1 /*
2  * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3  * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/delay.h>
35 #include <linux/pci.h>
36 #include <linux/vmalloc.h>
37 
38 #include "ipath_kernel.h"
39 
40 /*
41  * InfiniPath I2C driver for a serial eeprom.  This is not a generic
42  * I2C interface.  For a start, the device we're using (Atmel AT24C11)
43  * doesn't work like a regular I2C device.  It looks like one
44  * electrically, but not logically.  Normal I2C devices have a single
45  * 7-bit or 10-bit I2C address that they respond to.  Valid 7-bit
46  * addresses range from 0x03 to 0x77.  Addresses 0x00 to 0x02 and 0x78
47  * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
48  * call" address.)  The Atmel device, on the other hand, responds to ALL
49  * 7-bit addresses.  It's designed to be the only device on a given I2C
50  * bus.  A 7-bit address corresponds to the memory address within the
51  * Atmel device itself.
52  *
53  * Also, the timing requirements mean more than simple software
54  * bitbanging, with readbacks from chip to ensure timing (simple udelay
55  * is not enough).
56  *
57  * This all means that accessing the device is specialized enough
58  * that using the standard kernel I2C bitbanging interface would be
59  * impossible.  For example, the core I2C eeprom driver expects to find
60  * a device at one or more of a limited set of addresses only.  It doesn't
61  * allow writing to an eeprom.  It also doesn't provide any means of
62  * accessing eeprom contents from within the kernel, only via sysfs.
63  */
64 
65 /* Added functionality for IBA7220-based cards */
66 #define IPATH_EEPROM_DEV_V1 0xA0
67 #define IPATH_EEPROM_DEV_V2 0xA2
68 #define IPATH_TEMP_DEV 0x98
69 #define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2)
70 #define IPATH_NO_DEV (0xFF)
71 
72 /*
73  * The number of I2C chains is proliferating. Table below brings
74  * some order to the madness. The basic principle is that the
75  * table is scanned from the top, and a "probe" is made to the
76  * device probe_dev. If that succeeds, the chain is considered
77  * to be of that type, and dd->i2c_chain_type is set to the index+1
78  * of the entry.
79  * The +1 is so static initialization can mean "unknown, do probe."
80  */
81 static struct i2c_chain_desc {
82 	u8 probe_dev;	/* If seen at probe, chain is this type */
83 	u8 eeprom_dev;	/* Dev addr (if any) for EEPROM */
84 	u8 temp_dev;	/* Dev Addr (if any) for Temp-sense */
85 } i2c_chains[] = {
86 	{ IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */
87 	{ IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */
88 	{ IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */
89 	{ IPATH_NO_DEV }
90 };
91 
92 enum i2c_type {
93 	i2c_line_scl = 0,
94 	i2c_line_sda
95 };
96 
97 enum i2c_state {
98 	i2c_line_low = 0,
99 	i2c_line_high
100 };
101 
102 #define READ_CMD 1
103 #define WRITE_CMD 0
104 
105 /**
106  * i2c_gpio_set - set a GPIO line
107  * @dd: the infinipath device
108  * @line: the line to set
109  * @new_line_state: the state to set
110  *
111  * Returns 0 if the line was set to the new state successfully, non-zero
112  * on error.
113  */
i2c_gpio_set(struct ipath_devdata * dd,enum i2c_type line,enum i2c_state new_line_state)114 static int i2c_gpio_set(struct ipath_devdata *dd,
115 			enum i2c_type line,
116 			enum i2c_state new_line_state)
117 {
118 	u64 out_mask, dir_mask, *gpioval;
119 	unsigned long flags = 0;
120 
121 	gpioval = &dd->ipath_gpio_out;
122 
123 	if (line == i2c_line_scl) {
124 		dir_mask = dd->ipath_gpio_scl;
125 		out_mask = (1UL << dd->ipath_gpio_scl_num);
126 	} else {
127 		dir_mask = dd->ipath_gpio_sda;
128 		out_mask = (1UL << dd->ipath_gpio_sda_num);
129 	}
130 
131 	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
132 	if (new_line_state == i2c_line_high) {
133 		/* tri-state the output rather than force high */
134 		dd->ipath_extctrl &= ~dir_mask;
135 	} else {
136 		/* config line to be an output */
137 		dd->ipath_extctrl |= dir_mask;
138 	}
139 	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
140 
141 	/* set output as well (no real verify) */
142 	if (new_line_state == i2c_line_high)
143 		*gpioval |= out_mask;
144 	else
145 		*gpioval &= ~out_mask;
146 
147 	ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
148 	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
149 
150 	return 0;
151 }
152 
153 /**
154  * i2c_gpio_get - get a GPIO line state
155  * @dd: the infinipath device
156  * @line: the line to get
157  * @curr_statep: where to put the line state
158  *
159  * Returns 0 if the line was set to the new state successfully, non-zero
160  * on error.  curr_state is not set on error.
