1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24 #include <linux/uaccess.h>
25 #include <linux/types.h>
26 #include <linux/cache.h>
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/kernel.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/socket.h>
34 #include <linux/in.h>
35 #include <linux/inet.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/igmp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mroute.h>
42 #include <linux/init.h>
43 #include <linux/if_ether.h>
44 #include <linux/slab.h>
45 #include <net/net_namespace.h>
46 #include <net/ip.h>
47 #include <net/protocol.h>
48 #include <linux/skbuff.h>
49 #include <net/route.h>
50 #include <net/icmp.h>
51 #include <net/udp.h>
52 #include <net/raw.h>
53 #include <linux/notifier.h>
54 #include <linux/if_arp.h>
55 #include <linux/netfilter_ipv4.h>
56 #include <linux/compat.h>
57 #include <linux/export.h>
58 #include <linux/rhashtable.h>
59 #include <net/ip_tunnels.h>
60 #include <net/checksum.h>
61 #include <net/netlink.h>
62 #include <net/fib_rules.h>
63 #include <linux/netconf.h>
64 #include <net/rtnh.h>
65
66 #include <linux/nospec.h>
67
68 struct ipmr_rule {
69 struct fib_rule common;
70 };
71
72 struct ipmr_result {
73 struct mr_table *mrt;
74 };
75
76 /* Big lock, protecting vif table, mrt cache and mroute socket state.
77 * Note that the changes are semaphored via rtnl_lock.
78 */
79
80 static DEFINE_RWLOCK(mrt_lock);
81
82 /* Multicast router control variables */
83
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86
87 /* We return to original Alan's scheme. Hash table of resolved
88 * entries is changed only in process context and protected
89 * with weak lock mrt_lock. Queue of unresolved entries is protected
90 * with strong spinlock mfc_unres_lock.
91 *
92 * In this case data path is free of exclusive locks at all.
93 */
94
95 static struct kmem_cache *mrt_cachep __ro_after_init;
96
97 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98 static void ipmr_free_table(struct mr_table *mrt);
99
100 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 struct net_device *dev, struct sk_buff *skb,
102 struct mfc_cache *cache, int local);
103 static int ipmr_cache_report(struct mr_table *mrt,
104 struct sk_buff *pkt, vifi_t vifi, int assert);
105 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 int cmd);
107 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108 static void mroute_clean_tables(struct mr_table *mrt, int flags);
109 static void ipmr_expire_process(struct timer_list *t);
110
111 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112 #define ipmr_for_each_table(mrt, net) \
113 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
114 lockdep_rtnl_is_held() || \
115 list_empty(&net->ipv4.mr_tables))
116
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)117 static struct mr_table *ipmr_mr_table_iter(struct net *net,
118 struct mr_table *mrt)
119 {
120 struct mr_table *ret;
121
122 if (!mrt)
123 ret = list_entry_rcu(net->ipv4.mr_tables.next,
124 struct mr_table, list);
125 else
126 ret = list_entry_rcu(mrt->list.next,
127 struct mr_table, list);
128
129 if (&ret->list == &net->ipv4.mr_tables)
130 return NULL;
131 return ret;
132 }
133
ipmr_get_table(struct net * net,u32 id)134 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
135 {
136 struct mr_table *mrt;
137
138 ipmr_for_each_table(mrt, net) {
139 if (mrt->id == id)
140 return mrt;
141 }
142 return NULL;
143 }
144
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)145 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
146 struct mr_table **mrt)
147 {
148 int err;
149 struct ipmr_result res;
150 struct fib_lookup_arg arg = {
151 .result = &res,
152 .flags = FIB_LOOKUP_NOREF,
153 };
154
155 /* update flow if oif or iif point to device enslaved to l3mdev */
156 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
157
158 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159 flowi4_to_flowi(flp4), 0, &arg);
160 if (err < 0)
161 return err;
162 *mrt = res.mrt;
163 return 0;
164 }
165
ipmr_rule_action(struct fib_rule * rule,struct flowi * flp,int flags,struct fib_lookup_arg * arg)166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167 int flags, struct fib_lookup_arg *arg)
168 {
169 struct ipmr_result *res = arg->result;
170 struct mr_table *mrt;
171
172 switch (rule->action) {
173 case FR_ACT_TO_TBL:
174 break;
175 case FR_ACT_UNREACHABLE:
176 return -ENETUNREACH;
177 case FR_ACT_PROHIBIT:
178 return -EACCES;
179 case FR_ACT_BLACKHOLE:
180 default:
181 return -EINVAL;
182 }
183
184 arg->table = fib_rule_get_table(rule, arg);
185
186 mrt = ipmr_get_table(rule->fr_net, arg->table);
187 if (!mrt)
188 return -EAGAIN;
189 res->mrt = mrt;
190 return 0;
191 }
192
ipmr_rule_match(struct fib_rule * rule,struct flowi * fl,int flags)193 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
194 {
195 return 1;
196 }
197
ipmr_rule_configure(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh,struct nlattr ** tb,struct netlink_ext_ack * extack)198 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
199 struct fib_rule_hdr *frh, struct nlattr **tb,
200 struct netlink_ext_ack *extack)
201 {
202 return 0;
203 }
204
ipmr_rule_compare(struct fib_rule * rule,struct fib_rule_hdr * frh,struct nlattr ** tb)205 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
206 struct nlattr **tb)
207 {
208 return 1;
209 }
210
ipmr_rule_fill(struct fib_rule * rule,struct sk_buff * skb,struct fib_rule_hdr * frh)211 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
212 struct fib_rule_hdr *frh)
213 {
214 frh->dst_len = 0;
215 frh->src_len = 0;
216 frh->tos = 0;
217 return 0;
218 }
219
220 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
221 .family = RTNL_FAMILY_IPMR,
222 .rule_size = sizeof(struct ipmr_rule),
223 .addr_size = sizeof(u32),
224 .action = ipmr_rule_action,
225 .match = ipmr_rule_match,
226 .configure = ipmr_rule_configure,
227 .compare = ipmr_rule_compare,
228 .fill = ipmr_rule_fill,
229 .nlgroup = RTNLGRP_IPV4_RULE,
230 .owner = THIS_MODULE,
231 };
232
ipmr_rules_init(struct net * net)233 static int __net_init ipmr_rules_init(struct net *net)
234 {
235 struct fib_rules_ops *ops;
236 struct mr_table *mrt;
237 int err;
238
239 ops = fib_rules_register(&ipmr_rules_ops_template, net);
240 if (IS_ERR(ops))
241 return PTR_ERR(ops);
242
243 INIT_LIST_HEAD(&net->ipv4.mr_tables);
244
245 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
246 if (IS_ERR(mrt)) {
247 err = PTR_ERR(mrt);
248 goto err1;
249 }
250
251 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
252 if (err < 0)
253 goto err2;
254
255 net->ipv4.mr_rules_ops = ops;
256 return 0;
257
258 err2:
259 rtnl_lock();
260 ipmr_free_table(mrt);
261 rtnl_unlock();
262 err1:
263 fib_rules_unregister(ops);
264 return err;
265 }
266
ipmr_rules_exit(struct net * net)267 static void __net_exit ipmr_rules_exit(struct net *net)
268 {
269 struct mr_table *mrt, *next;
270
271 ASSERT_RTNL();
272 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
273 list_del(&mrt->list);
274 ipmr_free_table(mrt);
275 }
276 fib_rules_unregister(net->ipv4.mr_rules_ops);
277 }
278
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)279 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
280 struct netlink_ext_ack *extack)
281 {
282 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
283 }
284
ipmr_rules_seq_read(struct net * net)285 static unsigned int ipmr_rules_seq_read(struct net *net)
286 {
287 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
288 }
289
ipmr_rule_default(const struct fib_rule * rule)290 bool ipmr_rule_default(const struct fib_rule *rule)
291 {
292 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
293 }
294 EXPORT_SYMBOL(ipmr_rule_default);
295 #else
296 #define ipmr_for_each_table(mrt, net) \
297 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
298
ipmr_mr_table_iter(struct net * net,struct mr_table * mrt)299 static struct mr_table *ipmr_mr_table_iter(struct net *net,
300 struct mr_table *mrt)
301 {
302 if (!mrt)
303 return net->ipv4.mrt;
304 return NULL;
305 }
306
ipmr_get_table(struct net * net,u32 id)307 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
308 {
309 return net->ipv4.mrt;
310 }
311
ipmr_fib_lookup(struct net * net,struct flowi4 * flp4,struct mr_table ** mrt)312 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
313 struct mr_table **mrt)
314 {
315 *mrt = net->ipv4.mrt;
316 return 0;
317 }
318
ipmr_rules_init(struct net * net)319 static int __net_init ipmr_rules_init(struct net *net)
320 {
321 struct mr_table *mrt;
322
323 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
324 if (IS_ERR(mrt))
325 return PTR_ERR(mrt);
326 net->ipv4.mrt = mrt;
327 return 0;
328 }
329
ipmr_rules_exit(struct net * net)330 static void __net_exit ipmr_rules_exit(struct net *net)
331 {
332 ASSERT_RTNL();
333 ipmr_free_table(net->ipv4.mrt);
334 net->ipv4.mrt = NULL;
335 }
336
ipmr_rules_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)337 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
338 struct netlink_ext_ack *extack)
339 {
340 return 0;
341 }
342
ipmr_rules_seq_read(struct net * net)343 static unsigned int ipmr_rules_seq_read(struct net *net)
344 {
345 return 0;
346 }
347
ipmr_rule_default(const struct fib_rule * rule)348 bool ipmr_rule_default(const struct fib_rule *rule)
349 {
350 return true;
351 }
352 EXPORT_SYMBOL(ipmr_rule_default);
353 #endif
354
ipmr_hash_cmp(struct rhashtable_compare_arg * arg,const void * ptr)355 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
356 const void *ptr)
357 {
358 const struct mfc_cache_cmp_arg *cmparg = arg->key;
359 const struct mfc_cache *c = ptr;
360
361 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
362 cmparg->mfc_origin != c->mfc_origin;
363 }
364
365 static const struct rhashtable_params ipmr_rht_params = {
366 .head_offset = offsetof(struct mr_mfc, mnode),
