.assoc_size + chunksize);
1413
1414 req_opts.is_rfc4543 = true;
1415 }
1416
1417 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1418 incl_icv = true;
1419 tx_frag_num++;
1420 /* Copy ICV from end of src scatterlist to digest buf */
1421 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1422 req->assoclen + rctx->total_sent -
1423 digestsize);
1424 }
1425
1426 atomic64_add(chunksize, &iproc_priv.bytes_out);
1427
1428 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1429
1430 /* Prepend SPU header with type 3 BCM header */
1431 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1432
1433 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1434 BCM_HDR_LEN, &req_opts,
1435 &cipher_parms, &hash_parms,
1436 &aead_parms, chunksize);
1437
1438 /* Determine total length of padding. Put all padding in one buffer. */
1439 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1440 chunksize, aead_parms.aad_pad_len,
1441 aead_parms.data_pad_len, 0);
1442
1443 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1444
1445 if (stat_pad_len)
1446 rx_frag_num++;
1447 pad_len = aead_parms.data_pad_len + stat_pad_len;
1448 if (pad_len) {
1449 tx_frag_num++;
1450 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1451 aead_parms.data_pad_len, 0,
1452 ctx->auth.alg, ctx->auth.mode,
1453 rctx->total_sent, stat_pad_len);
1454 }
1455
1456 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1457 spu_hdr_len);
1458 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1459 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1460 packet_log("BD:\n");
1461 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1462 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1463
1464 /*
1465 * Build mailbox message containing SPU request msg and rx buffers
1466 * to catch response message
1467 */
1468 memset(mssg, 0, sizeof(*mssg));
1469 mssg->type = BRCM_MESSAGE_SPU;
1470 mssg->ctx = rctx; /* Will be returned in response */
1471
1472 /* Create rx scatterlist to catch result */
1473 rx_frag_num += rctx->dst_nents;
1474 resp_len = chunksize;
1475
1476 /*
1477 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1478 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1479 * sends entire digest back.
1480 */
1481 rx_frag_num++;
1482
1483 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1484 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1485 /*
1486 * Input is ciphertxt plus ICV, but ICV not incl
1487 * in output.
1488 */
1489 resp_len -= ctx->digestsize;
1490 if (resp_len == 0)
1491 /* no rx frags to catch output data */
1492 rx_frag_num -= rctx->dst_nents;
1493 }
1494
1495 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1496 aead_parms.assoc_size,
1497 aead_parms.ret_iv_len, resp_len, digestsize,
1498 stat_pad_len);
1499 if (err)
1500 return err;
1501
1502 /* Create tx scatterlist containing SPU request message */
1503 tx_frag_num += rctx->src_nents;
1504 tx_frag_num += assoc_nents;
1505 if (aead_parms.aad_pad_len)
1506 tx_frag_num++;
1507 if (aead_parms.iv_len)
1508 tx_frag_num++;
1509 if (spu->spu_tx_status_len())
1510 tx_frag_num++;
1511 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1512 rctx->assoc, aead_parms.assoc_size,
1513 assoc_nents, aead_parms.iv_len, chunksize,
1514 aead_parms.aad_pad_len, pad_len, incl_icv);
1515 if (err)
1516 return err;
1517
1518 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1519 if (unlikely(err < 0))
1520 return err;
1521
1522 return -EINPROGRESS;
1523 }
1524
1525 /**
1526 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1527 * @rctx: Crypto request context
1528 */
handle_aead_resp(struct iproc_reqctx_s * rctx)1529 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1530 {
1531 struct spu_hw *spu = &iproc_priv.spu;
1532 struct crypto_async_request *areq = rctx->parent;
1533 struct aead_request *req = container_of(areq,
1534 struct aead_request, base);
1535 struct iproc_ctx_s *ctx = rctx->ctx;
1536 u32 payload_len;
1537 unsigned int icv_offset;
1538 u32 result_len;
1539
1540 /* See how much data was returned */
1541 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1542 flow_log("payload_len %u\n", payload_len);
1543
1544 /* only count payload */
1545 atomic64_add(payload_len, &iproc_priv.bytes_in);
1546
1547 if (req->assoclen)
1548 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1549 req->assoclen);
1550
1551 /*
1552 * Copy the ICV back to the destination
1553 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1554 * API doesn't expect ICV in dst buffer.
1555 */
1556 result_len = req->cryptlen;
1557 if (rctx->is_encrypt) {
1558 icv_offset = req->assoclen + rctx->total_sent;
1559 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1560 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1561 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1562 ctx->digestsize, icv_offset);
1563 result_len += ctx->digestsize;
1564 }
1565
1566 packet_log("response data: ");
1567 dump_sg(req->dst, req->assoclen, result_len);
1568
1569 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1570 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1571 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1572 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1573 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1574 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1575 else
1576 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1577 } else {
1578 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1579 }
1580 }
1581
1582 /**
1583 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1584 * @rctx: request context
1585 *
1586 * Mailbox scatterlists are allocated for each chunk. So free them after
1587 * processing each chunk.
1588 */
spu_chunk_cleanup(struct iproc_reqctx_s * rctx)1589 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1590 {
1591 /* mailbox message used to tx request */
1592 struct brcm_message *mssg = &rctx->mb_mssg;
1593
1594 kfree(mssg->spu.src);
1595 kfree(mssg->spu.dst);
1596 memset(mssg, 0, sizeof(struct brcm_message));
1597 }
1598
1599 /**
1600 * finish_req() - Used to invoke the complete callback from the requester when
1601 * a request has been handled asynchronously.
1602 * @rctx: Request context
1603 * @err: Indicates whether the request was successful or not
1604 *
1605 * Ensures that cleanup has been done for request
1606 */
finish_req(struct iproc_reqctx_s * rctx,int err)1607 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1608 {
1609 struct crypto_async_request *areq = rctx->parent;
1610
1611 flow_log("%s() err:%d\n\n", __func__, err);
1612
1613 /* No harm done if already called */
1614 spu_chunk_cleanup(rctx);
1615
1616 if (areq)
1617 areq->complete(areq, err);
1618 }
1619
1620 /**
1621 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1622 * @cl: mailbox client structure for SPU driver
1623 * @msg: mailbox message containing SPU response
1624 */
spu_rx_callback(struct mbox_client * cl,void * msg)1625 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1626 {
1627 struct spu_hw *spu = &iproc_priv.spu;
1628 struct brcm_message *mssg = msg;
1629 struct iproc_reqctx_s *rctx;
1630 int err;
1631
1632 rctx = mssg->ctx;
1633 if (unlikely(!rctx)) {
1634 /* This is fatal */
1635 pr_err("%s(): no request context", __func__);
1636 err = -EFAULT;
1637 goto cb_finish;
1638 }
1639
1640 /* process the SPU status */
1641 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1642 if (err != 0) {
1643 if (err == SPU_INVALID_ICV)
1644 atomic_inc(&iproc_priv.bad_icv);
1645 err = -EBADMSG;
1646 goto cb_finish;
1647 }
1648
1649 /* Process the SPU response message */
1650 switch (rctx->ctx->alg->type) {
1651 case CRYPTO_ALG_TYPE_SKCIPHER:
1652 handle_skcipher_resp(rctx);
1653 break;
1654 case CRYPTO_ALG_TYPE_AHASH:
1655 handle_ahash_resp(rctx);
1656 break;
1657 case CRYPTO_ALG_TYPE_AEAD:
1658 handle_aead_resp(rctx);
1659 break;
1660 default:
1661 err = -EINVAL;
1662 goto cb_finish;
1663 }
1664
1665 /*
1666 * If this response does not complete the request, then send the next
1667 * request chunk.
1668 */
1669 if (rctx->total_sent < rctx->total_todo) {
1670 /* Deallocate anything specific to previous chunk */
1671 spu_chunk_cleanup(rctx);
1672
1673 switch (rctx->ctx->alg->type) {
1674 case CRYPTO_ALG_TYPE_SKCIPHER:
1675 err = handle_skcipher_req(rctx);
1676 break;
1677 case CRYPTO_ALG_TYPE_AHASH:
1678 err = handle_ahash_req(rctx);
1679 if (err == -EAGAIN)
1680 /*
1681 * we saved data in hash carry, but tell crypto
1682 * API we successfully completed request.
1683 */
1684 err = 0;
1685 break;
1686 case CRYPTO_ALG_TYPE_AEAD:
1687 err = handle_aead_req(rctx);
1688 break;
1689 default:
1690 err = -EINVAL;
1691 }
1692
1693 if (err == -EINPROGRESS)
1694 /* Successfully submitted request for next chunk */
1695 return;
1696 }
1697
1698 cb_finish:
1699 finish_req(rctx, err);
1700 }
1701
1702 /* ==================== Kernel Cryptographic API ==================== */
1703
1704 /**
1705 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1706 * @req: Crypto API request
1707 * @encrypt: true if encrypting; false if decrypting
1708 *
1709 * Return: -EINPROGRESS if request accepted and result will be returned
1710 * asynchronously
1711 * < 0 if an error
1712 */
skcipher_enqueue(struct skcipher_request * req,bool encrypt)1713 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1714 {
1715 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1716 struct iproc_ctx_s *ctx =
1717 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1718 int err;
1719
1720 flow_log("%s() enc:%u\n", __func__, encrypt);
1721
1722 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1723 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1724 rctx->parent = &req->base;
1725 rctx->is_encrypt = encrypt;
1726 rctx->bd_suppress = false;
1727 rctx->total_todo = req->cryptlen;
1728 rctx->src_sent = 0;
1729 rctx->total_sent = 0;
1730 rctx->total_received = 0;
1731 rctx->ctx = ctx;
1732
1733 /* Initialize current position in src and dst scatterlists */
1734 rctx->src_sg = req->src;
1735 rctx->src_nents = 0;
1736 rctx->src_skip = 0;
1737 rctx->dst_sg = req->dst;
1738 rctx->dst_nents = 0;
1739 rctx->dst_skip = 0;
1740
1741 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1742 ctx->cipher.mode == CIPHER_MODE_CTR ||
1743 ctx->cipher.mode == CIPHER_MODE_OFB ||
1744 ctx->cipher.mode == CIPHER_MODE_XTS ||
1745 ctx->cipher.mode == CIPHER_MODE_GCM ||
1746 ctx->cipher.mode == CIPHER_MODE_CCM) {
1747 rctx->iv_ctr_len =
1748 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1749 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1750 } else {
1751 rctx->iv_ctr_len = 0;
1752 }
1753
1754 /* Choose a SPU to process this request */
1755 rctx->chan_idx = select_channel();
1756 err = handle_skcipher_req(rctx);
1757 if (err != -EINPROGRESS)
1758 /* synchronous result */
1759 spu_chunk_cleanup(rctx);
1760
1761 return err;
1762 }
1763
des_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)1764 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1765 unsigned int keylen)
1766 {
1767 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1768 int err;
1769
1770 err = verify_skcipher_des_key(cipher, key);
1771 if (err)
1772 return err;
1773
1774 ctx->cipher_type = CIPHER_TYPE_DES;
1775 return 0;
1776 }
1777
threedes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)1778 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1779 unsigned int keylen)
1780 {
1781 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1782 int err;
1783
1784 err = verify_skcipher_des3_key(cipher, key);
1785 if (err)
1786 return err;
1787
1788 ctx->cipher_type = CIPHER_TYPE_3DES;
1789 return 0;
1790 }
1791
aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)1792 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1793 unsigned int keylen)
1794 {
1795 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1796
1797 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1798 /* XTS includes two keys of equal length */
1799 keylen = keylen / 2;
1800
1801 switch (keylen) {
1802 case AES_KEYSIZE_128:
1803 ctx->cipher_type = CIPHER_TYPE_AES128;
1804 break;
1805 case AES_KEYSIZE_192:
1806 ctx->cipher_type = CIPHER_TYPE_AES192;
1807 break;
1808 case AES_KEYSIZE_256:
1809 ctx->cipher_type = CIPHER_TYPE_AES256;
1810 break;
1811 default:
1812 return -EINVAL;
1813 }
1814 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1815 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1816 return 0;
1817 }
1818
skcipher_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)1819 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1820 unsigned int keylen)
1821 {
1822 struct spu_hw *spu = &iproc_priv.spu;
1823 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1824 struct spu_cipher_parms cipher_parms;
1825 u32 alloc_len = 0;
1826 int err;
1827
1828 flow_log("skcipher_setkey() keylen: %d\n", keylen);
1829 flow_dump(" key: ", key, keylen);
1830
1831 switch (ctx->cipher.alg) {
1832 case CIPHER_ALG_DES:
1833 err = des_setkey(cipher, key, keylen);
1834 break;
1835 case CIPHER_ALG_3DES:
1836 err = threedes_setkey(cipher, key, keylen);
1837 break;
1838 case CIPHER_ALG_AES:
1839 err = aes_setkey(cipher, key, keylen);
1840 break;
1841 default:
1842 pr_err("%s() Error: unknown cipher alg\n", __func__);
1843 err = -EINVAL;
1844 }
1845 if (err)
1846 return err;
1847
1848 memcpy(ctx->enckey, key, keylen);
1849 ctx->enckeylen = keylen;
1850
1851 /* SPU needs XTS keys in the reverse order the crypto API presents */
1852 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1853 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1854 unsigned int xts_keylen = keylen / 2;
1855
1856 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1857 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1858 }
1859
1860 if (spu->spu_type == SPU_TYPE_SPUM)
1861 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1862 else if (spu->spu_type == SPU_TYPE_SPU2)
1863 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1864 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1865 cipher_parms.iv_buf = NULL;
1866 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1867 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1868
1869 cipher_parms.alg = ctx->cipher.alg;
1870 cipher_parms.mode = ctx->cipher.mode;
1871 cipher_parms.type = ctx->cipher_type;
1872 cipher_parms.key_buf = ctx->enckey;
1873 cipher_parms.key_len = ctx->enckeylen;
1874
1875 /* Prepend SPU request message with BCM header */
1876 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1877 ctx->spu_req_hdr_len =
1878 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1879 &cipher_parms);
1880
1881 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1882 ctx->enckeylen,
1883 false);
1884
1885 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1886
1887 return 0;
1888 }
1889
skcipher_encrypt(struct skcipher_request * req)1890 static int skcipher_encrypt(struct skcipher_request *req)
1891 {
1892 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1893
1894 return skcipher_enqueue(req, true);
1895 }
1896
skcipher_decrypt(struct skcipher_request * req)1897 static int skcipher_decrypt(struct skcipher_request *req)
1898 {
1899 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1900 return skcipher_enqueue(req, false);
1901 }
1902
ahash_enqueue(struct ahash_request * req)1903 static int ahash_enqueue(struct ahash_request *req)
1904 {
1905 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1906 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1907 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1908 int err;
1909 const char *alg_name;
1910
1911 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1912
1913 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1914 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1915 rctx->parent = &req->base;
1916 rctx->ctx = ctx;
1917 rctx->bd_suppress = true;
1918 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1919
1920 /* Initialize position in src scatterlist */
1921 rctx->src_sg = req->src;
1922 rctx->src_skip = 0;
1923 rctx->src_nents = 0;
1924 rctx->dst_sg = NULL;
1925 rctx->dst_skip = 0;
1926 rctx->dst_nents = 0;
1927
1928 /* SPU2 hardware does not compute hash of zero length data */
1929 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1930 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1931 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1932 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1933 rctx->is_final ? "" : "non-", alg_name);
1934 err = do_shash((unsigned char *)alg_name, req->result,
1935 NULL, 0, NULL, 0, ctx->authkey,
1936 ctx->authkeylen);
1937 if (err < 0)
1938 flow_log("Hash request failed with error %d\n", err);
1939 return err;
1940 }
1941 /* Choose a SPU to process this request */
1942 rctx->chan_idx = select_channel();
1943
1944 err = handle_ahash_req(rctx);
1945 if (err != -EINPROGRESS)
1946 /* synchronous result */
1947 spu_chunk_cleanup(rctx);
1948
1949 if (err == -EAGAIN)
1950 /*
1951 * we saved data in hash carry, but tell crypto API
1952 * we successfully completed request.