161  */
i2c_gpio_get(struct ipath_devdata * dd,enum i2c_type line,enum i2c_state * curr_statep)162 static int i2c_gpio_get(struct ipath_devdata *dd,
163 			enum i2c_type line,
164 			enum i2c_state *curr_statep)
165 {
166 	u64 read_val, mask;
167 	int ret;
168 	unsigned long flags = 0;
169 
170 	/* check args */
171 	if (curr_statep == NULL) {
172 		ret = 1;
173 		goto bail;
174 	}
175 
176 	/* config line to be an input */
177 	if (line == i2c_line_scl)
178 		mask = dd->ipath_gpio_scl;
179 	else
180 		mask = dd->ipath_gpio_sda;
181 
182 	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
183 	dd->ipath_extctrl &= ~mask;
184 	ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
185 	/*
186 	 * Below is very unlikely to reflect true input state if Output
187 	 * Enable actually changed.
188 	 */
189 	read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
190 	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
191 
192 	if (read_val & mask)
193 		*curr_statep = i2c_line_high;
194 	else
195 		*curr_statep = i2c_line_low;
196 
197 	ret = 0;
198 
199 bail:
200 	return ret;
201 }
202 
203 /**
204  * i2c_wait_for_writes - wait for a write
205  * @dd: the infinipath device
206  *
207  * We use this instead of udelay directly, so we can make sure
208  * that previous register writes have been flushed all the way
209  * to the chip.  Since we are delaying anyway, the cost doesn't
210  * hurt, and makes the bit twiddling more regular
211  */
i2c_wait_for_writes(struct ipath_devdata * dd)212 static void i2c_wait_for_writes(struct ipath_devdata *dd)
213 {
214 	(void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
215 	rmb();
216 }
217 
scl_out(struct ipath_devdata * dd,u8 bit)218 static void scl_out(struct ipath_devdata *dd, u8 bit)
219 {
220 	udelay(1);
221 	i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
222 
223 	i2c_wait_for_writes(dd);
224 }
225 
sda_out(struct ipath_devdata * dd,u8 bit)226 static void sda_out(struct ipath_devdata *dd, u8 bit)
227 {
228 	i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
229 
230 	i2c_wait_for_writes(dd);
231 }
232 
sda_in(struct ipath_devdata * dd,int wait)233 static u8 sda_in(struct ipath_devdata *dd, int wait)
234 {
235 	enum i2c_state bit;
236 
237 	if (i2c_gpio_get(dd, i2c_line_sda, &bit))
238 		ipath_dbg("get bit failed!\n");
239 
240 	if (wait)
241 		i2c_wait_for_writes(dd);
242 
243 	return bit == i2c_line_high ? 1U : 0;
244 }
245 
246 /**
247  * i2c_ackrcv - see if ack following write is true
248  * @dd: the infinipath device
249  */
i2c_ackrcv(struct ipath_devdata * dd)250 static int i2c_ackrcv(struct ipath_devdata *dd)
251 {
252 	u8 ack_received;
253 
254 	/* AT ENTRY SCL = LOW */
255 	/* change direction, ignore data */
256 	ack_received = sda_in(dd, 1);
257 	scl_out(dd, i2c_line_high);
258 	ack_received = sda_in(dd, 1) == 0;
259 	scl_out(dd, i2c_line_low);
260 	return ack_received;
261 }
262 
263 /**
264  * rd_byte - read a byte, leaving ACK, STOP, etc up to caller
265  * @dd: the infinipath device
266  *
267  * Returns byte shifted out of device
268  */
rd_byte(struct ipath_devdata * dd)269 static int rd_byte(struct ipath_devdata *dd)
270 {
271 	int bit_cntr, data;
272 
273 	data = 0;
274 
275 	for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) {
276 		data <<= 1;
277 		scl_out(dd, i2c_line_high);
278 		data |= sda_in(dd, 0);
279 		scl_out(dd, i2c_line_low);
280 	}
281 	return data;
282 }
283 
284 /**
285  * wr_byte - write a byte, one bit at a time
286  * @dd: the infinipath device
287  * @data: the byte to write
288  *
289  * Returns 0 if we got the following ack, otherwise 1
290  */
wr_byte(struct ipath_devdata * dd,u8 data)291 static int wr_byte(struct ipath_devdata *dd, u8 data)
292 {
293 	int bit_cntr;
294 	u8 bit;
295 
296 	for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
297 		bit = (data >> bit_cntr) & 1;
298 		sda_out(dd, bit);
299 		scl_out(dd, i2c_line_high);
300 		scl_out(dd, i2c_line_low);
301 	}
302 	return (!i2c_ackrcv(dd)) ? 1 : 0;
303 }
304 
send_ack(struct ipath_devdata * dd)305 static void send_ack(struct ipath_devdata *dd)