367 .key_offset = offsetof(struct mfc_cache, cmparg),
368 .key_len = sizeof(struct mfc_cache_cmp_arg),
369 .nelem_hint = 3,
370 .obj_cmpfn = ipmr_hash_cmp,
371 .automatic_shrinking = true,
372 };
373
ipmr_new_table_set(struct mr_table * mrt,struct net * net)374 static void ipmr_new_table_set(struct mr_table *mrt,
375 struct net *net)
376 {
377 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
378 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
379 #endif
380 }
381
382 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
383 .mfc_mcastgrp = htonl(INADDR_ANY),
384 .mfc_origin = htonl(INADDR_ANY),
385 };
386
387 static struct mr_table_ops ipmr_mr_table_ops = {
388 .rht_params = &ipmr_rht_params,
389 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
390 };
391
ipmr_new_table(struct net * net,u32 id)392 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
393 {
394 struct mr_table *mrt;
395
396 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
397 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
398 return ERR_PTR(-EINVAL);
399
400 mrt = ipmr_get_table(net, id);
401 if (mrt)
402 return mrt;
403
404 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
405 ipmr_expire_process, ipmr_new_table_set);
406 }
407
ipmr_free_table(struct mr_table * mrt)408 static void ipmr_free_table(struct mr_table *mrt)
409 {
410 del_timer_sync(&mrt->ipmr_expire_timer);
411 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
412 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
413 rhltable_destroy(&mrt->mfc_hash);
414 kfree(mrt);
415 }
416
417 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
418
419 /* Initialize ipmr pimreg/tunnel in_device */
ipmr_init_vif_indev(const struct net_device * dev)420 static bool ipmr_init_vif_indev(const struct net_device *dev)
421 {
422 struct in_device *in_dev;
423
424 ASSERT_RTNL();
425
426 in_dev = __in_dev_get_rtnl(dev);
427 if (!in_dev)
428 return false;
429 ipv4_devconf_setall(in_dev);
430 neigh_parms_data_state_setall(in_dev->arp_parms);
431 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
432
433 return true;
434 }
435
ipmr_new_tunnel(struct net * net,struct vifctl * v)436 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
437 {
438 struct net_device *tunnel_dev, *new_dev;
439 struct ip_tunnel_parm p = { };
440 int err;
441
442 tunnel_dev = __dev_get_by_name(net, "tunl0");
443 if (!tunnel_dev)
444 goto out;
445
446 p.iph.daddr = v->vifc_rmt_addr.s_addr;
447 p.iph.saddr = v->vifc_lcl_addr.s_addr;
448 p.iph.version = 4;
449 p.iph.ihl = 5;
450 p.iph.protocol = IPPROTO_IPIP;
451 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
452
453 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
454 goto out;
455 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
456 SIOCADDTUNNEL);
457 if (err)
458 goto out;
459
460 new_dev = __dev_get_by_name(net, p.name);
461 if (!new_dev)
462 goto out;
463
464 new_dev->flags |= IFF_MULTICAST;
465 if (!ipmr_init_vif_indev(new_dev))
466 goto out_unregister;
467 if (dev_open(new_dev, NULL))
468 goto out_unregister;
469 dev_hold(new_dev);
470 err = dev_set_allmulti(new_dev, 1);
471 if (err) {
472 dev_close(new_dev);
473 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
474 SIOCDELTUNNEL);
475 dev_put(new_dev);
476 new_dev = ERR_PTR(err);
477 }
478 return new_dev;
479
480 out_unregister:
481 unregister_netdevice(new_dev);
482 out:
483 return ERR_PTR(-ENOBUFS);
484 }
485
486 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
reg_vif_xmit(struct sk_buff * skb,struct net_device * dev)487 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
488 {
489 struct net *net = dev_net(dev);
490 struct mr_table *mrt;
491 struct flowi4 fl4 = {
492 .flowi4_oif = dev->ifindex,
493 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
494 .flowi4_mark = skb->mark,
495 };
496 int err;
497
498 err = ipmr_fib_lookup(net, &fl4, &mrt);
499 if (err < 0) {
500 kfree_skb(skb);
501 return err;
502 }
503
504 read_lock(&mrt_lock);
505 dev->stats.tx_bytes += skb->len;
506 dev->stats.tx_packets++;
507 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
508 read_unlock(&mrt_lock);
509 kfree_skb(skb);
510 return NETDEV_TX_OK;
511 }
512
reg_vif_get_iflink(const struct net_device * dev)513 static int reg_vif_get_iflink(const struct net_device *dev)
514 {
515 return 0;
516 }
517
518 static const struct net_device_ops reg_vif_netdev_ops = {
519 .ndo_start_xmit = reg_vif_xmit,
520 .ndo_get_iflink = reg_vif_get_iflink,
521 };
522
reg_vif_setup(struct net_device * dev)523 static void reg_vif_setup(struct net_device *dev)
524 {
525 dev->type = ARPHRD_PIMREG;
526 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
527 dev->flags = IFF_NOARP;
528 dev->netdev_ops = ®_vif_netdev_ops;
529 dev->needs_free_netdev = true;
530 dev->features |= NETIF_F_NETNS_LOCAL;
531 }
532
ipmr_reg_vif(struct net * net,struct mr_table * mrt)533 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
534 {
535 struct net_device *dev;
536 char name[IFNAMSIZ];
537
538 if (mrt->id == RT_TABLE_DEFAULT)
539 sprintf(name, "pimreg");
540 else
541 sprintf(name, "pimreg%u", mrt->id);
542
543 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
544
545 if (!dev)
546 return NULL;
547
548 dev_net_set(dev, net);
549
550 if (register_netdevice(dev)) {
551 free_netdev(dev);
552 return NULL;
553 }
554
555 if (!ipmr_init_vif_indev(dev))
556 goto failure;
557 if (dev_open(dev, NULL))
558 goto failure;
559
560 dev_hold(dev);
561
562 return dev;
563
564 failure:
565 unregister_netdevice(dev);
566 return NULL;
567 }
568
569 /* called with rcu_read_lock() */
__pim_rcv(struct mr_table * mrt,struct sk_buff * skb,unsigned int pimlen)570 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
571 unsigned int pimlen)
572 {
573 struct net_device *reg_dev = NULL;
574 struct iphdr *encap;
575
576 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
577 /* Check that:
578 * a. packet is really sent to a multicast group
579 * b. packet is not a NULL-REGISTER
580 * c. packet is not truncated
581 */
582 if (!ipv4_is_multicast(encap->daddr) ||
583 encap->tot_len == 0 ||
584 ntohs(encap->tot_len) + pimlen > skb->len)
585 return 1;
586
587 read_lock(&mrt_lock);
588 if (mrt->mroute_reg_vif_num >= 0)
589 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
590 read_unlock(&mrt_lock);
591
592 if (!reg_dev)
593 return 1;
594
595 skb->mac_header = skb->network_header;
596 skb_pull(skb, (u8 *)encap - skb->data);
597 skb_reset_network_header(skb);
598 skb->protocol = htons(ETH_P_IP);
599 skb->ip_summed = CHECKSUM_NONE;
600
601 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
602
603 netif_rx(skb);
604
605 return NET_RX_SUCCESS;
606 }
607 #else
ipmr_reg_vif(struct net * net,struct mr_table * mrt)608 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
609 {
610 return NULL;
611 }
612 #endif
613
call_ipmr_vif_entry_notifiers(struct net * net,enum fib_event_type event_type,struct vif_device * vif,vifi_t vif_index,u32 tb_id)614 static int call_ipmr_vif_entry_notifiers(struct net *net,
615 enum fib_event_type event_type,
616 struct vif_device *vif,
617 vifi_t vif_index, u32 tb_id)
618 {
619 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
620 vif, vif_index, tb_id,
621 &net->ipv4.ipmr_seq);
622 }
623
call_ipmr_mfc_entry_notifiers(struct net * net,enum fib_event_type event_type,struct mfc_cache * mfc,u32 tb_id)624 static int call_ipmr_mfc_entry_notifiers(struct net *net,
625 enum fib_event_type event_type,
626 struct mfc_cache *mfc, u32 tb_id)
627 {
628 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
629 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
630 }
631
632 /**
633 * vif_delete - Delete a VIF entry
634 * @mrt: Table to delete from
635 * @vifi: VIF identifier to delete
636 * @notify: Set to 1, if the caller is a notifier_call
637 * @head: if unregistering the VIF, place it on this queue
638 */
vif_delete(struct mr_table * mrt,int vifi,int notify,struct list_head * head)639 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
640 struct list_head *head)
641 {
642 struct net *net = read_pnet(&mrt->net);
643 struct vif_device *v;
644 struct net_device *dev;
645 struct in_device *in_dev;
646
647 if (vifi < 0 || vifi >= mrt->maxvif)
648 return -EADDRNOTAVAIL;
649
650 v = &mrt->vif_table[vifi];
651
652 if (VIF_EXISTS(mrt, vifi))
653 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
654 mrt->id);
655
656 write_lock_bh(&mrt_lock);
657 dev = v->dev;
658 v->dev = NULL;
659
660 if (!dev) {
661 write_unlock_bh(&mrt_lock);
662 return -EADDRNOTAVAIL;
663 }
664
665 if (vifi == mrt->mroute_reg_vif_num)
666 mrt->mroute_reg_vif_num = -1;
667
668 if (vifi + 1 == mrt->maxvif) {
669 int tmp;
670
671 for (tmp = vifi - 1; tmp >= 0; tmp--) {
672 if (VIF_EXISTS(mrt, tmp))
673 break;
674 }
675 mrt->maxvif = tmp+1;
676 }
677
678 write_unlock_bh(&mrt_lock);
679
680 dev_set_allmulti(dev, -1);
681
682 in_dev = __in_dev_get_rtnl(dev);
683 if (in_dev) {
684 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
685 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
686 NETCONFA_MC_FORWARDING,
687 dev->ifindex, &in_dev->cnf);
688 ip_rt_multicast_event(in_dev);
689 }
690
691 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
692 unregister_netdevice_queue(dev, head);
693
694 dev_put_track(dev, &v->dev_tracker);
695 return 0;
696 }
697
ipmr_cache_free_rcu(struct rcu_head * head)698 static void ipmr_cache_free_rcu(struct rcu_head *head)
699 {
700 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
701
702 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
703 }
704
ipmr_cache_free(struct mfc_cache * c)705 static void ipmr_cache_free(struct mfc_cache *c)
706 {
707 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
708 }
709
710 /* Destroy an unresolved cache entry, killing queued skbs
711 * and reporting error to netlink readers.