1953 */
1954 err = 0;
1955
1956 return err;
1957 }
1958
__ahash_init(struct ahash_request * req)1959 static int __ahash_init(struct ahash_request *req)
1960 {
1961 struct spu_hw *spu = &iproc_priv.spu;
1962 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1963 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1964 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1965
1966 flow_log("%s()\n", __func__);
1967
1968 /* Initialize the context */
1969 rctx->hash_carry_len = 0;
1970 rctx->is_final = 0;
1971
1972 rctx->total_todo = 0;
1973 rctx->src_sent = 0;
1974 rctx->total_sent = 0;
1975 rctx->total_received = 0;
1976
1977 ctx->digestsize = crypto_ahash_digestsize(tfm);
1978 /* If we add a hash whose digest is larger, catch it here. */
1979 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1980
1981 rctx->is_sw_hmac = false;
1982
1983 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1984 true);
1985
1986 return 0;
1987 }
1988
1989 /**
1990 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1991 * @ctx: Crypto session context
1992 *
1993 * SPU-2 does not support incremental hashing (we'll have to revisit and
1994 * condition based on chip revision or device tree entry if future versions do
1995 * support incremental hash)
1996 *
1997 * SPU-M also doesn't support incremental hashing of AES-XCBC
1998 *
1999 * Return: true if incremental hashing is not supported
2000 * false otherwise
2001 */
spu_no_incr_hash(struct iproc_ctx_s * ctx)2002 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2003 {
2004 struct spu_hw *spu = &iproc_priv.spu;
2005
2006 if (spu->spu_type == SPU_TYPE_SPU2)
2007 return true;
2008
2009 if ((ctx->auth.alg == HASH_ALG_AES) &&
2010 (ctx->auth.mode == HASH_MODE_XCBC))
2011 return true;
2012
2013 /* Otherwise, incremental hashing is supported */
2014 return false;
2015 }
2016
ahash_init(struct ahash_request * req)2017 static int ahash_init(struct ahash_request *req)
2018 {
2019 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2020 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2021 const char *alg_name;
2022 struct crypto_shash *hash;
2023 int ret;
2024 gfp_t gfp;
2025
2026 if (spu_no_incr_hash(ctx)) {
2027 /*
2028 * If we get an incremental hashing request and it's not
2029 * supported by the hardware, we need to handle it in software
2030 * by calling synchronous hash functions.
2031 */
2032 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2033 hash = crypto_alloc_shash(alg_name, 0, 0);
2034 if (IS_ERR(hash)) {
2035 ret = PTR_ERR(hash);
2036 goto err;
2037 }
2038
2039 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2040 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2041 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2042 crypto_shash_descsize(hash), gfp);
2043 if (!ctx->shash) {
2044 ret = -ENOMEM;
2045 goto err_hash;
2046 }
2047 ctx->shash->tfm = hash;
2048
2049 /* Set the key using data we already have from setkey */
2050 if (ctx->authkeylen > 0) {
2051 ret = crypto_shash_setkey(hash, ctx->authkey,
2052 ctx->authkeylen);
2053 if (ret)
2054 goto err_shash;
2055 }
2056
2057 /* Initialize hash w/ this key and other params */
2058 ret = crypto_shash_init(ctx->shash);
2059 if (ret)
2060 goto err_shash;
2061 } else {
2062 /* Otherwise call the internal function which uses SPU hw */
2063 ret = __ahash_init(req);
2064 }
2065
2066 return ret;
2067
2068 err_shash:
2069 kfree(ctx->shash);
2070 err_hash:
2071 crypto_free_shash(hash);
2072 err:
2073 return ret;
2074 }
2075
__ahash_update(struct ahash_request * req)2076 static int __ahash_update(struct ahash_request *req)
2077 {
2078 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2079
2080 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2081
2082 if (!req->nbytes)
2083 return 0;
2084 rctx->total_todo += req->nbytes;
2085 rctx->src_sent = 0;
2086
2087 return ahash_enqueue(req);
2088 }
2089
ahash_update(struct ahash_request * req)2090 static int ahash_update(struct ahash_request *req)
2091 {
2092 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2093 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2094 u8 *tmpbuf;
2095 int ret;
2096 int nents;
2097 gfp_t gfp;
2098
2099 if (spu_no_incr_hash(ctx)) {
2100 /*
2101 * If we get an incremental hashing request and it's not
2102 * supported by the hardware, we need to handle it in software
2103 * by calling synchronous hash functions.
2104 */
2105 if (req->src)
2106 nents = sg_nents(req->src);
2107 else
2108 return -EINVAL;
2109
2110 /* Copy data from req scatterlist to tmp buffer */
2111 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2112 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2113 tmpbuf = kmalloc(req->nbytes, gfp);
2114 if (!tmpbuf)
2115 return -ENOMEM;
2116
2117 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2118 req->nbytes) {
2119 kfree(tmpbuf);
2120 return -EINVAL;
2121 }
2122
2123 /* Call synchronous update */
2124 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2125 kfree(tmpbuf);
2126 } else {
2127 /* Otherwise call the internal function which uses SPU hw */
2128 ret = __ahash_update(req);
2129 }
2130
2131 return ret;
2132 }
2133
__ahash_final(struct ahash_request * req)2134 static int __ahash_final(struct ahash_request *req)
2135 {
2136 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2137
2138 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2139
2140 rctx->is_final = 1;
2141
2142 return ahash_enqueue(req);
2143 }
2144
ahash_final(struct ahash_request * req)2145 static int ahash_final(struct ahash_request *req)
2146 {
2147 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2148 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2149 int ret;
2150
2151 if (spu_no_incr_hash(ctx)) {
2152 /*
2153 * If we get an incremental hashing request and it's not
2154 * supported by the hardware, we need to handle it in software
2155 * by calling synchronous hash functions.
2156 */
2157 ret = crypto_shash_final(ctx->shash, req->result);
2158
2159 /* Done with hash, can deallocate it now */
2160 crypto_free_shash(ctx->shash->tfm);
2161 kfree(ctx->shash);
2162
2163 } else {
2164 /* Otherwise call the internal function which uses SPU hw */
2165 ret = __ahash_final(req);
2166 }
2167
2168 return ret;
2169 }
2170
__ahash_finup(struct ahash_request * req)2171 static int __ahash_finup(struct ahash_request *req)
2172 {
2173 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2174
2175 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2176
2177 rctx->total_todo += req->nbytes;
2178 rctx->src_sent = 0;
2179 rctx->is_final = 1;
2180
2181 return ahash_enqueue(req);
2182 }
2183
ahash_finup(struct ahash_request * req)2184 static int ahash_finup(struct ahash_request *req)
2185 {
2186 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2187 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2188 u8 *tmpbuf;
2189 int ret;
2190 int nents;
2191 gfp_t gfp;
2192
2193 if (spu_no_incr_hash(ctx)) {
2194 /*
2195 * If we get an incremental hashing request and it's not
2196 * supported by the hardware, we need to handle it in software
2197 * by calling synchronous hash functions.
2198 */
2199 if (req->src) {
2200 nents = sg_nents(req->src);
2201 } else {
2202 ret = -EINVAL;
2203 goto ahash_finup_exit;
2204 }
2205
2206 /* Copy data from req scatterlist to tmp buffer */
2207 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2208 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2209 tmpbuf = kmalloc(req->nbytes, gfp);
2210 if (!tmpbuf) {
2211 ret = -ENOMEM;
2212 goto ahash_finup_exit;
2213 }
2214
2215 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2216 req->nbytes) {
2217 ret = -EINVAL;
2218 goto ahash_finup_free;
2219 }
2220
2221 /* Call synchronous update */
2222 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2223 req->result);
2224 } else {
2225 /* Otherwise call the internal function which uses SPU hw */
2226 return __ahash_finup(req);
2227 }
2228 ahash_finup_free:
2229 kfree(tmpbuf);
2230
2231 ahash_finup_exit:
2232 /* Done with hash, can deallocate it now */
2233 crypto_free_shash(ctx->shash->tfm);
2234 kfree(ctx->shash);
2235 return ret;
2236 }
2237
ahash_digest(struct ahash_request * req)2238 static int ahash_digest(struct ahash_request *req)
2239 {
2240 int err;
2241
2242 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2243
2244 /* whole thing at once */
2245 err = __ahash_init(req);
2246 if (!err)
2247 err = __ahash_finup(req);
2248
2249 return err;
2250 }
2251
ahash_setkey(struct crypto_ahash * ahash,const u8 * key,unsigned int keylen)2252 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2253 unsigned int keylen)
2254 {
2255 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2256
2257 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2258 __func__, ahash, key, keylen);
2259 flow_dump(" key: ", key, keylen);
2260
2261 if (ctx->auth.alg == HASH_ALG_AES) {
2262 switch (keylen) {
2263 case AES_KEYSIZE_128:
2264 ctx->cipher_type = CIPHER_TYPE_AES128;
2265 break;
2266 case AES_KEYSIZE_192:
2267 ctx->cipher_type = CIPHER_TYPE_AES192;
2268 break;
2269 case AES_KEYSIZE_256:
2270 ctx->cipher_type = CIPHER_TYPE_AES256;
2271 break;
2272 default:
2273 pr_err("%s() Error: Invalid key length\n", __func__);
2274 return -EINVAL;
2275 }
2276 } else {
2277 pr_err("%s() Error: unknown hash alg\n", __func__);
2278 return -EINVAL;
2279 }
2280 memcpy(ctx->authkey, key, keylen);
2281 ctx->authkeylen = keylen;
2282
2283 return 0;
2284 }
2285
ahash_export(struct ahash_request * req,void * out)2286 static int ahash_export(struct ahash_request *req, void *out)
2287 {
2288 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2289 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2290
2291 spu_exp->total_todo = rctx->total_todo;
2292 spu_exp->total_sent = rctx->total_sent;
2293 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2294 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2295 spu_exp->hash_carry_len = rctx->hash_carry_len;
2296 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2297
2298 return 0;
2299 }
2300
ahash_import(struct ahash_request * req,const void * in)2301 static int ahash_import(struct ahash_request *req, const void *in)
2302 {
2303 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2304 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2305
2306 rctx->total_todo = spu_exp->total_todo;
2307 rctx->total_sent = spu_exp->total_sent;
2308 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2309 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2310 rctx->hash_carry_len = spu_exp->hash_carry_len;
2311 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2312
2313 return 0;
2314 }
2315
ahash_hmac_setkey(struct crypto_ahash * ahash,const u8 * key,unsigned int keylen)2316 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2317 unsigned int keylen)
2318 {
2319 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2320 unsigned int blocksize =
2321 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2322 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2323 unsigned int index;
2324 int rc;
2325
2326 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2327 __func__, ahash, key, keylen, blocksize, digestsize);
2328 flow_dump(" key: ", key, keylen);
2329
2330 if (keylen > blocksize) {
2331 switch (ctx->auth.alg) {
2332 case HASH_ALG_MD5:
2333 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2334 0, NULL, 0);
2335 break;
2336 case HASH_ALG_SHA1:
2337 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2338 0, NULL, 0);
2339 break;
2340 case HASH_ALG_SHA224:
2341 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2342 0, NULL, 0);
2343 break;
2344 case HASH_ALG_SHA256:
2345 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2346 0, NULL, 0);
2347 break;
2348 case HASH_ALG_SHA384:
2349 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2350 0, NULL, 0);
2351 break;
2352 case HASH_ALG_SHA512:
2353 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2354 0, NULL, 0);
2355 break;
2356 case HASH_ALG_SHA3_224:
2357 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2358 NULL, 0, NULL, 0);
2359 break;
2360 case HASH_ALG_SHA3_256:
2361 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2362 NULL, 0, NULL, 0);
2363 break;
2364 case HASH_ALG_SHA3_384:
2365 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2366 NULL, 0, NULL, 0);
2367 break;
2368 case HASH_ALG_SHA3_512:
2369 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2370 NULL, 0, NULL, 0);
2371 break;
2372 default:
2373 pr_err("%s() Error: unknown hash alg\n", __func__);
2374 return -EINVAL;
2375 }
2376 if (rc < 0) {
2377 pr_err("%s() Error %d computing shash for %s\n",
2378 __func__, rc, hash_alg_name[ctx->auth.alg]);
2379 return rc;
2380 }
2381 ctx->authkeylen = digestsize;
2382
2383 flow_log(" keylen > digestsize... hashed\n");
2384 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2385 } else {
2386 memcpy(ctx->authkey, key, keylen);
2387 ctx->authkeylen = keylen;
2388 }
2389
2390 /*
2391 * Full HMAC operation in SPUM is not verified,
2392 * So keeping the generation of IPAD, OPAD and
2393 * outer hashing in software.
