1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39
40 #define IPMI_DRIVER_VERSION "39.2"
41
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 struct ipmi_smi_msg *msg);
49
50 static bool initialized;
51 static bool drvregistered;
52
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 IPMI_SEND_PANIC_EVENT_NONE,
56 IPMI_SEND_PANIC_EVENT,
57 IPMI_SEND_PANIC_EVENT_STRING,
58 IPMI_SEND_PANIC_EVENT_MAX
59 };
60
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73
panic_op_write_handler(const char * val,const struct kernel_param * kp)74 static int panic_op_write_handler(const char *val,
75 const struct kernel_param *kp)
76 {
77 char valcp[16];
78 int e;
79
80 strscpy(valcp, val, sizeof(valcp));
81 e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 if (e < 0)
83 return e;
84
85 ipmi_send_panic_event = e;
86 return 0;
87 }
88
panic_op_read_handler(char * buffer,const struct kernel_param * kp)89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 const char *event_str;
92
93 if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 event_str = "???";
95 else
96 event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97
98 return sprintf(buffer, "%s\n", event_str);
99 }
100
101 static const struct kernel_param_ops panic_op_ops = {
102 .set = panic_op_write_handler,
103 .get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107
108
109 #define MAX_EVENTS_IN_QUEUE 25
110
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116
117 /*
118 * Don't let a message sit in a queue forever, always time it with at lest
119 * the max message timer. This is in milliseconds.
120 */
121 #define MAX_MSG_TIMEOUT 60000
122
123 /*
124 * Timeout times below are in milliseconds, and are done off a 1
125 * second timer. So setting the value to 1000 would mean anything
126 * between 0 and 1000ms. So really the only reasonable minimum
127 * setting it 2000ms, which is between 1 and 2 seconds.
128 */
129
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 "The time (milliseconds) between retry sends");
135
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 "The time (milliseconds) between retry sends in maintenance mode");
141
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 "The time (milliseconds) between retry sends in maintenance mode");
147
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152 "The most users that may use the IPMI stack at one time.");
153
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158 "The most message a user may have outstanding.");
159
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME 1000
162
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
165
166 /*
167 * Request events from the queue every second (this is the number of
168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
169 * future, IPMI will add a way to know immediately if an event is in
170 * the queue and this silliness can go away.
171 */
172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
173
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
176
177 /*
178 * The main "user" data structure.
179 */
180 struct ipmi_user {
181 struct list_head link;
182
183 /*
184 * Set to NULL when the user is destroyed, a pointer to myself
185 * so srcu_dereference can be used on it.
186 */
187 struct ipmi_user *self;
188 struct srcu_struct release_barrier;
189
190 struct kref refcount;
191
192 /* The upper layer that handles receive messages. */
193 const struct ipmi_user_hndl *handler;
194 void *handler_data;
195
196 /* The interface this user is bound to. */
197 struct ipmi_smi *intf;
198
199 /* Does this interface receive IPMI events? */
200 bool gets_events;
201
202 atomic_t nr_msgs;
203
204 /* Free must run in process context for RCU cleanup. */
205 struct work_struct remove_work;
206 };
207
208 static struct workqueue_struct *remove_work_wq;
209
acquire_ipmi_user(struct ipmi_user * user,int * index)210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
211 __acquires(user->release_barrier)
212 {
213 struct ipmi_user *ruser;
214
215 *index = srcu_read_lock(&user->release_barrier);
216 ruser = srcu_dereference(user->self, &user->release_barrier);
217 if (!ruser)
218 srcu_read_unlock(&user->release_barrier, *index);
219 return ruser;
220 }
221
release_ipmi_user(struct ipmi_user * user,int index)222 static void release_ipmi_user(struct ipmi_user *user, int index)
223 {
224 srcu_read_unlock(&user->release_barrier, index);
225 }
226
227 struct cmd_rcvr {
228 struct list_head link;
229
230 struct ipmi_user *user;
231 unsigned char netfn;
232 unsigned char cmd;
233 unsigned int chans;
234
235 /*
236 * This is used to form a linked lised during mass deletion.
237 * Since this is in an RCU list, we cannot use the link above
238 * or change any data until the RCU period completes. So we
239 * use this next variable during mass deletion so we can have
240 * a list and don't have to wait and restart the search on
241 * every individual deletion of a command.
242 */
243 struct cmd_rcvr *next;
244 };
245
246 struct seq_table {
247 unsigned int inuse : 1;
248 unsigned int broadcast : 1;
249
250 unsigned long timeout;
251 unsigned long orig_timeout;
252 unsigned int retries_left;
253
254 /*
255 * To verify on an incoming send message response that this is
256 * the message that the response is for, we keep a sequence id
257 * and increment it every time we send a message.
258 */
259 long seqid;
260
261 /*
262 * This is held so we can properly respond to the message on a
263 * timeout, and it is used to hold the temporary data for
264 * retransmission, too.
265 */
266 struct ipmi_recv_msg *recv_msg;
267 };
268
269 /*
270 * Store the information in a msgid (long) to allow us to find a
271 * sequence table entry from the msgid.
272 */
273 #define STORE_SEQ_IN_MSGID(seq, seqid) \
274 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
275
276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
277 do { \
278 seq = (((msgid) >> 26) & 0x3f); \
279 seqid = ((msgid) & 0x3ffffff); \
280 } while (0)
281
282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
283
284 #define IPMI_MAX_CHANNELS 16
285 struct ipmi_channel {
286 unsigned char medium;
287 unsigned char protocol;
288 };
289
290 struct ipmi_channel_set {
291 struct ipmi_channel c[IPMI_MAX_CHANNELS];
292 };
293
294 struct ipmi_my_addrinfo {
295 /*
296 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
297 * but may be changed by the user.
298 */
299 unsigned char address;
300
301 /*
302 * My LUN. This should generally stay the SMS LUN, but just in
303 * case...
304 */
305 unsigned char lun;
306 };
307
308 /*
309 * Note that the product id, manufacturer id, guid, and device id are
310 * immutable in this structure, so dyn_mutex is not required for
311 * accessing those. If those change on a BMC, a new BMC is allocated.
312 */
313 struct bmc_device {
314 struct platform_device pdev;
315 struct list_head intfs; /* Interfaces on this BMC. */
316 struct ipmi_device_id id;
317 struct ipmi_device_id fetch_id;
318 int dyn_id_set;
319 unsigned long dyn_id_expiry;
320 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
321 guid_t guid;
322 guid_t fetch_guid;
323 int dyn_guid_set;
324 struct kref usecount;
325 struct work_struct remove_work;
326 unsigned char cc; /* completion code */
327 };
328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
329
330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
331 struct ipmi_device_id *id,
332 bool *guid_set, guid_t *guid);
333
334 /*
335 * Various statistics for IPMI, these index stats[] in the ipmi_smi
336 * structure.
337 */
338 enum ipmi_stat_indexes {
339 /* Commands we got from the user that were invalid. */
340 IPMI_STAT_sent_invalid_commands = 0,
341
342 /* Commands we sent to the MC. */
343 IPMI_STAT_sent_local_commands,
344
345 /* Responses from the MC that were delivered to a user. */
346 IPMI_STAT_handled_local_responses,
347
348 /* Responses from the MC that were not delivered to a user. */
349 IPMI_STAT_unhandled_local_responses,
350
351 /* Commands we sent out to the IPMB bus. */
352 IPMI_STAT_sent_ipmb_commands,
353
354 /* Commands sent on the IPMB that had errors on the SEND CMD */
355 IPMI_STAT_sent_ipmb_command_errs,
356
357 /* Each retransmit increments this count. */
358 IPMI_STAT_retransmitted_ipmb_commands,
359
360 /*
361 * When a message times out (runs out of retransmits) this is
362 * incremented.
363 */
364 IPMI_STAT_timed_out_ipmb_commands,
365
366 /*
367 * This is like above, but for broadcasts. Broadcasts are
368 * *not* included in the above count (they are expected to
369 * time out).
370 */
371 IPMI_STAT_timed_out_ipmb_broadcasts,
372
373 /* Responses I have sent to the IPMB bus. */
374 IPMI_STAT_sent_ipmb_responses,
375
376 /* The response was delivered to the user. */
377 IPMI_STAT_handled_ipmb_responses,
378
379 /* The response had invalid data in it. */
380 IPMI_STAT_invalid_ipmb_responses,
381
382 /* The response didn't have anyone waiting for it. */
383 IPMI_STAT_unhandled_ipmb_responses,
384
385 /* Commands we sent out to the IPMB bus. */
386 IPMI_STAT_sent_lan_commands,
387
388 /* Commands sent on the IPMB that had errors on the SEND CMD */
389 IPMI_STAT_sent_lan_command_errs,
390
391 /* Each retransmit increments this count. */
392 IPMI_STAT_retransmitted_lan_commands,
393
394 /*
395 * When a message times out (runs out of retransmits) this is
396 * incremented.
397 */
398 IPMI_STAT_timed_out_lan_commands,
399
400 /* Responses I have sent to the IPMB bus. */
401 IPMI_STAT_sent_lan_responses,
402
403 /* The response was delivered to the user. */
404 IPMI_STAT_handled_lan_responses,
405
406 /* The response had invalid data in it. */
407 IPMI_STAT_invalid_lan_responses,
408
409 /* The response didn't have anyone waiting for it. */
410 IPMI_STAT_unhandled_lan_responses,
411
412 /* The command was delivered to the user. */
413 IPMI_STAT_handled_commands,
414
415 /* The command had invalid data in it. */
416 IPMI_STAT_invalid_commands,
417
418 /* The command didn't have anyone waiting for it. */
419 IPMI_STAT_unhandled_commands,
420
421 /* Invalid data in an event. */
422 IPMI_STAT_invalid_events,
423
424 /* Events that were received with the proper format. */
425 IPMI_STAT_events,
426
427 /* Retransmissions on IPMB that failed. */
428 IPMI_STAT_dropped_rexmit_ipmb_commands,
429
430 /* Retransmissions on LAN that failed. */
431 IPMI_STAT_dropped_rexmit_lan_commands,
432
433 /* This *must* remain last, add new values above this. */
434 IPMI_NUM_STATS
435 };
436
437
438 #define IPMI_IPMB_NUM_SEQ 64
439 struct ipmi_smi {
440 struct module *owner;
441
442 /* What interface number are we? */
443 int intf_num;
444
445 struct kref refcount;
446
447 /* Set when the interface is being unregistered. */
448 bool in_shutdown;
449
450 /* Used for a list of interfaces. */
451 struct list_head link;
452
453 /*
454 * The list of upper layers that are using me. seq_lock write
455 * protects this. Read protection is with srcu.
456 */
457 struct list_head users;
458 struct srcu_struct users_srcu;
459 atomic_t nr_users;
460 struct device_attribute nr_users_devattr;
461 struct device_attribute nr_msgs_devattr;
462
463
464 /* Used for wake ups at startup. */
465 wait_queue_head_t waitq;
466
467 /*
468 * Prevents the interface from being unregistered when the
469 * interface is used by being looked up through the BMC
470 * structure.
471 */
472 struct mutex bmc_reg_mutex;
473
474 struct bmc_device tmp_bmc;
475 struct bmc_device *bmc;
476 bool bmc_registered;
477 struct list_head bmc_link;
478 char *my_dev_name;
479 bool in_bmc_register; /* Handle recursive situations. Yuck. */
480 struct work_struct bmc_reg_work;
481
482 const struct ipmi_smi_handlers *handlers;
483 void *send_info;
484
485 /* Driver-model device for the system interface. */
486 struct device *si_dev;
487
488 /*
489 * A table of sequence numbers for this interface. We use the
490 * sequence numbers for IPMB messages that go out of the
491 * interface to match them up with their responses. A routine
492 * is called periodically to time the items in this list.
493 */
494 spinlock_t seq_lock;
495 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 int curr_seq;
497
498 /*
499 * Messages queued for delivery. If delivery fails (out of memory
500 * for instance), They will stay in here to be processed later in a
501 * periodic timer interrupt. The tasklet is for handling received
502 * messages directly from the handler.
503 */
504 spinlock_t waiting_rcv_msgs_lock;
505 struct list_head waiting_rcv_msgs;
506 atomic_t watchdog_pretimeouts_to_deliver;
507 struct tasklet_struct recv_tasklet;
508
509 spinlock_t xmit_msgs_lock;
510 struct list_head xmit_msgs;
511 struct ipmi_smi_msg *curr_msg;
512 struct list_head hp_xmit_msgs;
513
514 /*
515 * The list of command receivers that are registered for commands
516 * on this interface.
517 */
518 struct mutex cmd_rcvrs_mutex;
519 struct list_head cmd_rcvrs;
520
521 /*
522 * Events that were queues because no one was there to receive
523 * them.
524 */
525 spinlock_t events_lock; /* For dealing with event stuff. */
526 struct list_head waiting_events;
527 unsigned int waiting_events_count; /* How many events in queue? */
528 char delivering_events;
529 char event_msg_printed;
530
531 /* How many users are waiting for events? */
532 atomic_t event_waiters;
533 unsigned int ticks_to_req_ev;
534
535 spinlock_t watch_lock; /* For dealing with watch stuff below. */
536
537 /* How many users are waiting for commands? */
538 unsigned int command_waiters;
539
540 /* How many users are waiting for watchdogs? */
541 unsigned int watchdog_waiters;
542
543 /* How many users are waiting for message responses? */
544 unsigned int response_waiters;
545
546 /*
547 * Tells what the lower layer has last been asked to watch for,
548 * messages and/or watchdogs. Protected by watch_lock.
549 */
550 unsigned int last_watch_mask;
551
552 /*
553 * The event receiver for my BMC, only really used at panic
554 * shutdown as a place to store this.
555 */
556 unsigned char event_receiver;
557 unsigned char event_receiver_lun;
558 unsigned char local_sel_device;
559 unsigned char local_event_generator;
560
561 /* For handling of maintenance mode. */
562 int maintenance_mode;
563 bool maintenance_mode_enable;
564 int auto_maintenance_timeout;
565 spinlock_t maintenance_mode_lock; /* Used in a timer... */
566
567 /*
568 * If we are doing maintenance on something on IPMB, extend
569 * the timeout time to avoid timeouts writing firmware and
570 * such.
571 */
572 int ipmb_maintenance_mode_timeout;
573
574 /*
575 * A cheap hack, if this is non-null and a message to an
576 * interface comes in with a NULL user, call this routine with
577 * it. Note that the message will still be freed by the
578 * caller. This only works on the system interface.
579 *
580 * Protected by bmc_reg_mutex.
581 */
582 void (*null_user_handler)(struct ipmi_smi *intf,
583 struct ipmi_recv_msg *msg);
584
585 /*
586 * When we are scanning the channels for an SMI, this will
587 * tell which channel we are scanning.
588 */
589 int curr_channel;
590
591 /* Channel information */
592 struct ipmi_channel_set *channel_list;
593 unsigned int curr_working_cset; /* First index into the following. */
594 struct ipmi_channel_set wchannels[2];
595 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
596 bool channels_ready;
597
598 atomic_t stats[IPMI_NUM_STATS];
599
600 /*
601 * run_to_completion duplicate of smb_info, smi_info
602 * and ipmi_serial_info structures. Used to decrease numbers of
603 * parameters passed by "low" level IPMI code.
604 */
605 int run_to_completion;
606 };
607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
608
609 static void __get_guid(struct ipmi_smi *intf);
610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
611 static int __ipmi_bmc_register(struct ipmi_smi *intf,
612 struct ipmi_device_id *id,
613 bool guid_set, guid_t *guid, int intf_num);
614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
615
616
617 /**
618 * The driver model view of the IPMI messaging driver.
619 */
620 static struct platform_driver ipmidriver = {
621 .driver = {
622 .name = "ipmi",
623 .bus = &platform_bus_type
624 }
625 };
626 /*
627 * This mutex keeps us from adding the same BMC twice.
628 */
629 static DEFINE_MUTEX(ipmidriver_mutex);
630
631 static LIST_HEAD(ipmi_interfaces);
632 static DEFINE_MUTEX(ipmi_interfaces_mutex);
633 #define ipmi_interfaces_mutex_held() \
634 lockdep_is_held(&ipmi_interfaces_mutex)
635 static struct srcu_struct ipmi_interfaces_srcu;
636
637 /*
638 * List of watchers that want to know when smi's are added and deleted.
639 */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642
643 #define ipmi_inc_stat(intf, stat) \
644 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647
648 static const char * const addr_src_to_str[] = {
649 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650 "device-tree", "platform"
651 };
652
ipmi_addr_src_to_str(enum ipmi_addr_src src)653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655 if (src >= SI_LAST)
656 src = 0; /* Invalid */
657 return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660
is_lan_addr(struct ipmi_addr * addr)661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665
is_ipmb_addr(struct ipmi_addr * addr)666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670
is_ipmb_bcast_addr(struct ipmi_addr * addr)671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675
is_ipmb_direct_addr(struct ipmi_addr * addr)676 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
677 {
678 return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
679 }
680
free_recv_msg_list(struct list_head * q)681 static void free_recv_msg_list(struct list_head *q)
682 {
683 struct ipmi_recv_msg *msg, *msg2;
684
685 list_for_each_entry_safe(msg, msg2, q, link) {
686 list_del(&msg->link);
687 ipmi_free_recv_msg(msg);
688 }
689 }
690
free_smi_msg_list(struct list_head * q)691 static void free_smi_msg_list(struct list_head *q)
692 {
693 struct ipmi_smi_msg *msg, *msg2;
694
695 list_for_each_entry_safe(msg, msg2, q, link) {
696 list_del(&msg->link);
697 ipmi_free_smi_msg(msg);
698 }
699 }
700
clean_up_interface_data(struct ipmi_smi * intf)701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703 int i;
704 struct cmd_rcvr *rcvr, *rcvr2;
705 struct list_head list;
706
707 tasklet_kill(&intf->recv_tasklet);
708
709 free_smi_msg_list(&intf->waiting_rcv_msgs);
710 free_recv_msg_list(&intf->waiting_events);
711
712 /*
713 * Wholesale remove all the entries from the list in the
714 * interface and wait for RCU to know that none are in use.
715 */
716 mutex_lock(&intf->cmd_rcvrs_mutex);
717 INIT_LIST_HEAD(&list);
718 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719 mutex_unlock(&intf->cmd_rcvrs_mutex);
720
721 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722 kfree(rcvr);
723
724 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 if ((intf->seq_table[i].inuse)
726 && (intf->seq_table[i].recv_msg))
727 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 }
729 }
730
intf_free(struct kref * ref)731 static void intf_free(struct kref *ref)
732 {
733 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734
735 clean_up_interface_data(intf);
736 kfree(intf);
737 }
738
739 struct watcher_entry {
740 int intf_num;
741 struct ipmi_smi *intf;
742 struct list_head link;
743 };
744
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)745 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
746 {
747 struct ipmi_smi *intf;
748 int index, rv;
749
750 /*
751 * Make sure the driver is actually initialized, this handles
752 * problems with initialization order.
753 */
754 rv = ipmi_init_msghandler();
755 if (rv)
756 return rv;
757
758 mutex_lock(&smi_watchers_mutex);
759
760 list_add(&watcher->link, &smi_watchers);
761
762 index = srcu_read_lock(&ipmi_interfaces_srcu);
763 list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
764 lockdep_is_held(&smi_watchers_mutex)) {
765 int intf_num = READ_ONCE(intf->intf_num);
766
767 if (intf_num == -1)
768 continue;
769 watcher->new_smi(intf_num, intf->si_dev);
770 }
771 srcu_read_unlock(&ipmi_interfaces_srcu, index);
772
773 mutex_unlock(&smi_watchers_mutex);
774
775 return 0;
776 }
777 EXPORT_SYMBOL(ipmi_smi_watcher_register);
778
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)779 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
780 {
781 mutex_lock(&smi_watchers_mutex);
782 list_del(&watcher->link);
783 mutex_unlock(&smi_watchers_mutex);
784 return 0;
785 }
786 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
787
788 /*
789 * Must be called with smi_watchers_mutex held.