712 */
ipmr_destroy_unres(struct mr_table * mrt,struct mfc_cache * c)713 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
714 {
715 struct net *net = read_pnet(&mrt->net);
716 struct sk_buff *skb;
717 struct nlmsgerr *e;
718
719 atomic_dec(&mrt->cache_resolve_queue_len);
720
721 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
722 if (ip_hdr(skb)->version == 0) {
723 struct nlmsghdr *nlh = skb_pull(skb,
724 sizeof(struct iphdr));
725 nlh->nlmsg_type = NLMSG_ERROR;
726 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
727 skb_trim(skb, nlh->nlmsg_len);
728 e = nlmsg_data(nlh);
729 e->error = -ETIMEDOUT;
730 memset(&e->msg, 0, sizeof(e->msg));
731
732 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
733 } else {
734 kfree_skb(skb);
735 }
736 }
737
738 ipmr_cache_free(c);
739 }
740
741 /* Timer process for the unresolved queue. */
ipmr_expire_process(struct timer_list * t)742 static void ipmr_expire_process(struct timer_list *t)
743 {
744 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
745 struct mr_mfc *c, *next;
746 unsigned long expires;
747 unsigned long now;
748
749 if (!spin_trylock(&mfc_unres_lock)) {
750 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
751 return;
752 }
753
754 if (list_empty(&mrt->mfc_unres_queue))
755 goto out;
756
757 now = jiffies;
758 expires = 10*HZ;
759
760 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
761 if (time_after(c->mfc_un.unres.expires, now)) {
762 unsigned long interval = c->mfc_un.unres.expires - now;
763 if (interval < expires)
764 expires = interval;
765 continue;
766 }
767
768 list_del(&c->list);
769 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
770 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
771 }
772
773 if (!list_empty(&mrt->mfc_unres_queue))
774 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
775
776 out:
777 spin_unlock(&mfc_unres_lock);
778 }
779
780 /* Fill oifs list. It is called under write locked mrt_lock. */
ipmr_update_thresholds(struct mr_table * mrt,struct mr_mfc * cache,unsigned char * ttls)781 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
782 unsigned char *ttls)
783 {
784 int vifi;
785
786 cache->mfc_un.res.minvif = MAXVIFS;
787 cache->mfc_un.res.maxvif = 0;
788 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
789
790 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
791 if (VIF_EXISTS(mrt, vifi) &&
792 ttls[vifi] && ttls[vifi] < 255) {
793 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
794 if (cache->mfc_un.res.minvif > vifi)
795 cache->mfc_un.res.minvif = vifi;
796 if (cache->mfc_un.res.maxvif <= vifi)
797 cache->mfc_un.res.maxvif = vifi + 1;
798 }
799 }
800 cache->mfc_un.res.lastuse = jiffies;
801 }
802
vif_add(struct net * net,struct mr_table * mrt,struct vifctl * vifc,int mrtsock)803 static int vif_add(struct net *net, struct mr_table *mrt,
804 struct vifctl *vifc, int mrtsock)
805 {
806 struct netdev_phys_item_id ppid = { };
807 int vifi = vifc->vifc_vifi;
808 struct vif_device *v = &mrt->vif_table[vifi];
809 struct net_device *dev;
810 struct in_device *in_dev;
811 int err;
812
813 /* Is vif busy ? */
814 if (VIF_EXISTS(mrt, vifi))
815 return -EADDRINUSE;
816
817 switch (vifc->vifc_flags) {
818 case VIFF_REGISTER:
819 if (!ipmr_pimsm_enabled())
820 return -EINVAL;
821 /* Special Purpose VIF in PIM
822 * All the packets will be sent to the daemon
823 */
824 if (mrt->mroute_reg_vif_num >= 0)
825 return -EADDRINUSE;
826 dev = ipmr_reg_vif(net, mrt);
827 if (!dev)
828 return -ENOBUFS;
829 err = dev_set_allmulti(dev, 1);
830 if (err) {
831 unregister_netdevice(dev);
832 dev_put(dev);
833 return err;
834 }
835 break;
836 case VIFF_TUNNEL:
837 dev = ipmr_new_tunnel(net, vifc);
838 if (IS_ERR(dev))
839 return PTR_ERR(dev);
840 break;
841 case VIFF_USE_IFINDEX:
842 case 0:
843 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
844 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
845 if (dev && !__in_dev_get_rtnl(dev)) {
846 dev_put(dev);
847 return -EADDRNOTAVAIL;
848 }
849 } else {
850 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
851 }
852 if (!dev)
853 return -EADDRNOTAVAIL;
854 err = dev_set_allmulti(dev, 1);
855 if (err) {
856 dev_put(dev);
857 return err;
858 }
859 break;
860 default:
861 return -EINVAL;
862 }
863
864 in_dev = __in_dev_get_rtnl(dev);
865 if (!in_dev) {
866 dev_put(dev);
867 return -EADDRNOTAVAIL;
868 }
869 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
870 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
871 dev->ifindex, &in_dev->cnf);
872 ip_rt_multicast_event(in_dev);
873
874 /* Fill in the VIF structures */
875 vif_device_init(v, dev, vifc->vifc_rate_limit,
876 vifc->vifc_threshold,
877 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
878 (VIFF_TUNNEL | VIFF_REGISTER));
879
880 err = dev_get_port_parent_id(dev, &ppid, true);
881 if (err == 0) {
882 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
883 v->dev_parent_id.id_len = ppid.id_len;
884 } else {
885 v->dev_parent_id.id_len = 0;
886 }
887
888 v->local = vifc->vifc_lcl_addr.s_addr;
889 v->remote = vifc->vifc_rmt_addr.s_addr;
890
891 /* And finish update writing critical data */
892 write_lock_bh(&mrt_lock);
893 v->dev = dev;
894 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
895 if (v->flags & VIFF_REGISTER)
896 mrt->mroute_reg_vif_num = vifi;
897 if (vifi+1 > mrt->maxvif)
898 mrt->maxvif = vifi+1;
899 write_unlock_bh(&mrt_lock);
900 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
901 return 0;
902 }
903
904 /* called with rcu_read_lock() */
ipmr_cache_find(struct mr_table * mrt,__be32 origin,__be32 mcastgrp)905 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
906 __be32 origin,
907 __be32 mcastgrp)
908 {
909 struct mfc_cache_cmp_arg arg = {
910 .mfc_mcastgrp = mcastgrp,
911 .mfc_origin = origin
912 };
913
914 return mr_mfc_find(mrt, &arg);
915 }
916
917 /* Look for a (*,G) entry */
ipmr_cache_find_any(struct mr_table * mrt,__be32 mcastgrp,int vifi)918 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
919 __be32 mcastgrp, int vifi)
920 {
921 struct mfc_cache_cmp_arg arg = {
922 .mfc_mcastgrp = mcastgrp,
923 .mfc_origin = htonl(INADDR_ANY)
924 };
925
926 if (mcastgrp == htonl(INADDR_ANY))
927 return mr_mfc_find_any_parent(mrt, vifi);
928 return mr_mfc_find_any(mrt, vifi, &arg);
929 }
930
931 /* Look for a (S,G,iif) entry if parent != -1 */
ipmr_cache_find_parent(struct mr_table * mrt,__be32 origin,__be32 mcastgrp,int parent)932 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
933 __be32 origin, __be32 mcastgrp,
934 int parent)
935 {
936 struct mfc_cache_cmp_arg arg = {
937 .mfc_mcastgrp = mcastgrp,
938 .mfc_origin = origin,
939 };
940
941 return mr_mfc_find_parent(mrt, &arg, parent);
942 }
943
944 /* Allocate a multicast cache entry */
ipmr_cache_alloc(void)945 static struct mfc_cache *ipmr_cache_alloc(void)
946 {
947 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
948
949 if (c) {
950 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
951 c->_c.mfc_un.res.minvif = MAXVIFS;
952 c->_c.free = ipmr_cache_free_rcu;
953 refcount_set(&c->_c.mfc_un.res.refcount, 1);
954 }
955 return c;
956 }
957
ipmr_cache_alloc_unres(void)958 static struct mfc_cache *ipmr_cache_alloc_unres(void)
959 {
960 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
961
962 if (c) {
963 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
964 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
965 }
966 return c;
967 }
968
969 /* A cache entry has gone into a resolved state from queued */
ipmr_cache_resolve(struct net * net,struct mr_table * mrt,struct mfc_cache * uc,struct mfc_cache * c)970 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
971 struct mfc_cache *uc, struct mfc_cache *c)
972 {
973 struct sk_buff *skb;
974 struct nlmsgerr *e;
975
976 /* Play the pending entries through our router */
977 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
978 if (ip_hdr(skb)->version == 0) {
979 struct nlmsghdr *nlh = skb_pull(skb,
980 sizeof(struct iphdr));
981
982 if (mr_fill_mroute(mrt, skb, &c->_c,
983 nlmsg_data(nlh)) > 0) {
984 nlh->nlmsg_len = skb_tail_pointer(skb) -
985 (u8 *)nlh;
986 } else {
987 nlh->nlmsg_type = NLMSG_ERROR;
988 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
989 skb_trim(skb, nlh->nlmsg_len);
990 e = nlmsg_data(nlh);
991 e->error = -EMSGSIZE;
992 memset(&e->msg, 0, sizeof(e->msg));
993 }
994
995 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
996 } else {
997 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
998 }
999 }
1000 }
1001
1002 /* Bounce a cache query up to mrouted and netlink.
1003 *
1004 * Called under mrt_lock.
1005 */
ipmr_cache_report(struct mr_table * mrt,struct sk_buff * pkt,vifi_t vifi,int assert)1006 static int ipmr_cache_report(struct mr_table *mrt,
1007 struct sk_buff *pkt, vifi_t vifi, int assert)
1008 {
1009 const int ihl = ip_hdrlen(pkt);
1010 struct sock *mroute_sk;
1011 struct igmphdr *igmp;
1012 struct igmpmsg *msg;
1013 struct sk_buff *skb;
1014 int ret;
1015
1016 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1017 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1018 else
1019 skb = alloc_skb(128, GFP_ATOMIC);
1020
1021 if (!skb)
1022 return -ENOBUFS;
1023
1024 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1025 /* Ugly, but we have no choice with this interface.
1026 * Duplicate old header, fix ihl, length etc.
1027 * And all this only to mangle msg->im_msgtype and
1028 * to set msg->im_mbz to "mbz" :-)
1029 */
1030 skb_push(skb, sizeof(struct iphdr));
1031 skb_reset_network_header(skb);
1032 skb_reset_transport_header(skb);
1033 msg = (struct igmpmsg *)skb_network_header(skb);
1034 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1035 msg->im_msgtype = assert;
1036 msg->im_mbz = 0;
1037 if (assert == IGMPMSG_WRVIFWHOLE) {
1038 msg->im_vif = vifi;
1039 msg->im_vif_hi = vifi >> 8;
1040 } else {
1041 msg->im_vif = mrt->mroute_reg_vif_num;
1042 msg->im_vif_hi = mrt->mroute_reg_vif_num >> 8;
1043 }
1044 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1045 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1046 sizeof(struct iphdr));
1047 } else {
1048 /* Copy the IP header */
1049 skb_set_network_header(skb, skb->len);
1050 skb_put(skb, ihl);
1051 skb_copy_to_linear_data(skb, pkt->data, ihl);
1052 /* Flag to the kernel this is a route add */
1053 ip_hdr(skb)->protocol = 0;
1054 msg = (struct igmpmsg *)skb_network_header(skb);
1055 msg->im_vif = vifi;
1056 msg->im_vif_hi = vifi >> 8;
1057 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1058 /* Add our header */
1059 igmp = skb_put(skb, sizeof(struct igmphdr));
1060 igmp->type = assert;
1061 msg->im_msgtype = assert;
1062 igmp->code = 0;
1063 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1064 skb->transport_header = skb->network_header;
1065 }
1066
1067 rcu_read_lock();
1068 mroute_sk = rcu_dereference(mrt->mroute_sk);
1069 if (!mroute_sk) {
1070 rcu_read_unlock();
1071 kfree_skb(skb);
1072 return -EINVAL;
1073 }
1074
1075 igmpmsg_netlink_event(mrt, skb);
1076
1077 /* Deliver to mrouted */
1078 ret = sock_queue_rcv_skb(mroute_sk, skb);
1079 rcu_read_unlock();
1080 if (ret < 0) {
1081 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1082 kfree_skb(skb);
1083 }
1084
1085 return ret;
1086 }
1087
1088 /* Queue a packet for resolution. It gets locked cache entry! */
ipmr_cache_unresolved(struct mr_table * mrt,vifi_t vifi,struct sk_buff * skb,struct net_device * dev)1089 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1090 struct sk_buff *skb, struct net_device *dev)
1091 {
1092 const struct iphdr *iph = ip_hdr(skb);
1093 struct mfc_cache *c;
1094 bool found = false;
1095 int err;
1096
1097 spin_lock_bh(&mfc_unres_lock);
1098 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1099 if (c->mfc_mcastgrp == iph->daddr &&
1100 c->mfc_origin == iph->saddr) {
1101 found = true;
1102 break;
1103 }
1104 }
1105
1106 if (!found) {
1107 /* Create a new entry if allowable */
1108 c = ipmr_cache_alloc_unres();
1109 if (!c) {
1110 spin_unlock_bh(&mfc_unres_lock);
1111
1112 kfree_skb(skb);
1113 return -ENOBUFS;
1114 }
1115
1116 /* Fill in the new cache entry */
1117 c->_c.mfc_parent = -1;
1118 c->mfc_origin = iph->saddr;
1119 c->mfc_mcastgrp = iph->daddr;
1120
1121 /* Reflect first query at mrouted. */
1122 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1123
1124 if (err < 0) {
1125 /* If the report failed throw the cache entry
1126 out - Brad Parker
1127 */
1128 spin_unlock_bh(&mfc_unres_lock);
1129
1130 ipmr_cache_free(c);
1131 kfree_skb(skb);
1132 return err;
1133 }
1134
1135 atomic_inc(&mrt->cache_resolve_queue_len);
1136 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1137 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1138
1139 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1140 mod_timer(&mrt->ipmr_expire_timer,
1141 c->_c.mfc_un.unres.expires);
1142 }
1143
1144 /* See if we can append the packet */
1145 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1146 kfree_skb(skb);
1147 err = -ENOBUFS;
1148 } else {
1149 if (dev) {
1150 skb->dev = dev;
1151 skb->skb_iif = dev->ifindex;
1152 }
1153 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1154 err = 0;
1155 }
1156
1157 spin_unlock_bh(&mfc_unres_lock);
1158 return err;
1159 }
1160
1161 /* MFC cache manipulation by user space mroute daemon */
1162
ipmr_mfc_delete(struct mr_table * mrt,struct mfcctl * mfc,int parent)1163 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1164 {
1165 struct net *net = read_pnet(&mrt->net);
1166 struct mfc_cache *c;
1167
1168 /* The entries are added/deleted only under RTNL */
1169 rcu_read_lock();
1170 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1171 mfc->mfcc_mcastgrp.s_addr, parent);
1172 rcu_read_unlock();
1173 if (!c)
1174 return -ENOENT;
1175 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1176 list_del_rcu(&c->_c.list);
1177 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1178 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1179 mr_cache_put(&c->_c);
1180
1181 return 0;
1182 }
1183
ipmr_mfc_add(struct net * net,struct mr_table * mrt,struct mfcctl * mfc,int mrtsock,int parent)1184 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1185 struct mfcctl *mfc, int mrtsock, int parent)
1186 {
1187 struct mfc_cache *uc, *c;
1188 struct mr_mfc *_uc;
1189 bool found;
1190 int ret;
1191
1192 if (mfc->mfcc_parent >= MAXVIFS)
1193 return -ENFILE;
1194
1195 /* The entries are added/deleted only under RTNL */
1196 rcu_read_lock();
1197 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1198 mfc->mfcc_mcastgrp.s_addr, parent);
1199 rcu_read_unlock();
1200 if (c) {
1201 write_lock_bh(&mrt_lock);
1202 c->_c.mfc_parent = mfc->mfcc_parent;
1203 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1204 if (!mrtsock)
1205 c->_c.mfc_flags |= MFC_STATIC;
1206 write_unlock_bh(&mrt_lock);
1207 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1208 mrt->id);
1209 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1210 return 0;
1211 }
1212
1213 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1214 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1215 return -EINVAL;
1216
1217 c = ipmr_cache_alloc();
1218 if (!c)
1219 return -ENOMEM;
1220
1221 c->mfc_origin = mfc->mfcc_origin.s_addr;
1222 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1223 c->_c.mfc_parent = mfc->mfcc_parent;
1224 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1225 if (!mrtsock)
1226 c->_c.mfc_flags |= MFC_STATIC;
1227
1228 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1229 ipmr_rht_params);
1230 if (ret) {
1231 pr_err("ipmr: rhtable insert error %d\n", ret);
1232 ipmr_cache_free(c);
1233 return ret;
1234 }
1235 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1236 /* Check to see if we resolved a queued list. If so we
1237 * need to send on the frames and tidy up.