2394 */
2395 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2396 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2397 memset(ctx->ipad + ctx->authkeylen, 0,
2398 blocksize - ctx->authkeylen);
2399 ctx->authkeylen = 0;
2400 memcpy(ctx->opad, ctx->ipad, blocksize);
2401
2402 for (index = 0; index < blocksize; index++) {
2403 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2404 ctx->opad[index] ^= HMAC_OPAD_VALUE;
2405 }
2406
2407 flow_dump(" ipad: ", ctx->ipad, blocksize);
2408 flow_dump(" opad: ", ctx->opad, blocksize);
2409 }
2410 ctx->digestsize = digestsize;
2411 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2412
2413 return 0;
2414 }
2415
ahash_hmac_init(struct ahash_request * req)2416 static int ahash_hmac_init(struct ahash_request *req)
2417 {
2418 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2419 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2420 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2421 unsigned int blocksize =
2422 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2423
2424 flow_log("ahash_hmac_init()\n");
2425
2426 /* init the context as a hash */
2427 ahash_init(req);
2428
2429 if (!spu_no_incr_hash(ctx)) {
2430 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2431 rctx->is_sw_hmac = true;
2432 ctx->auth.mode = HASH_MODE_HASH;
2433 /* start with a prepended ipad */
2434 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2435 rctx->hash_carry_len = blocksize;
2436 rctx->total_todo += blocksize;
2437 }
2438
2439 return 0;
2440 }
2441
ahash_hmac_update(struct ahash_request * req)2442 static int ahash_hmac_update(struct ahash_request *req)
2443 {
2444 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2445
2446 if (!req->nbytes)
2447 return 0;
2448
2449 return ahash_update(req);
2450 }
2451
ahash_hmac_final(struct ahash_request * req)2452 static int ahash_hmac_final(struct ahash_request *req)
2453 {
2454 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2455
2456 return ahash_final(req);
2457 }
2458
ahash_hmac_finup(struct ahash_request * req)2459 static int ahash_hmac_finup(struct ahash_request *req)
2460 {
2461 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2462
2463 return ahash_finup(req);
2464 }
2465
ahash_hmac_digest(struct ahash_request * req)2466 static int ahash_hmac_digest(struct ahash_request *req)
2467 {
2468 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2469 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2470 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2471 unsigned int blocksize =
2472 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2473
2474 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2475
2476 /* Perform initialization and then call finup */
2477 __ahash_init(req);
2478
2479 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2480 /*
2481 * SPU2 supports full HMAC implementation in the
2482 * hardware, need not to generate IPAD, OPAD and
2483 * outer hash in software.
2484 * Only for hash key len > hash block size, SPU2
2485 * expects to perform hashing on the key, shorten
2486 * it to digest size and feed it as hash key.
2487 */
2488 rctx->is_sw_hmac = false;
2489 ctx->auth.mode = HASH_MODE_HMAC;
2490 } else {
2491 rctx->is_sw_hmac = true;
2492 ctx->auth.mode = HASH_MODE_HASH;
2493 /* start with a prepended ipad */
2494 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2495 rctx->hash_carry_len = blocksize;
2496 rctx->total_todo += blocksize;
2497 }
2498
2499 return __ahash_finup(req);
2500 }
2501
2502 /* aead helpers */
2503
aead_need_fallback(struct aead_request * req)2504 static int aead_need_fallback(struct aead_request *req)
2505 {
2506 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2507 struct spu_hw *spu = &iproc_priv.spu;
2508 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2509 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2510 u32 payload_len;
2511
2512 /*
2513 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2514 * and AAD are both 0 bytes long. So use fallback in this case.
2515 */
2516 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2517 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2518 (req->assoclen == 0)) {
2519 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2520 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2521 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2522 return 1;
2523 }
2524 }
2525
2526 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2527 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2528 (spu->spu_type == SPU_TYPE_SPUM) &&
2529 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2530 (ctx->digestsize != 16)) {
2531 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2532 __func__, ctx->digestsize);
2533 return 1;
2534 }
2535
2536 /*
2537 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2538 * when AAD size is 0
2539 */
2540 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2541 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2542 (req->assoclen == 0)) {
2543 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2544 __func__);
2545 return 1;
2546 }
2547
2548 /*
2549 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2550 * 16 or 20 bytes long. So use fallback in this case.
2551 */
2552 if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2553 ctx->cipher.alg == CIPHER_ALG_AES &&
2554 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2555 req->assoclen != 16 && req->assoclen != 20) {
2556 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2557 " other than 16 or 20 bytes\n");
2558 return 1;
2559 }
2560
2561 payload_len = req->cryptlen;
2562 if (spu->spu_type == SPU_TYPE_SPUM)
2563 payload_len += req->assoclen;
2564
2565 flow_log("%s() payload len: %u\n", __func__, payload_len);
2566
2567 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2568 return 0;
2569 else
2570 return payload_len > ctx->max_payload;
2571 }
2572
aead_complete(struct crypto_async_request * areq,int err)2573 static void aead_complete(struct crypto_async_request *areq, int err)
2574 {
2575 struct aead_request *req =
2576 container_of(areq, struct aead_request, base);
2577 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2578 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2579
2580 flow_log("%s() err:%d\n", __func__, err);
2581
2582 areq->tfm = crypto_aead_tfm(aead);
2583
2584 areq->complete = rctx->old_complete;
2585 areq->data = rctx->old_data;
2586
2587 areq->complete(areq, err);
2588 }
2589
aead_do_fallback(struct aead_request * req,bool is_encrypt)2590 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2591 {
2592 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2593 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2594 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2595 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2596 int err;
2597 u32 req_flags;
2598
2599 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2600
2601 if (ctx->fallback_cipher) {
2602 /* Store the cipher tfm and then use the fallback tfm */
2603 rctx->old_tfm = tfm;
2604 aead_request_set_tfm(req, ctx->fallback_cipher);
2605 /*
2606 * Save the callback and chain ourselves in, so we can restore
2607 * the tfm
2608 */
2609 rctx->old_complete = req->base.complete;
2610 rctx->old_data = req->base.data;
2611 req_flags = aead_request_flags(req);
2612 aead_request_set_callback(req, req_flags, aead_complete, req);
2613 err = is_encrypt ? crypto_aead_encrypt(req) :
2614 crypto_aead_decrypt(req);
2615
2616 if (err == 0) {
2617 /*
2618 * fallback was synchronous (did not return
2619 * -EINPROGRESS). So restore request state here.
2620 */
2621 aead_request_set_callback(req, req_flags,
2622 rctx->old_complete, req);
2623 req->base.data = rctx->old_data;
2624 aead_request_set_tfm(req, aead);
2625 flow_log("%s() fallback completed successfully\n\n",
2626 __func__);
2627 }
2628 } else {
2629 err = -EINVAL;
2630 }
2631
2632 return err;
2633 }
2634
aead_enqueue(struct aead_request * req,bool is_encrypt)2635 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2636 {
2637 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2638 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2639 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2640 int err;
2641
2642 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2643
2644 if (req->assoclen > MAX_ASSOC_SIZE) {
2645 pr_err
2646 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2647 __func__, req->assoclen, MAX_ASSOC_SIZE);
2648 return -EINVAL;
2649 }
2650
2651 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2652 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2653 rctx->parent = &req->base;
2654 rctx->is_encrypt = is_encrypt;
2655 rctx->bd_suppress = false;
2656 rctx->total_todo = req->cryptlen;
2657 rctx->src_sent = 0;
2658 rctx->total_sent = 0;
2659 rctx->total_received = 0;
2660 rctx->is_sw_hmac = false;
2661 rctx->ctx = ctx;
2662 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2663
2664 /* assoc data is at start of src sg */
2665 rctx->assoc = req->src;
2666
2667 /*
2668 * Init current position in src scatterlist to be after assoc data.
2669 * src_skip set to buffer offset where data begins. (Assoc data could
2670 * end in the middle of a buffer.)
2671 */
2672 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2673 &rctx->src_skip) < 0) {
2674 pr_err("%s() Error: Unable to find start of src data\n",
2675 __func__);
2676 return -EINVAL;
2677 }
2678
2679 rctx->src_nents = 0;
2680 rctx->dst_nents = 0;
2681 if (req->dst == req->src) {
2682 rctx->dst_sg = rctx->src_sg;
2683 rctx->dst_skip = rctx->src_skip;
2684 } else {
2685 /*
2686 * Expect req->dst to have room for assoc data followed by
2687 * output data and ICV, if encrypt. So initialize dst_sg
2688 * to point beyond assoc len offset.
2689 */
2690 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2691 &rctx->dst_skip) < 0) {
2692 pr_err("%s() Error: Unable to find start of dst data\n",
2693 __func__);
2694 return -EINVAL;
2695 }
2696 }
2697
2698 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2699 ctx->cipher.mode == CIPHER_MODE_CTR ||
2700 ctx->cipher.mode == CIPHER_MODE_OFB ||
2701 ctx->cipher.mode == CIPHER_MODE_XTS ||
2702 ctx->cipher.mode == CIPHER_MODE_GCM) {
2703 rctx->iv_ctr_len =
2704 ctx->salt_len +
2705 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2706 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2707 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2708 } else {
2709 rctx->iv_ctr_len = 0;
2710 }
2711
2712 rctx->hash_carry_len = 0;
2713
2714 flow_log(" src sg: %p\n", req->src);
2715 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2716 rctx->src_sg, rctx->src_skip);
2717 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2718 flow_log(" dst sg: %p\n", req->dst);
2719 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2720 rctx->dst_sg, rctx->dst_skip);
2721 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2722 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2723 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2724 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2725
2726 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2727 flow_log(" max_payload infinite");
2728 else
2729 flow_log(" max_payload: %u\n", ctx->max_payload);
2730
2731 if (unlikely(aead_need_fallback(req)))
2732 return aead_do_fallback(req, is_encrypt);
2733
2734 /*
2735 * Do memory allocations for request after fallback check, because if we
2736 * do fallback, we won't call finish_req() to dealloc.