790 */
791 static void
call_smi_watchers(int i,struct device * dev)792 call_smi_watchers(int i, struct device *dev)
793 {
794 struct ipmi_smi_watcher *w;
795
796 mutex_lock(&smi_watchers_mutex);
797 list_for_each_entry(w, &smi_watchers, link) {
798 if (try_module_get(w->owner)) {
799 w->new_smi(i, dev);
800 module_put(w->owner);
801 }
802 }
803 mutex_unlock(&smi_watchers_mutex);
804 }
805
806 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)807 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
808 {
809 if (addr1->addr_type != addr2->addr_type)
810 return 0;
811
812 if (addr1->channel != addr2->channel)
813 return 0;
814
815 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
816 struct ipmi_system_interface_addr *smi_addr1
817 = (struct ipmi_system_interface_addr *) addr1;
818 struct ipmi_system_interface_addr *smi_addr2
819 = (struct ipmi_system_interface_addr *) addr2;
820 return (smi_addr1->lun == smi_addr2->lun);
821 }
822
823 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
824 struct ipmi_ipmb_addr *ipmb_addr1
825 = (struct ipmi_ipmb_addr *) addr1;
826 struct ipmi_ipmb_addr *ipmb_addr2
827 = (struct ipmi_ipmb_addr *) addr2;
828
829 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
830 && (ipmb_addr1->lun == ipmb_addr2->lun));
831 }
832
833 if (is_ipmb_direct_addr(addr1)) {
834 struct ipmi_ipmb_direct_addr *daddr1
835 = (struct ipmi_ipmb_direct_addr *) addr1;
836 struct ipmi_ipmb_direct_addr *daddr2
837 = (struct ipmi_ipmb_direct_addr *) addr2;
838
839 return daddr1->slave_addr == daddr2->slave_addr &&
840 daddr1->rq_lun == daddr2->rq_lun &&
841 daddr1->rs_lun == daddr2->rs_lun;
842 }
843
844 if (is_lan_addr(addr1)) {
845 struct ipmi_lan_addr *lan_addr1
846 = (struct ipmi_lan_addr *) addr1;
847 struct ipmi_lan_addr *lan_addr2
848 = (struct ipmi_lan_addr *) addr2;
849
850 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
851 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
852 && (lan_addr1->session_handle
853 == lan_addr2->session_handle)
854 && (lan_addr1->lun == lan_addr2->lun));
855 }
856
857 return 1;
858 }
859
ipmi_validate_addr(struct ipmi_addr * addr,int len)860 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
861 {
862 if (len < sizeof(struct ipmi_system_interface_addr))
863 return -EINVAL;
864
865 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
866 if (addr->channel != IPMI_BMC_CHANNEL)
867 return -EINVAL;
868 return 0;
869 }
870
871 if ((addr->channel == IPMI_BMC_CHANNEL)
872 || (addr->channel >= IPMI_MAX_CHANNELS)
873 || (addr->channel < 0))
874 return -EINVAL;
875
876 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
877 if (len < sizeof(struct ipmi_ipmb_addr))
878 return -EINVAL;
879 return 0;
880 }
881
882 if (is_ipmb_direct_addr(addr)) {
883 struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
884
885 if (addr->channel != 0)
886 return -EINVAL;
887 if (len < sizeof(struct ipmi_ipmb_direct_addr))
888 return -EINVAL;
889
890 if (daddr->slave_addr & 0x01)
891 return -EINVAL;
892 if (daddr->rq_lun >= 4)
893 return -EINVAL;
894 if (daddr->rs_lun >= 4)
895 return -EINVAL;
896 return 0;
897 }
898
899 if (is_lan_addr(addr)) {
900 if (len < sizeof(struct ipmi_lan_addr))
901 return -EINVAL;
902 return 0;
903 }
904
905 return -EINVAL;
906 }
907 EXPORT_SYMBOL(ipmi_validate_addr);
908
ipmi_addr_length(int addr_type)909 unsigned int ipmi_addr_length(int addr_type)
910 {
911 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
912 return sizeof(struct ipmi_system_interface_addr);
913
914 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
915 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
916 return sizeof(struct ipmi_ipmb_addr);
917
918 if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
919 return sizeof(struct ipmi_ipmb_direct_addr);
920
921 if (addr_type == IPMI_LAN_ADDR_TYPE)
922 return sizeof(struct ipmi_lan_addr);
923
924 return 0;
925 }
926 EXPORT_SYMBOL(ipmi_addr_length);
927
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)928 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
929 {
930 int rv = 0;
931
932 if (!msg->user) {
933 /* Special handling for NULL users. */
934 if (intf->null_user_handler) {
935 intf->null_user_handler(intf, msg);
936 } else {
937 /* No handler, so give up. */
938 rv = -EINVAL;
939 }
940 ipmi_free_recv_msg(msg);
941 } else if (oops_in_progress) {
942 /*
943 * If we are running in the panic context, calling the
944 * receive handler doesn't much meaning and has a deadlock
945 * risk. At this moment, simply skip it in that case.
946 */
947 ipmi_free_recv_msg(msg);
948 atomic_dec(&msg->user->nr_msgs);
949 } else {
950 int index;
951 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
952
953 if (user) {
954 atomic_dec(&user->nr_msgs);
955 user->handler->ipmi_recv_hndl(msg, user->handler_data);
956 release_ipmi_user(user, index);
957 } else {
958 /* User went away, give up. */
959 ipmi_free_recv_msg(msg);
960 rv = -EINVAL;
961 }
962 }
963
964 return rv;
965 }
966
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)967 static void deliver_local_response(struct ipmi_smi *intf,
968 struct ipmi_recv_msg *msg)
969 {
970 if (deliver_response(intf, msg))
971 ipmi_inc_stat(intf, unhandled_local_responses);
972 else
973 ipmi_inc_stat(intf, handled_local_responses);
974 }
975
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)976 static void deliver_err_response(struct ipmi_smi *intf,
977 struct ipmi_recv_msg *msg, int err)
978 {
979 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
980 msg->msg_data[0] = err;
981 msg->msg.netfn |= 1; /* Convert to a response. */
982 msg->msg.data_len = 1;
983 msg->msg.data = msg->msg_data;
984 deliver_local_response(intf, msg);
985 }
986
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)987 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
988 {
989 unsigned long iflags;
990
991 if (!intf->handlers->set_need_watch)
992 return;
993
994 spin_lock_irqsave(&intf->watch_lock, iflags);
995 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
996 intf->response_waiters++;
997
998 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
999 intf->watchdog_waiters++;
1000
1001 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1002 intf->command_waiters++;
1003
1004 if ((intf->last_watch_mask & flags) != flags) {
1005 intf->last_watch_mask |= flags;
1006 intf->handlers->set_need_watch(intf->send_info,
1007 intf->last_watch_mask);
1008 }
1009 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1010 }
1011
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)1012 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1013 {
1014 unsigned long iflags;
1015
1016 if (!intf->handlers->set_need_watch)
1017 return;
1018
1019 spin_lock_irqsave(&intf->watch_lock, iflags);
1020 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1021 intf->response_waiters--;
1022
1023 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1024 intf->watchdog_waiters--;
1025
1026 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1027 intf->command_waiters--;
1028
1029 flags = 0;
1030 if (intf->response_waiters)
1031 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1032 if (intf->watchdog_waiters)
1033 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1034 if (intf->command_waiters)
1035 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1036
1037 if (intf->last_watch_mask != flags) {
1038 intf->last_watch_mask = flags;
1039 intf->handlers->set_need_watch(intf->send_info,
1040 intf->last_watch_mask);
1041 }
1042 spin_unlock_irqrestore(&intf->watch_lock, iflags);
1043 }
1044
1045 /*
1046 * Find the next sequence number not being used and add the given
1047 * message with the given timeout to the sequence table. This must be
1048 * called with the interface's seq_lock held.
1049 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1050 static int intf_next_seq(struct ipmi_smi *intf,
1051 struct ipmi_recv_msg *recv_msg,
1052 unsigned long timeout,
1053 int retries,
1054 int broadcast,
1055 unsigned char *seq,
1056 long *seqid)
1057 {
1058 int rv = 0;
1059 unsigned int i;
1060
1061 if (timeout == 0)
1062 timeout = default_retry_ms;
1063 if (retries < 0)
1064 retries = default_max_retries;
1065
1066 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1067 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1068 if (!intf->seq_table[i].inuse)
1069 break;
1070 }
1071
1072 if (!intf->seq_table[i].inuse) {
1073 intf->seq_table[i].recv_msg = recv_msg;
1074
1075 /*
1076 * Start with the maximum timeout, when the send response
1077 * comes in we will start the real timer.
1078 */
1079 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1080 intf->seq_table[i].orig_timeout = timeout;
1081 intf->seq_table[i].retries_left = retries;
1082 intf->seq_table[i].broadcast = broadcast;
1083 intf->seq_table[i].inuse = 1;
1084 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1085 *seq = i;
1086 *seqid = intf->seq_table[i].seqid;
1087 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1088 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1089 need_waiter(intf);
1090 } else {
1091 rv = -EAGAIN;
1092 }
1093
1094 return rv;
1095 }
1096
1097 /*
1098 * Return the receive message for the given sequence number and
1099 * release the sequence number so it can be reused. Some other data
1100 * is passed in to be sure the message matches up correctly (to help
1101 * guard against message coming in after their timeout and the
1102 * sequence number being reused).
1103 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1104 static int intf_find_seq(struct ipmi_smi *intf,
1105 unsigned char seq,
1106 short channel,
1107 unsigned char cmd,
1108 unsigned char netfn,
1109 struct ipmi_addr *addr,
1110 struct ipmi_recv_msg **recv_msg)
1111 {
1112 int rv = -ENODEV;
1113 unsigned long flags;
1114
1115 if (seq >= IPMI_IPMB_NUM_SEQ)
1116 return -EINVAL;
1117
1118 spin_lock_irqsave(&intf->seq_lock, flags);
1119 if (intf->seq_table[seq].inuse) {
1120 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1121
1122 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1123 && (msg->msg.netfn == netfn)
1124 && (ipmi_addr_equal(addr, &msg->addr))) {
1125 *recv_msg = msg;
1126 intf->seq_table[seq].inuse = 0;
1127 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1128 rv = 0;
1129 }
1130 }
1131 spin_unlock_irqrestore(&intf->seq_lock, flags);
1132
1133 return rv;
1134 }
1135
1136
1137 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1138 static int intf_start_seq_timer(struct ipmi_smi *intf,
1139 long msgid)
1140 {
1141 int rv = -ENODEV;
1142 unsigned long flags;
1143 unsigned char seq;
1144 unsigned long seqid;
1145
1146
1147 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1148
1149 spin_lock_irqsave(&intf->seq_lock, flags);
1150 /*
1151 * We do this verification because the user can be deleted
1152 * while a message is outstanding.
1153 */
1154 if ((intf->seq_table[seq].inuse)
1155 && (intf->seq_table[seq].seqid == seqid)) {
1156 struct seq_table *ent = &intf->seq_table[seq];
1157 ent->timeout = ent->orig_timeout;
1158 rv = 0;
1159 }
1160 spin_unlock_irqrestore(&intf->seq_lock, flags);
1161
1162 return rv;
1163 }
1164
1165 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1166 static int intf_err_seq(struct ipmi_smi *intf,
1167 long msgid,
1168 unsigned int err)
1169 {
1170 int rv = -ENODEV;
1171 unsigned long flags;
1172 unsigned char seq;
1173 unsigned long seqid;
1174 struct ipmi_recv_msg *msg = NULL;
1175
1176
1177 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1178
1179 spin_lock_irqsave(&intf->seq_lock, flags);
1180 /*
1181 * We do this verification because the user can be deleted
1182 * while a message is outstanding.
1183 */
1184 if ((intf->seq_table[seq].inuse)
1185 && (intf->seq_table[seq].seqid == seqid)) {
1186 struct seq_table *ent = &intf->seq_table[seq];
1187
1188 ent->inuse = 0;
1189 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1190 msg = ent->recv_msg;
1191 rv = 0;
1192 }
1193 spin_unlock_irqrestore(&intf->seq_lock, flags);
1194
1195 if (msg)
1196 deliver_err_response(intf, msg, err);
1197
1198 return rv;
1199 }
1200
free_user_work(struct work_struct * work)1201 static void free_user_work(struct work_struct *work)
1202 {
1203 struct ipmi_user *user = container_of(work, struct ipmi_user,
1204 remove_work);
1205
1206 cleanup_srcu_struct(&user->release_barrier);
1207 vfree(user);
1208 }
1209
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1210 int ipmi_create_user(unsigned int if_num,
1211 const struct ipmi_user_hndl *handler,
1212 void *handler_data,
1213 struct ipmi_user **user)
1214 {
1215 unsigned long flags;
1216 struct ipmi_user *new_user;
1217 int rv, index;
1218 struct ipmi_smi *intf;
1219
1220 /*
1221 * There is no module usecount here, because it's not
1222 * required. Since this can only be used by and called from
1223 * other modules, they will implicitly use this module, and
1224 * thus this can't be removed unless the other modules are
1225 * removed.
1226 */
1227
1228 if (handler == NULL)
1229 return -EINVAL;
1230
1231 /*
1232 * Make sure the driver is actually initialized, this handles
1233 * problems with initialization order.
1234 */
1235 rv = ipmi_init_msghandler();
1236 if (rv)
1237 return rv;
1238
1239 new_user = vzalloc(sizeof(*new_user));
1240 if (!new_user)
1241 return -ENOMEM;
1242
1243 index = srcu_read_lock(&ipmi_interfaces_srcu);
1244 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1245 if (intf->intf_num == if_num)
1246 goto found;
1247 }
1248 /* Not found, return an error */
1249 rv = -EINVAL;
1250 goto out_kfree;
1251
1252 found:
1253 if (atomic_add_return(1, &intf->nr_users) > max_users) {
1254 rv = -EBUSY;
1255 goto out_kfree;
1256 }
1257
1258 INIT_WORK(&new_user->remove_work, free_user_work);
1259
1260 rv = init_srcu_struct(&new_user->release_barrier);
1261 if (rv)
1262 goto out_kfree;
1263
1264 if (!try_module_get(intf->owner)) {
1265 rv = -ENODEV;
1266 goto out_kfree;
1267 }
1268
1269 /* Note that each existing user holds a refcount to the interface. */
1270 kref_get(&intf->refcount);
1271
1272 atomic_set(&new_user->nr_msgs, 0);
1273 kref_init(&new_user->refcount);
1274 new_user->handler = handler;
1275 new_user->handler_data = handler_data;
1276 new_user->intf = intf;
1277 new_user->gets_events = false;
1278
1279 rcu_assign_pointer(new_user->self, new_user);
1280 spin_lock_irqsave(&intf->seq_lock, flags);
1281 list_add_rcu(&new_user->link, &intf->users);
1282 spin_unlock_irqrestore(&intf->seq_lock, flags);
1283 if (handler->ipmi_watchdog_pretimeout)
1284 /* User wants pretimeouts, so make sure to watch for them. */
1285 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1286 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1287 *user = new_user;
1288 return 0;
1289
1290 out_kfree:
1291 atomic_dec(&intf->nr_users);
1292 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1293 vfree(new_user);
1294 return rv;
1295 }
1296 EXPORT_SYMBOL(ipmi_create_user);
1297
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1298 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1299 {
1300 int rv, index;
1301 struct ipmi_smi *intf;
1302
1303 index = srcu_read_lock(&ipmi_interfaces_srcu);
1304 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1305 if (intf->intf_num == if_num)
1306 goto found;
1307 }
1308 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1309
1310 /* Not found, return an error */
1311 return -EINVAL;
1312
1313 found:
1314 if (!intf->handlers->get_smi_info)
1315 rv = -ENOTTY;
1316 else
1317 rv = intf->handlers->get_smi_info(intf->send_info, data);
1318 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1319
1320 return rv;
1321 }
1322 EXPORT_SYMBOL(ipmi_get_smi_info);
1323
free_user(struct kref * ref)1324 static void free_user(struct kref *ref)
1325 {
1326 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1327
1328 /* SRCU cleanup must happen in task context. */
1329 queue_work(remove_work_wq, &user->remove_work);
1330 }
1331
_ipmi_destroy_user(struct ipmi_user * user)1332 static void _ipmi_destroy_user(struct ipmi_user *user)
1333 {
1334 struct ipmi_smi *intf = user->intf;
1335 int i;
1336 unsigned long flags;
1337 struct cmd_rcvr *rcvr;
1338 struct cmd_rcvr *rcvrs = NULL;
1339
1340 if (!acquire_ipmi_user(user, &i)) {
1341 /*
1342 * The user has already been cleaned up, just make sure
1343 * nothing is using it and return.
1344 */
1345 synchronize_srcu(&user->release_barrier);
1346 return;
1347 }
1348
1349 rcu_assign_pointer(user->self, NULL);
1350 release_ipmi_user(user, i);
1351
1352 synchronize_srcu(&user->release_barrier);
1353
1354 if (user->handler->shutdown)
1355 user->handler->shutdown(user->handler_data);
1356
1357 if (user->handler->ipmi_watchdog_pretimeout)
1358 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1359
1360 if (user->gets_events)
1361 atomic_dec(&intf->event_waiters);
1362
1363 /* Remove the user from the interface's sequence table. */
1364 spin_lock_irqsave(&intf->seq_lock, flags);
1365 list_del_rcu(&user->link);
1366 atomic_dec(&intf->nr_users);
1367
1368 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1369 if (intf->seq_table[i].inuse
1370 && (intf->seq_table[i].recv_msg->user == user)) {
1371 intf->seq_table[i].inuse = 0;
1372 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1373 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1374 }
1375 }
1376 spin_unlock_irqrestore(&intf->seq_lock, flags);
1377
1378 /*
1379 * Remove the user from the command receiver's table. First
1380 * we build a list of everything (not using the standard link,
1381 * since other things may be using it till we do
1382 * synchronize_srcu()) then free everything in that list.