1238 */
1239 found = false;
1240 spin_lock_bh(&mfc_unres_lock);
1241 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1242 uc = (struct mfc_cache *)_uc;
1243 if (uc->mfc_origin == c->mfc_origin &&
1244 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1245 list_del(&_uc->list);
1246 atomic_dec(&mrt->cache_resolve_queue_len);
1247 found = true;
1248 break;
1249 }
1250 }
1251 if (list_empty(&mrt->mfc_unres_queue))
1252 del_timer(&mrt->ipmr_expire_timer);
1253 spin_unlock_bh(&mfc_unres_lock);
1254
1255 if (found) {
1256 ipmr_cache_resolve(net, mrt, uc, c);
1257 ipmr_cache_free(uc);
1258 }
1259 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1260 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1261 return 0;
1262 }
1263
1264 /* Close the multicast socket, and clear the vif tables etc */
mroute_clean_tables(struct mr_table * mrt,int flags)1265 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1266 {
1267 struct net *net = read_pnet(&mrt->net);
1268 struct mr_mfc *c, *tmp;
1269 struct mfc_cache *cache;
1270 LIST_HEAD(list);
1271 int i;
1272
1273 /* Shut down all active vif entries */
1274 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1275 for (i = 0; i < mrt->maxvif; i++) {
1276 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1277 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1278 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1279 continue;
1280 vif_delete(mrt, i, 0, &list);
1281 }
1282 unregister_netdevice_many(&list);
1283 }
1284
1285 /* Wipe the cache */
1286 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1287 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1288 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1289 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1290 continue;
1291 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1292 list_del_rcu(&c->list);
1293 cache = (struct mfc_cache *)c;
1294 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1295 mrt->id);
1296 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1297 mr_cache_put(c);
1298 }
1299 }
1300
1301 if (flags & MRT_FLUSH_MFC) {
1302 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1303 spin_lock_bh(&mfc_unres_lock);
1304 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1305 list_del(&c->list);
1306 cache = (struct mfc_cache *)c;
1307 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1308 ipmr_destroy_unres(mrt, cache);
1309 }
1310 spin_unlock_bh(&mfc_unres_lock);
1311 }
1312 }
1313 }
1314
1315 /* called from ip_ra_control(), before an RCU grace period,
1316 * we don't need to call synchronize_rcu() here
1317 */
mrtsock_destruct(struct sock * sk)1318 static void mrtsock_destruct(struct sock *sk)
1319 {
1320 struct net *net = sock_net(sk);
1321 struct mr_table *mrt;
1322
1323 rtnl_lock();
1324 ipmr_for_each_table(mrt, net) {
1325 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1326 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1327 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1328 NETCONFA_MC_FORWARDING,
1329 NETCONFA_IFINDEX_ALL,
1330 net->ipv4.devconf_all);
1331 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1332 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1333 }
1334 }
1335 rtnl_unlock();
1336 }
1337
1338 /* Socket options and virtual interface manipulation. The whole
1339 * virtual interface system is a complete heap, but unfortunately
1340 * that's how BSD mrouted happens to think. Maybe one day with a proper
1341 * MOSPF/PIM router set up we can clean this up.
1342 */
1343
ip_mroute_setsockopt(struct sock * sk,int optname,sockptr_t optval,unsigned int optlen)1344 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1345 unsigned int optlen)
1346 {
1347 struct net *net = sock_net(sk);
1348 int val, ret = 0, parent = 0;
1349 struct mr_table *mrt;
1350 struct vifctl vif;
1351 struct mfcctl mfc;
1352 bool do_wrvifwhole;
1353 u32 uval;
1354
1355 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1356 rtnl_lock();
1357 if (sk->sk_type != SOCK_RAW ||
1358 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1359 ret = -EOPNOTSUPP;
1360 goto out_unlock;
1361 }
1362
1363 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1364 if (!mrt) {
1365 ret = -ENOENT;
1366 goto out_unlock;
1367 }
1368 if (optname != MRT_INIT) {
1369 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1370 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1371 ret = -EACCES;
1372 goto out_unlock;
1373 }
1374 }
1375
1376 switch (optname) {
1377 case MRT_INIT:
1378 if (optlen != sizeof(int)) {
1379 ret = -EINVAL;
1380 break;
1381 }
1382 if (rtnl_dereference(mrt->mroute_sk)) {
1383 ret = -EADDRINUSE;
1384 break;
1385 }
1386
1387 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1388 if (ret == 0) {
1389 rcu_assign_pointer(mrt->mroute_sk, sk);
1390 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1391 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1392 NETCONFA_MC_FORWARDING,
1393 NETCONFA_IFINDEX_ALL,
1394 net->ipv4.devconf_all);
1395 }
1396 break;
1397 case MRT_DONE:
1398 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1399 ret = -EACCES;
1400 } else {
1401 /* We need to unlock here because mrtsock_destruct takes
1402 * care of rtnl itself and we can't change that due to
1403 * the IP_ROUTER_ALERT setsockopt which runs without it.
1404 */
1405 rtnl_unlock();
1406 ret = ip_ra_control(sk, 0, NULL);
1407 goto out;
1408 }
1409 break;
1410 case MRT_ADD_VIF:
1411 case MRT_DEL_VIF:
1412 if (optlen != sizeof(vif)) {
1413 ret = -EINVAL;
1414 break;
1415 }
1416 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1417 ret = -EFAULT;
1418 break;
1419 }
1420 if (vif.vifc_vifi >= MAXVIFS) {
1421 ret = -ENFILE;
1422 break;
1423 }
1424 if (optname == MRT_ADD_VIF) {
1425 ret = vif_add(net, mrt, &vif,
1426 sk == rtnl_dereference(mrt->mroute_sk));
1427 } else {
1428 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1429 }
1430 break;
1431 /* Manipulate the forwarding caches. These live
1432 * in a sort of kernel/user symbiosis.
1433 */
1434 case MRT_ADD_MFC:
1435 case MRT_DEL_MFC:
1436 parent = -1;
1437 fallthrough;
1438 case MRT_ADD_MFC_PROXY:
1439 case MRT_DEL_MFC_PROXY:
1440 if (optlen != sizeof(mfc)) {
1441 ret = -EINVAL;
1442 break;
1443 }
1444 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1445 ret = -EFAULT;
1446 break;
1447 }
1448 if (parent == 0)
1449 parent = mfc.mfcc_parent;
1450 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1451 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1452 else
1453 ret = ipmr_mfc_add(net, mrt, &mfc,
1454 sk == rtnl_dereference(mrt->mroute_sk),
1455 parent);
1456 break;
1457 case MRT_FLUSH:
1458 if (optlen != sizeof(val)) {
1459 ret = -EINVAL;
1460 break;
1461 }
1462 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1463 ret = -EFAULT;
1464 break;
1465 }
1466 mroute_clean_tables(mrt, val);
1467 break;
1468 /* Control PIM assert. */
1469 case MRT_ASSERT:
1470 if (optlen != sizeof(val)) {
1471 ret = -EINVAL;
1472 break;
1473 }
1474 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1475 ret = -EFAULT;
1476 break;
1477 }
1478 mrt->mroute_do_assert = val;
1479 break;
1480 case MRT_PIM:
1481 if (!ipmr_pimsm_enabled()) {
1482 ret = -ENOPROTOOPT;
1483 break;
1484 }
1485 if (optlen != sizeof(val)) {
1486 ret = -EINVAL;
1487 break;
1488 }
1489 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1490 ret = -EFAULT;
1491 break;
1492 }
1493
1494 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1495 val = !!val;
1496 if (val != mrt->mroute_do_pim) {
1497 mrt->mroute_do_pim = val;
1498 mrt->mroute_do_assert = val;
1499 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1500 }
1501 break;
1502 case MRT_TABLE:
1503 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1504 ret = -ENOPROTOOPT;
1505 break;
1506 }
1507 if (optlen != sizeof(uval)) {
1508 ret = -EINVAL;
1509 break;
1510 }
1511 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1512 ret = -EFAULT;
1513 break;
1514 }
1515
1516 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1517 ret = -EBUSY;
1518 } else {
1519 mrt = ipmr_new_table(net, uval);
1520 if (IS_ERR(mrt))
1521 ret = PTR_ERR(mrt);
1522 else
1523 raw_sk(sk)->ipmr_table = uval;
1524 }
1525 break;
1526 /* Spurious command, or MRT_VERSION which you cannot set. */
1527 default:
1528 ret = -ENOPROTOOPT;
1529 }
1530 out_unlock:
1531 rtnl_unlock();
1532 out:
1533 return ret;
1534 }
1535
1536 /* Getsock opt support for the multicast routing system. */
ip_mroute_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)1537 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1538 {
1539 int olr;
1540 int val;
1541 struct net *net = sock_net(sk);
1542 struct mr_table *mrt;
1543
1544 if (sk->sk_type != SOCK_RAW ||
1545 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1546 return -EOPNOTSUPP;
1547
1548 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1549 if (!mrt)
1550 return -ENOENT;
1551
1552 switch (optname) {
1553 case MRT_VERSION:
1554 val = 0x0305;
1555 break;
1556 case MRT_PIM:
1557 if (!ipmr_pimsm_enabled())
1558 return -ENOPROTOOPT;
1559 val = mrt->mroute_do_pim;
1560 break;
1561 case MRT_ASSERT:
1562 val = mrt->mroute_do_assert;
1563 break;
1564 default:
1565 return -ENOPROTOOPT;
1566 }
1567
1568 if (get_user(olr, optlen))
1569 return -EFAULT;
1570 olr = min_t(unsigned int, olr, sizeof(int));
1571 if (olr < 0)
1572 return -EINVAL;
1573 if (put_user(olr, optlen))
1574 return -EFAULT;
1575 if (copy_to_user(optval, &val, olr))
1576 return -EFAULT;
1577 return 0;
1578 }
1579
1580 /* The IP multicast ioctl support routines. */
ipmr_ioctl(struct sock * sk,int cmd,void __user * arg)1581 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1582 {
1583 struct sioc_sg_req sr;
1584 struct sioc_vif_req vr;
1585 struct vif_device *vif;
1586 struct mfc_cache *c;
1587 struct net *net = sock_net(sk);
1588 struct mr_table *mrt;
1589
1590 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1591 if (!mrt)
1592 return -ENOENT;
1593
1594 switch (cmd) {
1595 case SIOCGETVIFCNT:
1596 if (copy_from_user(&vr, arg, sizeof(vr)))
1597 return -EFAULT;
1598 if (vr.vifi >= mrt->maxvif)
1599 return -EINVAL;
1600 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1601 read_lock(&mrt_lock);
1602 vif = &mrt->vif_table[vr.vifi];
1603 if (VIF_EXISTS(mrt, vr.vifi)) {
1604 vr.icount = vif->pkt_in;
1605 vr.ocount = vif->pkt_out;