2737 */
2738 if (rctx->iv_ctr_len) {
2739 if (ctx->salt_len)
2740 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2741 ctx->salt, ctx->salt_len);
2742 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2743 req->iv,
2744 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2745 }
2746
2747 rctx->chan_idx = select_channel();
2748 err = handle_aead_req(rctx);
2749 if (err != -EINPROGRESS)
2750 /* synchronous result */
2751 spu_chunk_cleanup(rctx);
2752
2753 return err;
2754 }
2755
aead_authenc_setkey(struct crypto_aead * cipher,const u8 * key,unsigned int keylen)2756 static int aead_authenc_setkey(struct crypto_aead *cipher,
2757 const u8 *key, unsigned int keylen)
2758 {
2759 struct spu_hw *spu = &iproc_priv.spu;
2760 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2761 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2762 struct crypto_authenc_keys keys;
2763 int ret;
2764
2765 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2766 keylen);
2767 flow_dump(" key: ", key, keylen);
2768
2769 ret = crypto_authenc_extractkeys(&keys, key, keylen);
2770 if (ret)
2771 goto badkey;
2772
2773 if (keys.enckeylen > MAX_KEY_SIZE ||
2774 keys.authkeylen > MAX_KEY_SIZE)
2775 goto badkey;
2776
2777 ctx->enckeylen = keys.enckeylen;
2778 ctx->authkeylen = keys.authkeylen;
2779
2780 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2781 /* May end up padding auth key. So make sure it's zeroed. */
2782 memset(ctx->authkey, 0, sizeof(ctx->authkey));
2783 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2784
2785 switch (ctx->alg->cipher_info.alg) {
2786 case CIPHER_ALG_DES:
2787 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2788 return -EINVAL;
2789
2790 ctx->cipher_type = CIPHER_TYPE_DES;
2791 break;
2792 case CIPHER_ALG_3DES:
2793 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2794 return -EINVAL;
2795
2796 ctx->cipher_type = CIPHER_TYPE_3DES;
2797 break;
2798 case CIPHER_ALG_AES:
2799 switch (ctx->enckeylen) {
2800 case AES_KEYSIZE_128:
2801 ctx->cipher_type = CIPHER_TYPE_AES128;
2802 break;
2803 case AES_KEYSIZE_192:
2804 ctx->cipher_type = CIPHER_TYPE_AES192;
2805 break;
2806 case AES_KEYSIZE_256:
2807 ctx->cipher_type = CIPHER_TYPE_AES256;
2808 break;
2809 default:
2810 goto badkey;
2811 }
2812 break;
2813 default:
2814 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2815 return -EINVAL;
2816 }
2817
2818 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2819 ctx->authkeylen);
2820 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2821 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2822
2823 /* setkey the fallback just in case we needto use it */
2824 if (ctx->fallback_cipher) {
2825 flow_log(" running fallback setkey()\n");
2826
2827 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2828 ctx->fallback_cipher->base.crt_flags |=
2829 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2830 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2831 if (ret)
2832 flow_log(" fallback setkey() returned:%d\n", ret);
2833 }
2834
2835 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2836 ctx->enckeylen,
2837 false);
2838
2839 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2840
2841 return ret;
2842
2843 badkey:
2844 ctx->enckeylen = 0;
2845 ctx->authkeylen = 0;
2846 ctx->digestsize = 0;
2847
2848 return -EINVAL;
2849 }
2850
aead_gcm_ccm_setkey(struct crypto_aead * cipher,const u8 * key,unsigned int keylen)2851 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2852 const u8 *key, unsigned int keylen)
2853 {
2854 struct spu_hw *spu = &iproc_priv.spu;
2855 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2856 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2857
2858 int ret = 0;
2859
2860 flow_log("%s() keylen:%u\n", __func__, keylen);
2861 flow_dump(" key: ", key, keylen);
2862
2863 if (!ctx->is_esp)
2864 ctx->digestsize = keylen;
2865
2866 ctx->enckeylen = keylen;
2867 ctx->authkeylen = 0;
2868
2869 switch (ctx->enckeylen) {
2870 case AES_KEYSIZE_128:
2871 ctx->cipher_type = CIPHER_TYPE_AES128;
2872 break;
2873 case AES_KEYSIZE_192:
2874 ctx->cipher_type = CIPHER_TYPE_AES192;
2875 break;
2876 case AES_KEYSIZE_256:
2877 ctx->cipher_type = CIPHER_TYPE_AES256;
2878 break;
2879 default:
2880 goto badkey;
2881 }
2882
2883 memcpy(ctx->enckey, key, ctx->enckeylen);
2884
2885 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2886 ctx->authkeylen);
2887 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2888 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2889
2890 /* setkey the fallback just in case we need to use it */
2891 if (ctx->fallback_cipher) {
2892 flow_log(" running fallback setkey()\n");
2893
2894 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2895 ctx->fallback_cipher->base.crt_flags |=
2896 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2897 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2898 keylen + ctx->salt_len);
2899 if (ret)
2900 flow_log(" fallback setkey() returned:%d\n", ret);
2901 }
2902
2903 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2904 ctx->enckeylen,
2905 false);
2906
2907 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2908
2909 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2910 ctx->authkeylen);
2911
2912 return ret;
2913
2914 badkey:
2915 ctx->enckeylen = 0;
2916 ctx->authkeylen = 0;
2917 ctx->digestsize = 0;
2918
2919 return -EINVAL;
2920 }
2921
2922 /**
2923 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2924 * @cipher: AEAD structure
2925 * @key: Key followed by 4 bytes of salt
2926 * @keylen: Length of key plus salt, in bytes
2927 *
2928 * Extracts salt from key and stores it to be prepended to IV on each request.
2929 * Digest is always 16 bytes
2930 *
2931 * Return: Value from generic gcm setkey.
2932 */
aead_gcm_esp_setkey(struct crypto_aead * cipher,const u8 * key,unsigned int keylen)2933 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2934 const u8 *key, unsigned int keylen)
2935 {
2936 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2937
2938 flow_log("%s\n", __func__);
2939
2940 if (keylen < GCM_ESP_SALT_SIZE)
2941 return -EINVAL;
2942
2943 ctx->salt_len = GCM_ESP_SALT_SIZE;
2944 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2945 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2946 keylen -= GCM_ESP_SALT_SIZE;
2947 ctx->digestsize = GCM_ESP_DIGESTSIZE;
2948 ctx->is_esp = true;
2949 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2950
2951 return aead_gcm_ccm_setkey(cipher, key, keylen);
2952 }
2953
2954 /**
2955 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2956 * @cipher: AEAD structure
2957 * @key: Key followed by 4 bytes of salt
2958 * @keylen: Length of key plus salt, in bytes
2959 *
2960 * Extracts salt from key and stores it to be prepended to IV on each request.
2961 * Digest is always 16 bytes
2962 *
2963 * Return: Value from generic gcm setkey.
2964 */
rfc4543_gcm_esp_setkey(struct crypto_aead * cipher,const u8 * key,unsigned int keylen)2965 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2966 const u8 *key, unsigned int keylen)
2967 {
2968 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2969
2970 flow_log("%s\n", __func__);
2971
2972 if (keylen < GCM_ESP_SALT_SIZE)
2973 return -EINVAL;
2974
2975 ctx->salt_len = GCM_ESP_SALT_SIZE;
2976 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2977 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2978 keylen -= GCM_ESP_SALT_SIZE;
2979 ctx->digestsize = GCM_ESP_DIGESTSIZE;
2980 ctx->is_esp = true;
2981 ctx->is_rfc4543 = true;
2982 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2983
2984 return aead_gcm_ccm_setkey(cipher, key, keylen);
2985 }
2986
2987 /**
2988 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2989 * @cipher: AEAD structure
2990 * @key: Key followed by 4 bytes of salt
2991 * @keylen: Length of key plus salt, in bytes
2992 *
2993 * Extracts salt from key and stores it to be prepended to IV on each request.
2994 * Digest is always 16 bytes
2995 *
2996 * Return: Value from generic ccm setkey.
2997 */
aead_ccm_esp_setkey(struct crypto_aead * cipher,const u8 * key,unsigned int keylen)2998 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
2999 const u8 *key, unsigned int keylen)
3000 {
3001 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3002
3003 flow_log("%s\n", __func__);
3004
3005 if (keylen < CCM_ESP_SALT_SIZE)
3006 return -EINVAL;
3007
3008 ctx->salt_len = CCM_ESP_SALT_SIZE;
3009 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3010 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3011 keylen -= CCM_ESP_SALT_SIZE;
3012 ctx->is_esp = true;
3013 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3014
3015 return aead_gcm_ccm_setkey(cipher, key, keylen);
3016 }
3017
aead_setauthsize(struct crypto_aead * cipher,unsigned int authsize)3018 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3019 {
3020 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3021 int ret = 0;
3022
3023 flow_log("%s() authkeylen:%u authsize:%u\n",
3024 __func__, ctx->authkeylen, authsize);
3025
3026 ctx->digestsize = authsize;
3027
3028 /* setkey the fallback just in case we needto use it */
3029 if (ctx->fallback_cipher) {
3030 flow_log(" running fallback setauth()\n");
3031
3032 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3033 if (ret)
3034 flow_log(" fallback setauth() returned:%d\n", ret);
3035 }
3036
3037 return ret;
3038 }
3039
aead_encrypt(struct aead_request * req)3040 static int aead_encrypt(struct aead_request *req)
3041 {
3042 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3043 req->cryptlen);
3044 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3045 flow_log(" assoc_len:%u\n", req->assoclen);
3046
3047 return aead_enqueue(req, true);
3048 }
3049
aead_decrypt(struct aead_request * req)3050 static int aead_decrypt(struct aead_request *req)
3051 {
3052 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3053 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3054 flow_log(" assoc_len:%u\n", req->assoclen);
3055
3056 return aead_enqueue(req, false);
3057 }
3058
3059 /* ==================== Supported Cipher Algorithms ==================== */
3060
3061 static struct iproc_alg_s driver_algs[] = {
3062 {
3063 .type = CRYPTO_ALG_TYPE_AEAD,
3064 .alg.aead = {
3065 .base = {
3066 .cra_name = "gcm(aes)",
3067 .cra_driver_name = "gcm-aes-iproc",
3068 .cra_blocksize = AES_BLOCK_SIZE,
3069 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3070 },
3071 .setkey = aead_gcm_ccm_setkey,
3072 .ivsize = GCM_AES_IV_SIZE,
3073 .maxauthsize = AES_BLOCK_SIZE,
3074 },
3075 .cipher_info = {
3076 .alg = CIPHER_ALG_AES,
3077 .mode = CIPHER_MODE_GCM,
3078 },
3079 .auth_info = {
3080 .alg = HASH_ALG_AES,
3081 .mode = HASH_MODE_GCM,
3082 },
3083 .auth_first = 0,
3084 },
3085 {
3086 .type = CRYPTO_ALG_TYPE_AEAD,
3087 .alg.aead = {
3088 .base = {
3089 .cra_name = "ccm(aes)",
3090 .cra_driver_name = "ccm-aes-iproc",
3091 .cra_blocksize = AES_BLOCK_SIZE,
3092 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3093 },
3094 .setkey = aead_gcm_ccm_setkey,
3095 .ivsize = CCM_AES_IV_SIZE,
3096 .maxauthsize = AES_BLOCK_SIZE,
3097 },
3098 .cipher_info = {
3099 .alg = CIPHER_ALG_AES,
3100 .mode = CIPHER_MODE_CCM,
3101 },
3102 .auth_info = {
3103 .alg = HASH_ALG_AES,
3104 .mode = HASH_MODE_CCM,
3105 },
3106 .auth_first = 0,
3107 },
3108 {
3109 .type = CRYPTO_ALG_TYPE_AEAD,
3110 .alg.aead = {
3111 .base = {
3112 .cra_name = "rfc4106(gcm(aes))",
3113 .cra_driver_name = "gcm-aes-esp-iproc",