1383 */
1384 mutex_lock(&intf->cmd_rcvrs_mutex);
1385 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1386 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1387 if (rcvr->user == user) {
1388 list_del_rcu(&rcvr->link);
1389 rcvr->next = rcvrs;
1390 rcvrs = rcvr;
1391 }
1392 }
1393 mutex_unlock(&intf->cmd_rcvrs_mutex);
1394 synchronize_rcu();
1395 while (rcvrs) {
1396 rcvr = rcvrs;
1397 rcvrs = rcvr->next;
1398 kfree(rcvr);
1399 }
1400
1401 kref_put(&intf->refcount, intf_free);
1402 module_put(intf->owner);
1403 }
1404
ipmi_destroy_user(struct ipmi_user * user)1405 int ipmi_destroy_user(struct ipmi_user *user)
1406 {
1407 _ipmi_destroy_user(user);
1408
1409 kref_put(&user->refcount, free_user);
1410
1411 return 0;
1412 }
1413 EXPORT_SYMBOL(ipmi_destroy_user);
1414
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1415 int ipmi_get_version(struct ipmi_user *user,
1416 unsigned char *major,
1417 unsigned char *minor)
1418 {
1419 struct ipmi_device_id id;
1420 int rv, index;
1421
1422 user = acquire_ipmi_user(user, &index);
1423 if (!user)
1424 return -ENODEV;
1425
1426 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1427 if (!rv) {
1428 *major = ipmi_version_major(&id);
1429 *minor = ipmi_version_minor(&id);
1430 }
1431 release_ipmi_user(user, index);
1432
1433 return rv;
1434 }
1435 EXPORT_SYMBOL(ipmi_get_version);
1436
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1437 int ipmi_set_my_address(struct ipmi_user *user,
1438 unsigned int channel,
1439 unsigned char address)
1440 {
1441 int index, rv = 0;
1442
1443 user = acquire_ipmi_user(user, &index);
1444 if (!user)
1445 return -ENODEV;
1446
1447 if (channel >= IPMI_MAX_CHANNELS) {
1448 rv = -EINVAL;
1449 } else {
1450 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1451 user->intf->addrinfo[channel].address = address;
1452 }
1453 release_ipmi_user(user, index);
1454
1455 return rv;
1456 }
1457 EXPORT_SYMBOL(ipmi_set_my_address);
1458
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1459 int ipmi_get_my_address(struct ipmi_user *user,
1460 unsigned int channel,
1461 unsigned char *address)
1462 {
1463 int index, rv = 0;
1464
1465 user = acquire_ipmi_user(user, &index);
1466 if (!user)
1467 return -ENODEV;
1468
1469 if (channel >= IPMI_MAX_CHANNELS) {
1470 rv = -EINVAL;
1471 } else {
1472 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1473 *address = user->intf->addrinfo[channel].address;
1474 }
1475 release_ipmi_user(user, index);
1476
1477 return rv;
1478 }
1479 EXPORT_SYMBOL(ipmi_get_my_address);
1480
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1481 int ipmi_set_my_LUN(struct ipmi_user *user,
1482 unsigned int channel,
1483 unsigned char LUN)
1484 {
1485 int index, rv = 0;
1486
1487 user = acquire_ipmi_user(user, &index);
1488 if (!user)
1489 return -ENODEV;
1490
1491 if (channel >= IPMI_MAX_CHANNELS) {
1492 rv = -EINVAL;
1493 } else {
1494 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1495 user->intf->addrinfo[channel].lun = LUN & 0x3;
1496 }
1497 release_ipmi_user(user, index);
1498
1499 return rv;
1500 }
1501 EXPORT_SYMBOL(ipmi_set_my_LUN);
1502
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1503 int ipmi_get_my_LUN(struct ipmi_user *user,
1504 unsigned int channel,
1505 unsigned char *address)
1506 {
1507 int index, rv = 0;
1508
1509 user = acquire_ipmi_user(user, &index);
1510 if (!user)
1511 return -ENODEV;
1512
1513 if (channel >= IPMI_MAX_CHANNELS) {
1514 rv = -EINVAL;
1515 } else {
1516 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1517 *address = user->intf->addrinfo[channel].lun;
1518 }
1519 release_ipmi_user(user, index);
1520
1521 return rv;
1522 }
1523 EXPORT_SYMBOL(ipmi_get_my_LUN);
1524
ipmi_get_maintenance_mode(struct ipmi_user * user)1525 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1526 {
1527 int mode, index;
1528 unsigned long flags;
1529
1530 user = acquire_ipmi_user(user, &index);
1531 if (!user)
1532 return -ENODEV;
1533
1534 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1535 mode = user->intf->maintenance_mode;
1536 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1537 release_ipmi_user(user, index);
1538
1539 return mode;
1540 }
1541 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1542
maintenance_mode_update(struct ipmi_smi * intf)1543 static void maintenance_mode_update(struct ipmi_smi *intf)
1544 {
1545 if (intf->handlers->set_maintenance_mode)
1546 intf->handlers->set_maintenance_mode(
1547 intf->send_info, intf->maintenance_mode_enable);
1548 }
1549
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1550 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1551 {
1552 int rv = 0, index;
1553 unsigned long flags;
1554 struct ipmi_smi *intf = user->intf;
1555
1556 user = acquire_ipmi_user(user, &index);
1557 if (!user)
1558 return -ENODEV;
1559
1560 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1561 if (intf->maintenance_mode != mode) {
1562 switch (mode) {
1563 case IPMI_MAINTENANCE_MODE_AUTO:
1564 intf->maintenance_mode_enable
1565 = (intf->auto_maintenance_timeout > 0);
1566 break;
1567
1568 case IPMI_MAINTENANCE_MODE_OFF:
1569 intf->maintenance_mode_enable = false;
1570 break;
1571
1572 case IPMI_MAINTENANCE_MODE_ON:
1573 intf->maintenance_mode_enable = true;
1574 break;
1575
1576 default:
1577 rv = -EINVAL;
1578 goto out_unlock;
1579 }
1580 intf->maintenance_mode = mode;
1581
1582 maintenance_mode_update(intf);
1583 }
1584 out_unlock:
1585 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1586 release_ipmi_user(user, index);
1587
1588 return rv;
1589 }
1590 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1591
ipmi_set_gets_events(struct ipmi_user * user,bool val)1592 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1593 {
1594 unsigned long flags;
1595 struct ipmi_smi *intf = user->intf;
1596 struct ipmi_recv_msg *msg, *msg2;
1597 struct list_head msgs;
1598 int index;
1599
1600 user = acquire_ipmi_user(user, &index);
1601 if (!user)
1602 return -ENODEV;
1603
1604 INIT_LIST_HEAD(&msgs);
1605
1606 spin_lock_irqsave(&intf->events_lock, flags);
1607 if (user->gets_events == val)
1608 goto out;
1609
1610 user->gets_events = val;
1611
1612 if (val) {
1613 if (atomic_inc_return(&intf->event_waiters) == 1)
1614 need_waiter(intf);
1615 } else {
1616 atomic_dec(&intf->event_waiters);
1617 }
1618
1619 if (intf->delivering_events)
1620 /*
1621 * Another thread is delivering events for this, so
1622 * let it handle any new events.
1623 */
1624 goto out;
1625
1626 /* Deliver any queued events. */
1627 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1628 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1629 list_move_tail(&msg->link, &msgs);
1630 intf->waiting_events_count = 0;
1631 if (intf->event_msg_printed) {
1632 dev_warn(intf->si_dev, "Event queue no longer full\n");
1633 intf->event_msg_printed = 0;
1634 }
1635
1636 intf->delivering_events = 1;
1637 spin_unlock_irqrestore(&intf->events_lock, flags);
1638
1639 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1640 msg->user = user;
1641 kref_get(&user->refcount);
1642 deliver_local_response(intf, msg);
1643 }
1644
1645 spin_lock_irqsave(&intf->events_lock, flags);
1646 intf->delivering_events = 0;
1647 }
1648
1649 out:
1650 spin_unlock_irqrestore(&intf->events_lock, flags);
1651 release_ipmi_user(user, index);
1652
1653 return 0;
1654 }
1655 EXPORT_SYMBOL(ipmi_set_gets_events);
1656
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1657 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1658 unsigned char netfn,
1659 unsigned char cmd,
1660 unsigned char chan)
1661 {
1662 struct cmd_rcvr *rcvr;
1663
1664 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1665 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1666 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1667 && (rcvr->chans & (1 << chan)))
1668 return rcvr;
1669 }
1670 return NULL;
1671 }
1672
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1673 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1674 unsigned char netfn,
1675 unsigned char cmd,
1676 unsigned int chans)
1677 {
1678 struct cmd_rcvr *rcvr;
1679
1680 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1681 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1682 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1683 && (rcvr->chans & chans))
1684 return 0;
1685 }
1686 return 1;
1687 }
1688
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1689 int ipmi_register_for_cmd(struct ipmi_user *user,
1690 unsigned char netfn,
1691 unsigned char cmd,
1692 unsigned int chans)
1693 {
1694 struct ipmi_smi *intf = user->intf;
1695 struct cmd_rcvr *rcvr;
1696 int rv = 0, index;
1697
1698 user = acquire_ipmi_user(user, &index);
1699 if (!user)
1700 return -ENODEV;
1701
1702 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1703 if (!rcvr) {
1704 rv = -ENOMEM;
1705 goto out_release;
1706 }
1707 rcvr->cmd = cmd;
1708 rcvr->netfn = netfn;
1709 rcvr->chans = chans;
1710 rcvr->user = user;
1711
1712 mutex_lock(&intf->cmd_rcvrs_mutex);
1713 /* Make sure the command/netfn is not already registered. */
1714 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1715 rv = -EBUSY;
1716 goto out_unlock;
1717 }
1718
1719 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1720
1721 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1722
1723 out_unlock:
1724 mutex_unlock(&intf->cmd_rcvrs_mutex);
1725 if (rv)
1726 kfree(rcvr);
1727 out_release:
1728 release_ipmi_user(user, index);
1729
1730 return rv;
1731 }
1732 EXPORT_SYMBOL(ipmi_register_for_cmd);
1733
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1734 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1735 unsigned char netfn,
1736 unsigned char cmd,
1737 unsigned int chans)
1738 {
1739 struct ipmi_smi *intf = user->intf;
1740 struct cmd_rcvr *rcvr;
1741 struct cmd_rcvr *rcvrs = NULL;
1742 int i, rv = -ENOENT, index;
1743
1744 user = acquire_ipmi_user(user, &index);
1745 if (!user)
1746 return -ENODEV;
1747
1748 mutex_lock(&intf->cmd_rcvrs_mutex);
1749 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1750 if (((1 << i) & chans) == 0)
1751 continue;
1752 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1753 if (rcvr == NULL)
1754 continue;
1755 if (rcvr->user == user) {
1756 rv = 0;
1757 rcvr->chans &= ~chans;
1758 if (rcvr->chans == 0) {
1759 list_del_rcu(&rcvr->link);
1760 rcvr->next = rcvrs;
1761 rcvrs = rcvr;
1762 }
1763 }
1764 }
1765 mutex_unlock(&intf->cmd_rcvrs_mutex);
1766 synchronize_rcu();
1767 release_ipmi_user(user, index);
1768 while (rcvrs) {
1769 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1770 rcvr = rcvrs;
1771 rcvrs = rcvr->next;
1772 kfree(rcvr);
1773 }
1774
1775 return rv;
1776 }
1777 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1778
1779 unsigned char
ipmb_checksum(unsigned char * data,int size)1780 ipmb_checksum(unsigned char *data, int size)
1781 {
1782 unsigned char csum = 0;
1783
1784 for (; size > 0; size--, data++)
1785 csum += *data;
1786
1787 return -csum;
1788 }
1789 EXPORT_SYMBOL(ipmb_checksum);
1790
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1791 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1792 struct kernel_ipmi_msg *msg,
1793 struct ipmi_ipmb_addr *ipmb_addr,
1794 long msgid,
1795 unsigned char ipmb_seq,
1796 int broadcast,
1797 unsigned char source_address,
1798 unsigned char source_lun)
1799 {
1800 int i = broadcast;
1801
1802 /* Format the IPMB header data. */
1803 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1804 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1805 smi_msg->data[2] = ipmb_addr->channel;
1806 if (broadcast)
1807 smi_msg->data[3] = 0;
1808 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1809 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1810 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1811 smi_msg->data[i+6] = source_address;
1812 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1813 smi_msg->data[i+8] = msg->cmd;
1814
1815 /* Now tack on the data to the message. */
1816 if (msg->data_len > 0)
1817 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1818 smi_msg->data_size = msg->data_len + 9;
1819
1820 /* Now calculate the checksum and tack it on. */
1821 smi_msg->data[i+smi_msg->data_size]
1822 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1823
1824 /*
1825 * Add on the checksum size and the offset from the
1826 * broadcast.
1827 */
1828 smi_msg->data_size += 1 + i;
1829
1830 smi_msg->msgid = msgid;
1831 }
1832
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1833 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1834 struct kernel_ipmi_msg *msg,
1835 struct ipmi_lan_addr *lan_addr,
1836 long msgid,
1837 unsigned char ipmb_seq,
1838 unsigned char source_lun)
1839 {
1840 /* Format the IPMB header data. */
1841 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1842 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1843 smi_msg->data[2] = lan_addr->channel;
1844 smi_msg->data[3] = lan_addr->session_handle;
1845 smi_msg->data[4] = lan_addr->remote_SWID;
1846 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1847 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1848 smi_msg->data[7] = lan_addr->local_SWID;
1849 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1850 smi_msg->data[9] = msg->cmd;
1851
1852 /* Now tack on the data to the message. */
1853 if (msg->data_len > 0)
1854 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1855 smi_msg->data_size = msg->data_len + 10;
1856
1857 /* Now calculate the checksum and tack it on. */
1858 smi_msg->data[smi_msg->data_size]
1859 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1860
1861 /*
1862 * Add on the checksum size and the offset from the
1863 * broadcast.
1864 */
1865 smi_msg->data_size += 1;
1866
1867 smi_msg->msgid = msgid;
1868 }
1869
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1870 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1871 struct ipmi_smi_msg *smi_msg,
1872 int priority)
1873 {
1874 if (intf->curr_msg) {
1875 if (priority > 0)
1876 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1877 else
1878 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1879 smi_msg = NULL;
1880 } else {
1881 intf->curr_msg = smi_msg;
1882 }
1883
1884 return smi_msg;
1885 }
1886
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1887 static void smi_send(struct ipmi_smi *intf,
1888 const struct ipmi_smi_handlers *handlers,
1889 struct ipmi_smi_msg *smi_msg, int priority)
1890 {
1891 int run_to_completion = intf->run_to_completion;
1892 unsigned long flags = 0;
1893
1894 if (!run_to_completion)
1895 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1896 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1897
1898 if (!run_to_completion)
1899 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1900
1901 if (smi_msg)
1902 handlers->sender(intf->send_info, smi_msg);
1903 }
1904
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1905 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1906 {
1907 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1908 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1909 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1910 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1911 }
1912
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1913 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1914 struct ipmi_addr *addr,
1915 long msgid,
1916 struct kernel_ipmi_msg *msg,
1917 struct ipmi_smi_msg *smi_msg,
1918 struct ipmi_recv_msg *recv_msg,
1919 int retries,
1920 unsigned int retry_time_ms)
1921 {
1922 struct ipmi_system_interface_addr *smi_addr;
1923
1924 if (msg->netfn & 1)
1925 /* Responses are not allowed to the SMI. */
1926 return -EINVAL;
1927
1928 smi_addr = (struct ipmi_system_interface_addr *) addr;
1929 if (smi_addr->lun > 3) {
1930 ipmi_inc_stat(intf, sent_invalid_commands);
1931 return -EINVAL;
1932 }
1933
1934 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1935
1936 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1937 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1938 || (msg->cmd == IPMI_GET_MSG_CMD)
1939 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1940 /*
1941 * We don't let the user do these, since we manage
1942 * the sequence numbers.
1943 */
1944 ipmi_inc_stat(intf, sent_invalid_commands);
1945 return -EINVAL;
1946 }
1947
1948 if (is_maintenance_mode_cmd(msg)) {
1949 unsigned long flags;
1950
1951 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1952 intf->auto_maintenance_timeout
1953 = maintenance_mode_timeout_ms;
1954 if (!intf->maintenance_mode
1955 && !intf->maintenance_mode_enable) {
1956 intf->maintenance_mode_enable = true;
1957 maintenance_mode_update(intf);
1958 }
1959 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1960 flags);
1961 }
1962
1963 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1964 ipmi_inc_stat(intf, sent_invalid_commands);
1965 return -EMSGSIZE;
1966 }
1967
1968 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1969 smi_msg->data[1] = msg->cmd;
1970 smi_msg->msgid = msgid;
1971 smi_msg->user_data = recv_msg;
1972 if (msg->data_len > 0)
1973 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1974 smi_msg->data_size = msg->data_len + 2;
1975 ipmi_inc_stat(intf, sent_local_commands);
1976
1977 return 0;
1978 }
1979
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1980 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1981 struct ipmi_addr *addr,
1982 long msgid,
1983 struct kernel_ipmi_msg *msg,
1984 struct ipmi_smi_msg *smi_msg,
1985 struct ipmi_recv_msg *recv_msg,
1986 unsigned char source_address,
1987 unsigned char source_lun,
1988 int retries,
1989 unsigned int retry_time_ms)
1990 {
1991 struct ipmi_ipmb_addr *ipmb_addr;
1992 unsigned char ipmb_seq;
1993 long seqid;
1994 int broadcast = 0;
1995 struct ipmi_channel *chans;
1996 int rv = 0;
1997
1998 if (addr->channel >= IPMI_MAX_CHANNELS) {
1999 ipmi_inc_stat(intf, sent_invalid_commands);
2000 return -EINVAL;
2001 }
2002
2003 chans = READ_ONCE(intf->channel_list)->c;
2004
2005 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
2006 ipmi_inc_stat(intf, sent_invalid_commands);
2007 return -EINVAL;
2008 }
2009
2010 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2011 /*
2012 * Broadcasts add a zero at the beginning of the
2013 * message, but otherwise is the same as an IPMB
2014 * address.
2015 */
2016 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2017 broadcast = 1;
2018 retries = 0; /* Don't retry broadcasts. */
2019 }
2020
2021 /*
2022 * 9 for the header and 1 for the checksum, plus
2023 * possibly one for the broadcast.
2024 */
2025 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2026 ipmi_inc_stat(intf, sent_invalid_commands);
2027 return -EMSGSIZE;
2028 }
2029
2030 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2031 if (ipmb_addr->lun > 3) {
2032 ipmi_inc_stat(intf, sent_invalid_commands);
2033 return -EINVAL;
2034 }
2035
2036 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2037
2038 if (recv_msg->msg.netfn & 0x1) {
2039 /*
2040 * It's a response, so use the user's sequence
2041 * from msgid.
2042 */
2043 ipmi_inc_stat(intf, sent_ipmb_responses);
2044 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2045 msgid, broadcast,
2046 source_address, source_lun);
2047
2048 /*
2049 * Save the receive message so we can use it
2050 * to deliver the response.
2051 */
2052 smi_msg->user_data = recv_msg;
2053 } else {
2054 /* It's a command, so get a sequence for it. */
2055 unsigned long flags;
2056
2057 spin_lock_irqsave(&intf->seq_lock, flags);
2058
2059 if (is_maintenance_mode_cmd(msg))
2060 intf->ipmb_maintenance_mode_timeout =
2061 maintenance_mode_timeout_ms;
2062
2063 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2064 /* Different default in maintenance mode */
2065 retry_time_ms = default_maintenance_retry_ms;
2066
2067 /*
2068 * Create a sequence number with a 1 second
2069 * timeout and 4 retries.
2070 */
2071 rv = intf_next_seq(intf,
2072 recv_msg,
2073 retry_time_ms,
2074 retries,
2075 broadcast,
2076 &ipmb_seq,
2077 &seqid);
2078 if (rv)
2079 /*
2080 * We have used up all the sequence numbers,
2081 * probably, so abort.
2082 */
2083 goto out_err;
2084
2085 ipmi_inc_stat(intf, sent_ipmb_commands);
2086
2087 /*
2088 * Store the sequence number in the message,
2089 * so that when the send message response
2090 * comes back we can start the timer.
2091 */
2092 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2093 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2094 ipmb_seq, broadcast,
2095 source_address, source_lun);
2096
2097 /*
2098 * Copy the message into the recv message data, so we
2099 * can retransmit it later if necessary.
2100 */
2101 memcpy(recv_msg->msg_data, smi_msg->data,
2102 smi_msg->data_size);
2103 recv_msg->msg.data = recv_msg->msg_data;
2104 recv_msg->msg.data_len = smi_msg->data_size;
2105
2106 /*
2107 * We don't unlock until here, because we need
2108 * to copy the completed message into the
2109 * recv_msg before we release the lock.
2110 * Otherwise, race conditions may bite us. I
2111 * know that's pretty paranoid, but I prefer
2112 * to be correct.
2113 */
2114 out_err:
2115 spin_unlock_irqrestore(&intf->seq_lock, flags);
2116 }
2117
2118 return rv;
2119 }
2120
i_ipmi_req_ipmb_direct(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun)2121 static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf,
2122 struct ipmi_addr *addr,
2123 long msgid,
2124 struct kernel_ipmi_msg *msg,
2125 struct ipmi_smi_msg *smi_msg,
2126 struct ipmi_recv_msg *recv_msg,
2127 unsigned char source_lun)
2128 {
2129 struct ipmi_ipmb_direct_addr *daddr;
2130 bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2131
2132 if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2133 return -EAFNOSUPPORT;
2134
2135 /* Responses must have a completion code. */
2136 if (!is_cmd && msg->data_len < 1) {
2137 ipmi_inc_stat(intf, sent_invalid_commands);
2138 return -EINVAL;
2139 }
2140
2141 if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2142 ipmi_inc_stat(intf, sent_invalid_commands);
2143 return -EMSGSIZE;
2144 }
2145
2146 daddr = (struct ipmi_ipmb_direct_addr *) addr;
2147 if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2148 ipmi_inc_stat(intf, sent_invalid_commands);
2149 return -EINVAL;
2150 }
2151
2152 smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2153 smi_msg->msgid = msgid;
2154
2155 if (is_cmd) {
2156 smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2157 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2158 } else {
2159 smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2160 smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2161 }
2162 smi_msg->data[1] = daddr->slave_addr;
2163 smi_msg->data[3] = msg->cmd;
2164
2165 memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2166 smi_msg->data_size = msg->data_len + 4;
2167
2168 smi_msg->user_data = recv_msg;
2169
2170 return 0;
2171 }
2172
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2173 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2174 struct ipmi_addr *addr,
2175 long msgid,
2176 struct kernel_ipmi_msg *msg,
2177 struct ipmi_smi_msg *smi_msg,
2178 struct ipmi_recv_msg *recv_msg,
2179 unsigned char source_lun,
2180 int retries,
2181 unsigned int retry_time_ms)
2182 {
2183 struct ipmi_lan_addr *lan_addr;
2184 unsigned char ipmb_seq;
2185 long seqid;
2186 struct ipmi_channel *chans;
2187 int rv = 0;
2188
2189 if (addr->channel >= IPMI_MAX_CHANNELS) {
2190 ipmi_inc_stat(intf, sent_invalid_commands);
2191 return -EINVAL;
2192 }
2193
2194 chans = READ_ONCE(intf->channel_list)->c;
2195
2196 if ((chans[addr->channel].medium
2197 != IPMI_CHANNEL_MEDIUM_8023LAN)
2198 && (chans[addr->channel].medium
2199 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2200 ipmi_inc_stat(intf, sent_invalid_commands);
2201 return -EINVAL;
2202 }
2203
2204 /* 11 for the header and 1 for the checksum. */
2205 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2206 ipmi_inc_stat(intf, sent_invalid_commands);
2207 return -EMSGSIZE;
2208 }
2209
2210 lan_addr = (struct ipmi_lan_addr *) addr;
2211 if (lan_addr->lun > 3) {
2212 ipmi_inc_stat(intf, sent_invalid_commands);
2213 return -EINVAL;
2214 }
2215
2216 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2217
2218 if (recv_msg->msg.netfn & 0x1) {
2219 /*
2220 * It's a response, so use the user's sequence
2221 * from msgid.