1606 vr.ibytes = vif->bytes_in;
1607 vr.obytes = vif->bytes_out;
1608 read_unlock(&mrt_lock);
1609
1610 if (copy_to_user(arg, &vr, sizeof(vr)))
1611 return -EFAULT;
1612 return 0;
1613 }
1614 read_unlock(&mrt_lock);
1615 return -EADDRNOTAVAIL;
1616 case SIOCGETSGCNT:
1617 if (copy_from_user(&sr, arg, sizeof(sr)))
1618 return -EFAULT;
1619
1620 rcu_read_lock();
1621 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1622 if (c) {
1623 sr.pktcnt = c->_c.mfc_un.res.pkt;
1624 sr.bytecnt = c->_c.mfc_un.res.bytes;
1625 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1626 rcu_read_unlock();
1627
1628 if (copy_to_user(arg, &sr, sizeof(sr)))
1629 return -EFAULT;
1630 return 0;
1631 }
1632 rcu_read_unlock();
1633 return -EADDRNOTAVAIL;
1634 default:
1635 return -ENOIOCTLCMD;
1636 }
1637 }
1638
1639 #ifdef CONFIG_COMPAT
1640 struct compat_sioc_sg_req {
1641 struct in_addr src;
1642 struct in_addr grp;
1643 compat_ulong_t pktcnt;
1644 compat_ulong_t bytecnt;
1645 compat_ulong_t wrong_if;
1646 };
1647
1648 struct compat_sioc_vif_req {
1649 vifi_t vifi; /* Which iface */
1650 compat_ulong_t icount;
1651 compat_ulong_t ocount;
1652 compat_ulong_t ibytes;
1653 compat_ulong_t obytes;
1654 };
1655
ipmr_compat_ioctl(struct sock * sk,unsigned int cmd,void __user * arg)1656 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1657 {
1658 struct compat_sioc_sg_req sr;
1659 struct compat_sioc_vif_req vr;
1660 struct vif_device *vif;
1661 struct mfc_cache *c;
1662 struct net *net = sock_net(sk);
1663 struct mr_table *mrt;
1664
1665 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1666 if (!mrt)
1667 return -ENOENT;
1668
1669 switch (cmd) {
1670 case SIOCGETVIFCNT:
1671 if (copy_from_user(&vr, arg, sizeof(vr)))
1672 return -EFAULT;
1673 if (vr.vifi >= mrt->maxvif)
1674 return -EINVAL;
1675 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1676 read_lock(&mrt_lock);
1677 vif = &mrt->vif_table[vr.vifi];
1678 if (VIF_EXISTS(mrt, vr.vifi)) {
1679 vr.icount = vif->pkt_in;
1680 vr.ocount = vif->pkt_out;
1681 vr.ibytes = vif->bytes_in;
1682 vr.obytes = vif->bytes_out;
1683 read_unlock(&mrt_lock);
1684
1685 if (copy_to_user(arg, &vr, sizeof(vr)))
1686 return -EFAULT;
1687 return 0;
1688 }
1689 read_unlock(&mrt_lock);
1690 return -EADDRNOTAVAIL;
1691 case SIOCGETSGCNT:
1692 if (copy_from_user(&sr, arg, sizeof(sr)))
1693 return -EFAULT;
1694
1695 rcu_read_lock();
1696 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1697 if (c) {
1698 sr.pktcnt = c->_c.mfc_un.res.pkt;
1699 sr.bytecnt = c->_c.mfc_un.res.bytes;
1700 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1701 rcu_read_unlock();
1702
1703 if (copy_to_user(arg, &sr, sizeof(sr)))
1704 return -EFAULT;
1705 return 0;
1706 }
1707 rcu_read_unlock();
1708 return -EADDRNOTAVAIL;
1709 default:
1710 return -ENOIOCTLCMD;
1711 }
1712 }
1713 #endif
1714
ipmr_device_event(struct notifier_block * this,unsigned long event,void * ptr)1715 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1716 {
1717 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1718 struct net *net = dev_net(dev);
1719 struct mr_table *mrt;
1720 struct vif_device *v;
1721 int ct;
1722
1723 if (event != NETDEV_UNREGISTER)
1724 return NOTIFY_DONE;
1725
1726 ipmr_for_each_table(mrt, net) {
1727 v = &mrt->vif_table[0];
1728 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1729 if (v->dev == dev)
1730 vif_delete(mrt, ct, 1, NULL);
1731 }
1732 }
1733 return NOTIFY_DONE;
1734 }
1735
1736 static struct notifier_block ip_mr_notifier = {
1737 .notifier_call = ipmr_device_event,
1738 };
1739
1740 /* Encapsulate a packet by attaching a valid IPIP header to it.
1741 * This avoids tunnel drivers and other mess and gives us the speed so
1742 * important for multicast video.
1743 */
ip_encap(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr)1744 static void ip_encap(struct net *net, struct sk_buff *skb,
1745 __be32 saddr, __be32 daddr)
1746 {
1747 struct iphdr *iph;
1748 const struct iphdr *old_iph = ip_hdr(skb);
1749
1750 skb_push(skb, sizeof(struct iphdr));
1751 skb->transport_header = skb->network_header;
1752 skb_reset_network_header(skb);
1753 iph = ip_hdr(skb);
1754
1755 iph->version = 4;
1756 iph->tos = old_iph->tos;
1757 iph->ttl = old_iph->ttl;
1758 iph->frag_off = 0;
1759 iph->daddr = daddr;
1760 iph->saddr = saddr;
1761 iph->protocol = IPPROTO_IPIP;
1762 iph->ihl = 5;
1763 iph->tot_len = htons(skb->len);
1764 ip_select_ident(net, skb, NULL);
1765 ip_send_check(iph);
1766
1767 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1768 nf_reset_ct(skb);
1769 }
1770
ipmr_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1771 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1772 struct sk_buff *skb)
1773 {
1774 struct ip_options *opt = &(IPCB(skb)->opt);
1775
1776 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1777 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1778
1779 if (unlikely(opt->optlen))
1780 ip_forward_options(skb);
1781
1782 return dst_output(net, sk, skb);
1783 }
1784
1785 #ifdef CONFIG_NET_SWITCHDEV
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1786 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1787 int in_vifi, int out_vifi)
1788 {
1789 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1790 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1791
1792 if (!skb->offload_l3_fwd_mark)
1793 return false;
1794 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1795 return false;
1796 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1797 &in_vif->dev_parent_id);
1798 }
1799 #else
ipmr_forward_offloaded(struct sk_buff * skb,struct mr_table * mrt,int in_vifi,int out_vifi)1800 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1801 int in_vifi, int out_vifi)
1802 {
1803 return false;
1804 }
1805 #endif
1806
1807 /* Processing handlers for ipmr_forward */
1808
ipmr_queue_xmit(struct net * net,struct mr_table * mrt,int in_vifi,struct sk_buff * skb,int vifi)1809 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1810 int in_vifi, struct sk_buff *skb, int vifi)
1811 {
1812 const struct iphdr *iph = ip_hdr(skb);
1813 struct vif_device *vif = &mrt->vif_table[vifi];
1814 struct net_device *dev;
1815 struct rtable *rt;
1816 struct flowi4 fl4;
1817 int encap = 0;
1818
1819 if (!vif->dev)
1820 goto out_free;
1821
1822 if (vif->flags & VIFF_REGISTER) {
1823 vif->pkt_out++;
1824 vif->bytes_out += skb->len;
1825 vif->dev->stats.tx_bytes += skb->len;
1826 vif->dev->stats.tx_packets++;
1827 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1828 goto out_free;
1829 }
1830
1831 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1832 goto out_free;
1833
1834 if (vif->flags & VIFF_TUNNEL) {
1835 rt = ip_route_output_ports(net, &fl4, NULL,
1836 vif->remote, vif->local,
1837 0, 0,
1838 IPPROTO_IPIP,
1839 RT_TOS(iph->tos), vif->link);
1840 if (IS_ERR(rt))
1841 goto out_free;
1842 encap = sizeof(struct iphdr);
1843 } else {
1844 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1845 0, 0,
1846 IPPROTO_IPIP,
1847 RT_TOS(iph->tos), vif->link);
1848 if (IS_ERR(rt))
1849 goto out_free;
1850 }
1851
1852 dev = rt->dst.dev;
1853
1854 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1855 /* Do not fragment multicasts. Alas, IPv4 does not
1856 * allow to send ICMP, so that packets will disappear
1857 * to blackhole.
1858 */
1859 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1860 ip_rt_put(rt);
1861 goto out_free;
1862 }
1863
1864 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1865
1866 if (skb_cow(skb, encap)) {
1867 ip_rt_put(rt);
1868 goto out_free;
1869 }
1870
1871 vif->pkt_out++;
1872 vif->bytes_out += skb->len;
1873
1874 skb_dst_drop(skb);
1875 skb_dst_set(skb, &rt->dst);
1876 ip_decrease_ttl(ip_hdr(skb));
1877
1878 /* FIXME: forward and output firewalls used to be called here.
1879 * What do we do with netfilter? -- RR
1880 */
1881 if (vif->flags & VIFF_TUNNEL) {
1882 ip_encap(net, skb, vif->local, vif->remote);
1883 /* FIXME: extra output firewall step used to be here. --RR */
1884 vif->dev->stats.tx_packets++;
1885 vif->dev->stats.tx_bytes += skb->len;
1886 }
1887
1888 IPCB(skb)->flags |= IPSKB_FORWARDED;
1889
1890 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1891 * not only before forwarding, but after forwarding on all output
1892 * interfaces. It is clear, if mrouter runs a multicasting
1893 * program, it should receive packets not depending to what interface
1894 * program is joined.
1895 * If we will not make it, the program will have to join on all
1896 * interfaces. On the other hand, multihoming host (or router, but
1897 * not mrouter) cannot join to more than one interface - it will
1898 * result in receiving multiple packets.
1899 */
1900 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1901 net, NULL, skb, skb->dev, dev,
1902 ipmr_forward_finish);
1903 return;
1904
1905 out_free:
1906 kfree_skb(skb);
1907 }
1908
ipmr_find_vif(struct mr_table * mrt,struct net_device * dev)1909 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1910 {
1911 int ct;
1912
1913 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1914 if (mrt->vif_table[ct].dev == dev)
1915 break;
1916 }
1917 return ct;
1918 }
1919
1920 /* "local" means that we should preserve one skb (for local delivery) */
ip_mr_forward(struct net * net,struct mr_table * mrt,struct net_device * dev,struct sk_buff * skb,struct mfc_cache * c,int local)1921 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1922 struct net_device *dev, struct sk_buff *skb,
1923 struct mfc_cache *c, int local)
1924 {
1925 int true_vifi = ipmr_find_vif(mrt, dev);
1926 int psend = -1;
1927 int vif, ct;
1928
1929 vif = c->_c.mfc_parent;
1930 c->_c.mfc_un.res.pkt++;
1931 c->_c.mfc_un.res.bytes += skb->len;
1932 c->_c.mfc_un.res.lastuse = jiffies;
1933
1934 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1935 struct mfc_cache *cache_proxy;
1936
1937 /* For an (*,G) entry, we only check that the incoming
1938 * interface is part of the static tree.
1939 */
1940 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1941 if (cache_proxy &&
1942 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1943 goto forward;
1944 }
1945
1946 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1947 if (mrt->vif_table[vif].dev != dev) {
1948 if (rt_is_output_route(skb_rtable(skb))) {
1949 /* It is our own packet, looped back.