3114 .cra_blocksize = AES_BLOCK_SIZE,
3115 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3116 },
3117 .setkey = aead_gcm_esp_setkey,
3118 .ivsize = GCM_RFC4106_IV_SIZE,
3119 .maxauthsize = AES_BLOCK_SIZE,
3120 },
3121 .cipher_info = {
3122 .alg = CIPHER_ALG_AES,
3123 .mode = CIPHER_MODE_GCM,
3124 },
3125 .auth_info = {
3126 .alg = HASH_ALG_AES,
3127 .mode = HASH_MODE_GCM,
3128 },
3129 .auth_first = 0,
3130 },
3131 {
3132 .type = CRYPTO_ALG_TYPE_AEAD,
3133 .alg.aead = {
3134 .base = {
3135 .cra_name = "rfc4309(ccm(aes))",
3136 .cra_driver_name = "ccm-aes-esp-iproc",
3137 .cra_blocksize = AES_BLOCK_SIZE,
3138 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3139 },
3140 .setkey = aead_ccm_esp_setkey,
3141 .ivsize = CCM_AES_IV_SIZE,
3142 .maxauthsize = AES_BLOCK_SIZE,
3143 },
3144 .cipher_info = {
3145 .alg = CIPHER_ALG_AES,
3146 .mode = CIPHER_MODE_CCM,
3147 },
3148 .auth_info = {
3149 .alg = HASH_ALG_AES,
3150 .mode = HASH_MODE_CCM,
3151 },
3152 .auth_first = 0,
3153 },
3154 {
3155 .type = CRYPTO_ALG_TYPE_AEAD,
3156 .alg.aead = {
3157 .base = {
3158 .cra_name = "rfc4543(gcm(aes))",
3159 .cra_driver_name = "gmac-aes-esp-iproc",
3160 .cra_blocksize = AES_BLOCK_SIZE,
3161 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3162 },
3163 .setkey = rfc4543_gcm_esp_setkey,
3164 .ivsize = GCM_RFC4106_IV_SIZE,
3165 .maxauthsize = AES_BLOCK_SIZE,
3166 },
3167 .cipher_info = {
3168 .alg = CIPHER_ALG_AES,
3169 .mode = CIPHER_MODE_GCM,
3170 },
3171 .auth_info = {
3172 .alg = HASH_ALG_AES,
3173 .mode = HASH_MODE_GCM,
3174 },
3175 .auth_first = 0,
3176 },
3177 {
3178 .type = CRYPTO_ALG_TYPE_AEAD,
3179 .alg.aead = {
3180 .base = {
3181 .cra_name = "authenc(hmac(md5),cbc(aes))",
3182 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3183 .cra_blocksize = AES_BLOCK_SIZE,
3184 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3185 CRYPTO_ALG_ASYNC |
3186 CRYPTO_ALG_ALLOCATES_MEMORY
3187 },
3188 .setkey = aead_authenc_setkey,
3189 .ivsize = AES_BLOCK_SIZE,
3190 .maxauthsize = MD5_DIGEST_SIZE,
3191 },
3192 .cipher_info = {
3193 .alg = CIPHER_ALG_AES,
3194 .mode = CIPHER_MODE_CBC,
3195 },
3196 .auth_info = {
3197 .alg = HASH_ALG_MD5,
3198 .mode = HASH_MODE_HMAC,
3199 },
3200 .auth_first = 0,
3201 },
3202 {
3203 .type = CRYPTO_ALG_TYPE_AEAD,
3204 .alg.aead = {
3205 .base = {
3206 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3207 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3208 .cra_blocksize = AES_BLOCK_SIZE,
3209 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3210 CRYPTO_ALG_ASYNC |
3211 CRYPTO_ALG_ALLOCATES_MEMORY
3212 },
3213 .setkey = aead_authenc_setkey,
3214 .ivsize = AES_BLOCK_SIZE,
3215 .maxauthsize = SHA1_DIGEST_SIZE,
3216 },
3217 .cipher_info = {
3218 .alg = CIPHER_ALG_AES,
3219 .mode = CIPHER_MODE_CBC,
3220 },
3221 .auth_info = {
3222 .alg = HASH_ALG_SHA1,
3223 .mode = HASH_MODE_HMAC,
3224 },
3225 .auth_first = 0,
3226 },
3227 {
3228 .type = CRYPTO_ALG_TYPE_AEAD,
3229 .alg.aead = {
3230 .base = {
3231 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3232 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3233 .cra_blocksize = AES_BLOCK_SIZE,
3234 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3235 CRYPTO_ALG_ASYNC |
3236 CRYPTO_ALG_ALLOCATES_MEMORY
3237 },
3238 .setkey = aead_authenc_setkey,
3239 .ivsize = AES_BLOCK_SIZE,
3240 .maxauthsize = SHA256_DIGEST_SIZE,
3241 },
3242 .cipher_info = {
3243 .alg = CIPHER_ALG_AES,
3244 .mode = CIPHER_MODE_CBC,
3245 },
3246 .auth_info = {
3247 .alg = HASH_ALG_SHA256,
3248 .mode = HASH_MODE_HMAC,
3249 },
3250 .auth_first = 0,
3251 },
3252 {
3253 .type = CRYPTO_ALG_TYPE_AEAD,
3254 .alg.aead = {
3255 .base = {
3256 .cra_name = "authenc(hmac(md5),cbc(des))",
3257 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3258 .cra_blocksize = DES_BLOCK_SIZE,
3259 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3260 CRYPTO_ALG_ASYNC |
3261 CRYPTO_ALG_ALLOCATES_MEMORY
3262 },
3263 .setkey = aead_authenc_setkey,
3264 .ivsize = DES_BLOCK_SIZE,
3265 .maxauthsize = MD5_DIGEST_SIZE,
3266 },
3267 .cipher_info = {
3268 .alg = CIPHER_ALG_DES,
3269 .mode = CIPHER_MODE_CBC,
3270 },
3271 .auth_info = {
3272 .alg = HASH_ALG_MD5,
3273 .mode = HASH_MODE_HMAC,
3274 },
3275 .auth_first = 0,
3276 },
3277 {
3278 .type = CRYPTO_ALG_TYPE_AEAD,
3279 .alg.aead = {
3280 .base = {
3281 .cra_name = "authenc(hmac(sha1),cbc(des))",
3282 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3283 .cra_blocksize = DES_BLOCK_SIZE,
3284 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3285 CRYPTO_ALG_ASYNC |
3286 CRYPTO_ALG_ALLOCATES_MEMORY
3287 },
3288 .setkey = aead_authenc_setkey,
3289 .ivsize = DES_BLOCK_SIZE,
3290 .maxauthsize = SHA1_DIGEST_SIZE,
3291 },
3292 .cipher_info = {
3293 .alg = CIPHER_ALG_DES,
3294 .mode = CIPHER_MODE_CBC,
3295 },
3296 .auth_info = {
3297 .alg = HASH_ALG_SHA1,
3298 .mode = HASH_MODE_HMAC,
3299 },
3300 .auth_first = 0,
3301 },
3302 {
3303 .type = CRYPTO_ALG_TYPE_AEAD,
3304 .alg.aead = {
3305 .base = {
3306 .cra_name = "authenc(hmac(sha224),cbc(des))",
3307 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3308 .cra_blocksize = DES_BLOCK_SIZE,
3309 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3310 CRYPTO_ALG_ASYNC |
3311 CRYPTO_ALG_ALLOCATES_MEMORY
3312 },
3313 .setkey = aead_authenc_setkey,
3314 .ivsize = DES_BLOCK_SIZE,
3315 .maxauthsize = SHA224_DIGEST_SIZE,
3316 },
3317 .cipher_info = {
3318 .alg = CIPHER_ALG_DES,
3319 .mode = CIPHER_MODE_CBC,
3320 },
3321 .auth_info = {
3322 .alg = HASH_ALG_SHA224,
3323 .mode = HASH_MODE_HMAC,
3324 },
3325 .auth_first = 0,
3326 },
3327 {
3328 .type = CRYPTO_ALG_TYPE_AEAD,
3329 .alg.aead = {
3330 .base = {
3331 .cra_name = "authenc(hmac(sha256),cbc(des))",
3332 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3333 .cra_blocksize = DES_BLOCK_SIZE,
3334 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3335 CRYPTO_ALG_ASYNC |
3336 CRYPTO_ALG_ALLOCATES_MEMORY
3337 },
3338 .setkey = aead_authenc_setkey,
3339 .ivsize = DES_BLOCK_SIZE,
3340 .maxauthsize = SHA256_DIGEST_SIZE,
3341 },
3342 .cipher_info = {
3343 .alg = CIPHER_ALG_DES,
3344 .mode = CIPHER_MODE_CBC,
3345 },
3346 .auth_info = {
3347 .alg = HASH_ALG_SHA256,
3348 .mode = HASH_MODE_HMAC,
3349 },
3350 .auth_first = 0,
3351 },
3352 {
3353 .type = CRYPTO_ALG_TYPE_AEAD,
3354 .alg.aead = {
3355 .base = {
3356 .cra_name = "authenc(hmac(sha384),cbc(des))",
3357 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3358 .cra_blocksize = DES_BLOCK_SIZE,
3359 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3360 CRYPTO_ALG_ASYNC |
3361 CRYPTO_ALG_ALLOCATES_MEMORY
3362 },
3363 .setkey = aead_authenc_setkey,
3364 .ivsize = DES_BLOCK_SIZE,
3365 .maxauthsize = SHA384_DIGEST_SIZE,
3366 },
3367 .cipher_info = {
3368 .alg = CIPHER_ALG_DES,
3369 .mode = CIPHER_MODE_CBC,
3370 },
3371 .auth_info = {
3372 .alg = HASH_ALG_SHA384,
3373 .mode = HASH_MODE_HMAC,
3374 },
3375 .auth_first = 0,
3376 },
3377 {
3378 .type = CRYPTO_ALG_TYPE_AEAD,
3379 .alg.aead = {
3380 .base = {
3381 .cra_name = "authenc(hmac(sha512),cbc(des))",
3382 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3383 .cra_blocksize = DES_BLOCK_SIZE,
3384 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3385 CRYPTO_ALG_ASYNC |
3386 CRYPTO_ALG_ALLOCATES_MEMORY
3387 },
3388 .setkey = aead_authenc_setkey,
3389 .ivsize = DES_BLOCK_SIZE,
3390 .maxauthsize = SHA512_DIGEST_SIZE,
3391 },
3392 .cipher_info = {
3393 .alg = CIPHER_ALG_DES,
3394 .mode = CIPHER_MODE_CBC,
3395 },
3396 .auth_info = {
3397 .alg = HASH_ALG_SHA512,
3398 .mode = HASH_MODE_HMAC,
3399 },
3400 .auth_first = 0,
3401 },
3402 {
3403 .type = CRYPTO_ALG_TYPE_AEAD,
3404 .alg.aead = {
3405 .base = {
3406 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3407 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3408 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3409 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3410 CRYPTO_ALG_ASYNC |
3411 CRYPTO_ALG_ALLOCATES_MEMORY
3412 },
3413 .setkey = aead_authenc_setkey,
3414 .ivsize = DES3_EDE_BLOCK_SIZE,
3415 .maxauthsize = MD5_DIGEST_SIZE,
3416 },
3417 .cipher_info = {
3418 .alg = CIPHER_ALG_3DES,
3419 .mode = CIPHER_MODE_CBC,
3420 },
3421 .auth_info = {
3422 .alg = HASH_ALG_MD5,
3423 .mode = HASH_MODE_HMAC,
3424 },
3425 .auth_first = 0,
3426 },
3427 {
3428 .type = CRYPTO_ALG_TYPE_AEAD,
3429 .alg.aead = {
3430 .base = {
3431 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3432 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3433 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3434 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3435 CRYPTO_ALG_ASYNC |
3436 CRYPTO_ALG_ALLOCATES_MEMORY
3437 },
3438 .setkey = aead_authenc_setkey,
3439 .ivsize = DES3_EDE_BLOCK_SIZE,
3440 .maxauthsize = SHA1_DIGEST_SIZE,
3441 },
3442 .cipher_info = {
3443 .alg = CIPHER_ALG_3DES,
3444 .mode = CIPHER_MODE_CBC,
3445 },
3446 .auth_info = {
3447 .alg = HASH_ALG_SHA1,
3448 .mode = HASH_MODE_HMAC,
3449 },
3450 .auth_first = 0,
3451 },
3452 {
3453 .type = CRYPTO_ALG_TYPE_AEAD,
3454 .alg.aead = {
3455 .base = {
3456 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3457 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3458 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3459 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3460 CRYPTO_ALG_ASYNC |
3461 CRYPTO_ALG_ALLOCATES_MEMORY
3462 },
3463 .setkey = aead_authenc_setkey,
3464 .ivsize = DES3_EDE_BLOCK_SIZE,
3465 .maxauthsize = SHA224_DIGEST_SIZE,
3466 },
3467 .cipher_info = {
3468 .alg = CIPHER_ALG_3DES,
3469 .mode = CIPHER_MODE_CBC,
3470 },
3471 .auth_info = {
3472 .alg = HASH_ALG_SHA224,
3473 .mode = HASH_MODE_HMAC,
3474 },
3475 .auth_first = 0,
3476 },
3477 {
3478 .type = CRYPTO_ALG_TYPE_AEAD,
3479 .alg.aead = {
3480 .base = {
3481 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3482 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3483 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3484 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3485 CRYPTO_ALG_ASYNC |
3486 CRYPTO_ALG_ALLOCATES_MEMORY
3487 },
3488 .setkey = aead_authenc_setkey,
3489 .ivsize = DES3_EDE_BLOCK_SIZE,
3490 .maxauthsize = SHA256_DIGEST_SIZE,
3491 },
3492 .cipher_info = {
3493 .alg = CIPHER_ALG_3DES,
3494 .mode = CIPHER_MODE_CBC,
3495 },
3496 .auth_info = {
3497 .alg = HASH_ALG_SHA256,
3498 .mode = HASH_MODE_HMAC,
3499 },
3500 .auth_first = 0,
3501 },
3502 {
3503 .type = CRYPTO_ALG_TYPE_AEAD,
3504 .alg.aead = {
3505 .base = {
3506 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3507 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3508 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3509 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3510 CRYPTO_ALG_ASYNC |
3511 CRYPTO_ALG_ALLOCATES_MEMORY
3512 },
3513 .setkey = aead_authenc_setkey,
3514 .ivsize = DES3_EDE_BLOCK_SIZE,
3515 .maxauthsize = SHA384_DIGEST_SIZE,
3516 },
3517 .cipher_info = {
3518 .alg = CIPHER_ALG_3DES,
3519 .mode = CIPHER_MODE_CBC,
3520 },
3521 .auth_info = {
3522 .alg = HASH_ALG_SHA384,
3523 .mode = HASH_MODE_HMAC,
3524 },
3525 .auth_first = 0,
3526 },
3527 {
3528 .type = CRYPTO_ALG_TYPE_AEAD,
3529 .alg.aead = {
3530 .base = {
3531 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3532 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3533 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3534 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3535 CRYPTO_ALG_ASYNC |
3536 CRYPTO_ALG_ALLOCATES_MEMORY
3537 },
3538 .setkey = aead_authenc_setkey,
3539 .ivsize = DES3_EDE_BLOCK_SIZE,