2222 */
2223 ipmi_inc_stat(intf, sent_lan_responses);
2224 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2225 msgid, source_lun);
2226
2227 /*
2228 * Save the receive message so we can use it
2229 * to deliver the response.
2230 */
2231 smi_msg->user_data = recv_msg;
2232 } else {
2233 /* It's a command, so get a sequence for it. */
2234 unsigned long flags;
2235
2236 spin_lock_irqsave(&intf->seq_lock, flags);
2237
2238 /*
2239 * Create a sequence number with a 1 second
2240 * timeout and 4 retries.
2241 */
2242 rv = intf_next_seq(intf,
2243 recv_msg,
2244 retry_time_ms,
2245 retries,
2246 0,
2247 &ipmb_seq,
2248 &seqid);
2249 if (rv)
2250 /*
2251 * We have used up all the sequence numbers,
2252 * probably, so abort.
2253 */
2254 goto out_err;
2255
2256 ipmi_inc_stat(intf, sent_lan_commands);
2257
2258 /*
2259 * Store the sequence number in the message,
2260 * so that when the send message response
2261 * comes back we can start the timer.
2262 */
2263 format_lan_msg(smi_msg, msg, lan_addr,
2264 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2265 ipmb_seq, source_lun);
2266
2267 /*
2268 * Copy the message into the recv message data, so we
2269 * can retransmit it later if necessary.
2270 */
2271 memcpy(recv_msg->msg_data, smi_msg->data,
2272 smi_msg->data_size);
2273 recv_msg->msg.data = recv_msg->msg_data;
2274 recv_msg->msg.data_len = smi_msg->data_size;
2275
2276 /*
2277 * We don't unlock until here, because we need
2278 * to copy the completed message into the
2279 * recv_msg before we release the lock.
2280 * Otherwise, race conditions may bite us. I
2281 * know that's pretty paranoid, but I prefer
2282 * to be correct.
2283 */
2284 out_err:
2285 spin_unlock_irqrestore(&intf->seq_lock, flags);
2286 }
2287
2288 return rv;
2289 }
2290
2291 /*
2292 * Separate from ipmi_request so that the user does not have to be
2293 * supplied in certain circumstances (mainly at panic time). If
2294 * messages are supplied, they will be freed, even if an error
2295 * occurs.
2296 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2297 static int i_ipmi_request(struct ipmi_user *user,
2298 struct ipmi_smi *intf,
2299 struct ipmi_addr *addr,
2300 long msgid,
2301 struct kernel_ipmi_msg *msg,
2302 void *user_msg_data,
2303 void *supplied_smi,
2304 struct ipmi_recv_msg *supplied_recv,
2305 int priority,
2306 unsigned char source_address,
2307 unsigned char source_lun,
2308 int retries,
2309 unsigned int retry_time_ms)
2310 {
2311 struct ipmi_smi_msg *smi_msg;
2312 struct ipmi_recv_msg *recv_msg;
2313 int rv = 0;
2314
2315 if (user) {
2316 if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2317 /* Decrement will happen at the end of the routine. */
2318 rv = -EBUSY;
2319 goto out;
2320 }
2321 }
2322
2323 if (supplied_recv)
2324 recv_msg = supplied_recv;
2325 else {
2326 recv_msg = ipmi_alloc_recv_msg();
2327 if (recv_msg == NULL) {
2328 rv = -ENOMEM;
2329 goto out;
2330 }
2331 }
2332 recv_msg->user_msg_data = user_msg_data;
2333
2334 if (supplied_smi)
2335 smi_msg = supplied_smi;
2336 else {
2337 smi_msg = ipmi_alloc_smi_msg();
2338 if (smi_msg == NULL) {
2339 if (!supplied_recv)
2340 ipmi_free_recv_msg(recv_msg);
2341 rv = -ENOMEM;
2342 goto out;
2343 }
2344 }
2345
2346 rcu_read_lock();
2347 if (intf->in_shutdown) {
2348 rv = -ENODEV;
2349 goto out_err;
2350 }
2351
2352 recv_msg->user = user;
2353 if (user)
2354 /* The put happens when the message is freed. */
2355 kref_get(&user->refcount);
2356 recv_msg->msgid = msgid;
2357 /*
2358 * Store the message to send in the receive message so timeout
2359 * responses can get the proper response data.
2360 */
2361 recv_msg->msg = *msg;
2362
2363 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2364 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2365 recv_msg, retries, retry_time_ms);
2366 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2367 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2368 source_address, source_lun,
2369 retries, retry_time_ms);
2370 } else if (is_ipmb_direct_addr(addr)) {
2371 rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2372 recv_msg, source_lun);
2373 } else if (is_lan_addr(addr)) {
2374 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2375 source_lun, retries, retry_time_ms);
2376 } else {
2377 /* Unknown address type. */
2378 ipmi_inc_stat(intf, sent_invalid_commands);
2379 rv = -EINVAL;
2380 }
2381
2382 if (rv) {
2383 out_err:
2384 ipmi_free_smi_msg(smi_msg);
2385 ipmi_free_recv_msg(recv_msg);
2386 } else {
2387 dev_dbg(intf->si_dev, "Send: %*ph\n",
2388 smi_msg->data_size, smi_msg->data);
2389
2390 smi_send(intf, intf->handlers, smi_msg, priority);
2391 }
2392 rcu_read_unlock();
2393
2394 out:
2395 if (rv && user)
2396 atomic_dec(&user->nr_msgs);
2397 return rv;
2398 }
2399
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2400 static int check_addr(struct ipmi_smi *intf,
2401 struct ipmi_addr *addr,
2402 unsigned char *saddr,
2403 unsigned char *lun)
2404 {
2405 if (addr->channel >= IPMI_MAX_CHANNELS)
2406 return -EINVAL;
2407 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2408 *lun = intf->addrinfo[addr->channel].lun;
2409 *saddr = intf->addrinfo[addr->channel].address;
2410 return 0;
2411 }
2412
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2413 int ipmi_request_settime(struct ipmi_user *user,
2414 struct ipmi_addr *addr,
2415 long msgid,
2416 struct kernel_ipmi_msg *msg,
2417 void *user_msg_data,
2418 int priority,
2419 int retries,
2420 unsigned int retry_time_ms)
2421 {
2422 unsigned char saddr = 0, lun = 0;
2423 int rv, index;
2424
2425 if (!user)
2426 return -EINVAL;
2427
2428 user = acquire_ipmi_user(user, &index);
2429 if (!user)
2430 return -ENODEV;
2431
2432 rv = check_addr(user->intf, addr, &saddr, &lun);
2433 if (!rv)
2434 rv = i_ipmi_request(user,
2435 user->intf,
2436 addr,
2437 msgid,
2438 msg,
2439 user_msg_data,
2440 NULL, NULL,
2441 priority,
2442 saddr,
2443 lun,
2444 retries,
2445 retry_time_ms);
2446
2447 release_ipmi_user(user, index);
2448 return rv;
2449 }
2450 EXPORT_SYMBOL(ipmi_request_settime);
2451
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2452 int ipmi_request_supply_msgs(struct ipmi_user *user,
2453 struct ipmi_addr *addr,
2454 long msgid,
2455 struct kernel_ipmi_msg *msg,
2456 void *user_msg_data,
2457 void *supplied_smi,
2458 struct ipmi_recv_msg *supplied_recv,
2459 int priority)
2460 {
2461 unsigned char saddr = 0, lun = 0;
2462 int rv, index;
2463
2464 if (!user)
2465 return -EINVAL;
2466
2467 user = acquire_ipmi_user(user, &index);
2468 if (!user)
2469 return -ENODEV;
2470
2471 rv = check_addr(user->intf, addr, &saddr, &lun);
2472 if (!rv)
2473 rv = i_ipmi_request(user,
2474 user->intf,
2475 addr,
2476 msgid,
2477 msg,
2478 user_msg_data,
2479 supplied_smi,
2480 supplied_recv,
2481 priority,
2482 saddr,
2483 lun,
2484 -1, 0);
2485
2486 release_ipmi_user(user, index);
2487 return rv;
2488 }
2489 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2490
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2491 static void bmc_device_id_handler(struct ipmi_smi *intf,
2492 struct ipmi_recv_msg *msg)
2493 {
2494 int rv;
2495
2496 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2497 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2498 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2499 dev_warn(intf->si_dev,
2500 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2501 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2502 return;
2503 }
2504
2505 if (msg->msg.data[0]) {
2506 dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2507 msg->msg.data[0]);
2508 intf->bmc->dyn_id_set = 0;
2509 goto out;
2510 }
2511
2512 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2513 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2514 if (rv) {
2515 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2516 /* record completion code when error */
2517 intf->bmc->cc = msg->msg.data[0];
2518 intf->bmc->dyn_id_set = 0;
2519 } else {
2520 /*
2521 * Make sure the id data is available before setting
2522 * dyn_id_set.
2523 */
2524 smp_wmb();
2525 intf->bmc->dyn_id_set = 1;
2526 }
2527 out:
2528 wake_up(&intf->waitq);
2529 }
2530
2531 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2532 send_get_device_id_cmd(struct ipmi_smi *intf)
2533 {
2534 struct ipmi_system_interface_addr si;
2535 struct kernel_ipmi_msg msg;
2536
2537 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2538 si.channel = IPMI_BMC_CHANNEL;
2539 si.lun = 0;
2540
2541 msg.netfn = IPMI_NETFN_APP_REQUEST;
2542 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2543 msg.data = NULL;
2544 msg.data_len = 0;
2545
2546 return i_ipmi_request(NULL,
2547 intf,
2548 (struct ipmi_addr *) &si,
2549 0,
2550 &msg,
2551 intf,
2552 NULL,
2553 NULL,
2554 0,
2555 intf->addrinfo[0].address,
2556 intf->addrinfo[0].lun,
2557 -1, 0);
2558 }
2559
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2560 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2561 {
2562 int rv;
2563 unsigned int retry_count = 0;
2564
2565 intf->null_user_handler = bmc_device_id_handler;
2566
2567 retry:
2568 bmc->cc = 0;
2569 bmc->dyn_id_set = 2;
2570
2571 rv = send_get_device_id_cmd(intf);
2572 if (rv)
2573 goto out_reset_handler;
2574
2575 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2576
2577 if (!bmc->dyn_id_set) {
2578 if (bmc->cc != IPMI_CC_NO_ERROR &&
2579 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2580 msleep(500);
2581 dev_warn(intf->si_dev,
2582 "BMC returned 0x%2.2x, retry get bmc device id\n",
2583 bmc->cc);
2584 goto retry;
2585 }
2586
2587 rv = -EIO; /* Something went wrong in the fetch. */
2588 }
2589
2590 /* dyn_id_set makes the id data available. */
2591 smp_rmb();
2592
2593 out_reset_handler:
2594 intf->null_user_handler = NULL;
2595
2596 return rv;
2597 }
2598
2599 /*
2600 * Fetch the device id for the bmc/interface. You must pass in either
2601 * bmc or intf, this code will get the other one. If the data has
2602 * been recently fetched, this will just use the cached data. Otherwise
2603 * it will run a new fetch.
2604 *
2605 * Except for the first time this is called (in ipmi_add_smi()),
2606 * this will always return good data;
2607 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2608 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2609 struct ipmi_device_id *id,
2610 bool *guid_set, guid_t *guid, int intf_num)
2611 {
2612 int rv = 0;
2613 int prev_dyn_id_set, prev_guid_set;
2614 bool intf_set = intf != NULL;
2615
2616 if (!intf) {
2617 mutex_lock(&bmc->dyn_mutex);
2618 retry_bmc_lock:
2619 if (list_empty(&bmc->intfs)) {
2620 mutex_unlock(&bmc->dyn_mutex);
2621 return -ENOENT;
2622 }
2623 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2624 bmc_link);
2625 kref_get(&intf->refcount);
2626 mutex_unlock(&bmc->dyn_mutex);
2627 mutex_lock(&intf->bmc_reg_mutex);
2628 mutex_lock(&bmc->dyn_mutex);
2629 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2630 bmc_link)) {
2631 mutex_unlock(&intf->bmc_reg_mutex);
2632 kref_put(&intf->refcount, intf_free);
2633 goto retry_bmc_lock;
2634 }
2635 } else {
2636 mutex_lock(&intf->bmc_reg_mutex);
2637 bmc = intf->bmc;
2638 mutex_lock(&bmc->dyn_mutex);
2639 kref_get(&intf->refcount);
2640 }
2641
2642 /* If we have a valid and current ID, just return that. */
2643 if (intf->in_bmc_register ||
2644 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2645 goto out_noprocessing;
2646
2647 prev_guid_set = bmc->dyn_guid_set;
2648 __get_guid(intf);
2649
2650 prev_dyn_id_set = bmc->dyn_id_set;
2651 rv = __get_device_id(intf, bmc);
2652 if (rv)
2653 goto out;
2654
2655 /*
2656 * The guid, device id, manufacturer id, and product id should
2657 * not change on a BMC. If it does we have to do some dancing.
2658 */
2659 if (!intf->bmc_registered
2660 || (!prev_guid_set && bmc->dyn_guid_set)
2661 || (!prev_dyn_id_set && bmc->dyn_id_set)
2662 || (prev_guid_set && bmc->dyn_guid_set
2663 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2664 || bmc->id.device_id != bmc->fetch_id.device_id
2665 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2666 || bmc->id.product_id != bmc->fetch_id.product_id) {
2667 struct ipmi_device_id id = bmc->fetch_id;
2668 int guid_set = bmc->dyn_guid_set;
2669 guid_t guid;
2670
2671 guid = bmc->fetch_guid;
2672 mutex_unlock(&bmc->dyn_mutex);
2673
2674 __ipmi_bmc_unregister(intf);
2675 /* Fill in the temporary BMC for good measure. */
2676 intf->bmc->id = id;
2677 intf->bmc->dyn_guid_set = guid_set;
2678 intf->bmc->guid = guid;
2679 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2680 need_waiter(intf); /* Retry later on an error. */
2681 else
2682 __scan_channels(intf, &id);
2683
2684
2685 if (!intf_set) {
2686 /*
2687 * We weren't given the interface on the
2688 * command line, so restart the operation on
2689 * the next interface for the BMC.
2690 */
2691 mutex_unlock(&intf->bmc_reg_mutex);
2692 mutex_lock(&bmc->dyn_mutex);
2693 goto retry_bmc_lock;
2694 }
2695
2696 /* We have a new BMC, set it up. */
2697 bmc = intf->bmc;
2698 mutex_lock(&bmc->dyn_mutex);
2699 goto out_noprocessing;
2700 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2701 /* Version info changes, scan the channels again. */
2702 __scan_channels(intf, &bmc->fetch_id);
2703
2704 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2705
2706 out:
2707 if (rv && prev_dyn_id_set) {
2708 rv = 0; /* Ignore failures if we have previous data. */
2709 bmc->dyn_id_set = prev_dyn_id_set;
2710 }
2711 if (!rv) {
2712 bmc->id = bmc->fetch_id;
2713 if (bmc->dyn_guid_set)
2714 bmc->guid = bmc->fetch_guid;
2715 else if (prev_guid_set)
2716 /*
2717 * The guid used to be valid and it failed to fetch,
2718 * just use the cached value.
2719 */
2720 bmc->dyn_guid_set = prev_guid_set;
2721 }
2722 out_noprocessing:
2723 if (!rv) {
2724 if (id)
2725 *id = bmc->id;
2726
2727 if (guid_set)
2728 *guid_set = bmc->dyn_guid_set;
2729
2730 if (guid && bmc->dyn_guid_set)
2731 *guid = bmc->guid;
2732 }
2733
2734 mutex_unlock(&bmc->dyn_mutex);
2735 mutex_unlock(&intf->bmc_reg_mutex);
2736
2737 kref_put(&intf->refcount, intf_free);
2738 return rv;
2739 }
2740
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2741 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2742 struct ipmi_device_id *id,
2743 bool *guid_set, guid_t *guid)
2744 {
2745 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2746 }
2747
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2748 static ssize_t device_id_show(struct device *dev,
2749 struct device_attribute *attr,
2750 char *buf)
2751 {
2752 struct bmc_device *bmc = to_bmc_device(dev);
2753 struct ipmi_device_id id;
2754 int rv;
2755
2756 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2757 if (rv)
2758 return rv;
2759
2760 return sysfs_emit(buf, "%u\n", id.device_id);
2761 }
2762 static DEVICE_ATTR_RO(device_id);
2763
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2764 static ssize_t provides_device_sdrs_show(struct device *dev,
2765 struct device_attribute *attr,
2766 char *buf)
2767 {
2768 struct bmc_device *bmc = to_bmc_device(dev);
2769 struct ipmi_device_id id;
2770 int rv;
2771
2772 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2773 if (rv)
2774 return rv;
2775
2776 return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2777 }
2778 static DEVICE_ATTR_RO(provides_device_sdrs);
2779
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2780 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2781 char *buf)
2782 {
2783 struct bmc_device *bmc = to_bmc_device(dev);
2784 struct ipmi_device_id id;
2785 int rv;
2786
2787 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2788 if (rv)
2789 return rv;
2790
2791 return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2792 }
2793 static DEVICE_ATTR_RO(revision);
2794
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2795 static ssize_t firmware_revision_show(struct device *dev,
2796 struct device_attribute *attr,
2797 char *buf)
2798 {
2799 struct bmc_device *bmc = to_bmc_device(dev);
2800 struct ipmi_device_id id;
2801 int rv;
2802
2803 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2804 if (rv)
2805 return rv;
2806
2807 return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2808 id.firmware_revision_2);
2809 }
2810 static DEVICE_ATTR_RO(firmware_revision);
2811
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2812 static ssize_t ipmi_version_show(struct device *dev,
2813 struct device_attribute *attr,
2814 char *buf)
2815 {
2816 struct bmc_device *bmc = to_bmc_device(dev);
2817 struct ipmi_device_id id;
2818 int rv;
2819
2820 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2821 if (rv)
2822 return rv;
2823
2824 return sysfs_emit(buf, "%u.%u\n",
2825 ipmi_version_major(&id),
2826 ipmi_version_minor(&id));
2827 }
2828 static DEVICE_ATTR_RO(ipmi_version);
2829
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2830 static ssize_t add_dev_support_show(struct device *dev,
2831 struct device_attribute *attr,
2832 char *buf)
2833 {
2834 struct bmc_device *bmc = to_bmc_device(dev);
2835 struct ipmi_device_id id;
2836 int rv;
2837
2838 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2839 if (rv)
2840 return rv;
2841
2842 return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2843 }
2844 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2845 NULL);
2846
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2847 static ssize_t manufacturer_id_show(struct device *dev,
2848 struct device_attribute *attr,
2849 char *buf)
2850 {
2851 struct bmc_device *bmc = to_bmc_device(dev);
2852 struct ipmi_device_id id;
2853 int rv;
2854
2855 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2856 if (rv)
2857 return rv;
2858
2859 return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2860 }
2861 static DEVICE_ATTR_RO(manufacturer_id);
2862
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2863 static ssize_t product_id_show(struct device *dev,
2864 struct device_attribute *attr,
2865 char *buf)
2866 {
2867 struct bmc_device *bmc = to_bmc_device(dev);
2868 struct ipmi_device_id id;
2869 int rv;
2870
2871 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2872 if (rv)
2873 return rv;
2874
2875 return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2876 }
2877 static DEVICE_ATTR_RO(product_id);
2878
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2879 static ssize_t aux_firmware_rev_show(struct device *dev,
2880 struct device_attribute *attr,
2881 char *buf)
2882 {
2883 struct bmc_device *bmc = to_bmc_device(dev);
2884 struct ipmi_device_id id;
2885 int rv;
2886
2887 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2888 if (rv)
2889 return rv;
2890
2891 return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2892 id.aux_firmware_revision[3],
2893 id.aux_firmware_revision[2],
2894 id.aux_firmware_revision[1],
2895 id.aux_firmware_revision[0]);
2896 }
2897 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2898
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2899 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2900 char *buf)
2901 {
2902 struct bmc_device *bmc = to_bmc_device(dev);
2903 bool guid_set;
2904 guid_t guid;
2905 int rv;
2906
2907 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2908 if (rv)
2909 return rv;
2910 if (!guid_set)
2911 return -ENOENT;
2912
2913 return sysfs_emit(buf, "%pUl\n", &guid);
2914 }
2915 static DEVICE_ATTR_RO(guid);
2916
2917 static struct attribute *bmc_dev_attrs[] = {
2918 &dev_attr_device_id.attr,
2919 &dev_attr_provides_device_sdrs.attr,
2920 &dev_attr_revision.attr,
2921 &dev_attr_firmware_revision.attr,
2922 &dev_attr_ipmi_version.attr,
2923 &dev_attr_additional_device_support.attr,
2924 &dev_attr_manufacturer_id.attr,
2925 &dev_attr_product_id.attr,
2926 &dev_attr_aux_firmware_revision.attr,
2927 &dev_attr_guid.attr,
2928 NULL
2929 };
2930
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2931 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2932 struct attribute *attr, int idx)
2933 {
2934 struct device *dev = kobj_to_dev(kobj);
2935 struct bmc_device *bmc = to_bmc_device(dev);
2936 umode_t mode = attr->mode;
2937 int rv;
2938
2939 if (attr == &dev_attr_aux_firmware_revision.attr) {
2940 struct ipmi_device_id id;
2941
2942 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2943 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2944 }
2945 if (attr == &dev_attr_guid.attr) {
2946 bool guid_set;
2947
2948 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2949 return (!rv && guid_set) ? mode : 0;
2950 }
2951 return mode;
2952 }
2953
2954 static const struct attribute_group bmc_dev_attr_group = {
2955 .attrs = bmc_dev_attrs,
2956 .is_visible = bmc_dev_attr_is_visible,
2957 };
2958
2959 static const struct attribute_group *bmc_dev_attr_groups[] = {
2960 &bmc_dev_attr_group,
2961 NULL
2962 };
2963
2964 static const struct device_type bmc_device_type = {
2965 .groups = bmc_dev_attr_groups,
2966 };
2967
__find_bmc_guid(struct device * dev,const void * data)2968 static int __find_bmc_guid(struct device *dev, const void *data)
2969 {
2970 const guid_t *guid = data;
2971 struct bmc_device *bmc;
2972 int rv;
2973
2974 if (dev->type != &bmc_device_type)
2975 return 0;
2976
2977 bmc = to_bmc_device(dev);
2978 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2979 if (rv)
2980 rv = kref_get_unless_zero(&bmc->usecount);
2981 return rv;
2982 }
2983
2984 /*
2985 * Returns with the bmc's usecount incremented, if it is non-NULL.