1950 * Very complicated situation...
1951 *
1952 * The best workaround until routing daemons will be
1953 * fixed is not to redistribute packet, if it was
1954 * send through wrong interface. It means, that
1955 * multicast applications WILL NOT work for
1956 * (S,G), which have default multicast route pointing
1957 * to wrong oif. In any case, it is not a good
1958 * idea to use multicasting applications on router.
1959 */
1960 goto dont_forward;
1961 }
1962
1963 c->_c.mfc_un.res.wrong_if++;
1964
1965 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1966 /* pimsm uses asserts, when switching from RPT to SPT,
1967 * so that we cannot check that packet arrived on an oif.
1968 * It is bad, but otherwise we would need to move pretty
1969 * large chunk of pimd to kernel. Ough... --ANK
1970 */
1971 (mrt->mroute_do_pim ||
1972 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1973 time_after(jiffies,
1974 c->_c.mfc_un.res.last_assert +
1975 MFC_ASSERT_THRESH)) {
1976 c->_c.mfc_un.res.last_assert = jiffies;
1977 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1978 if (mrt->mroute_do_wrvifwhole)
1979 ipmr_cache_report(mrt, skb, true_vifi,
1980 IGMPMSG_WRVIFWHOLE);
1981 }
1982 goto dont_forward;
1983 }
1984
1985 forward:
1986 mrt->vif_table[vif].pkt_in++;
1987 mrt->vif_table[vif].bytes_in += skb->len;
1988
1989 /* Forward the frame */
1990 if (c->mfc_origin == htonl(INADDR_ANY) &&
1991 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1992 if (true_vifi >= 0 &&
1993 true_vifi != c->_c.mfc_parent &&
1994 ip_hdr(skb)->ttl >
1995 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
1996 /* It's an (*,*) entry and the packet is not coming from
1997 * the upstream: forward the packet to the upstream
1998 * only.
1999 */
2000 psend = c->_c.mfc_parent;
2001 goto last_forward;
2002 }
2003 goto dont_forward;
2004 }
2005 for (ct = c->_c.mfc_un.res.maxvif - 1;
2006 ct >= c->_c.mfc_un.res.minvif; ct--) {
2007 /* For (*,G) entry, don't forward to the incoming interface */
2008 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2009 ct != true_vifi) &&
2010 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2011 if (psend != -1) {
2012 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2013
2014 if (skb2)
2015 ipmr_queue_xmit(net, mrt, true_vifi,
2016 skb2, psend);
2017 }
2018 psend = ct;
2019 }
2020 }
2021 last_forward:
2022 if (psend != -1) {
2023 if (local) {
2024 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2025
2026 if (skb2)
2027 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2028 psend);
2029 } else {
2030 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2031 return;
2032 }
2033 }
2034
2035 dont_forward:
2036 if (!local)
2037 kfree_skb(skb);
2038 }
2039
ipmr_rt_fib_lookup(struct net * net,struct sk_buff * skb)2040 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2041 {
2042 struct rtable *rt = skb_rtable(skb);
2043 struct iphdr *iph = ip_hdr(skb);
2044 struct flowi4 fl4 = {
2045 .daddr = iph->daddr,
2046 .saddr = iph->saddr,
2047 .flowi4_tos = RT_TOS(iph->tos),
2048 .flowi4_oif = (rt_is_output_route(rt) ?
2049 skb->dev->ifindex : 0),
2050 .flowi4_iif = (rt_is_output_route(rt) ?
2051 LOOPBACK_IFINDEX :
2052 skb->dev->ifindex),
2053 .flowi4_mark = skb->mark,
2054 };
2055 struct mr_table *mrt;
2056 int err;
2057
2058 err = ipmr_fib_lookup(net, &fl4, &mrt);
2059 if (err)
2060 return ERR_PTR(err);
2061 return mrt;
2062 }
2063
2064 /* Multicast packets for forwarding arrive here
2065 * Called with rcu_read_lock();
2066 */
ip_mr_input(struct sk_buff * skb)2067 int ip_mr_input(struct sk_buff *skb)
2068 {
2069 struct mfc_cache *cache;
2070 struct net *net = dev_net(skb->dev);
2071 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2072 struct mr_table *mrt;
2073 struct net_device *dev;
2074
2075 /* skb->dev passed in is the loX master dev for vrfs.
2076 * As there are no vifs associated with loopback devices,
2077 * get the proper interface that does have a vif associated with it.
2078 */
2079 dev = skb->dev;
2080 if (netif_is_l3_master(skb->dev)) {
2081 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2082 if (!dev) {
2083 kfree_skb(skb);
2084 return -ENODEV;
2085 }
2086 }
2087
2088 /* Packet is looped back after forward, it should not be
2089 * forwarded second time, but still can be delivered locally.
2090 */
2091 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2092 goto dont_forward;
2093
2094 mrt = ipmr_rt_fib_lookup(net, skb);
2095 if (IS_ERR(mrt)) {
2096 kfree_skb(skb);
2097 return PTR_ERR(mrt);
2098 }
2099 if (!local) {
2100 if (IPCB(skb)->opt.router_alert) {
2101 if (ip_call_ra_chain(skb))
2102 return 0;
2103 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2104 /* IGMPv1 (and broken IGMPv2 implementations sort of
2105 * Cisco IOS <= 11.2(8)) do not put router alert
2106 * option to IGMP packets destined to routable
2107 * groups. It is very bad, because it means
2108 * that we can forward NO IGMP messages.
2109 */
2110 struct sock *mroute_sk;
2111
2112 mroute_sk = rcu_dereference(mrt->mroute_sk);
2113 if (mroute_sk) {
2114 nf_reset_ct(skb);
2115 raw_rcv(mroute_sk, skb);
2116 return 0;
2117 }
2118 }
2119 }
2120
2121 /* already under rcu_read_lock() */
2122 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2123 if (!cache) {
2124 int vif = ipmr_find_vif(mrt, dev);
2125
2126 if (vif >= 0)
2127 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2128 vif);
2129 }
2130
2131 /* No usable cache entry */
2132 if (!cache) {
2133 int vif;
2134
2135 if (local) {
2136 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2137 ip_local_deliver(skb);
2138 if (!skb2)
2139 return -ENOBUFS;
2140 skb = skb2;
2141 }
2142
2143 read_lock(&mrt_lock);
2144 vif = ipmr_find_vif(mrt, dev);
2145 if (vif >= 0) {
2146 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2147 read_unlock(&mrt_lock);
2148
2149 return err2;
2150 }
2151 read_unlock(&mrt_lock);
2152 kfree_skb(skb);
2153 return -ENODEV;
2154 }
2155
2156 read_lock(&mrt_lock);
2157 ip_mr_forward(net, mrt, dev, skb, cache, local);
2158 read_unlock(&mrt_lock);
2159
2160 if (local)
2161 return ip_local_deliver(skb);
2162
2163 return 0;
2164
2165 dont_forward:
2166 if (local)
2167 return ip_local_deliver(skb);
2168 kfree_skb(skb);
2169 return 0;
2170 }
2171
2172 #ifdef CONFIG_IP_PIMSM_V1
2173 /* Handle IGMP messages of PIMv1 */
pim_rcv_v1(struct sk_buff * skb)2174 int pim_rcv_v1(struct sk_buff *skb)
2175 {
2176 struct igmphdr *pim;
2177 struct net *net = dev_net(skb->dev);
2178 struct mr_table *mrt;
2179
2180 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2181 goto drop;
2182
2183 pim = igmp_hdr(skb);
2184
2185 mrt = ipmr_rt_fib_lookup(net, skb);
2186 if (IS_ERR(mrt))
2187 goto drop;
2188 if (!mrt->mroute_do_pim ||
2189 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2190 goto drop;
2191
2192 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2193 drop:
2194 kfree_skb(skb);
2195 }
2196 return 0;
2197 }
2198 #endif
2199
2200 #ifdef CONFIG_IP_PIMSM_V2
pim_rcv(struct sk_buff * skb)2201 static int pim_rcv(struct sk_buff *skb)
2202 {
2203 struct pimreghdr *pim;
2204 struct net *net = dev_net(skb->dev);
2205 struct mr_table *mrt;
2206
2207 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2208 goto drop;
2209
2210 pim = (struct pimreghdr *)skb_transport_header(skb);
2211 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2212 (pim->flags & PIM_NULL_REGISTER) ||
2213 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2214 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2215 goto drop;
2216
2217 mrt = ipmr_rt_fib_lookup(net, skb);
2218 if (IS_ERR(mrt))
2219 goto drop;
2220 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2221 drop:
2222 kfree_skb(skb);
2223 }
2224 return 0;
2225 }
2226 #endif
2227
ipmr_get_route(struct net * net,struct sk_buff * skb,__be32 saddr,__be32 daddr,struct rtmsg * rtm,u32 portid)2228 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2229 __be32 saddr, __be32 daddr,
2230 struct rtmsg *rtm, u32 portid)
2231 {
2232 struct mfc_cache *cache;
2233 struct mr_table *mrt;
2234 int err;
2235
2236 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2237 if (!mrt)
2238 return -ENOENT;
2239
2240 rcu_read_lock();
2241 cache = ipmr_cache_find(mrt, saddr, daddr);
2242 if (!cache && skb->dev) {
2243 int vif = ipmr_find_vif(mrt, skb->dev);
2244
2245 if (vif >= 0)
2246 cache = ipmr_cache_find_any(mrt, daddr, vif);
2247 }
2248 if (!cache) {
2249 struct sk_buff *skb2;
2250 struct iphdr *iph;
2251 struct net_device *dev;
2252 int vif = -1;
2253
2254 dev = skb->dev;
2255 read_lock(&mrt_lock);
2256 if (dev)
2257 vif = ipmr_find_vif(mrt, dev);
2258 if (vif < 0) {
2259 read_unlock(&mrt_lock);
2260 rcu_read_unlock();
2261 return -ENODEV;
2262 }
2263
2264 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2265 if (!skb2) {
2266 read_unlock(&mrt_lock);
2267 rcu_read_unlock();
2268 return -ENOMEM;
2269 }
2270
2271 NETLINK_CB(skb2).portid = portid;
2272 skb_push(skb2, sizeof(struct iphdr));
2273 skb_reset_network_header(skb2);
2274 iph = ip_hdr(skb2);
2275 iph->ihl = sizeof(struct iphdr) >> 2;
2276 iph->saddr = saddr;
2277 iph->daddr = daddr;
2278 iph->version = 0;
2279 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2280 read_unlock(&mrt_lock);
2281 rcu_read_unlock();
2282 return err;
2283 }
2284
2285 read_lock(&mrt_lock);
2286 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2287 read_unlock(&mrt_lock);
2288 rcu_read_unlock();
2289 return err;
2290 }
2291
ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mfc_cache * c,int cmd,int flags)2292 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2293 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2294 int flags)
2295 {
2296 struct nlmsghdr *nlh;
2297 struct rtmsg *rtm;
2298 int err;
2299
2300 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2301 if (!nlh)
2302 return -EMSGSIZE;
2303
2304 rtm = nlmsg_data(nlh);
2305 rtm->rtm_family = RTNL_FAMILY_IPMR;
2306 rtm->rtm_dst_len = 32;
2307 rtm->rtm_src_len = 32;
2308 rtm->rtm_tos = 0;
2309 rtm->rtm_table = mrt->id;
2310 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2311 goto nla_put_failure;
2312 rtm->rtm_type = RTN_MULTICAST;
2313 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2314 if (c->_c.mfc_flags & MFC_STATIC)
2315 rtm->rtm_protocol = RTPROT_STATIC;
2316 else
2317 rtm->rtm_protocol = RTPROT_MROUTED;
2318 rtm->rtm_flags = 0;
2319
2320 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2321 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2322 goto nla_put_failure;
2323 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2324 /* do not break the dump if cache is unresolved */
2325 if (err < 0 && err != -ENOENT)
2326 goto nla_put_failure;
2327
2328 nlmsg_end(skb, nlh);
2329 return 0;
2330
2331 nla_put_failure:
2332 nlmsg_cancel(skb, nlh);
2333 return -EMSGSIZE;
2334 }
2335
_ipmr_fill_mroute(struct mr_table * mrt,struct sk_buff * skb,u32 portid,u32 seq,struct mr_mfc * c,int cmd,int flags)2336 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2337 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2338 int flags)
2339 {
2340 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2341 cmd, flags);
2342 }
2343
mroute_msgsize(bool unresolved,int maxvif)2344 static size_t mroute_msgsize(bool unresolved, int maxvif)
2345 {
2346 size_t len =
2347 NLMSG_ALIGN(sizeof(struct rtmsg))
2348 + nla_total_size(4) /* RTA_TABLE */
2349 + nla_total_size(4) /* RTA_SRC */
2350 + nla_total_size(4) /* RTA_DST */
2351 ;
2352
2353 if (!unresolved)
2354 len = len
2355 + nla_total_size(4) /* RTA_IIF */