3540 .maxauthsize = SHA512_DIGEST_SIZE,
3541 },
3542 .cipher_info = {
3543 .alg = CIPHER_ALG_3DES,
3544 .mode = CIPHER_MODE_CBC,
3545 },
3546 .auth_info = {
3547 .alg = HASH_ALG_SHA512,
3548 .mode = HASH_MODE_HMAC,
3549 },
3550 .auth_first = 0,
3551 },
3552
3553 /* SKCIPHER algorithms. */
3554 {
3555 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3556 .alg.skcipher = {
3557 .base.cra_name = "ofb(des)",
3558 .base.cra_driver_name = "ofb-des-iproc",
3559 .base.cra_blocksize = DES_BLOCK_SIZE,
3560 .min_keysize = DES_KEY_SIZE,
3561 .max_keysize = DES_KEY_SIZE,
3562 .ivsize = DES_BLOCK_SIZE,
3563 },
3564 .cipher_info = {
3565 .alg = CIPHER_ALG_DES,
3566 .mode = CIPHER_MODE_OFB,
3567 },
3568 .auth_info = {
3569 .alg = HASH_ALG_NONE,
3570 .mode = HASH_MODE_NONE,
3571 },
3572 },
3573 {
3574 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3575 .alg.skcipher = {
3576 .base.cra_name = "cbc(des)",
3577 .base.cra_driver_name = "cbc-des-iproc",
3578 .base.cra_blocksize = DES_BLOCK_SIZE,
3579 .min_keysize = DES_KEY_SIZE,
3580 .max_keysize = DES_KEY_SIZE,
3581 .ivsize = DES_BLOCK_SIZE,
3582 },
3583 .cipher_info = {
3584 .alg = CIPHER_ALG_DES,
3585 .mode = CIPHER_MODE_CBC,
3586 },
3587 .auth_info = {
3588 .alg = HASH_ALG_NONE,
3589 .mode = HASH_MODE_NONE,
3590 },
3591 },
3592 {
3593 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3594 .alg.skcipher = {
3595 .base.cra_name = "ecb(des)",
3596 .base.cra_driver_name = "ecb-des-iproc",
3597 .base.cra_blocksize = DES_BLOCK_SIZE,
3598 .min_keysize = DES_KEY_SIZE,
3599 .max_keysize = DES_KEY_SIZE,
3600 .ivsize = 0,
3601 },
3602 .cipher_info = {
3603 .alg = CIPHER_ALG_DES,
3604 .mode = CIPHER_MODE_ECB,
3605 },
3606 .auth_info = {
3607 .alg = HASH_ALG_NONE,
3608 .mode = HASH_MODE_NONE,
3609 },
3610 },
3611 {
3612 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3613 .alg.skcipher = {
3614 .base.cra_name = "ofb(des3_ede)",
3615 .base.cra_driver_name = "ofb-des3-iproc",
3616 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3617 .min_keysize = DES3_EDE_KEY_SIZE,
3618 .max_keysize = DES3_EDE_KEY_SIZE,
3619 .ivsize = DES3_EDE_BLOCK_SIZE,
3620 },
3621 .cipher_info = {
3622 .alg = CIPHER_ALG_3DES,
3623 .mode = CIPHER_MODE_OFB,
3624 },
3625 .auth_info = {
3626 .alg = HASH_ALG_NONE,
3627 .mode = HASH_MODE_NONE,
3628 },
3629 },
3630 {
3631 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3632 .alg.skcipher = {
3633 .base.cra_name = "cbc(des3_ede)",
3634 .base.cra_driver_name = "cbc-des3-iproc",
3635 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3636 .min_keysize = DES3_EDE_KEY_SIZE,
3637 .max_keysize = DES3_EDE_KEY_SIZE,
3638 .ivsize = DES3_EDE_BLOCK_SIZE,
3639 },
3640 .cipher_info = {
3641 .alg = CIPHER_ALG_3DES,
3642 .mode = CIPHER_MODE_CBC,
3643 },
3644 .auth_info = {
3645 .alg = HASH_ALG_NONE,
3646 .mode = HASH_MODE_NONE,
3647 },
3648 },
3649 {
3650 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3651 .alg.skcipher = {
3652 .base.cra_name = "ecb(des3_ede)",
3653 .base.cra_driver_name = "ecb-des3-iproc",
3654 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3655 .min_keysize = DES3_EDE_KEY_SIZE,
3656 .max_keysize = DES3_EDE_KEY_SIZE,
3657 .ivsize = 0,
3658 },
3659 .cipher_info = {
3660 .alg = CIPHER_ALG_3DES,
3661 .mode = CIPHER_MODE_ECB,
3662 },
3663 .auth_info = {
3664 .alg = HASH_ALG_NONE,
3665 .mode = HASH_MODE_NONE,
3666 },
3667 },
3668 {
3669 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3670 .alg.skcipher = {
3671 .base.cra_name = "ofb(aes)",
3672 .base.cra_driver_name = "ofb-aes-iproc",
3673 .base.cra_blocksize = AES_BLOCK_SIZE,
3674 .min_keysize = AES_MIN_KEY_SIZE,
3675 .max_keysize = AES_MAX_KEY_SIZE,
3676 .ivsize = AES_BLOCK_SIZE,
3677 },
3678 .cipher_info = {
3679 .alg = CIPHER_ALG_AES,
3680 .mode = CIPHER_MODE_OFB,
3681 },
3682 .auth_info = {
3683 .alg = HASH_ALG_NONE,
3684 .mode = HASH_MODE_NONE,
3685 },
3686 },
3687 {
3688 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3689 .alg.skcipher = {
3690 .base.cra_name = "cbc(aes)",
3691 .base.cra_driver_name = "cbc-aes-iproc",
3692 .base.cra_blocksize = AES_BLOCK_SIZE,
3693 .min_keysize = AES_MIN_KEY_SIZE,
3694 .max_keysize = AES_MAX_KEY_SIZE,
3695 .ivsize = AES_BLOCK_SIZE,
3696 },
3697 .cipher_info = {
3698 .alg = CIPHER_ALG_AES,
3699 .mode = CIPHER_MODE_CBC,
3700 },
3701 .auth_info = {
3702 .alg = HASH_ALG_NONE,
3703 .mode = HASH_MODE_NONE,
3704 },
3705 },
3706 {
3707 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3708 .alg.skcipher = {
3709 .base.cra_name = "ecb(aes)",
3710 .base.cra_driver_name = "ecb-aes-iproc",
3711 .base.cra_blocksize = AES_BLOCK_SIZE,
3712 .min_keysize = AES_MIN_KEY_SIZE,
3713 .max_keysize = AES_MAX_KEY_SIZE,
3714 .ivsize = 0,
3715 },
3716 .cipher_info = {
3717 .alg = CIPHER_ALG_AES,
3718 .mode = CIPHER_MODE_ECB,
3719 },
3720 .auth_info = {
3721 .alg = HASH_ALG_NONE,
3722 .mode = HASH_MODE_NONE,
3723 },
3724 },
3725 {
3726 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3727 .alg.skcipher = {
3728 .base.cra_name = "ctr(aes)",
3729 .base.cra_driver_name = "ctr-aes-iproc",
3730 .base.cra_blocksize = AES_BLOCK_SIZE,
3731 .min_keysize = AES_MIN_KEY_SIZE,
3732 .max_keysize = AES_MAX_KEY_SIZE,
3733 .ivsize = AES_BLOCK_SIZE,
3734 },
3735 .cipher_info = {
3736 .alg = CIPHER_ALG_AES,
3737 .mode = CIPHER_MODE_CTR,
3738 },
3739 .auth_info = {
3740 .alg = HASH_ALG_NONE,
3741 .mode = HASH_MODE_NONE,
3742 },
3743 },
3744 {
3745 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3746 .alg.skcipher = {
3747 .base.cra_name = "xts(aes)",
3748 .base.cra_driver_name = "xts-aes-iproc",
3749 .base.cra_blocksize = AES_BLOCK_SIZE,
3750 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3751 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3752 .ivsize = AES_BLOCK_SIZE,
3753 },
3754 .cipher_info = {
3755 .alg = CIPHER_ALG_AES,
3756 .mode = CIPHER_MODE_XTS,
3757 },
3758 .auth_info = {
3759 .alg = HASH_ALG_NONE,
3760 .mode = HASH_MODE_NONE,
3761 },
3762 },
3763
3764 /* AHASH algorithms. */
3765 {
3766 .type = CRYPTO_ALG_TYPE_AHASH,
3767 .alg.hash = {
3768 .halg.digestsize = MD5_DIGEST_SIZE,
3769 .halg.base = {
3770 .cra_name = "md5",
3771 .cra_driver_name = "md5-iproc",
3772 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3773 .cra_flags = CRYPTO_ALG_ASYNC |
3774 CRYPTO_ALG_ALLOCATES_MEMORY,
3775 }
3776 },
3777 .cipher_info = {
3778 .alg = CIPHER_ALG_NONE,
3779 .mode = CIPHER_MODE_NONE,
3780 },
3781 .auth_info = {
3782 .alg = HASH_ALG_MD5,
3783 .mode = HASH_MODE_HASH,
3784 },
3785 },
3786 {
3787 .type = CRYPTO_ALG_TYPE_AHASH,
3788 .alg.hash = {
3789 .halg.digestsize = MD5_DIGEST_SIZE,
3790 .halg.base = {
3791 .cra_name = "hmac(md5)",
3792 .cra_driver_name = "hmac-md5-iproc",
3793 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3794 }
3795 },
3796 .cipher_info = {
3797 .alg = CIPHER_ALG_NONE,
3798 .mode = CIPHER_MODE_NONE,
3799 },
3800 .auth_info = {
3801 .alg = HASH_ALG_MD5,
3802 .mode = HASH_MODE_HMAC,
3803 },
3804 },
3805 {.type = CRYPTO_ALG_TYPE_AHASH,
3806 .alg.hash = {
3807 .halg.digestsize = SHA1_DIGEST_SIZE,
3808 .halg.base = {
3809 .cra_name = "sha1",
3810 .cra_driver_name = "sha1-iproc",
3811 .cra_blocksize = SHA1_BLOCK_SIZE,
3812 }
3813 },
3814 .cipher_info = {
3815 .alg = CIPHER_ALG_NONE,
3816 .mode = CIPHER_MODE_NONE,
3817 },
3818 .auth_info = {
3819 .alg = HASH_ALG_SHA1,
3820 .mode = HASH_MODE_HASH,
3821 },
3822 },
3823 {.type = CRYPTO_ALG_TYPE_AHASH,
3824 .alg.hash = {
3825 .halg.digestsize = SHA1_DIGEST_SIZE,
3826 .halg.base = {
3827 .cra_name = "hmac(sha1)",
3828 .cra_driver_name = "hmac-sha1-iproc",
3829 .cra_blocksize = SHA1_BLOCK_SIZE,
3830 }
3831 },
3832 .cipher_info = {
3833 .alg = CIPHER_ALG_NONE,
3834 .mode = CIPHER_MODE_NONE,
3835 },
3836 .auth_info = {
3837 .alg = HASH_ALG_SHA1,
3838 .mode = HASH_MODE_HMAC,
3839 },
3840 },
3841 {.type = CRYPTO_ALG_TYPE_AHASH,
3842 .alg.hash = {
3843 .halg.digestsize = SHA224_DIGEST_SIZE,
3844 .halg.base = {
3845 .cra_name = "sha224",
3846 .cra_driver_name = "sha224-iproc",
3847 .cra_blocksize = SHA224_BLOCK_SIZE,
3848 }
3849 },
3850 .cipher_info = {
3851 .alg = CIPHER_ALG_NONE,
3852 .mode = CIPHER_MODE_NONE,
3853 },
3854 .auth_info = {
3855 .alg = HASH_ALG_SHA224,
3856 .mode = HASH_MODE_HASH,
3857 },
3858 },
3859 {.type = CRYPTO_ALG_TYPE_AHASH,
3860 .alg.hash = {
3861 .halg.digestsize = SHA224_DIGEST_SIZE,
3862 .halg.base = {
3863 .cra_name = "hmac(sha224)",
3864 .cra_driver_name = "hmac-sha224-iproc",
3865 .cra_blocksize = SHA224_BLOCK_SIZE,
3866 }
3867 },
3868 .cipher_info = {
3869 .alg = CIPHER_ALG_NONE,
3870 .mode = CIPHER_MODE_NONE,
3871 },
3872 .auth_info = {
3873 .alg = HASH_ALG_SHA224,
3874 .mode = HASH_MODE_HMAC,
3875 },
3876 },
3877 {.type = CRYPTO_ALG_TYPE_AHASH,
3878 .alg.hash = {
3879 .halg.digestsize = SHA256_DIGEST_SIZE,
3880 .halg.base = {
3881 .cra_name = "sha256",
3882 .cra_driver_name = "sha256-iproc",
3883 .cra_blocksize = SHA256_BLOCK_SIZE,
3884 }
3885 },
3886 .cipher_info = {
3887 .alg = CIPHER_ALG_NONE,
3888 .mode = CIPHER_MODE_NONE,
3889 },
3890 .auth_info = {
3891 .alg = HASH_ALG_SHA256,
3892 .mode = HASH_MODE_HASH,
3893 },
3894 },
3895 {.type = CRYPTO_ALG_TYPE_AHASH,
3896 .alg.hash = {
3897 .halg.digestsize = SHA256_DIGEST_SIZE,
3898 .halg.base = {
3899 .cra_name = "hmac(sha256)",
3900 .cra_driver_name = "hmac-sha256-iproc",
3901 .cra_blocksize = SHA256_BLOCK_SIZE,
3902 }
3903 },
3904 .cipher_info = {
3905 .alg = CIPHER_ALG_NONE,
3906 .mode = CIPHER_MODE_NONE,
3907 },
3908 .auth_info = {
3909 .alg = HASH_ALG_SHA256,
3910 .mode = HASH_MODE_HMAC,
3911 },
3912 },
3913 {
3914 .type = CRYPTO_ALG_TYPE_AHASH,
3915 .alg.hash = {
3916 .halg.digestsize = SHA384_DIGEST_SIZE,
3917 .halg.base = {
3918 .cra_name = "sha384",
3919 .cra_driver_name = "sha384-iproc",
3920 .cra_blocksize = SHA384_BLOCK_SIZE,
3921 }
3922 },
3923 .cipher_info = {
3924 .alg = CIPHER_ALG_NONE,
3925 .mode = CIPHER_MODE_NONE,
3926 },
3927 .auth_info = {
3928 .alg = HASH_ALG_SHA384,
3929 .mode = HASH_MODE_HASH,
3930 },
3931 },
3932 {
3933 .type = CRYPTO_ALG_TYPE_AHASH,
3934 .alg.hash = {
3935 .halg.digestsize = SHA384_DIGEST_SIZE,
3936 .halg.base = {
3937 .cra_name = "hmac(sha384)",
3938 .cra_driver_name = "hmac-sha384-iproc",
3939 .cra_blocksize = SHA384_BLOCK_SIZE,
3940 }
3941 },
3942 .cipher_info = {
3943 .alg = CIPHER_ALG_NONE,
3944 .mode = CIPHER_MODE_NONE,
3945 },
3946 .auth_info = {
3947 .alg = HASH_ALG_SHA384,
3948 .mode = HASH_MODE_HMAC,
3949 },
3950 },
3951 {
3952 .type = CRYPTO_ALG_TYPE_AHASH,
3953 .alg.hash = {
3954 .halg.digestsize = SHA512_DIGEST_SIZE,
3955 .halg.base = {
3956 .cra_name = "sha512",
3957 .cra_driver_name = "sha512-iproc",
3958 .cra_blocksize = SHA512_BLOCK_SIZE,
3959 }
3960 },
3961 .cipher_info = {
3962 .alg = CIPHER_ALG_NONE,
3963 .mode = CIPHER_MODE_NONE,
3964 },
3965 .auth_info = {
3966 .alg = HASH_ALG_SHA512,
3967 .mode = HASH_MODE_HASH,
3968 },
3969 },
3970 {
3971 .type = CRYPTO_ALG_TYPE_AHASH,
3972 .alg.hash = {
3973 .halg.digestsize = SHA512_DIGEST_SIZE,
3974 .halg.base = {
3975 .cra_name = "hmac(sha512)",
3976 .cra_driver_name = "hmac-sha512-iproc",
3977 .cra_blocksize = SHA512_BLOCK_SIZE,
3978 }
3979 },
3980 .cipher_info = {
3981 .alg = CIPHER_ALG_NONE,
3982 .mode = CIPHER_MODE_NONE,
3983 },
3984 .auth_info = {
3985 .alg = HASH_ALG_SHA512,
3986 .mode = HASH_MODE_HMAC,
3987 },
3988 },
3989 {
3990 .type = CRYPTO_ALG_TYPE_AHASH,
3991 .alg.hash = {
3992 .halg.digestsize = SHA3_224_DIGEST_SIZE,
3993 .halg.base = {
3994 .cra_name = "sha3-224",
3995 .cra_driver_name = "sha3-224-iproc",