2986 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2987 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2988 guid_t *guid)
2989 {
2990 struct device *dev;
2991 struct bmc_device *bmc = NULL;
2992
2993 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2994 if (dev) {
2995 bmc = to_bmc_device(dev);
2996 put_device(dev);
2997 }
2998 return bmc;
2999 }
3000
3001 struct prod_dev_id {
3002 unsigned int product_id;
3003 unsigned char device_id;
3004 };
3005
__find_bmc_prod_dev_id(struct device * dev,const void * data)3006 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
3007 {
3008 const struct prod_dev_id *cid = data;
3009 struct bmc_device *bmc;
3010 int rv;
3011
3012 if (dev->type != &bmc_device_type)
3013 return 0;
3014
3015 bmc = to_bmc_device(dev);
3016 rv = (bmc->id.product_id == cid->product_id
3017 && bmc->id.device_id == cid->device_id);
3018 if (rv)
3019 rv = kref_get_unless_zero(&bmc->usecount);
3020 return rv;
3021 }
3022
3023 /*
3024 * Returns with the bmc's usecount incremented, if it is non-NULL.
3025 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)3026 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3027 struct device_driver *drv,
3028 unsigned int product_id, unsigned char device_id)
3029 {
3030 struct prod_dev_id id = {
3031 .product_id = product_id,
3032 .device_id = device_id,
3033 };
3034 struct device *dev;
3035 struct bmc_device *bmc = NULL;
3036
3037 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3038 if (dev) {
3039 bmc = to_bmc_device(dev);
3040 put_device(dev);
3041 }
3042 return bmc;
3043 }
3044
3045 static DEFINE_IDA(ipmi_bmc_ida);
3046
3047 static void
release_bmc_device(struct device * dev)3048 release_bmc_device(struct device *dev)
3049 {
3050 kfree(to_bmc_device(dev));
3051 }
3052
cleanup_bmc_work(struct work_struct * work)3053 static void cleanup_bmc_work(struct work_struct *work)
3054 {
3055 struct bmc_device *bmc = container_of(work, struct bmc_device,
3056 remove_work);
3057 int id = bmc->pdev.id; /* Unregister overwrites id */
3058
3059 platform_device_unregister(&bmc->pdev);
3060 ida_simple_remove(&ipmi_bmc_ida, id);
3061 }
3062
3063 static void
cleanup_bmc_device(struct kref * ref)3064 cleanup_bmc_device(struct kref *ref)
3065 {
3066 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3067
3068 /*
3069 * Remove the platform device in a work queue to avoid issues
3070 * with removing the device attributes while reading a device
3071 * attribute.
3072 */
3073 queue_work(remove_work_wq, &bmc->remove_work);
3074 }
3075
3076 /*
3077 * Must be called with intf->bmc_reg_mutex held.
3078 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)3079 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3080 {
3081 struct bmc_device *bmc = intf->bmc;
3082
3083 if (!intf->bmc_registered)
3084 return;
3085
3086 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3087 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3088 kfree(intf->my_dev_name);
3089 intf->my_dev_name = NULL;
3090
3091 mutex_lock(&bmc->dyn_mutex);
3092 list_del(&intf->bmc_link);
3093 mutex_unlock(&bmc->dyn_mutex);
3094 intf->bmc = &intf->tmp_bmc;
3095 kref_put(&bmc->usecount, cleanup_bmc_device);
3096 intf->bmc_registered = false;
3097 }
3098
ipmi_bmc_unregister(struct ipmi_smi * intf)3099 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3100 {
3101 mutex_lock(&intf->bmc_reg_mutex);
3102 __ipmi_bmc_unregister(intf);
3103 mutex_unlock(&intf->bmc_reg_mutex);
3104 }
3105
3106 /*
3107 * Must be called with intf->bmc_reg_mutex held.
3108 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)3109 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3110 struct ipmi_device_id *id,
3111 bool guid_set, guid_t *guid, int intf_num)
3112 {
3113 int rv;
3114 struct bmc_device *bmc;
3115 struct bmc_device *old_bmc;
3116
3117 /*
3118 * platform_device_register() can cause bmc_reg_mutex to
3119 * be claimed because of the is_visible functions of
3120 * the attributes. Eliminate possible recursion and
3121 * release the lock.
3122 */
3123 intf->in_bmc_register = true;
3124 mutex_unlock(&intf->bmc_reg_mutex);
3125
3126 /*
3127 * Try to find if there is an bmc_device struct
3128 * representing the interfaced BMC already
3129 */
3130 mutex_lock(&ipmidriver_mutex);
3131 if (guid_set)
3132 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3133 else
3134 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3135 id->product_id,
3136 id->device_id);
3137
3138 /*
3139 * If there is already an bmc_device, free the new one,
3140 * otherwise register the new BMC device
3141 */
3142 if (old_bmc) {
3143 bmc = old_bmc;
3144 /*
3145 * Note: old_bmc already has usecount incremented by
3146 * the BMC find functions.
3147 */
3148 intf->bmc = old_bmc;
3149 mutex_lock(&bmc->dyn_mutex);
3150 list_add_tail(&intf->bmc_link, &bmc->intfs);
3151 mutex_unlock(&bmc->dyn_mutex);
3152
3153 dev_info(intf->si_dev,
3154 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3155 bmc->id.manufacturer_id,
3156 bmc->id.product_id,
3157 bmc->id.device_id);
3158 } else {
3159 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3160 if (!bmc) {
3161 rv = -ENOMEM;
3162 goto out;
3163 }
3164 INIT_LIST_HEAD(&bmc->intfs);
3165 mutex_init(&bmc->dyn_mutex);
3166 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3167
3168 bmc->id = *id;
3169 bmc->dyn_id_set = 1;
3170 bmc->dyn_guid_set = guid_set;
3171 bmc->guid = *guid;
3172 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3173
3174 bmc->pdev.name = "ipmi_bmc";
3175
3176 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3177 if (rv < 0) {
3178 kfree(bmc);
3179 goto out;
3180 }
3181
3182 bmc->pdev.dev.driver = &ipmidriver.driver;
3183 bmc->pdev.id = rv;
3184 bmc->pdev.dev.release = release_bmc_device;
3185 bmc->pdev.dev.type = &bmc_device_type;
3186 kref_init(&bmc->usecount);
3187
3188 intf->bmc = bmc;
3189 mutex_lock(&bmc->dyn_mutex);
3190 list_add_tail(&intf->bmc_link, &bmc->intfs);
3191 mutex_unlock(&bmc->dyn_mutex);
3192
3193 rv = platform_device_register(&bmc->pdev);
3194 if (rv) {
3195 dev_err(intf->si_dev,
3196 "Unable to register bmc device: %d\n",
3197 rv);
3198 goto out_list_del;
3199 }
3200
3201 dev_info(intf->si_dev,
3202 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3203 bmc->id.manufacturer_id,
3204 bmc->id.product_id,
3205 bmc->id.device_id);
3206 }
3207
3208 /*
3209 * create symlink from system interface device to bmc device
3210 * and back.
3211 */
3212 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3213 if (rv) {
3214 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3215 goto out_put_bmc;
3216 }
3217
3218 if (intf_num == -1)
3219 intf_num = intf->intf_num;
3220 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3221 if (!intf->my_dev_name) {
3222 rv = -ENOMEM;
3223 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3224 rv);
3225 goto out_unlink1;
3226 }
3227
3228 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3229 intf->my_dev_name);
3230 if (rv) {
3231 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3232 rv);
3233 goto out_free_my_dev_name;
3234 }
3235
3236 intf->bmc_registered = true;
3237
3238 out:
3239 mutex_unlock(&ipmidriver_mutex);
3240 mutex_lock(&intf->bmc_reg_mutex);
3241 intf->in_bmc_register = false;
3242 return rv;
3243
3244
3245 out_free_my_dev_name:
3246 kfree(intf->my_dev_name);
3247 intf->my_dev_name = NULL;
3248
3249 out_unlink1:
3250 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3251
3252 out_put_bmc:
3253 mutex_lock(&bmc->dyn_mutex);
3254 list_del(&intf->bmc_link);
3255 mutex_unlock(&bmc->dyn_mutex);
3256 intf->bmc = &intf->tmp_bmc;
3257 kref_put(&bmc->usecount, cleanup_bmc_device);
3258 goto out;
3259
3260 out_list_del:
3261 mutex_lock(&bmc->dyn_mutex);
3262 list_del(&intf->bmc_link);
3263 mutex_unlock(&bmc->dyn_mutex);
3264 intf->bmc = &intf->tmp_bmc;
3265 put_device(&bmc->pdev.dev);
3266 goto out;
3267 }
3268
3269 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3270 send_guid_cmd(struct ipmi_smi *intf, int chan)
3271 {
3272 struct kernel_ipmi_msg msg;
3273 struct ipmi_system_interface_addr si;
3274
3275 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3276 si.channel = IPMI_BMC_CHANNEL;
3277 si.lun = 0;
3278
3279 msg.netfn = IPMI_NETFN_APP_REQUEST;
3280 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3281 msg.data = NULL;
3282 msg.data_len = 0;
3283 return i_ipmi_request(NULL,
3284 intf,
3285 (struct ipmi_addr *) &si,
3286 0,
3287 &msg,
3288 intf,
3289 NULL,
3290 NULL,
3291 0,
3292 intf->addrinfo[0].address,
3293 intf->addrinfo[0].lun,
3294 -1, 0);
3295 }
3296
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3297 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3298 {
3299 struct bmc_device *bmc = intf->bmc;
3300
3301 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3302 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3303 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3304 /* Not for me */
3305 return;
3306
3307 if (msg->msg.data[0] != 0) {
3308 /* Error from getting the GUID, the BMC doesn't have one. */
3309 bmc->dyn_guid_set = 0;
3310 goto out;
3311 }
3312
3313 if (msg->msg.data_len < UUID_SIZE + 1) {
3314 bmc->dyn_guid_set = 0;
3315 dev_warn(intf->si_dev,
3316 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3317 msg->msg.data_len, UUID_SIZE + 1);
3318 goto out;
3319 }
3320
3321 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3322 /*
3323 * Make sure the guid data is available before setting
3324 * dyn_guid_set.
3325 */
3326 smp_wmb();
3327 bmc->dyn_guid_set = 1;
3328 out:
3329 wake_up(&intf->waitq);
3330 }
3331
__get_guid(struct ipmi_smi * intf)3332 static void __get_guid(struct ipmi_smi *intf)
3333 {
3334 int rv;
3335 struct bmc_device *bmc = intf->bmc;
3336
3337 bmc->dyn_guid_set = 2;
3338 intf->null_user_handler = guid_handler;
3339 rv = send_guid_cmd(intf, 0);
3340 if (rv)
3341 /* Send failed, no GUID available. */
3342 bmc->dyn_guid_set = 0;
3343 else
3344 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3345
3346 /* dyn_guid_set makes the guid data available. */
3347 smp_rmb();
3348
3349 intf->null_user_handler = NULL;
3350 }
3351
3352 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3353 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3354 {
3355 struct kernel_ipmi_msg msg;
3356 unsigned char data[1];
3357 struct ipmi_system_interface_addr si;
3358
3359 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3360 si.channel = IPMI_BMC_CHANNEL;
3361 si.lun = 0;
3362
3363 msg.netfn = IPMI_NETFN_APP_REQUEST;
3364 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3365 msg.data = data;
3366 msg.data_len = 1;
3367 data[0] = chan;
3368 return i_ipmi_request(NULL,
3369 intf,
3370 (struct ipmi_addr *) &si,
3371 0,
3372 &msg,
3373 intf,
3374 NULL,
3375 NULL,
3376 0,
3377 intf->addrinfo[0].address,
3378 intf->addrinfo[0].lun,
3379 -1, 0);
3380 }
3381
3382 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3383 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3384 {
3385 int rv = 0;
3386 int ch;
3387 unsigned int set = intf->curr_working_cset;
3388 struct ipmi_channel *chans;
3389
3390 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3391 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3392 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3393 /* It's the one we want */
3394 if (msg->msg.data[0] != 0) {
3395 /* Got an error from the channel, just go on. */
3396 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3397 /*
3398 * If the MC does not support this
3399 * command, that is legal. We just
3400 * assume it has one IPMB at channel
3401 * zero.
3402 */
3403 intf->wchannels[set].c[0].medium
3404 = IPMI_CHANNEL_MEDIUM_IPMB;
3405 intf->wchannels[set].c[0].protocol
3406 = IPMI_CHANNEL_PROTOCOL_IPMB;
3407
3408 intf->channel_list = intf->wchannels + set;
3409 intf->channels_ready = true;
3410 wake_up(&intf->waitq);
3411 goto out;
3412 }
3413 goto next_channel;
3414 }
3415 if (msg->msg.data_len < 4) {
3416 /* Message not big enough, just go on. */
3417 goto next_channel;
3418 }
3419 ch = intf->curr_channel;
3420 chans = intf->wchannels[set].c;
3421 chans[ch].medium = msg->msg.data[2] & 0x7f;
3422 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3423
3424 next_channel:
3425 intf->curr_channel++;
3426 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3427 intf->channel_list = intf->wchannels + set;
3428 intf->channels_ready = true;
3429 wake_up(&intf->waitq);
3430 } else {
3431 intf->channel_list = intf->wchannels + set;
3432 intf->channels_ready = true;
3433 rv = send_channel_info_cmd(intf, intf->curr_channel);
3434 }
3435
3436 if (rv) {
3437 /* Got an error somehow, just give up. */
3438 dev_warn(intf->si_dev,
3439 "Error sending channel information for channel %d: %d\n",
3440 intf->curr_channel, rv);
3441
3442 intf->channel_list = intf->wchannels + set;
3443 intf->channels_ready = true;
3444 wake_up(&intf->waitq);
3445 }
3446 }
3447 out:
3448 return;
3449 }
3450
3451 /*
3452 * Must be holding intf->bmc_reg_mutex to call this.
3453 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3454 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3455 {
3456 int rv;
3457
3458 if (ipmi_version_major(id) > 1
3459 || (ipmi_version_major(id) == 1
3460 && ipmi_version_minor(id) >= 5)) {
3461 unsigned int set;
3462
3463 /*
3464 * Start scanning the channels to see what is
3465 * available.
3466 */
3467 set = !intf->curr_working_cset;
3468 intf->curr_working_cset = set;
3469 memset(&intf->wchannels[set], 0,
3470 sizeof(struct ipmi_channel_set));
3471
3472 intf->null_user_handler = channel_handler;
3473 intf->curr_channel = 0;
3474 rv = send_channel_info_cmd(intf, 0);
3475 if (rv) {
3476 dev_warn(intf->si_dev,
3477 "Error sending channel information for channel 0, %d\n",
3478 rv);
3479 intf->null_user_handler = NULL;
3480 return -EIO;
3481 }
3482
3483 /* Wait for the channel info to be read. */
3484 wait_event(intf->waitq, intf->channels_ready);
3485 intf->null_user_handler = NULL;
3486 } else {
3487 unsigned int set = intf->curr_working_cset;
3488
3489 /* Assume a single IPMB channel at zero. */
3490 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3491 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3492 intf->channel_list = intf->wchannels + set;
3493 intf->channels_ready = true;
3494 }
3495
3496 return 0;
3497 }
3498
ipmi_poll(struct ipmi_smi * intf)3499 static void ipmi_poll(struct ipmi_smi *intf)
3500 {
3501 if (intf->handlers->poll)
3502 intf->handlers->poll(intf->send_info);
3503 /* In case something came in */
3504 handle_new_recv_msgs(intf);
3505 }
3506
ipmi_poll_interface(struct ipmi_user * user)3507 void ipmi_poll_interface(struct ipmi_user *user)
3508 {
3509 ipmi_poll(user->intf);
3510 }
3511 EXPORT_SYMBOL(ipmi_poll_interface);
3512
nr_users_show(struct device * dev,struct device_attribute * attr,char * buf)3513 static ssize_t nr_users_show(struct device *dev,
3514 struct device_attribute *attr,
3515 char *buf)
3516 {
3517 struct ipmi_smi *intf = container_of(attr,
3518 struct ipmi_smi, nr_users_devattr);
3519
3520 return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3521 }
3522 static DEVICE_ATTR_RO(nr_users);
3523
nr_msgs_show(struct device * dev,struct device_attribute * attr,char * buf)3524 static ssize_t nr_msgs_show(struct device *dev,
3525 struct device_attribute *attr,
3526 char *buf)
3527 {
3528 struct ipmi_smi *intf = container_of(attr,
3529 struct ipmi_smi, nr_msgs_devattr);
3530 struct ipmi_user *user;
3531 int index;
3532 unsigned int count = 0;
3533
3534 index = srcu_read_lock(&intf->users_srcu);
3535 list_for_each_entry_rcu(user, &intf->users, link)
3536 count += atomic_read(&user->nr_msgs);
3537 srcu_read_unlock(&intf->users_srcu, index);
3538
3539 return sysfs_emit(buf, "%u\n", count);
3540 }
3541 static DEVICE_ATTR_RO(nr_msgs);
3542
redo_bmc_reg(struct work_struct * work)3543 static void redo_bmc_reg(struct work_struct *work)
3544 {
3545 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3546 bmc_reg_work);
3547
3548 if (!intf->in_shutdown)
3549 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3550
3551 kref_put(&intf->refcount, intf_free);
3552 }
3553
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3554 int ipmi_add_smi(struct module *owner,
3555 const struct ipmi_smi_handlers *handlers,
3556 void *send_info,
3557 struct device *si_dev,
3558 unsigned char slave_addr)
3559 {
3560 int i, j;
3561 int rv;
3562 struct ipmi_smi *intf, *tintf;
3563 struct list_head *link;
3564 struct ipmi_device_id id;
3565
3566 /*
3567 * Make sure the driver is actually initialized, this handles
3568 * problems with initialization order.