2356 + nla_total_size(0) /* RTA_MULTIPATH */
2357 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2358 /* RTA_MFC_STATS */
2359 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2360 ;
2361
2362 return len;
2363 }
2364
mroute_netlink_event(struct mr_table * mrt,struct mfc_cache * mfc,int cmd)2365 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2366 int cmd)
2367 {
2368 struct net *net = read_pnet(&mrt->net);
2369 struct sk_buff *skb;
2370 int err = -ENOBUFS;
2371
2372 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2373 mrt->maxvif),
2374 GFP_ATOMIC);
2375 if (!skb)
2376 goto errout;
2377
2378 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2379 if (err < 0)
2380 goto errout;
2381
2382 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2383 return;
2384
2385 errout:
2386 kfree_skb(skb);
2387 if (err < 0)
2388 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2389 }
2390
igmpmsg_netlink_msgsize(size_t payloadlen)2391 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2392 {
2393 size_t len =
2394 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2395 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2396 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2397 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2398 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2399 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */
2400 /* IPMRA_CREPORT_PKT */
2401 + nla_total_size(payloadlen)
2402 ;
2403
2404 return len;
2405 }
2406
igmpmsg_netlink_event(struct mr_table * mrt,struct sk_buff * pkt)2407 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2408 {
2409 struct net *net = read_pnet(&mrt->net);
2410 struct nlmsghdr *nlh;
2411 struct rtgenmsg *rtgenm;
2412 struct igmpmsg *msg;
2413 struct sk_buff *skb;
2414 struct nlattr *nla;
2415 int payloadlen;
2416
2417 payloadlen = pkt->len - sizeof(struct igmpmsg);
2418 msg = (struct igmpmsg *)skb_network_header(pkt);
2419
2420 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2421 if (!skb)
2422 goto errout;
2423
2424 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2425 sizeof(struct rtgenmsg), 0);
2426 if (!nlh)
2427 goto errout;
2428 rtgenm = nlmsg_data(nlh);
2429 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2430 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2431 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) ||
2432 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2433 msg->im_src.s_addr) ||
2434 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2435 msg->im_dst.s_addr) ||
2436 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id))
2437 goto nla_put_failure;
2438
2439 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2440 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2441 nla_data(nla), payloadlen))
2442 goto nla_put_failure;
2443
2444 nlmsg_end(skb, nlh);
2445
2446 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2447 return;
2448
2449 nla_put_failure:
2450 nlmsg_cancel(skb, nlh);
2451 errout:
2452 kfree_skb(skb);
2453 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2454 }
2455
ipmr_rtm_valid_getroute_req(struct sk_buff * skb,const struct nlmsghdr * nlh,struct nlattr ** tb,struct netlink_ext_ack * extack)2456 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2457 const struct nlmsghdr *nlh,
2458 struct nlattr **tb,
2459 struct netlink_ext_ack *extack)
2460 {
2461 struct rtmsg *rtm;
2462 int i, err;
2463
2464 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2465 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2466 return -EINVAL;
2467 }
2468
2469 if (!netlink_strict_get_check(skb))
2470 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2471 rtm_ipv4_policy, extack);
2472
2473 rtm = nlmsg_data(nlh);
2474 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2475 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2476 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2477 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2478 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2479 return -EINVAL;
2480 }
2481
2482 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2483 rtm_ipv4_policy, extack);
2484 if (err)
2485 return err;
2486
2487 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2488 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2489 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2490 return -EINVAL;
2491 }
2492
2493 for (i = 0; i <= RTA_MAX; i++) {
2494 if (!tb[i])
2495 continue;
2496
2497 switch (i) {
2498 case RTA_SRC:
2499 case RTA_DST:
2500 case RTA_TABLE:
2501 break;
2502 default:
2503 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2504 return -EINVAL;
2505 }
2506 }
2507
2508 return 0;
2509 }
2510
ipmr_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2511 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2512 struct netlink_ext_ack *extack)
2513 {
2514 struct net *net = sock_net(in_skb->sk);
2515 struct nlattr *tb[RTA_MAX + 1];
2516 struct sk_buff *skb = NULL;
2517 struct mfc_cache *cache;
2518 struct mr_table *mrt;
2519 __be32 src, grp;
2520 u32 tableid;
2521 int err;
2522
2523 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2524 if (err < 0)
2525 goto errout;
2526
2527 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2528 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2529 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2530
2531 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2532 if (!mrt) {
2533 err = -ENOENT;
2534 goto errout_free;
2535 }
2536
2537 /* entries are added/deleted only under RTNL */
2538 rcu_read_lock();
2539 cache = ipmr_cache_find(mrt, src, grp);
2540 rcu_read_unlock();
2541 if (!cache) {
2542 err = -ENOENT;
2543 goto errout_free;
2544 }
2545
2546 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2547 if (!skb) {
2548 err = -ENOBUFS;
2549 goto errout_free;
2550 }
2551
2552 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2553 nlh->nlmsg_seq, cache,
2554 RTM_NEWROUTE, 0);
2555 if (err < 0)
2556 goto errout_free;
2557
2558 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2559
2560 errout:
2561 return err;
2562
2563 errout_free:
2564 kfree_skb(skb);
2565 goto errout;
2566 }
2567
ipmr_rtm_dumproute(struct sk_buff * skb,struct netlink_callback * cb)2568 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2569 {
2570 struct fib_dump_filter filter = {};
2571 int err;
2572
2573 if (cb->strict_check) {
2574 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2575 &filter, cb);
2576 if (err < 0)
2577 return err;
2578 }
2579
2580 if (filter.table_id) {
2581 struct mr_table *mrt;
2582
2583 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2584 if (!mrt) {
2585 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2586 return skb->len;
2587
2588 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2589 return -ENOENT;
2590 }
2591 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2592 &mfc_unres_lock, &filter);
2593 return skb->len ? : err;
2594 }
2595
2596 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2597 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2598 }
2599
2600 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2601 [RTA_SRC] = { .type = NLA_U32 },
2602 [RTA_DST] = { .type = NLA_U32 },
2603 [RTA_IIF] = { .type = NLA_U32 },
2604 [RTA_TABLE] = { .type = NLA_U32 },
2605 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2606 };
2607
ipmr_rtm_validate_proto(unsigned char rtm_protocol)2608 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2609 {
2610 switch (rtm_protocol) {
2611 case RTPROT_STATIC:
2612 case RTPROT_MROUTED:
2613 return true;
2614 }
2615 return false;
2616 }
2617
ipmr_nla_get_ttls(const struct nlattr * nla,struct mfcctl * mfcc)2618 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2619 {
2620 struct rtnexthop *rtnh = nla_data(nla);
2621 int remaining = nla_len(nla), vifi = 0;
2622
2623 while (rtnh_ok(rtnh, remaining)) {
2624 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2625 if (++vifi == MAXVIFS)
2626 break;
2627 rtnh = rtnh_next(rtnh, &remaining);
2628 }
2629
2630 return remaining > 0 ? -EINVAL : vifi;
2631 }
2632
2633 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
rtm_to_ipmr_mfcc(struct net * net,struct nlmsghdr * nlh,struct mfcctl * mfcc,int * mrtsock,struct mr_table ** mrtret,struct netlink_ext_ack * extack)2634 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2635 struct mfcctl *mfcc, int *mrtsock,
2636 struct mr_table **mrtret,
2637 struct netlink_ext_ack *extack)
2638 {
2639 struct net_device *dev = NULL;
2640 u32 tblid = RT_TABLE_DEFAULT;
2641 struct mr_table *mrt;
2642 struct nlattr *attr;
2643 struct rtmsg *rtm;
2644 int ret, rem;
2645
2646 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2647 rtm_ipmr_policy, extack);
2648 if (ret < 0)
2649 goto out;
2650 rtm = nlmsg_data(nlh);
2651
2652 ret = -EINVAL;
2653 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2654 rtm->rtm_type != RTN_MULTICAST ||
2655 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2656 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2657 goto out;
2658
2659 memset(mfcc, 0, sizeof(*mfcc));
2660 mfcc->mfcc_parent = -1;
2661 ret = 0;
2662 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2663 switch (nla_type(attr)) {
2664 case RTA_SRC:
2665 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2666 break;
2667 case RTA_DST:
2668 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2669 break;
2670 case RTA_IIF:
2671 dev = __dev_get_by_index(net, nla_get_u32(attr));
2672 if (!dev) {
2673 ret = -ENODEV;
2674 goto out;
2675 }
2676 break;
2677 case RTA_MULTIPATH:
2678 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2679 ret = -EINVAL;
2680 goto out;
2681 }
2682 break;
2683 case RTA_PREFSRC:
2684 ret = 1;
2685 break;
2686 case RTA_TABLE:
2687 tblid = nla_get_u32(attr);
2688 break;
2689 }
2690 }
2691 mrt = ipmr_get_table(net, tblid);
2692 if (!mrt) {
2693 ret = -ENOENT;
2694 goto out;
2695 }
2696 *mrtret = mrt;
2697 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2698 if (dev)
2699 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2700
2701 out:
2702 return ret;
2703 }
2704
2705 /* takes care of both newroute and delroute */
ipmr_rtm_route(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2706 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2707 struct netlink_ext_ack *extack)
2708 {
2709 struct net *net = sock_net(skb->sk);
2710 int ret, mrtsock, parent;
2711 struct mr_table *tbl;
2712 struct mfcctl mfcc;
2713
2714 mrtsock = 0;
2715 tbl = NULL;
2716 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2717 if (ret < 0)
2718 return ret;
2719
2720 parent = ret ? mfcc.mfcc_parent : -1;
2721 if (nlh->nlmsg_type == RTM_NEWROUTE)
2722 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2723 else
2724 return ipmr_mfc_delete(tbl, &mfcc, parent);
2725 }
2726
ipmr_fill_table(struct mr_table * mrt,struct sk_buff * skb)2727 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2728 {
2729 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2730
2731 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2732 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2733 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2734 mrt->mroute_reg_vif_num) ||
2735 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2736 mrt->mroute_do_assert) ||
2737 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2738 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2739 mrt->mroute_do_wrvifwhole))
2740 return false;
2741
2742 return true;
2743 }
2744
ipmr_fill_vif(struct mr_table * mrt,u32 vifid,struct sk_buff * skb)2745 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2746 {