3996 .cra_blocksize = SHA3_224_BLOCK_SIZE,
3997 }
3998 },
3999 .cipher_info = {
4000 .alg = CIPHER_ALG_NONE,
4001 .mode = CIPHER_MODE_NONE,
4002 },
4003 .auth_info = {
4004 .alg = HASH_ALG_SHA3_224,
4005 .mode = HASH_MODE_HASH,
4006 },
4007 },
4008 {
4009 .type = CRYPTO_ALG_TYPE_AHASH,
4010 .alg.hash = {
4011 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4012 .halg.base = {
4013 .cra_name = "hmac(sha3-224)",
4014 .cra_driver_name = "hmac-sha3-224-iproc",
4015 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4016 }
4017 },
4018 .cipher_info = {
4019 .alg = CIPHER_ALG_NONE,
4020 .mode = CIPHER_MODE_NONE,
4021 },
4022 .auth_info = {
4023 .alg = HASH_ALG_SHA3_224,
4024 .mode = HASH_MODE_HMAC
4025 },
4026 },
4027 {
4028 .type = CRYPTO_ALG_TYPE_AHASH,
4029 .alg.hash = {
4030 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4031 .halg.base = {
4032 .cra_name = "sha3-256",
4033 .cra_driver_name = "sha3-256-iproc",
4034 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4035 }
4036 },
4037 .cipher_info = {
4038 .alg = CIPHER_ALG_NONE,
4039 .mode = CIPHER_MODE_NONE,
4040 },
4041 .auth_info = {
4042 .alg = HASH_ALG_SHA3_256,
4043 .mode = HASH_MODE_HASH,
4044 },
4045 },
4046 {
4047 .type = CRYPTO_ALG_TYPE_AHASH,
4048 .alg.hash = {
4049 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4050 .halg.base = {
4051 .cra_name = "hmac(sha3-256)",
4052 .cra_driver_name = "hmac-sha3-256-iproc",
4053 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4054 }
4055 },
4056 .cipher_info = {
4057 .alg = CIPHER_ALG_NONE,
4058 .mode = CIPHER_MODE_NONE,
4059 },
4060 .auth_info = {
4061 .alg = HASH_ALG_SHA3_256,
4062 .mode = HASH_MODE_HMAC,
4063 },
4064 },
4065 {
4066 .type = CRYPTO_ALG_TYPE_AHASH,
4067 .alg.hash = {
4068 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4069 .halg.base = {
4070 .cra_name = "sha3-384",
4071 .cra_driver_name = "sha3-384-iproc",
4072 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4073 }
4074 },
4075 .cipher_info = {
4076 .alg = CIPHER_ALG_NONE,
4077 .mode = CIPHER_MODE_NONE,
4078 },
4079 .auth_info = {
4080 .alg = HASH_ALG_SHA3_384,
4081 .mode = HASH_MODE_HASH,
4082 },
4083 },
4084 {
4085 .type = CRYPTO_ALG_TYPE_AHASH,
4086 .alg.hash = {
4087 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4088 .halg.base = {
4089 .cra_name = "hmac(sha3-384)",
4090 .cra_driver_name = "hmac-sha3-384-iproc",
4091 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4092 }
4093 },
4094 .cipher_info = {
4095 .alg = CIPHER_ALG_NONE,
4096 .mode = CIPHER_MODE_NONE,
4097 },
4098 .auth_info = {
4099 .alg = HASH_ALG_SHA3_384,
4100 .mode = HASH_MODE_HMAC,
4101 },
4102 },
4103 {
4104 .type = CRYPTO_ALG_TYPE_AHASH,
4105 .alg.hash = {
4106 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4107 .halg.base = {
4108 .cra_name = "sha3-512",
4109 .cra_driver_name = "sha3-512-iproc",
4110 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4111 }
4112 },
4113 .cipher_info = {
4114 .alg = CIPHER_ALG_NONE,
4115 .mode = CIPHER_MODE_NONE,
4116 },
4117 .auth_info = {
4118 .alg = HASH_ALG_SHA3_512,
4119 .mode = HASH_MODE_HASH,
4120 },
4121 },
4122 {
4123 .type = CRYPTO_ALG_TYPE_AHASH,
4124 .alg.hash = {
4125 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4126 .halg.base = {
4127 .cra_name = "hmac(sha3-512)",
4128 .cra_driver_name = "hmac-sha3-512-iproc",
4129 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4130 }
4131 },
4132 .cipher_info = {
4133 .alg = CIPHER_ALG_NONE,
4134 .mode = CIPHER_MODE_NONE,
4135 },
4136 .auth_info = {
4137 .alg = HASH_ALG_SHA3_512,
4138 .mode = HASH_MODE_HMAC,
4139 },
4140 },
4141 {
4142 .type = CRYPTO_ALG_TYPE_AHASH,
4143 .alg.hash = {
4144 .halg.digestsize = AES_BLOCK_SIZE,
4145 .halg.base = {
4146 .cra_name = "xcbc(aes)",
4147 .cra_driver_name = "xcbc-aes-iproc",
4148 .cra_blocksize = AES_BLOCK_SIZE,
4149 }
4150 },
4151 .cipher_info = {
4152 .alg = CIPHER_ALG_NONE,
4153 .mode = CIPHER_MODE_NONE,
4154 },
4155 .auth_info = {
4156 .alg = HASH_ALG_AES,
4157 .mode = HASH_MODE_XCBC,
4158 },
4159 },
4160 {
4161 .type = CRYPTO_ALG_TYPE_AHASH,
4162 .alg.hash = {
4163 .halg.digestsize = AES_BLOCK_SIZE,
4164 .halg.base = {
4165 .cra_name = "cmac(aes)",
4166 .cra_driver_name = "cmac-aes-iproc",
4167 .cra_blocksize = AES_BLOCK_SIZE,
4168 }
4169 },
4170 .cipher_info = {
4171 .alg = CIPHER_ALG_NONE,
4172 .mode = CIPHER_MODE_NONE,
4173 },
4174 .auth_info = {
4175 .alg = HASH_ALG_AES,
4176 .mode = HASH_MODE_CMAC,
4177 },
4178 },
4179 };
4180
generic_cra_init(struct crypto_tfm * tfm,struct iproc_alg_s * cipher_alg)4181 static int generic_cra_init(struct crypto_tfm *tfm,
4182 struct iproc_alg_s *cipher_alg)
4183 {
4184 struct spu_hw *spu = &iproc_priv.spu;
4185 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4186 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4187
4188 flow_log("%s()\n", __func__);
4189
4190 ctx->alg = cipher_alg;
4191 ctx->cipher = cipher_alg->cipher_info;
4192 ctx->auth = cipher_alg->auth_info;
4193 ctx->auth_first = cipher_alg->auth_first;
4194 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4195 ctx->cipher.mode,
4196 blocksize);
4197 ctx->fallback_cipher = NULL;
4198
4199 ctx->enckeylen = 0;
4200 ctx->authkeylen = 0;
4201
4202 atomic_inc(&iproc_priv.stream_count);
4203 atomic_inc(&iproc_priv.session_count);
4204
4205 return 0;
4206 }
4207
skcipher_init_tfm(struct crypto_skcipher * skcipher)4208 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4209 {
4210 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4211 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4212 struct iproc_alg_s *cipher_alg;
4213
4214 flow_log("%s()\n", __func__);
4215
4216 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4217
4218 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4219 return generic_cra_init(tfm, cipher_alg);
4220 }
4221
ahash_cra_init(struct crypto_tfm * tfm)4222 static int ahash_cra_init(struct crypto_tfm *tfm)
4223 {
4224 int err;
4225 struct crypto_alg *alg = tfm->__crt_alg;
4226 struct iproc_alg_s *cipher_alg;
4227
4228 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4229 alg.hash);
4230
4231 err = generic_cra_init(tfm, cipher_alg);
4232 flow_log("%s()\n", __func__);
4233
4234 /*
4235 * export state size has to be < 512 bytes. So don't include msg bufs
4236 * in state size.
4237 */
4238 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4239 sizeof(struct iproc_reqctx_s));
4240
4241 return err;
4242 }
4243
aead_cra_init(struct crypto_aead * aead)4244 static int aead_cra_init(struct crypto_aead *aead)
4245 {
4246 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4247 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4248 struct crypto_alg *alg = tfm->__crt_alg;
4249 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4250 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4251 alg.aead);
4252
4253 int err = generic_cra_init(tfm, cipher_alg);
4254
4255 flow_log("%s()\n", __func__);
4256
4257 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4258 ctx->is_esp = false;
4259 ctx->salt_len = 0;
4260 ctx->salt_offset = 0;
4261
4262 /* random first IV */
4263 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4264 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4265
4266 if (!err) {
4267 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4268 flow_log("%s() creating fallback cipher\n", __func__);
4269
4270 ctx->fallback_cipher =
4271 crypto_alloc_aead(alg->cra_name, 0,
4272 CRYPTO_ALG_ASYNC |
4273 CRYPTO_ALG_NEED_FALLBACK);
4274 if (IS_ERR(ctx->fallback_cipher)) {
4275 pr_err("%s() Error: failed to allocate fallback for %s\n",
4276 __func__, alg->cra_name);
4277 return PTR_ERR(ctx->fallback_cipher);
4278 }
4279 }
4280 }
4281
4282 return err;
4283 }
4284
generic_cra_exit(struct crypto_tfm * tfm)4285 static void generic_cra_exit(struct crypto_tfm *tfm)
4286 {
4287 atomic_dec(&iproc_priv.session_count);
4288 }
4289
skcipher_exit_tfm(struct crypto_skcipher * tfm)4290 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4291 {
4292 generic_cra_exit(crypto_skcipher_tfm(tfm));
4293 }
4294
aead_cra_exit(struct crypto_aead * aead)4295 static void aead_cra_exit(struct crypto_aead *aead)
4296 {
4297 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4298 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4299
4300 generic_cra_exit(tfm);
4301
4302 if (ctx->fallback_cipher) {
4303 crypto_free_aead(ctx->fallback_cipher);
4304 ctx->fallback_cipher = NULL;
4305 }
4306 }
4307
4308 /**
4309 * spu_functions_register() - Specify hardware-specific SPU functions based on
4310 * SPU type read from device tree.
4311 * @dev: device structure
4312 * @spu_type: SPU hardware generation
4313 * @spu_subtype: SPU hardware version
4314 */
spu_functions_register(struct device * dev,enum spu_spu_type spu_type,enum spu_spu_subtype spu_subtype)4315 static void spu_functions_register(struct device *dev,
4316 enum spu_spu_type spu_type,
4317 enum spu_spu_subtype spu_subtype)
4318 {
4319 struct spu_hw *spu = &iproc_priv.spu;
4320
4321 if (spu_type == SPU_TYPE_SPUM) {
4322 dev_dbg(dev, "Registering SPUM functions");
4323 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4324 spu->spu_payload_length = spum_payload_length;
4325 spu->spu_response_hdr_len = spum_response_hdr_len;
4326 spu->spu_hash_pad_len = spum_hash_pad_len;
4327 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4328 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4329 spu->spu_aead_ivlen = spum_aead_ivlen;
4330 spu->spu_hash_type = spum_hash_type;
4331 spu->spu_digest_size = spum_digest_size;
4332 spu->spu_create_request = spum_create_request;
4333 spu->spu_cipher_req_init = spum_cipher_req_init;
4334 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4335 spu->spu_request_pad = spum_request_pad;
4336 spu->spu_tx_status_len = spum_tx_status_len;
4337 spu->spu_rx_status_len = spum_rx_status_len;
4338 spu->spu_status_process = spum_status_process;
4339 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4340 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4341 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4342 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4343 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4344 else
4345 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4346 } else {
4347 dev_dbg(dev, "Registering SPU2 functions");
4348 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4349 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4350 spu->spu_payload_length = spu2_payload_length;
4351 spu->spu_response_hdr_len = spu2_response_hdr_len;
4352 spu->spu_hash_pad_len = spu2_hash_pad_len;
4353 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4354 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4355 spu->spu_aead_ivlen = spu2_aead_ivlen;
4356 spu->spu_hash_type = spu2_hash_type;
4357 spu->spu_digest_size = spu2_digest_size;
4358 spu->spu_create_request = spu2_create_request;
4359 spu->spu_cipher_req_init = spu2_cipher_req_init;
4360 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4361 spu->spu_request_pad = spu2_request_pad;
4362 spu->spu_tx_status_len = spu2_tx_status_len;
4363 spu->spu_rx_status_len = spu2_rx_status_len;
4364 spu->spu_status_process = spu2_status_process;
4365 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4366 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4367 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4368 }
4369 }
4370
4371 /**
4372 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4373 * channel for the SPU being probed.