3569 */
3570 rv = ipmi_init_msghandler();
3571 if (rv)
3572 return rv;
3573
3574 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3575 if (!intf)
3576 return -ENOMEM;
3577
3578 rv = init_srcu_struct(&intf->users_srcu);
3579 if (rv) {
3580 kfree(intf);
3581 return rv;
3582 }
3583
3584 intf->owner = owner;
3585 intf->bmc = &intf->tmp_bmc;
3586 INIT_LIST_HEAD(&intf->bmc->intfs);
3587 mutex_init(&intf->bmc->dyn_mutex);
3588 INIT_LIST_HEAD(&intf->bmc_link);
3589 mutex_init(&intf->bmc_reg_mutex);
3590 intf->intf_num = -1; /* Mark it invalid for now. */
3591 kref_init(&intf->refcount);
3592 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3593 intf->si_dev = si_dev;
3594 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3595 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3596 intf->addrinfo[j].lun = 2;
3597 }
3598 if (slave_addr != 0)
3599 intf->addrinfo[0].address = slave_addr;
3600 INIT_LIST_HEAD(&intf->users);
3601 atomic_set(&intf->nr_users, 0);
3602 intf->handlers = handlers;
3603 intf->send_info = send_info;
3604 spin_lock_init(&intf->seq_lock);
3605 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3606 intf->seq_table[j].inuse = 0;
3607 intf->seq_table[j].seqid = 0;
3608 }
3609 intf->curr_seq = 0;
3610 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3611 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3612 tasklet_setup(&intf->recv_tasklet,
3613 smi_recv_tasklet);
3614 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3615 spin_lock_init(&intf->xmit_msgs_lock);
3616 INIT_LIST_HEAD(&intf->xmit_msgs);
3617 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3618 spin_lock_init(&intf->events_lock);
3619 spin_lock_init(&intf->watch_lock);
3620 atomic_set(&intf->event_waiters, 0);
3621 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3622 INIT_LIST_HEAD(&intf->waiting_events);
3623 intf->waiting_events_count = 0;
3624 mutex_init(&intf->cmd_rcvrs_mutex);
3625 spin_lock_init(&intf->maintenance_mode_lock);
3626 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3627 init_waitqueue_head(&intf->waitq);
3628 for (i = 0; i < IPMI_NUM_STATS; i++)
3629 atomic_set(&intf->stats[i], 0);
3630
3631 mutex_lock(&ipmi_interfaces_mutex);
3632 /* Look for a hole in the numbers. */
3633 i = 0;
3634 link = &ipmi_interfaces;
3635 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3636 ipmi_interfaces_mutex_held()) {
3637 if (tintf->intf_num != i) {
3638 link = &tintf->link;
3639 break;
3640 }
3641 i++;
3642 }
3643 /* Add the new interface in numeric order. */
3644 if (i == 0)
3645 list_add_rcu(&intf->link, &ipmi_interfaces);
3646 else
3647 list_add_tail_rcu(&intf->link, link);
3648
3649 rv = handlers->start_processing(send_info, intf);
3650 if (rv)
3651 goto out_err;
3652
3653 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3654 if (rv) {
3655 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3656 goto out_err_started;
3657 }
3658
3659 mutex_lock(&intf->bmc_reg_mutex);
3660 rv = __scan_channels(intf, &id);
3661 mutex_unlock(&intf->bmc_reg_mutex);
3662 if (rv)
3663 goto out_err_bmc_reg;
3664
3665 intf->nr_users_devattr = dev_attr_nr_users;
3666 sysfs_attr_init(&intf->nr_users_devattr.attr);
3667 rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3668 if (rv)
3669 goto out_err_bmc_reg;
3670
3671 intf->nr_msgs_devattr = dev_attr_nr_msgs;
3672 sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3673 rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3674 if (rv) {
3675 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3676 goto out_err_bmc_reg;
3677 }
3678
3679 /*
3680 * Keep memory order straight for RCU readers. Make
3681 * sure everything else is committed to memory before
3682 * setting intf_num to mark the interface valid.
3683 */
3684 smp_wmb();
3685 intf->intf_num = i;
3686 mutex_unlock(&ipmi_interfaces_mutex);
3687
3688 /* After this point the interface is legal to use. */
3689 call_smi_watchers(i, intf->si_dev);
3690
3691 return 0;
3692
3693 out_err_bmc_reg:
3694 ipmi_bmc_unregister(intf);
3695 out_err_started:
3696 if (intf->handlers->shutdown)
3697 intf->handlers->shutdown(intf->send_info);
3698 out_err:
3699 list_del_rcu(&intf->link);
3700 mutex_unlock(&ipmi_interfaces_mutex);
3701 synchronize_srcu(&ipmi_interfaces_srcu);
3702 cleanup_srcu_struct(&intf->users_srcu);
3703 kref_put(&intf->refcount, intf_free);
3704
3705 return rv;
3706 }
3707 EXPORT_SYMBOL(ipmi_add_smi);
3708
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3709 static void deliver_smi_err_response(struct ipmi_smi *intf,
3710 struct ipmi_smi_msg *msg,
3711 unsigned char err)
3712 {
3713 msg->rsp[0] = msg->data[0] | 4;
3714 msg->rsp[1] = msg->data[1];
3715 msg->rsp[2] = err;
3716 msg->rsp_size = 3;
3717 /* It's an error, so it will never requeue, no need to check return. */
3718 handle_one_recv_msg(intf, msg);
3719 }
3720
cleanup_smi_msgs(struct ipmi_smi * intf)3721 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3722 {
3723 int i;
3724 struct seq_table *ent;
3725 struct ipmi_smi_msg *msg;
3726 struct list_head *entry;
3727 struct list_head tmplist;
3728
3729 /* Clear out our transmit queues and hold the messages. */
3730 INIT_LIST_HEAD(&tmplist);
3731 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3732 list_splice_tail(&intf->xmit_msgs, &tmplist);
3733
3734 /* Current message first, to preserve order */
3735 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3736 /* Wait for the message to clear out. */
3737 schedule_timeout(1);
3738 }
3739
3740 /* No need for locks, the interface is down. */
3741
3742 /*
3743 * Return errors for all pending messages in queue and in the
3744 * tables waiting for remote responses.
3745 */
3746 while (!list_empty(&tmplist)) {
3747 entry = tmplist.next;
3748 list_del(entry);
3749 msg = list_entry(entry, struct ipmi_smi_msg, link);
3750 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3751 }
3752
3753 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3754 ent = &intf->seq_table[i];
3755 if (!ent->inuse)
3756 continue;
3757 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3758 }
3759 }
3760
ipmi_unregister_smi(struct ipmi_smi * intf)3761 void ipmi_unregister_smi(struct ipmi_smi *intf)
3762 {
3763 struct ipmi_smi_watcher *w;
3764 int intf_num, index;
3765
3766 if (!intf)
3767 return;
3768 intf_num = intf->intf_num;
3769 mutex_lock(&ipmi_interfaces_mutex);
3770 intf->intf_num = -1;
3771 intf->in_shutdown = true;
3772 list_del_rcu(&intf->link);
3773 mutex_unlock(&ipmi_interfaces_mutex);
3774 synchronize_srcu(&ipmi_interfaces_srcu);
3775
3776 /* At this point no users can be added to the interface. */
3777
3778 device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3779 device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3780
3781 /*
3782 * Call all the watcher interfaces to tell them that
3783 * an interface is going away.
3784 */
3785 mutex_lock(&smi_watchers_mutex);
3786 list_for_each_entry(w, &smi_watchers, link)
3787 w->smi_gone(intf_num);
3788 mutex_unlock(&smi_watchers_mutex);
3789
3790 index = srcu_read_lock(&intf->users_srcu);
3791 while (!list_empty(&intf->users)) {
3792 struct ipmi_user *user =
3793 container_of(list_next_rcu(&intf->users),
3794 struct ipmi_user, link);
3795
3796 _ipmi_destroy_user(user);
3797 }
3798 srcu_read_unlock(&intf->users_srcu, index);
3799
3800 if (intf->handlers->shutdown)
3801 intf->handlers->shutdown(intf->send_info);
3802
3803 cleanup_smi_msgs(intf);
3804
3805 ipmi_bmc_unregister(intf);
3806
3807 cleanup_srcu_struct(&intf->users_srcu);
3808 kref_put(&intf->refcount, intf_free);
3809 }
3810 EXPORT_SYMBOL(ipmi_unregister_smi);
3811
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3812 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3813 struct ipmi_smi_msg *msg)
3814 {
3815 struct ipmi_ipmb_addr ipmb_addr;
3816 struct ipmi_recv_msg *recv_msg;
3817
3818 /*
3819 * This is 11, not 10, because the response must contain a
3820 * completion code.
3821 */
3822 if (msg->rsp_size < 11) {
3823 /* Message not big enough, just ignore it. */
3824 ipmi_inc_stat(intf, invalid_ipmb_responses);
3825 return 0;
3826 }
3827
3828 if (msg->rsp[2] != 0) {
3829 /* An error getting the response, just ignore it. */
3830 return 0;
3831 }
3832
3833 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3834 ipmb_addr.slave_addr = msg->rsp[6];
3835 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3836 ipmb_addr.lun = msg->rsp[7] & 3;
3837
3838 /*
3839 * It's a response from a remote entity. Look up the sequence
3840 * number and handle the response.
3841 */
3842 if (intf_find_seq(intf,
3843 msg->rsp[7] >> 2,
3844 msg->rsp[3] & 0x0f,
3845 msg->rsp[8],
3846 (msg->rsp[4] >> 2) & (~1),
3847 (struct ipmi_addr *) &ipmb_addr,
3848 &recv_msg)) {
3849 /*
3850 * We were unable to find the sequence number,
3851 * so just nuke the message.
3852 */
3853 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3854 return 0;
3855 }
3856
3857 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3858 /*
3859 * The other fields matched, so no need to set them, except
3860 * for netfn, which needs to be the response that was
3861 * returned, not the request value.
3862 */
3863 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3864 recv_msg->msg.data = recv_msg->msg_data;
3865 recv_msg->msg.data_len = msg->rsp_size - 10;
3866 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3867 if (deliver_response(intf, recv_msg))
3868 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3869 else
3870 ipmi_inc_stat(intf, handled_ipmb_responses);
3871
3872 return 0;
3873 }
3874
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3875 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3876 struct ipmi_smi_msg *msg)
3877 {
3878 struct cmd_rcvr *rcvr;
3879 int rv = 0;
3880 unsigned char netfn;
3881 unsigned char cmd;
3882 unsigned char chan;
3883 struct ipmi_user *user = NULL;
3884 struct ipmi_ipmb_addr *ipmb_addr;
3885 struct ipmi_recv_msg *recv_msg;
3886
3887 if (msg->rsp_size < 10) {
3888 /* Message not big enough, just ignore it. */
3889 ipmi_inc_stat(intf, invalid_commands);
3890 return 0;
3891 }
3892
3893 if (msg->rsp[2] != 0) {
3894 /* An error getting the response, just ignore it. */
3895 return 0;
3896 }
3897
3898 netfn = msg->rsp[4] >> 2;
3899 cmd = msg->rsp[8];
3900 chan = msg->rsp[3] & 0xf;
3901
3902 rcu_read_lock();
3903 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3904 if (rcvr) {
3905 user = rcvr->user;
3906 kref_get(&user->refcount);
3907 } else
3908 user = NULL;
3909 rcu_read_unlock();
3910
3911 if (user == NULL) {
3912 /* We didn't find a user, deliver an error response. */
3913 ipmi_inc_stat(intf, unhandled_commands);
3914
3915 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3916 msg->data[1] = IPMI_SEND_MSG_CMD;
3917 msg->data[2] = msg->rsp[3];
3918 msg->data[3] = msg->rsp[6];
3919 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3920 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3921 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3922 /* rqseq/lun */
3923 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3924 msg->data[8] = msg->rsp[8]; /* cmd */
3925 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3926 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3927 msg->data_size = 11;
3928
3929 dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3930 msg->data_size, msg->data);
3931
3932 rcu_read_lock();
3933 if (!intf->in_shutdown) {
3934 smi_send(intf, intf->handlers, msg, 0);
3935 /*
3936 * We used the message, so return the value
3937 * that causes it to not be freed or
3938 * queued.
3939 */
3940 rv = -1;
3941 }
3942 rcu_read_unlock();
3943 } else {
3944 recv_msg = ipmi_alloc_recv_msg();
3945 if (!recv_msg) {
3946 /*
3947 * We couldn't allocate memory for the
3948 * message, so requeue it for handling
3949 * later.
3950 */
3951 rv = 1;
3952 kref_put(&user->refcount, free_user);
3953 } else {
3954 /* Extract the source address from the data. */
3955 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3956 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3957 ipmb_addr->slave_addr = msg->rsp[6];
3958 ipmb_addr->lun = msg->rsp[7] & 3;
3959 ipmb_addr->channel = msg->rsp[3] & 0xf;
3960
3961 /*
3962 * Extract the rest of the message information
3963 * from the IPMB header.
3964 */
3965 recv_msg->user = user;
3966 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3967 recv_msg->msgid = msg->rsp[7] >> 2;
3968 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3969 recv_msg->msg.cmd = msg->rsp[8];
3970 recv_msg->msg.data = recv_msg->msg_data;
3971
3972 /*
3973 * We chop off 10, not 9 bytes because the checksum
3974 * at the end also needs to be removed.
3975 */
3976 recv_msg->msg.data_len = msg->rsp_size - 10;
3977 memcpy(recv_msg->msg_data, &msg->rsp[9],
3978 msg->rsp_size - 10);
3979 if (deliver_response(intf, recv_msg))
3980 ipmi_inc_stat(intf, unhandled_commands);
3981 else
3982 ipmi_inc_stat(intf, handled_commands);
3983 }
3984 }
3985
3986 return rv;
3987 }
3988
handle_ipmb_direct_rcv_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3989 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3990 struct ipmi_smi_msg *msg)
3991 {
3992 struct cmd_rcvr *rcvr;
3993 int rv = 0;
3994 struct ipmi_user *user = NULL;
3995 struct ipmi_ipmb_direct_addr *daddr;
3996 struct ipmi_recv_msg *recv_msg;
3997 unsigned char netfn = msg->rsp[0] >> 2;
3998 unsigned char cmd = msg->rsp[3];
3999
4000 rcu_read_lock();
4001 /* We always use channel 0 for direct messages. */
4002 rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4003 if (rcvr) {
4004 user = rcvr->user;
4005 kref_get(&user->refcount);
4006 } else
4007 user = NULL;
4008 rcu_read_unlock();
4009
4010 if (user == NULL) {
4011 /* We didn't find a user, deliver an error response. */
4012 ipmi_inc_stat(intf, unhandled_commands);
4013
4014 msg->data[0] = (netfn + 1) << 2;
4015 msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4016 msg->data[1] = msg->rsp[1]; /* Addr */
4017 msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4018 msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4019 msg->data[3] = cmd;
4020 msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4021 msg->data_size = 5;
4022
4023 rcu_read_lock();
4024 if (!intf->in_shutdown) {
4025 smi_send(intf, intf->handlers, msg, 0);
4026 /*
4027 * We used the message, so return the value
4028 * that causes it to not be freed or
4029 * queued.
4030 */
4031 rv = -1;
4032 }
4033 rcu_read_unlock();
4034 } else {
4035 recv_msg = ipmi_alloc_recv_msg();
4036 if (!recv_msg) {
4037 /*
4038 * We couldn't allocate memory for the
4039 * message, so requeue it for handling
4040 * later.
4041 */
4042 rv = 1;
4043 kref_put(&user->refcount, free_user);
4044 } else {
4045 /* Extract the source address from the data. */
4046 daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4047 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4048 daddr->channel = 0;
4049 daddr->slave_addr = msg->rsp[1];
4050 daddr->rs_lun = msg->rsp[0] & 3;
4051 daddr->rq_lun = msg->rsp[2] & 3;
4052
4053 /*
4054 * Extract the rest of the message information
4055 * from the IPMB header.
4056 */
4057 recv_msg->user = user;
4058 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4059 recv_msg->msgid = (msg->rsp[2] >> 2);
4060 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4061 recv_msg->msg.cmd = msg->rsp[3];
4062 recv_msg->msg.data = recv_msg->msg_data;
4063
4064 recv_msg->msg.data_len = msg->rsp_size - 4;
4065 memcpy(recv_msg->msg_data, msg->rsp + 4,
4066 msg->rsp_size - 4);
4067 if (deliver_response(intf, recv_msg))
4068 ipmi_inc_stat(intf, unhandled_commands);
4069 else
4070 ipmi_inc_stat(intf, handled_commands);
4071 }
4072 }
4073
4074 return rv;
4075 }
4076
handle_ipmb_direct_rcv_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4077 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4078 struct ipmi_smi_msg *msg)
4079 {
4080 struct ipmi_recv_msg *recv_msg;
4081 struct ipmi_ipmb_direct_addr *daddr;
4082
4083 recv_msg = msg->user_data;
4084 if (recv_msg == NULL) {
4085 dev_warn(intf->si_dev,
4086 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4087 return 0;
4088 }
4089
4090 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4091 recv_msg->msgid = msg->msgid;
4092 daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4093 daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4094 daddr->channel = 0;
4095 daddr->slave_addr = msg->rsp[1];
4096 daddr->rq_lun = msg->rsp[0] & 3;
4097 daddr->rs_lun = msg->rsp[2] & 3;
4098 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4099 recv_msg->msg.cmd = msg->rsp[3];
4100 memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4101 recv_msg->msg.data = recv_msg->msg_data;
4102 recv_msg->msg.data_len = msg->rsp_size - 4;
4103 deliver_local_response(intf, recv_msg);
4104
4105 return 0;
4106 }
4107
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4108 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4109 struct ipmi_smi_msg *msg)
4110 {
4111 struct ipmi_lan_addr lan_addr;
4112 struct ipmi_recv_msg *recv_msg;
4113
4114
4115 /*
4116 * This is 13, not 12, because the response must contain a
4117 * completion code.
4118 */
4119 if (msg->rsp_size < 13) {
4120 /* Message not big enough, just ignore it. */
4121 ipmi_inc_stat(intf, invalid_lan_responses);
4122 return 0;
4123 }
4124
4125 if (msg->rsp[2] != 0) {
4126 /* An error getting the response, just ignore it. */
4127 return 0;
4128 }
4129
4130 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4131 lan_addr.session_handle = msg->rsp[4];
4132 lan_addr.remote_SWID = msg->rsp[8];
4133 lan_addr.local_SWID = msg->rsp[5];
4134 lan_addr.channel = msg->rsp[3] & 0x0f;
4135 lan_addr.privilege = msg->rsp[3] >> 4;
4136 lan_addr.lun = msg->rsp[9] & 3;
4137
4138 /*
4139 * It's a response from a remote entity. Look up the sequence
4140 * number and handle the response.
4141 */
4142 if (intf_find_seq(intf,
4143 msg->rsp[9] >> 2,
4144 msg->rsp[3] & 0x0f,
4145 msg->rsp[10],
4146 (msg->rsp[6] >> 2) & (~1),
4147 (struct ipmi_addr *) &lan_addr,
4148 &recv_msg)) {
4149 /*
4150 * We were unable to find the sequence number,
4151 * so just nuke the message.
4152 */
4153 ipmi_inc_stat(intf, unhandled_lan_responses);
4154 return 0;
4155 }
4156
4157 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4158 /*
4159 * The other fields matched, so no need to set them, except
4160 * for netfn, which needs to be the response that was
4161 * returned, not the request value.
4162 */
4163 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4164 recv_msg->msg.data = recv_msg->msg_data;
4165 recv_msg->msg.data_len = msg->rsp_size - 12;
4166 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4167 if (deliver_response(intf, recv_msg))
4168 ipmi_inc_stat(intf, unhandled_lan_responses);
4169 else
4170 ipmi_inc_stat(intf, handled_lan_responses);
4171
4172 return 0;
4173 }
4174
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4175 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4176 struct ipmi_smi_msg *msg)
4177 {
4178 struct cmd_rcvr *rcvr;
4179 int rv = 0;
4180 unsigned char netfn;
4181 unsigned char cmd;
4182 unsigned char chan;
4183 struct ipmi_user *user = NULL;
4184 struct ipmi_lan_addr *lan_addr;
4185 struct ipmi_recv_msg *recv_msg;
4186
4187 if (msg->rsp_size < 12) {
4188 /* Message not big enough, just ignore it. */
4189 ipmi_inc_stat(intf, invalid_commands);
4190 return 0;
4191 }
4192
4193 if (msg->rsp[2] != 0) {
4194 /* An error getting the response, just ignore it. */
4195 return 0;
4196 }
4197
4198 netfn = msg->rsp[6] >> 2;
4199 cmd = msg->rsp[10];
4200 chan = msg->rsp[3] & 0xf;
4201
4202 rcu_read_lock();
4203 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4204 if (rcvr) {
4205 user = rcvr->user;
4206 kref_get(&user->refcount);
4207 } else
4208 user = NULL;
4209 rcu_read_unlock();
4210
4211 if (user == NULL) {
4212 /* We didn't find a user, just give up. */
4213 ipmi_inc_stat(intf, unhandled_commands);
4214
4215 /*
4216 * Don't do anything with these messages, just allow
4217 * them to be freed.