2747 struct nlattr *vif_nest;
2748 struct vif_device *vif;
2749
2750 /* if the VIF doesn't exist just continue */
2751 if (!VIF_EXISTS(mrt, vifid))
2752 return true;
2753
2754 vif = &mrt->vif_table[vifid];
2755 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2756 if (!vif_nest)
2757 return false;
2758 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2759 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2760 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2761 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2762 IPMRA_VIFA_PAD) ||
2763 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2764 IPMRA_VIFA_PAD) ||
2765 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2766 IPMRA_VIFA_PAD) ||
2767 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2768 IPMRA_VIFA_PAD) ||
2769 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2770 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2771 nla_nest_cancel(skb, vif_nest);
2772 return false;
2773 }
2774 nla_nest_end(skb, vif_nest);
2775
2776 return true;
2777 }
2778
ipmr_valid_dumplink(const struct nlmsghdr * nlh,struct netlink_ext_ack * extack)2779 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2780 struct netlink_ext_ack *extack)
2781 {
2782 struct ifinfomsg *ifm;
2783
2784 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2785 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2786 return -EINVAL;
2787 }
2788
2789 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2790 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2791 return -EINVAL;
2792 }
2793
2794 ifm = nlmsg_data(nlh);
2795 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2796 ifm->ifi_change || ifm->ifi_index) {
2797 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2798 return -EINVAL;
2799 }
2800
2801 return 0;
2802 }
2803
ipmr_rtm_dumplink(struct sk_buff * skb,struct netlink_callback * cb)2804 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2805 {
2806 struct net *net = sock_net(skb->sk);
2807 struct nlmsghdr *nlh = NULL;
2808 unsigned int t = 0, s_t;
2809 unsigned int e = 0, s_e;
2810 struct mr_table *mrt;
2811
2812 if (cb->strict_check) {
2813 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2814
2815 if (err < 0)
2816 return err;
2817 }
2818
2819 s_t = cb->args[0];
2820 s_e = cb->args[1];
2821
2822 ipmr_for_each_table(mrt, net) {
2823 struct nlattr *vifs, *af;
2824 struct ifinfomsg *hdr;
2825 u32 i;
2826
2827 if (t < s_t)
2828 goto skip_table;
2829 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2830 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2831 sizeof(*hdr), NLM_F_MULTI);
2832 if (!nlh)
2833 break;
2834
2835 hdr = nlmsg_data(nlh);
2836 memset(hdr, 0, sizeof(*hdr));
2837 hdr->ifi_family = RTNL_FAMILY_IPMR;
2838
2839 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2840 if (!af) {
2841 nlmsg_cancel(skb, nlh);
2842 goto out;
2843 }
2844
2845 if (!ipmr_fill_table(mrt, skb)) {
2846 nlmsg_cancel(skb, nlh);
2847 goto out;
2848 }
2849
2850 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2851 if (!vifs) {
2852 nla_nest_end(skb, af);
2853 nlmsg_end(skb, nlh);
2854 goto out;
2855 }
2856 for (i = 0; i < mrt->maxvif; i++) {
2857 if (e < s_e)
2858 goto skip_entry;
2859 if (!ipmr_fill_vif(mrt, i, skb)) {
2860 nla_nest_end(skb, vifs);
2861 nla_nest_end(skb, af);
2862 nlmsg_end(skb, nlh);
2863 goto out;
2864 }
2865 skip_entry:
2866 e++;
2867 }
2868 s_e = 0;
2869 e = 0;
2870 nla_nest_end(skb, vifs);
2871 nla_nest_end(skb, af);
2872 nlmsg_end(skb, nlh);
2873 skip_table:
2874 t++;
2875 }
2876
2877 out:
2878 cb->args[1] = e;
2879 cb->args[0] = t;
2880
2881 return skb->len;
2882 }
2883
2884 #ifdef CONFIG_PROC_FS
2885 /* The /proc interfaces to multicast routing :
2886 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2887 */
2888
ipmr_vif_seq_start(struct seq_file * seq,loff_t * pos)2889 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2890 __acquires(mrt_lock)
2891 {
2892 struct mr_vif_iter *iter = seq->private;
2893 struct net *net = seq_file_net(seq);
2894 struct mr_table *mrt;
2895
2896 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2897 if (!mrt)
2898 return ERR_PTR(-ENOENT);
2899
2900 iter->mrt = mrt;
2901
2902 read_lock(&mrt_lock);
2903 return mr_vif_seq_start(seq, pos);
2904 }
2905
ipmr_vif_seq_stop(struct seq_file * seq,void * v)2906 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2907 __releases(mrt_lock)
2908 {
2909 read_unlock(&mrt_lock);
2910 }
2911
ipmr_vif_seq_show(struct seq_file * seq,void * v)2912 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2913 {
2914 struct mr_vif_iter *iter = seq->private;
2915 struct mr_table *mrt = iter->mrt;
2916
2917 if (v == SEQ_START_TOKEN) {
2918 seq_puts(seq,
2919 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2920 } else {
2921 const struct vif_device *vif = v;
2922 const char *name = vif->dev ?
2923 vif->dev->name : "none";
2924
2925 seq_printf(seq,
2926 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2927 vif - mrt->vif_table,
2928 name, vif->bytes_in, vif->pkt_in,
2929 vif->bytes_out, vif->pkt_out,
2930 vif->flags, vif->local, vif->remote);
2931 }
2932 return 0;
2933 }
2934
2935 static const struct seq_operations ipmr_vif_seq_ops = {
2936 .start = ipmr_vif_seq_start,
2937 .next = mr_vif_seq_next,
2938 .stop = ipmr_vif_seq_stop,
2939 .show = ipmr_vif_seq_show,
2940 };
2941
ipmr_mfc_seq_start(struct seq_file * seq,loff_t * pos)2942 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2943 {
2944 struct net *net = seq_file_net(seq);
2945 struct mr_table *mrt;
2946
2947 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2948 if (!mrt)
2949 return ERR_PTR(-ENOENT);
2950
2951 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2952 }
2953
ipmr_mfc_seq_show(struct seq_file * seq,void * v)2954 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2955 {
2956 int n;
2957
2958 if (v == SEQ_START_TOKEN) {
2959 seq_puts(seq,
2960 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2961 } else {
2962 const struct mfc_cache *mfc = v;
2963 const struct mr_mfc_iter *it = seq->private;
2964 const struct mr_table *mrt = it->mrt;
2965
2966 seq_printf(seq, "%08X %08X %-3hd",
2967 (__force u32) mfc->mfc_mcastgrp,
2968 (__force u32) mfc->mfc_origin,
2969 mfc->_c.mfc_parent);
2970
2971 if (it->cache != &mrt->mfc_unres_queue) {
2972 seq_printf(seq, " %8lu %8lu %8lu",
2973 mfc->_c.mfc_un.res.pkt,
2974 mfc->_c.mfc_un.res.bytes,
2975 mfc->_c.mfc_un.res.wrong_if);
2976 for (n = mfc->_c.mfc_un.res.minvif;
2977 n < mfc->_c.mfc_un.res.maxvif; n++) {
2978 if (VIF_EXISTS(mrt, n) &&
2979 mfc->_c.mfc_un.res.ttls[n] < 255)
2980 seq_printf(seq,
2981 " %2d:%-3d",
2982 n, mfc->_c.mfc_un.res.ttls[n]);
2983 }
2984 } else {
2985 /* unresolved mfc_caches don't contain
2986 * pkt, bytes and wrong_if values
2987 */
2988 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2989 }
2990 seq_putc(seq, '\n');
2991 }
2992 return 0;
2993 }
2994
2995 static const struct seq_operations ipmr_mfc_seq_ops = {
2996 .start = ipmr_mfc_seq_start,
2997 .next = mr_mfc_seq_next,
2998 .stop = mr_mfc_seq_stop,
2999 .show = ipmr_mfc_seq_show,
3000 };
3001 #endif
3002
3003 #ifdef CONFIG_IP_PIMSM_V2
3004 static const struct net_protocol pim_protocol = {
3005 .handler = pim_rcv,
3006 };
3007 #endif
3008
ipmr_seq_read(struct net * net)3009 static unsigned int ipmr_seq_read(struct net *net)
3010 {
3011 ASSERT_RTNL();
3012
3013 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3014 }
3015
ipmr_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)3016 static int ipmr_dump(struct net *net, struct notifier_block *nb,
3017 struct netlink_ext_ack *extack)
3018 {
3019 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3020 ipmr_mr_table_iter, &mrt_lock, extack);
3021 }
3022
3023 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3024 .family = RTNL_FAMILY_IPMR,
3025 .fib_seq_read = ipmr_seq_read,
3026 .fib_dump = ipmr_dump,
3027 .owner = THIS_MODULE,
3028 };
3029
ipmr_notifier_init(struct net * net)3030 static int __net_init ipmr_notifier_init(struct net *net)
3031 {
3032 struct fib_notifier_ops *ops;
3033
3034 net->ipv4.ipmr_seq = 0;
3035
3036 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3037 if (IS_ERR(ops))
3038 return PTR_ERR(ops);
3039 net->ipv4.ipmr_notifier_ops = ops;
3040
3041 return 0;
3042 }
3043
ipmr_notifier_exit(struct net * net)3044 static void __net_exit ipmr_notifier_exit(struct net *net)
3045 {
3046 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3047 net->ipv4.ipmr_notifier_ops = NULL;
3048 }
3049
3050 /* Setup for IP multicast routing */
ipmr_net_init(struct net * net)3051 static int __net_init ipmr_net_init(struct net *net)
3052 {
3053 int err;
3054
3055 err = ipmr_notifier_init(net);
3056 if (err)
3057 goto ipmr_notifier_fail;
3058
3059 err = ipmr_rules_init(net);
3060 if (err < 0)
3061 goto ipmr_rules_fail;
3062
3063 #ifdef CONFIG_PROC_FS
3064 err = -ENOMEM;
3065 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3066 sizeof(struct mr_vif_iter)))
3067 goto proc_vif_fail;
3068 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3069 sizeof(struct mr_mfc_iter)))
3070 goto proc_cache_fail;
3071 #endif
3072 return 0;
3073
3074 #ifdef CONFIG_PROC_FS
3075 proc_cache_fail:
3076 remove_proc_entry("ip_mr_vif", net->proc_net);
3077 proc_vif_fail:
3078 rtnl_lock();
3079 ipmr_rules_exit(net);
3080 rtnl_unlock();
3081 #endif
3082 ipmr_rules_fail:
3083 ipmr_notifier_exit(net);
3084 ipmr_notifier_fail:
3085 return err;
3086 }
3087
ipmr_net_exit(struct net * net)3088 static void __net_exit ipmr_net_exit(struct net *net)
3089 {
3090 #ifdef CONFIG_PROC_FS
3091 remove_proc_entry("ip_mr_cache", net->proc_net);
3092 remove_proc_entry("ip_mr_vif", net->proc_net);
3093 #endif
3094 ipmr_notifier_exit(net);
3095 }
3096
ipmr_net_exit_batch(struct list_head * net_list)3097 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list)
3098 {
3099 struct net *net;
3100
3101 rtnl_lock();
3102 list_for_each_entry(net, net_list, exit_list)
3103 ipmr_rules_exit(net);
3104 rtnl_unlock();
3105 }
3106
3107 static struct pernet_operations ipmr_net_ops = {
3108 .init = ipmr_net_init,
3109 .exit = ipmr_net_exit,
3110 .exit_batch = ipmr_net_exit_batch,
3111 };
3112
ip_mr_init(void)3113 int __init ip_mr_init(void)
3114 {
3115 int err;
3116
3117 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3118 sizeof(struct mfc_cache),
3119 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3120 NULL);
3121
3122 err = register_pernet_subsys(&ipmr_net_ops);
3123 if (err)
3124 goto reg_pernet_fail;
3125
3126 err = register_netdevice_notifier(&ip_mr_notifier);
3127 if (err)
3128 goto reg_notif_fail;
3129 #ifdef CONFIG_IP_PIMSM_V2
3130 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3131 pr_err("%s: can't add PIM protocol\n", __func__);
3132 err = -EAGAIN;
3133 goto add_proto_fail;
3134 }
3135 #endif
3136 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3137 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3138 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3139 ipmr_rtm_route, NULL, 0);
3140 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3141 ipmr_rtm_route, NULL, 0);
3142
3143 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3144 NULL, ipmr_rtm_dumplink, 0);
3145 return 0;
3146
3147 #ifdef CONFIG_IP_PIMSM_V2
3148 add_proto_fail:
3149 unregister_netdevice_notifier(&ip_mr_notifier);
3150 #endif
3151 reg_notif_fail:
3152 unregister_pernet_subsys(&ipmr_net_ops);
3153 reg_pernet_fail:
3154 kmem_cache_destroy(mrt_cachep);
3155 return err;
3156 }
3157