4374 * @dev: SPU driver device structure
4375 *
4376 * Return: 0 if successful
4377 * < 0 otherwise
4378 */
spu_mb_init(struct device * dev)4379 static int spu_mb_init(struct device *dev)
4380 {
4381 struct mbox_client *mcl = &iproc_priv.mcl;
4382 int err, i;
4383
4384 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4385 sizeof(struct mbox_chan *), GFP_KERNEL);
4386 if (!iproc_priv.mbox)
4387 return -ENOMEM;
4388
4389 mcl->dev = dev;
4390 mcl->tx_block = false;
4391 mcl->tx_tout = 0;
4392 mcl->knows_txdone = true;
4393 mcl->rx_callback = spu_rx_callback;
4394 mcl->tx_done = NULL;
4395
4396 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4397 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4398 if (IS_ERR(iproc_priv.mbox[i])) {
4399 err = PTR_ERR(iproc_priv.mbox[i]);
4400 dev_err(dev,
4401 "Mbox channel %d request failed with err %d",
4402 i, err);
4403 iproc_priv.mbox[i] = NULL;
4404 goto free_channels;
4405 }
4406 }
4407
4408 return 0;
4409 free_channels:
4410 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4411 if (iproc_priv.mbox[i])
4412 mbox_free_channel(iproc_priv.mbox[i]);
4413 }
4414
4415 return err;
4416 }
4417
spu_mb_release(struct platform_device * pdev)4418 static void spu_mb_release(struct platform_device *pdev)
4419 {
4420 int i;
4421
4422 for (i = 0; i < iproc_priv.spu.num_chan; i++)
4423 mbox_free_channel(iproc_priv.mbox[i]);
4424 }
4425
spu_counters_init(void)4426 static void spu_counters_init(void)
4427 {
4428 int i;
4429 int j;
4430
4431 atomic_set(&iproc_priv.session_count, 0);
4432 atomic_set(&iproc_priv.stream_count, 0);
4433 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4434 atomic64_set(&iproc_priv.bytes_in, 0);
4435 atomic64_set(&iproc_priv.bytes_out, 0);
4436 for (i = 0; i < SPU_OP_NUM; i++) {
4437 atomic_set(&iproc_priv.op_counts[i], 0);
4438 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4439 }
4440 for (i = 0; i < CIPHER_ALG_LAST; i++)
4441 for (j = 0; j < CIPHER_MODE_LAST; j++)
4442 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4443
4444 for (i = 0; i < HASH_ALG_LAST; i++) {
4445 atomic_set(&iproc_priv.hash_cnt[i], 0);
4446 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4447 }
4448 for (i = 0; i < AEAD_TYPE_LAST; i++)
4449 atomic_set(&iproc_priv.aead_cnt[i], 0);
4450
4451 atomic_set(&iproc_priv.mb_no_spc, 0);
4452 atomic_set(&iproc_priv.mb_send_fail, 0);
4453 atomic_set(&iproc_priv.bad_icv, 0);
4454 }
4455
spu_register_skcipher(struct iproc_alg_s * driver_alg)4456 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4457 {
4458 struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4459 int err;
4460
4461 crypto->base.cra_module = THIS_MODULE;
4462 crypto->base.cra_priority = cipher_pri;
4463 crypto->base.cra_alignmask = 0;
4464 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4465 crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4466 CRYPTO_ALG_ALLOCATES_MEMORY |
4467 CRYPTO_ALG_KERN_DRIVER_ONLY;
4468
4469 crypto->init = skcipher_init_tfm;
4470 crypto->exit = skcipher_exit_tfm;
4471 crypto->setkey = skcipher_setkey;
4472 crypto->encrypt = skcipher_encrypt;
4473 crypto->decrypt = skcipher_decrypt;
4474
4475 err = crypto_register_skcipher(crypto);
4476 /* Mark alg as having been registered, if successful */
4477 if (err == 0)
4478 driver_alg->registered = true;
4479 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name);
4480 return err;
4481 }
4482
spu_register_ahash(struct iproc_alg_s * driver_alg)4483 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4484 {
4485 struct spu_hw *spu = &iproc_priv.spu;
4486 struct ahash_alg *hash = &driver_alg->alg.hash;
4487 int err;
4488
4489 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4490 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4491 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4492 (spu->spu_type == SPU_TYPE_SPUM))
4493 return 0;
4494
4495 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4496 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4497 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4498 return 0;
4499
4500 hash->halg.base.cra_module = THIS_MODULE;
4501 hash->halg.base.cra_priority = hash_pri;
4502 hash->halg.base.cra_alignmask = 0;
4503 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4504 hash->halg.base.cra_init = ahash_cra_init;
4505 hash->halg.base.cra_exit = generic_cra_exit;
4506 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4507 CRYPTO_ALG_ALLOCATES_MEMORY;
4508 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4509
4510 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4511 hash->init = ahash_init;
4512 hash->update = ahash_update;
4513 hash->final = ahash_final;
4514 hash->finup = ahash_finup;
4515 hash->digest = ahash_digest;
4516 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4517 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4518 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4519 hash->setkey = ahash_setkey;
4520 }
4521 } else {
4522 hash->setkey = ahash_hmac_setkey;
4523 hash->init = ahash_hmac_init;
4524 hash->update = ahash_hmac_update;
4525 hash->final = ahash_hmac_final;
4526 hash->finup = ahash_hmac_finup;
4527 hash->digest = ahash_hmac_digest;
4528 }
4529 hash->export = ahash_export;
4530 hash->import = ahash_import;
4531
4532 err = crypto_register_ahash(hash);
4533 /* Mark alg as having been registered, if successful */
4534 if (err == 0)
4535 driver_alg->registered = true;
4536 pr_debug(" registered ahash %s\n",
4537 hash->halg.base.cra_driver_name);
4538 return err;
4539 }
4540
spu_register_aead(struct iproc_alg_s * driver_alg)4541 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4542 {
4543 struct aead_alg *aead = &driver_alg->alg.aead;
4544 int err;
4545
4546 aead->base.cra_module = THIS_MODULE;
4547 aead->base.cra_priority = aead_pri;
4548 aead->base.cra_alignmask = 0;
4549 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4550
4551 aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4552 /* setkey set in alg initialization */
4553 aead->setauthsize = aead_setauthsize;
4554 aead->encrypt = aead_encrypt;
4555 aead->decrypt = aead_decrypt;
4556 aead->init = aead_cra_init;
4557 aead->exit = aead_cra_exit;
4558
4559 err = crypto_register_aead(aead);
4560 /* Mark alg as having been registered, if successful */
4561 if (err == 0)
4562 driver_alg->registered = true;
4563 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4564 return err;
4565 }
4566
4567 /* register crypto algorithms the device supports */
spu_algs_register(struct device * dev)4568 static int spu_algs_register(struct device *dev)
4569 {
4570 int i, j;
4571 int err;
4572
4573 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4574 switch (driver_algs[i].type) {
4575 case CRYPTO_ALG_TYPE_SKCIPHER:
4576 err = spu_register_skcipher(&driver_algs[i]);
4577 break;
4578 case CRYPTO_ALG_TYPE_AHASH:
4579 err = spu_register_ahash(&driver_algs[i]);
4580 break;
4581 case CRYPTO_ALG_TYPE_AEAD:
4582 err = spu_register_aead(&driver_algs[i]);
4583 break;
4584 default:
4585 dev_err(dev,
4586 "iproc-crypto: unknown alg type: %d",
4587 driver_algs[i].type);
4588 err = -EINVAL;
4589 }
4590
4591 if (err) {
4592 dev_err(dev, "alg registration failed with error %d\n",
4593 err);
4594 goto err_algs;
4595 }
4596 }
4597
4598 return 0;
4599
4600 err_algs:
4601 for (j = 0; j < i; j++) {
4602 /* Skip any algorithm not registered */
4603 if (!driver_algs[j].registered)
4604 continue;
4605 switch (driver_algs[j].type) {
4606 case CRYPTO_ALG_TYPE_SKCIPHER:
4607 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4608 driver_algs[j].registered = false;
4609 break;
4610 case CRYPTO_ALG_TYPE_AHASH:
4611 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4612 driver_algs[j].registered = false;
4613 break;
4614 case CRYPTO_ALG_TYPE_AEAD:
4615 crypto_unregister_aead(&driver_algs[j].alg.aead);
4616 driver_algs[j].registered = false;
4617 break;
4618 }
4619 }
4620 return err;
4621 }
4622
4623 /* ==================== Kernel Platform API ==================== */
4624
4625 static struct spu_type_subtype spum_ns2_types = {
4626 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4627 };
4628
4629 static struct spu_type_subtype spum_nsp_types = {
4630 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4631 };
4632
4633 static struct spu_type_subtype spu2_types = {
4634 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4635 };
4636
4637 static struct spu_type_subtype spu2_v2_types = {
4638 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4639 };
4640
4641 static const struct of_device_id bcm_spu_dt_ids[] = {
4642 {
4643 .compatible = "brcm,spum-crypto",
4644 .data = &spum_ns2_types,
4645 },
4646 {
4647 .compatible = "brcm,spum-nsp-crypto",
4648 .data = &spum_nsp_types,
4649 },
4650 {
4651 .compatible = "brcm,spu2-crypto",
4652 .data = &spu2_types,
4653 },
4654 {
4655 .compatible = "brcm,spu2-v2-crypto",
4656 .data = &spu2_v2_types,
4657 },
4658 { /* sentinel */ }
4659 };
4660
4661 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4662
spu_dt_read(struct platform_device * pdev)4663 static int spu_dt_read(struct platform_device *pdev)
4664 {
4665 struct device *dev = &pdev->dev;
4666 struct spu_hw *spu = &iproc_priv.spu;
4667 struct resource *spu_ctrl_regs;
4668 const struct spu_type_subtype *matched_spu_type;
4669 struct device_node *dn = pdev->dev.of_node;
4670 int err, i;
4671
4672 /* Count number of mailbox channels */
4673 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4674
4675 matched_spu_type = of_device_get_match_data(dev);
4676 if (!matched_spu_type) {
4677 dev_err(dev, "Failed to match device\n");
4678 return -ENODEV;
4679 }
4680
4681 spu->spu_type = matched_spu_type->type;
4682 spu->spu_subtype = matched_spu_type->subtype;
4683
4684 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4685 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4686
4687 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4688 if (IS_ERR(spu->reg_vbase[i])) {
4689 err = PTR_ERR(spu->reg_vbase[i]);
4690 dev_err(dev, "Failed to map registers: %d\n",
4691 err);
4692 spu->reg_vbase[i] = NULL;
4693 return err;
4694 }
4695 }
4696 spu->num_spu = i;
4697 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4698
4699 return 0;
4700 }
4701
bcm_spu_probe(struct platform_device * pdev)4702 static int bcm_spu_probe(struct platform_device *pdev)
4703 {
4704 struct device *dev = &pdev->dev;
4705 struct spu_hw *spu = &iproc_priv.spu;
4706 int err;
4707
4708 iproc_priv.pdev = pdev;
4709 platform_set_drvdata(iproc_priv.pdev,
4710 &iproc_priv);
4711
4712 err = spu_dt_read(pdev);
4713 if (err < 0)
4714 goto failure;
4715
4716 err = spu_mb_init(dev);
4717 if (err < 0)
4718 goto failure;
4719
4720 if (spu->spu_type == SPU_TYPE_SPUM)
4721 iproc_priv.bcm_hdr_len = 8;
4722 else if (spu->spu_type == SPU_TYPE_SPU2)
4723 iproc_priv.bcm_hdr_len = 0;
4724
4725 spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4726
4727 spu_counters_init();
4728
4729 spu_setup_debugfs();
4730
4731 err = spu_algs_register(dev);
4732 if (err < 0)
4733 goto fail_reg;
4734
4735 return 0;
4736
4737 fail_reg:
4738 spu_free_debugfs();
4739 failure:
4740 spu_mb_release(pdev);
4741 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4742
4743 return err;
4744 }
4745
bcm_spu_remove(struct platform_device * pdev)4746 static int bcm_spu_remove(struct platform_device *pdev)
4747 {
4748 int i;
4749 struct device *dev = &pdev->dev;
4750 char *cdn;
4751
4752 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4753 /*
4754 * Not all algorithms were registered, depending on whether
4755 * hardware is SPU or SPU2. So here we make sure to skip
4756 * those algorithms that were not previously registered.
4757 */
4758 if (!driver_algs[i].registered)
4759 continue;
4760
4761 switch (driver_algs[i].type) {
4762 case CRYPTO_ALG_TYPE_SKCIPHER:
4763 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4764 dev_dbg(dev, " unregistered cipher %s\n",
4765 driver_algs[i].alg.skcipher.base.cra_driver_name);
4766 driver_algs[i].registered = false;
4767 break;
4768 case CRYPTO_ALG_TYPE_AHASH:
4769 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4770 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4771 dev_dbg(dev, " unregistered hash %s\n", cdn);
4772 driver_algs[i].registered = false;
4773 break;
4774 case CRYPTO_ALG_TYPE_AEAD:
4775 crypto_unregister_aead(&driver_algs[i].alg.aead);
4776 dev_dbg(dev, " unregistered aead %s\n",
4777 driver_algs[i].alg.aead.base.cra_driver_name);
4778 driver_algs[i].registered = false;
4779 break;
4780 }
4781 }
4782 spu_free_debugfs();
4783 spu_mb_release(pdev);
4784 return 0;
4785 }
4786
4787 /* ===== Kernel Module API ===== */
4788
4789 static struct platform_driver bcm_spu_pdriver = {
4790 .driver = {
4791 .name = "brcm-spu-crypto",
4792 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4793 },
4794 .probe = bcm_spu_probe,
4795 .remove = bcm_spu_remove,
4796 };
4797 module_platform_driver(bcm_spu_pdriver);
4798
4799 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4800 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4801 MODULE_LICENSE("GPL v2");
4802