4218 */
4219 rv = 0;
4220 } else {
4221 recv_msg = ipmi_alloc_recv_msg();
4222 if (!recv_msg) {
4223 /*
4224 * We couldn't allocate memory for the
4225 * message, so requeue it for handling later.
4226 */
4227 rv = 1;
4228 kref_put(&user->refcount, free_user);
4229 } else {
4230 /* Extract the source address from the data. */
4231 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4232 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4233 lan_addr->session_handle = msg->rsp[4];
4234 lan_addr->remote_SWID = msg->rsp[8];
4235 lan_addr->local_SWID = msg->rsp[5];
4236 lan_addr->lun = msg->rsp[9] & 3;
4237 lan_addr->channel = msg->rsp[3] & 0xf;
4238 lan_addr->privilege = msg->rsp[3] >> 4;
4239
4240 /*
4241 * Extract the rest of the message information
4242 * from the IPMB header.
4243 */
4244 recv_msg->user = user;
4245 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4246 recv_msg->msgid = msg->rsp[9] >> 2;
4247 recv_msg->msg.netfn = msg->rsp[6] >> 2;
4248 recv_msg->msg.cmd = msg->rsp[10];
4249 recv_msg->msg.data = recv_msg->msg_data;
4250
4251 /*
4252 * We chop off 12, not 11 bytes because the checksum
4253 * at the end also needs to be removed.
4254 */
4255 recv_msg->msg.data_len = msg->rsp_size - 12;
4256 memcpy(recv_msg->msg_data, &msg->rsp[11],
4257 msg->rsp_size - 12);
4258 if (deliver_response(intf, recv_msg))
4259 ipmi_inc_stat(intf, unhandled_commands);
4260 else
4261 ipmi_inc_stat(intf, handled_commands);
4262 }
4263 }
4264
4265 return rv;
4266 }
4267
4268 /*
4269 * This routine will handle "Get Message" command responses with
4270 * channels that use an OEM Medium. The message format belongs to
4271 * the OEM. See IPMI 2.0 specification, Chapter 6 and
4272 * Chapter 22, sections 22.6 and 22.24 for more details.
4273 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4274 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4275 struct ipmi_smi_msg *msg)
4276 {
4277 struct cmd_rcvr *rcvr;
4278 int rv = 0;
4279 unsigned char netfn;
4280 unsigned char cmd;
4281 unsigned char chan;
4282 struct ipmi_user *user = NULL;
4283 struct ipmi_system_interface_addr *smi_addr;
4284 struct ipmi_recv_msg *recv_msg;
4285
4286 /*
4287 * We expect the OEM SW to perform error checking
4288 * so we just do some basic sanity checks
4289 */
4290 if (msg->rsp_size < 4) {
4291 /* Message not big enough, just ignore it. */
4292 ipmi_inc_stat(intf, invalid_commands);
4293 return 0;
4294 }
4295
4296 if (msg->rsp[2] != 0) {
4297 /* An error getting the response, just ignore it. */
4298 return 0;
4299 }
4300
4301 /*
4302 * This is an OEM Message so the OEM needs to know how
4303 * handle the message. We do no interpretation.
4304 */
4305 netfn = msg->rsp[0] >> 2;
4306 cmd = msg->rsp[1];
4307 chan = msg->rsp[3] & 0xf;
4308
4309 rcu_read_lock();
4310 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4311 if (rcvr) {
4312 user = rcvr->user;
4313 kref_get(&user->refcount);
4314 } else
4315 user = NULL;
4316 rcu_read_unlock();
4317
4318 if (user == NULL) {
4319 /* We didn't find a user, just give up. */
4320 ipmi_inc_stat(intf, unhandled_commands);
4321
4322 /*
4323 * Don't do anything with these messages, just allow
4324 * them to be freed.
4325 */
4326
4327 rv = 0;
4328 } else {
4329 recv_msg = ipmi_alloc_recv_msg();
4330 if (!recv_msg) {
4331 /*
4332 * We couldn't allocate memory for the
4333 * message, so requeue it for handling
4334 * later.
4335 */
4336 rv = 1;
4337 kref_put(&user->refcount, free_user);
4338 } else {
4339 /*
4340 * OEM Messages are expected to be delivered via
4341 * the system interface to SMS software. We might
4342 * need to visit this again depending on OEM
4343 * requirements
4344 */
4345 smi_addr = ((struct ipmi_system_interface_addr *)
4346 &recv_msg->addr);
4347 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4348 smi_addr->channel = IPMI_BMC_CHANNEL;
4349 smi_addr->lun = msg->rsp[0] & 3;
4350
4351 recv_msg->user = user;
4352 recv_msg->user_msg_data = NULL;
4353 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4354 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4355 recv_msg->msg.cmd = msg->rsp[1];
4356 recv_msg->msg.data = recv_msg->msg_data;
4357
4358 /*
4359 * The message starts at byte 4 which follows the
4360 * the Channel Byte in the "GET MESSAGE" command
4361 */
4362 recv_msg->msg.data_len = msg->rsp_size - 4;
4363 memcpy(recv_msg->msg_data, &msg->rsp[4],
4364 msg->rsp_size - 4);
4365 if (deliver_response(intf, recv_msg))
4366 ipmi_inc_stat(intf, unhandled_commands);
4367 else
4368 ipmi_inc_stat(intf, handled_commands);
4369 }
4370 }
4371
4372 return rv;
4373 }
4374
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4375 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4376 struct ipmi_smi_msg *msg)
4377 {
4378 struct ipmi_system_interface_addr *smi_addr;
4379
4380 recv_msg->msgid = 0;
4381 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4382 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4383 smi_addr->channel = IPMI_BMC_CHANNEL;
4384 smi_addr->lun = msg->rsp[0] & 3;
4385 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4386 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4387 recv_msg->msg.cmd = msg->rsp[1];
4388 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4389 recv_msg->msg.data = recv_msg->msg_data;
4390 recv_msg->msg.data_len = msg->rsp_size - 3;
4391 }
4392
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4393 static int handle_read_event_rsp(struct ipmi_smi *intf,
4394 struct ipmi_smi_msg *msg)
4395 {
4396 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4397 struct list_head msgs;
4398 struct ipmi_user *user;
4399 int rv = 0, deliver_count = 0, index;
4400 unsigned long flags;
4401
4402 if (msg->rsp_size < 19) {
4403 /* Message is too small to be an IPMB event. */
4404 ipmi_inc_stat(intf, invalid_events);
4405 return 0;
4406 }
4407
4408 if (msg->rsp[2] != 0) {
4409 /* An error getting the event, just ignore it. */
4410 return 0;
4411 }
4412
4413 INIT_LIST_HEAD(&msgs);
4414
4415 spin_lock_irqsave(&intf->events_lock, flags);
4416
4417 ipmi_inc_stat(intf, events);
4418
4419 /*
4420 * Allocate and fill in one message for every user that is
4421 * getting events.
4422 */
4423 index = srcu_read_lock(&intf->users_srcu);
4424 list_for_each_entry_rcu(user, &intf->users, link) {
4425 if (!user->gets_events)
4426 continue;
4427
4428 recv_msg = ipmi_alloc_recv_msg();
4429 if (!recv_msg) {
4430 rcu_read_unlock();
4431 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4432 link) {
4433 list_del(&recv_msg->link);
4434 ipmi_free_recv_msg(recv_msg);
4435 }
4436 /*
4437 * We couldn't allocate memory for the
4438 * message, so requeue it for handling
4439 * later.
4440 */
4441 rv = 1;
4442 goto out;
4443 }
4444
4445 deliver_count++;
4446
4447 copy_event_into_recv_msg(recv_msg, msg);
4448 recv_msg->user = user;
4449 kref_get(&user->refcount);
4450 list_add_tail(&recv_msg->link, &msgs);
4451 }
4452 srcu_read_unlock(&intf->users_srcu, index);
4453
4454 if (deliver_count) {
4455 /* Now deliver all the messages. */
4456 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4457 list_del(&recv_msg->link);
4458 deliver_local_response(intf, recv_msg);
4459 }
4460 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4461 /*
4462 * No one to receive the message, put it in queue if there's
4463 * not already too many things in the queue.
4464 */
4465 recv_msg = ipmi_alloc_recv_msg();
4466 if (!recv_msg) {
4467 /*
4468 * We couldn't allocate memory for the
4469 * message, so requeue it for handling
4470 * later.
4471 */
4472 rv = 1;
4473 goto out;
4474 }
4475
4476 copy_event_into_recv_msg(recv_msg, msg);
4477 list_add_tail(&recv_msg->link, &intf->waiting_events);
4478 intf->waiting_events_count++;
4479 } else if (!intf->event_msg_printed) {
4480 /*
4481 * There's too many things in the queue, discard this
4482 * message.
4483 */
4484 dev_warn(intf->si_dev,
4485 "Event queue full, discarding incoming events\n");
4486 intf->event_msg_printed = 1;
4487 }
4488
4489 out:
4490 spin_unlock_irqrestore(&intf->events_lock, flags);
4491
4492 return rv;
4493 }
4494
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4495 static int handle_bmc_rsp(struct ipmi_smi *intf,
4496 struct ipmi_smi_msg *msg)
4497 {
4498 struct ipmi_recv_msg *recv_msg;
4499 struct ipmi_system_interface_addr *smi_addr;
4500
4501 recv_msg = msg->user_data;
4502 if (recv_msg == NULL) {
4503 dev_warn(intf->si_dev,
4504 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4505 return 0;
4506 }
4507
4508 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4509 recv_msg->msgid = msg->msgid;
4510 smi_addr = ((struct ipmi_system_interface_addr *)
4511 &recv_msg->addr);
4512 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4513 smi_addr->channel = IPMI_BMC_CHANNEL;
4514 smi_addr->lun = msg->rsp[0] & 3;
4515 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4516 recv_msg->msg.cmd = msg->rsp[1];
4517 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4518 recv_msg->msg.data = recv_msg->msg_data;
4519 recv_msg->msg.data_len = msg->rsp_size - 2;
4520 deliver_local_response(intf, recv_msg);
4521
4522 return 0;
4523 }
4524
4525 /*
4526 * Handle a received message. Return 1 if the message should be requeued,
4527 * 0 if the message should be freed, or -1 if the message should not
4528 * be freed or requeued.
4529 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4530 static int handle_one_recv_msg(struct ipmi_smi *intf,
4531 struct ipmi_smi_msg *msg)
4532 {
4533 int requeue = 0;
4534 int chan;
4535 unsigned char cc;
4536 bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4537
4538 dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4539
4540 if (msg->rsp_size < 2) {
4541 /* Message is too small to be correct. */
4542 dev_warn(intf->si_dev,
4543 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4544 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4545
4546 return_unspecified:
4547 /* Generate an error response for the message. */
4548 msg->rsp[0] = msg->data[0] | (1 << 2);
4549 msg->rsp[1] = msg->data[1];
4550 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4551 msg->rsp_size = 3;
4552 } else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4553 /* commands must have at least 4 bytes, responses 5. */
4554 if (is_cmd && (msg->rsp_size < 4)) {
4555 ipmi_inc_stat(intf, invalid_commands);
4556 goto out;
4557 }
4558 if (!is_cmd && (msg->rsp_size < 5)) {
4559 ipmi_inc_stat(intf, invalid_ipmb_responses);
4560 /* Construct a valid error response. */
4561 msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4562 msg->rsp[0] |= (1 << 2); /* Make it a response */
4563 msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4564 msg->rsp[1] = msg->data[1]; /* Addr */
4565 msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4566 msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4567 msg->rsp[3] = msg->data[3]; /* Cmd */
4568 msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4569 msg->rsp_size = 5;
4570 }
4571 } else if ((msg->data_size >= 2)
4572 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4573 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4574 && (msg->user_data == NULL)) {
4575
4576 if (intf->in_shutdown)
4577 goto out;
4578
4579 /*
4580 * This is the local response to a command send, start
4581 * the timer for these. The user_data will not be
4582 * NULL if this is a response send, and we will let
4583 * response sends just go through.
4584 */
4585
4586 /*
4587 * Check for errors, if we get certain errors (ones
4588 * that mean basically we can try again later), we
4589 * ignore them and start the timer. Otherwise we
4590 * report the error immediately.
4591 */
4592 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4593 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4594 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4595 && (msg->rsp[2] != IPMI_BUS_ERR)
4596 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4597 int ch = msg->rsp[3] & 0xf;
4598 struct ipmi_channel *chans;
4599
4600 /* Got an error sending the message, handle it. */
4601
4602 chans = READ_ONCE(intf->channel_list)->c;
4603 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4604 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4605 ipmi_inc_stat(intf, sent_lan_command_errs);
4606 else
4607 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4608 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4609 } else
4610 /* The message was sent, start the timer. */
4611 intf_start_seq_timer(intf, msg->msgid);
4612 requeue = 0;
4613 goto out;
4614 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4615 || (msg->rsp[1] != msg->data[1])) {
4616 /*
4617 * The NetFN and Command in the response is not even
4618 * marginally correct.
4619 */
4620 dev_warn(intf->si_dev,
4621 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4622 (msg->data[0] >> 2) | 1, msg->data[1],
4623 msg->rsp[0] >> 2, msg->rsp[1]);
4624
4625 goto return_unspecified;
4626 }
4627
4628 if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4629 if ((msg->data[0] >> 2) & 1) {
4630 /* It's a response to a sent response. */
4631 chan = 0;
4632 cc = msg->rsp[4];
4633 goto process_response_response;
4634 }
4635 if (is_cmd)
4636 requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4637 else
4638 requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4639 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4640 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4641 && (msg->user_data != NULL)) {
4642 /*
4643 * It's a response to a response we sent. For this we
4644 * deliver a send message response to the user.
4645 */
4646 struct ipmi_recv_msg *recv_msg;
4647
4648 chan = msg->data[2] & 0x0f;
4649 if (chan >= IPMI_MAX_CHANNELS)
4650 /* Invalid channel number */
4651 goto out;
4652 cc = msg->rsp[2];
4653
4654 process_response_response:
4655 recv_msg = msg->user_data;
4656
4657 requeue = 0;
4658 if (!recv_msg)
4659 goto out;
4660
4661 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4662 recv_msg->msg.data = recv_msg->msg_data;
4663 recv_msg->msg_data[0] = cc;
4664 recv_msg->msg.data_len = 1;
4665 deliver_local_response(intf, recv_msg);
4666 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4667 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4668 struct ipmi_channel *chans;
4669
4670 /* It's from the receive queue. */
4671 chan = msg->rsp[3] & 0xf;
4672 if (chan >= IPMI_MAX_CHANNELS) {
4673 /* Invalid channel number */
4674 requeue = 0;
4675 goto out;
4676 }
4677
4678 /*
4679 * We need to make sure the channels have been initialized.
4680 * The channel_handler routine will set the "curr_channel"
4681 * equal to or greater than IPMI_MAX_CHANNELS when all the
4682 * channels for this interface have been initialized.
4683 */
4684 if (!intf->channels_ready) {
4685 requeue = 0; /* Throw the message away */
4686 goto out;
4687 }
4688
4689 chans = READ_ONCE(intf->channel_list)->c;
4690
4691 switch (chans[chan].medium) {
4692 case IPMI_CHANNEL_MEDIUM_IPMB:
4693 if (msg->rsp[4] & 0x04) {
4694 /*
4695 * It's a response, so find the
4696 * requesting message and send it up.
4697 */
4698 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4699 } else {
4700 /*
4701 * It's a command to the SMS from some other
4702 * entity. Handle that.
4703 */
4704 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4705 }
4706 break;
4707
4708 case IPMI_CHANNEL_MEDIUM_8023LAN:
4709 case IPMI_CHANNEL_MEDIUM_ASYNC:
4710 if (msg->rsp[6] & 0x04) {
4711 /*
4712 * It's a response, so find the
4713 * requesting message and send it up.
4714 */
4715 requeue = handle_lan_get_msg_rsp(intf, msg);
4716 } else {
4717 /*
4718 * It's a command to the SMS from some other
4719 * entity. Handle that.
4720 */
4721 requeue = handle_lan_get_msg_cmd(intf, msg);
4722 }
4723 break;
4724
4725 default:
4726 /* Check for OEM Channels. Clients had better
4727 register for these commands. */
4728 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4729 && (chans[chan].medium
4730 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4731 requeue = handle_oem_get_msg_cmd(intf, msg);
4732 } else {
4733 /*
4734 * We don't handle the channel type, so just
4735 * free the message.
4736 */
4737 requeue = 0;
4738 }
4739 }
4740
4741 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4742 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4743 /* It's an asynchronous event. */
4744 requeue = handle_read_event_rsp(intf, msg);
4745 } else {
4746 /* It's a response from the local BMC. */
4747 requeue = handle_bmc_rsp(intf, msg);
4748 }
4749
4750 out:
4751 return requeue;
4752 }
4753
4754 /*
4755 * If there are messages in the queue or pretimeouts, handle them.
4756 */
handle_new_recv_msgs(struct ipmi_smi * intf)4757 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4758 {
4759 struct ipmi_smi_msg *smi_msg;
4760 unsigned long flags = 0;
4761 int rv;
4762 int run_to_completion = intf->run_to_completion;
4763
4764 /* See if any waiting messages need to be processed. */
4765 if (!run_to_completion)
4766 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4767 while (!list_empty(&intf->waiting_rcv_msgs)) {
4768 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4769 struct ipmi_smi_msg, link);
4770 list_del(&smi_msg->link);
4771 if (!run_to_completion)
4772 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4773 flags);
4774 rv = handle_one_recv_msg(intf, smi_msg);
4775 if (!run_to_completion)
4776 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4777 if (rv > 0) {
4778 /*
4779 * To preserve message order, quit if we
4780 * can't handle a message. Add the message
4781 * back at the head, this is safe because this
4782 * tasklet is the only thing that pulls the
4783 * messages.
4784 */
4785 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4786 break;
4787 } else {
4788 if (rv == 0)
4789 /* Message handled */
4790 ipmi_free_smi_msg(smi_msg);
4791 /* If rv < 0, fatal error, del but don't free. */
4792 }
4793 }
4794 if (!run_to_completion)
4795 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4796
4797 /*
4798 * If the pretimout count is non-zero, decrement one from it and
4799 * deliver pretimeouts to all the users.
4800 */
4801 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4802 struct ipmi_user *user;
4803 int index;
4804
4805 index = srcu_read_lock(&intf->users_srcu);
4806 list_for_each_entry_rcu(user, &intf->users, link) {
4807 if (user->handler->ipmi_watchdog_pretimeout)
4808 user->handler->ipmi_watchdog_pretimeout(
4809 user->handler_data);
4810 }
4811 srcu_read_unlock(&intf->users_srcu, index);
4812 }
4813 }
4814
smi_recv_tasklet(struct tasklet_struct * t)4815 static void smi_recv_tasklet(struct tasklet_struct *t)
4816 {
4817 unsigned long flags = 0; /* keep us warning-free. */
4818 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4819 int run_to_completion = intf->run_to_completion;
4820 struct ipmi_smi_msg *newmsg = NULL;
4821
4822 /*
4823 * Start the next message if available.
4824 *
4825 * Do this here, not in the actual receiver, because we may deadlock
4826 * because the lower layer is allowed to hold locks while calling
4827 * message delivery.
4828 */
4829
4830 rcu_read_lock();
4831
4832 if (!run_to_completion)
4833 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4834 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4835 struct list_head *entry = NULL;
4836
4837 /* Pick the high priority queue first. */
4838 if (!list_empty(&intf->hp_xmit_msgs))
4839 entry = intf->hp_xmit_msgs.next;
4840 else if (!list_empty(&intf->xmit_msgs))
4841 entry = intf->xmit_msgs.next;
4842
4843 if (entry) {
4844 list_del(entry);
4845 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4846 intf->curr_msg = newmsg;
4847 }
4848 }
4849
4850 if (!run_to_completion)
4851 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4852 if (newmsg)
4853 intf->handlers->sender(intf->send_info, newmsg);
4854
4855 rcu_read_unlock();
4856
4857 handle_new_recv_msgs(intf);
4858 }
4859
4860 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4861 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4862 struct ipmi_smi_msg *msg)
4863 {
4864 unsigned long flags = 0; /* keep us warning-free. */
4865 int run_to_completion = intf->run_to_completion;
4866
4867 /*
4868 * To preserve message order, we keep a queue and deliver from
4869 * a tasklet.
4870 */
4871 if (!run_to_completion)
4872 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4873 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4874 if (!run_to_completion)
4875 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4876 flags);
4877
4878 if (!run_to_completion)
4879 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4880 /*
4881 * We can get an asynchronous event or receive message in addition
4882 * to commands we send.
4883 */
4884 if (msg == intf->curr_msg)
4885 intf->curr_msg = NULL;
4886 if (!run_to_completion)
4887 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4888
4889 if (run_to_completion)
4890 smi_recv_tasklet(&intf->recv_tasklet);
4891 else
4892 tasklet_schedule(&intf->recv_tasklet);
4893 }
4894 EXPORT_SYMBOL(ipmi_smi_msg_received);
4895
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4896 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4897 {
4898 if (intf->in_shutdown)
4899 return;
4900
4901 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4902 tasklet_schedule(&intf->recv_tasklet);
4903 }
4904 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4905
4906 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4907 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4908 unsigned char seq, long seqid)
4909 {
4910 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4911 if (!smi_msg)
4912 /*
4913 * If we can't allocate the message, then just return, we
4914 * get 4 retries, so this should be ok.
4915 */
4916 return NULL;
4917
4918 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4919 smi_msg->data_size = recv_msg->msg.data_len;
4920 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4921
4922 dev_dbg(intf->si_dev, "Resend: %*ph\n",
4923 smi_msg->data_size, smi_msg->data);
4924
4925 return smi_msg;
4926 }
4927
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4928 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4929 struct list_head *timeouts,
4930 unsigned long timeout_period,
4931 int slot, unsigned long *flags,
4932 bool *need_timer)
4933 {
4934 struct ipmi_recv_msg *msg;
4935
4936 if (intf->in_shutdown)
4937 return;
4938
4939 if (!ent->inuse)
4940 return;
4941
4942 if (timeout_period < ent->timeout) {
4943 ent->timeout -= timeout_period;
4944 *need_timer = true;
4945 return;
4946 }
4947
4948 if (ent->retries_left == 0) {
4949 /* The message has used all its retries. */
4950 ent->inuse = 0;
4951 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4952 msg = ent->recv_msg;
4953 list_add_tail(&msg->link, timeouts);
4954 if (ent->broadcast)
4955 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4956 else if (is_lan_addr(&ent->recv_msg->addr))
4957 ipmi_inc_stat(intf, timed_out_lan_commands);
4958 else
4959 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4960 } else {
4961 struct ipmi_smi_msg *smi_msg;
4962 /* More retries, send again. */
4963
4964 *need_timer = true;
4965
4966 /*
4967 * Start with the max timer, set to normal timer after
4968 * the message is sent.
4969 */
4970 ent->timeout = MAX_MSG_TIMEOUT;
4971 ent->retries_left--;
4972 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4973 ent->seqid);
4974 if (!smi_msg) {
4975 if (is_lan_addr(&ent->recv_msg->addr))
4976 ipmi_inc_stat(intf,
4977 dropped_rexmit_lan_commands);
4978 else
4979 ipmi_inc_stat(intf,
4980 dropped_rexmit_ipmb_commands);
4981 return;
4982 }
4983
4984 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4985
4986 /*
4987 * Send the new message. We send with a zero
4988 * priority. It timed out, I doubt time is that
4989 * critical now, and high priority messages are really
4990 * only for messages to the local MC, which don't get
4991 * resent.
4992 */
4993 if (intf->handlers) {
4994 if (is_lan_addr(&ent->recv_msg->addr))
4995 ipmi_inc_stat(intf,
4996 retransmitted_lan_commands);
4997 else
4998 ipmi_inc_stat(intf,
4999 retransmitted_ipmb_commands);
5000
5001 smi_send(intf, intf->handlers, smi_msg, 0);
5002 } else
5003 ipmi_free_smi_msg(smi_msg);
5004
5005 spin_lock_irqsave(&intf->seq_lock, *flags);
5006 }
5007 }
5008
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)5009 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5010 unsigned long timeout_period)
5011 {
5012 struct list_head timeouts;
5013 struct ipmi_recv_msg *msg, *msg2;
5014 unsigned long flags;
5015 int i;
5016 bool need_timer = false;
5017
5018 if (!intf->bmc_registered) {
5019 kref_get(&intf->refcount);
5020 if (!schedule_work(&intf->bmc_reg_work)) {
5021 kref_put(&intf->refcount, intf_free);
5022 need_timer = true;
5023 }
5024 }
5025
5026 /*
5027 * Go through the seq table and find any messages that
5028 * have timed out, putting them in the timeouts
5029 * list.
5030 */
5031 INIT_LIST_HEAD(&timeouts);
5032 spin_lock_irqsave(&intf->seq_lock, flags);
5033 if (intf->ipmb_maintenance_mode_timeout) {
5034 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5035 intf->ipmb_maintenance_mode_timeout = 0;
5036 else
5037 intf->ipmb_maintenance_mode_timeout -= timeout_period;
5038 }
5039 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5040 check_msg_timeout(intf, &intf->seq_table[i],
5041 &timeouts, timeout_period, i,
5042 &flags, &need_timer);
5043 spin_unlock_irqrestore(&intf->seq_lock, flags);
5044
5045 list_for_each_entry_safe(msg, msg2, &timeouts, link)
5046 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5047
5048 /*
5049 * Maintenance mode handling. Check the timeout
5050 * optimistically before we claim the lock. It may
5051 * mean a timeout gets missed occasionally, but that
5052 * only means the timeout gets extended by one period
5053 * in that case. No big deal, and it avoids the lock
5054 * most of the time.
5055 */
5056 if (intf->auto_maintenance_timeout > 0) {
5057 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5058 if (intf->auto_maintenance_timeout > 0) {
5059 intf->auto_maintenance_timeout
5060 -= timeout_period;
5061 if (!intf->maintenance_mode
5062 && (intf->auto_maintenance_timeout <= 0)) {
5063 intf->maintenance_mode_enable = false;
5064 maintenance_mode_update(intf);
5065 }
5066 }
5067 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5068 flags);
5069 }
5070
5071 tasklet_schedule(&intf->recv_tasklet);
5072
5073 return need_timer;
5074 }
5075
ipmi_request_event(struct ipmi_smi * intf)5076 static void ipmi_request_event(struct ipmi_smi *intf)
5077 {
5078 /* No event requests when in maintenance mode. */
5079 if (intf->maintenance_mode_enable)
5080 return;
5081
5082 if (!intf->in_shutdown)
5083 intf->handlers->request_events(intf->send_info);
5084 }
5085
5086 static struct timer_list ipmi_timer;
5087
5088 static atomic_t stop_operation;
5089
ipmi_timeout(struct timer_list * unused)5090 static void ipmi_timeout(struct timer_list *unused)
5091 {
5092 struct ipmi_smi *intf;
5093 bool need_timer = false;
5094 int index;
5095
5096 if (atomic_read(&stop_operation))
5097 return;
5098
5099 index = srcu_read_lock(&ipmi_interfaces_srcu);
5100 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5101 if (atomic_read(&intf->event_waiters)) {
5102 intf->ticks_to_req_ev--;
5103 if (intf->ticks_to_req_ev == 0) {
5104 ipmi_request_event(intf);
5105 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5106 }
5107 need_timer = true;
5108 }
5109
5110 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5111 }
5112 srcu_read_unlock(&ipmi_interfaces_srcu, index);
5113
5114 if (need_timer)
5115 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5116 }
5117
need_waiter(struct ipmi_smi * intf)5118 static void need_waiter(struct ipmi_smi *intf)
5119 {
5120 /* Racy, but worst case we start the timer twice. */
5121 if (!timer_pending(&ipmi_timer))
5122 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5123 }
5124
5125 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5126 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5127
free_smi_msg(struct ipmi_smi_msg * msg)5128 static void free_smi_msg(struct ipmi_smi_msg *msg)
5129 {
5130 atomic_dec(&smi_msg_inuse_count);
5131 /* Try to keep as much stuff out of the panic path as possible. */
5132 if (!oops_in_progress)
5133 kfree(msg);
5134 }
5135
ipmi_alloc_smi_msg(void)5136 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5137 {
5138 struct ipmi_smi_msg *rv;
5139 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5140 if (rv) {
5141 rv->done = free_smi_msg;
5142 rv->user_data = NULL;
5143 rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5144 atomic_inc(&smi_msg_inuse_count);
5145 }
5146 return rv;
5147 }
5148 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5149
free_recv_msg(struct ipmi_recv_msg * msg)5150 static void free_recv_msg(struct ipmi_recv_msg *msg)
5151 {
5152 atomic_dec(&recv_msg_inuse_count);
5153 /* Try to keep as much stuff out of the panic path as possible. */
5154 if (!oops_in_progress)
5155 kfree(msg);
5156 }
5157
ipmi_alloc_recv_msg(void)5158 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5159 {
5160 struct ipmi_recv_msg *rv;
5161
5162 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5163 if (rv) {
5164 rv->user = NULL;
5165 rv->done = free_recv_msg;
5166 atomic_inc(&recv_msg_inuse_count);
5167 }
5168 return rv;
5169 }
5170
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)5171 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5172 {
5173 if (msg->user && !oops_in_progress)
5174 kref_put(&msg->user->refcount, free_user);
5175 msg->done(msg);
5176 }
5177 EXPORT_SYMBOL(ipmi_free_recv_msg);
5178
5179 static atomic_t panic_done_count = ATOMIC_INIT(0);
5180
dummy_smi_done_handler(struct ipmi_smi_msg * msg)5181 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5182 {
5183 atomic_dec(&panic_done_count);
5184 }
5185
dummy_recv_done_handler(struct ipmi_recv_msg * msg)5186 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5187 {
5188 atomic_dec(&panic_done_count);
5189 }
5190
5191 /*
5192 * Inside a panic, send a message and wait for a response.
5193 */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)5194 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5195 struct ipmi_addr *addr,
5196 struct kernel_ipmi_msg *msg)
5197 {
5198 struct ipmi_smi_msg smi_msg;
5199 struct ipmi_recv_msg recv_msg;
5200 int rv;
5201
5202 smi_msg.done = dummy_smi_done_handler;
5203 recv_msg.done = dummy_recv_done_handler;
5204 atomic_add(2, &panic_done_count);
5205 rv = i_ipmi_request(NULL,
5206 intf,
5207 addr,
5208 0,
5209 msg,
5210 intf,
5211 &smi_msg,
5212 &recv_msg,
5213 0,
5214 intf->addrinfo[0].address,
5215 intf->addrinfo[0].lun,
5216 0, 1); /* Don't retry, and don't wait. */
5217 if (rv)
5218 atomic_sub(2, &panic_done_count);
5219 else if (intf->handlers->flush_messages)
5220 intf->handlers->flush_messages(intf->send_info);
5221
5222 while (atomic_read(&panic_done_count) != 0)
5223 ipmi_poll(intf);
5224 }
5225
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5226 static void event_receiver_fetcher(struct ipmi_smi *intf,
5227 struct ipmi_recv_msg *msg)
5228 {
5229 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5230 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5231 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5232 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5233 /* A get event receiver command, save it. */
5234 intf->event_receiver = msg->msg.data[1];
5235 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5236 }
5237 }
5238
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)5239 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5240 {
5241 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5242 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5243 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5244 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5245 /*
5246 * A get device id command, save if we are an event
5247 * receiver or generator.
5248 */
5249 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5250 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5251 }
5252 }
5253
send_panic_events(struct ipmi_smi * intf,char * str)5254 static void send_panic_events(struct ipmi_smi *intf, char *str)
5255 {
5256 struct kernel_ipmi_msg msg;
5257 unsigned char data[16];
5258 struct ipmi_system_interface_addr *si;
5259 struct ipmi_addr addr;
5260 char *p = str;
5261 struct ipmi_ipmb_addr *ipmb;
5262 int j;
5263
5264 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5265 return;
5266
5267 si = (struct ipmi_system_interface_addr *) &addr;
5268 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5269 si->channel = IPMI_BMC_CHANNEL;
5270 si->lun = 0;
5271
5272 /* Fill in an event telling that we have failed. */
5273 msg.netfn = 0x04; /* Sensor or Event. */
5274 msg.cmd = 2; /* Platform event command. */
5275 msg.data = data;
5276 msg.data_len = 8;
5277 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5278 data[1] = 0x03; /* This is for IPMI 1.0. */
5279 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5280 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5281 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5282
5283 /*
5284 * Put a few breadcrumbs in. Hopefully later we can add more things
5285 * to make the panic events more useful.
5286 */
5287 if (str) {
5288 data[3] = str[0];
5289 data[6] = str[1];
5290 data[7] = str[2];
5291 }
5292
5293 /* Send the event announcing the panic. */
5294 ipmi_panic_request_and_wait(intf, &addr, &msg);
5295
5296 /*
5297 * On every interface, dump a bunch of OEM event holding the
5298 * string.
5299 */
5300 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5301 return;
5302
5303 /*
5304 * intf_num is used as an marker to tell if the
5305 * interface is valid. Thus we need a read barrier to
5306 * make sure data fetched before checking intf_num
5307 * won't be used.
5308 */
5309 smp_rmb();
5310
5311 /*
5312 * First job here is to figure out where to send the
5313 * OEM events. There's no way in IPMI to send OEM
5314 * events using an event send command, so we have to
5315 * find the SEL to put them in and stick them in
5316 * there.
5317 */
5318
5319 /* Get capabilities from the get device id. */
5320 intf->local_sel_device = 0;
5321 intf->local_event_generator = 0;
5322 intf->event_receiver = 0;
5323
5324 /* Request the device info from the local MC. */
5325 msg.netfn = IPMI_NETFN_APP_REQUEST;
5326 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5327 msg.data = NULL;
5328 msg.data_len = 0;
5329 intf->null_user_handler = device_id_fetcher;
5330 ipmi_panic_request_and_wait(intf, &addr, &msg);
5331
5332 if (intf->local_event_generator) {
5333 /* Request the event receiver from the local MC. */
5334 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5335 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5336 msg.data = NULL;
5337 msg.data_len = 0;
5338 intf->null_user_handler = event_receiver_fetcher;
5339 ipmi_panic_request_and_wait(intf, &addr, &msg);
5340 }
5341 intf->null_user_handler = NULL;
5342
5343 /*
5344 * Validate the event receiver. The low bit must not
5345 * be 1 (it must be a valid IPMB address), it cannot
5346 * be zero, and it must not be my address.
5347 */
5348 if (((intf->event_receiver & 1) == 0)
5349 && (intf->event_receiver != 0)
5350 && (intf->event_receiver != intf->addrinfo[0].address)) {
5351 /*
5352 * The event receiver is valid, send an IPMB
5353 * message.
5354 */
5355 ipmb = (struct ipmi_ipmb_addr *) &addr;
5356 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5357 ipmb->channel = 0; /* FIXME - is this right? */
5358 ipmb->lun = intf->event_receiver_lun;
5359 ipmb->slave_addr = intf->event_receiver;
5360 } else if (intf->local_sel_device) {
5361 /*
5362 * The event receiver was not valid (or was
5363 * me), but I am an SEL device, just dump it
5364 * in my SEL.
5365 */
5366 si = (struct ipmi_system_interface_addr *) &addr;
5367 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5368 si->channel = IPMI_BMC_CHANNEL;
5369 si->lun = 0;
5370 } else
5371 return; /* No where to send the event. */
5372
5373 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5374 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5375 msg.data = data;
5376 msg.data_len = 16;
5377
5378 j = 0;
5379 while (*p) {
5380 int size = strlen(p);
5381
5382 if (size > 11)
5383 size = 11;
5384 data[0] = 0;
5385 data[1] = 0;
5386 data[2] = 0xf0; /* OEM event without timestamp. */
5387 data[3] = intf->addrinfo[0].address;
5388 data[4] = j++; /* sequence # */
5389 /*
5390 * Always give 11 bytes, so strncpy will fill
5391 * it with zeroes for me.
5392 */
5393 strncpy(data+5, p, 11);
5394 p += size;
5395
5396 ipmi_panic_request_and_wait(intf, &addr, &msg);
5397 }
5398 }
5399
5400 static int has_panicked;
5401
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5402 static int panic_event(struct notifier_block *this,
5403 unsigned long event,
5404 void *ptr)
5405 {
5406 struct ipmi_smi *intf;
5407 struct ipmi_user *user;
5408
5409 if (has_panicked)
5410 return NOTIFY_DONE;
5411 has_panicked = 1;
5412
5413 /* For every registered interface, set it to run to completion. */
5414 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5415 if (!intf->handlers || intf->intf_num == -1)
5416 /* Interface is not ready. */
5417 continue;
5418
5419 if (!intf->handlers->poll)
5420 continue;
5421
5422 /*
5423 * If we were interrupted while locking xmit_msgs_lock or
5424 * waiting_rcv_msgs_lock, the corresponding list may be
5425 * corrupted. In this case, drop items on the list for
5426 * the safety.
5427 */
5428 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5429 INIT_LIST_HEAD(&intf->xmit_msgs);
5430 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5431 } else
5432 spin_unlock(&intf->xmit_msgs_lock);
5433
5434 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5435 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5436 else
5437 spin_unlock(&intf->waiting_rcv_msgs_lock);
5438
5439 intf->run_to_completion = 1;
5440 if (intf->handlers->set_run_to_completion)
5441 intf->handlers->set_run_to_completion(intf->send_info,
5442 1);
5443
5444 list_for_each_entry_rcu(user, &intf->users, link) {
5445 if (user->handler->ipmi_panic_handler)
5446 user->handler->ipmi_panic_handler(
5447 user->handler_data);
5448 }
5449
5450 send_panic_events(intf, ptr);
5451 }
5452
5453 return NOTIFY_DONE;
5454 }
5455
5456 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5457 static int ipmi_register_driver(void)
5458 {
5459 int rv;
5460
5461 if (drvregistered)
5462 return 0;
5463
5464 rv = driver_register(&ipmidriver.driver);
5465 if (rv)
5466 pr_err("Could not register IPMI driver\n");
5467 else
5468 drvregistered = true;
5469 return rv;
5470 }
5471
5472 static struct notifier_block panic_block = {
5473 .notifier_call = panic_event,
5474 .next = NULL,
5475 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5476 };
5477
ipmi_init_msghandler(void)5478 static int ipmi_init_msghandler(void)
5479 {
5480 int rv;
5481
5482 mutex_lock(&ipmi_interfaces_mutex);
5483 rv = ipmi_register_driver();
5484 if (rv)
5485 goto out;
5486 if (initialized)
5487 goto out;
5488
5489 rv = init_srcu_struct(&ipmi_interfaces_srcu);
5490 if (rv)
5491 goto out;
5492
5493 remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5494 if (!remove_work_wq) {
5495 pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5496 rv = -ENOMEM;
5497 goto out_wq;
5498 }
5499
5500 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5501 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5502
5503 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5504
5505 initialized = true;
5506
5507 out_wq:
5508 if (rv)
5509 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5510 out:
5511 mutex_unlock(&ipmi_interfaces_mutex);
5512 return rv;
5513 }
5514
ipmi_init_msghandler_mod(void)5515 static int __init ipmi_init_msghandler_mod(void)
5516 {
5517 int rv;
5518
5519 pr_info("version " IPMI_DRIVER_VERSION "\n");
5520
5521 mutex_lock(&ipmi_interfaces_mutex);
5522 rv = ipmi_register_driver();
5523 mutex_unlock(&ipmi_interfaces_mutex);
5524
5525 return rv;
5526 }
5527
cleanup_ipmi(void)5528 static void __exit cleanup_ipmi(void)
5529 {
5530 int count;
5531
5532 if (initialized) {
5533 destroy_workqueue(remove_work_wq);
5534
5535 atomic_notifier_chain_unregister(&panic_notifier_list,
5536 &panic_block);
5537
5538 /*
5539 * This can't be called if any interfaces exist, so no worry
5540 * about shutting down the interfaces.
5541 */
5542
5543 /*
5544 * Tell the timer to stop, then wait for it to stop. This
5545 * avoids problems with race conditions removing the timer
5546 * here.
5547 */
5548 atomic_set(&stop_operation, 1);
5549 del_timer_sync(&ipmi_timer);
5550
5551 initialized = false;
5552
5553 /* Check for buffer leaks. */
5554 count = atomic_read(&smi_msg_inuse_count);
5555 if (count != 0)
5556 pr_warn("SMI message count %d at exit\n", count);
5557 count = atomic_read(&recv_msg_inuse_count);
5558 if (count != 0)
5559 pr_warn("recv message count %d at exit\n", count);
5560
5561 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5562 }
5563 if (drvregistered)
5564 driver_unregister(&ipmidriver.driver);
5565 }
5566 module_exit(cleanup_ipmi);
5567
5568 module_init(ipmi_init_msghandler_mod);
5569 MODULE_LICENSE("GPL");
5570 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5571 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5572 MODULE_VERSION(IPMI_DRIVER_VERSION);
5573 MODULE_SOFTDEP("post: ipmi_devintf");
5574