306 {
307 	sda_out(dd, i2c_line_low);
308 	scl_out(dd, i2c_line_high);
309 	scl_out(dd, i2c_line_low);
310 	sda_out(dd, i2c_line_high);
311 }
312 
313 /**
314  * i2c_startcmd - transmit the start condition, followed by address/cmd
315  * @dd: the infinipath device
316  * @offset_dir: direction byte
317  *
318  *      (both clock/data high, clock high, data low while clock is high)
319  */
i2c_startcmd(struct ipath_devdata * dd,u8 offset_dir)320 static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
321 {
322 	int res;
323 
324 	/* issue start sequence */
325 	sda_out(dd, i2c_line_high);
326 	scl_out(dd, i2c_line_high);
327 	sda_out(dd, i2c_line_low);
328 	scl_out(dd, i2c_line_low);
329 
330 	/* issue length and direction byte */
331 	res = wr_byte(dd, offset_dir);
332 
333 	if (res)
334 		ipath_cdbg(VERBOSE, "No ack to complete start\n");
335 
336 	return res;
337 }
338 
339 /**
340  * stop_cmd - transmit the stop condition
341  * @dd: the infinipath device
342  *
343  * (both clock/data low, clock high, data high while clock is high)
344  */
stop_cmd(struct ipath_devdata * dd)345 static void stop_cmd(struct ipath_devdata *dd)
346 {
347 	scl_out(dd, i2c_line_low);
348 	sda_out(dd, i2c_line_low);
349 	scl_out(dd, i2c_line_high);
350 	sda_out(dd, i2c_line_high);
351 	udelay(2);
352 }
353 
354 /**
355  * eeprom_reset - reset I2C communication
356  * @dd: the infinipath device
357  */
358 
eeprom_reset(struct ipath_devdata * dd)359 static int eeprom_reset(struct ipath_devdata *dd)
360 {
361 	int clock_cycles_left = 9;
362 	u64 *gpioval = &dd->ipath_gpio_out;
363 	int ret;
364 	unsigned long flags;
365 
366 	spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
367 	/* Make sure shadows are consistent */
368 	dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
369 	*gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
370 	spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
371 
372 	ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
373 		   "is %llx\n", (unsigned long long) *gpioval);
374 
375 	/*
376 	 * This is to get the i2c into a known state, by first going low,
377 	 * then tristate sda (and then tristate scl as first thing
378 	 * in loop)
379 	 */
380 	scl_out(dd, i2c_line_low);
381 	sda_out(dd, i2c_line_high);
382 
383 	/* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */
384 	while (clock_cycles_left--) {
385 		scl_out(dd, i2c_line_high);
386 
387 		/* SDA seen high, issue START by dropping it while SCL high */
388 		if (sda_in(dd, 0)) {
389 			sda_out(dd, i2c_line_low);
390 			scl_out(dd, i2c_line_low);
391 			/* ATMEL spec says must be followed by STOP. */
392 			scl_out(dd, i2c_line_high);
393 			sda_out(dd, i2c_line_high);
394 			ret = 0;
395 			goto bail;
396 		}
397 
398 		scl_out(dd, i2c_line_low);
399 	}
400 
401 	ret = 1;
402 
403 bail:
404 	return ret;
405 }
406 
407 /*
408  * Probe for I2C device at specified address. Returns 0 for "success"
409  * to match rest of this file.
410  * Leave bus in "reasonable" state for further commands.
411  */
i2c_probe(struct ipath_devdata * dd,int devaddr)412 static int i2c_probe(struct ipath_devdata *dd, int devaddr)
413 {
414 	int ret = 0;
415 
416 	ret = eeprom_reset(dd);
417 	if (ret) {
418 		ipath_dev_err(dd, "Failed reset probing device 0x%02X\n",
419 			      devaddr);
420 		return ret;
421 	}
422 	/*
423 	 * Reset no longer leaves bus in start condition, so normal
424 	 * i2c_startcmd() will do.
425 	 */
426 	ret = i2c_startcmd(dd, devaddr | READ_CMD);
427 	if (ret)
428 		ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n",
429 			   devaddr);
430 	else {
431 		/*
432 		 * Device did respond. Complete a single-byte read, because some
433 		 * devices apparently cannot handle STOP immediately after they
434 		 * ACK the start-cmd.
435 		 */
436 		int data;
437 		data = rd_byte(dd);
438 		stop_cmd(dd);
439 		ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr);
440 	}
441 	return ret;
442 }
443 
444 /*
445  * Returns the "i2c type". This is a pointer to a struct that describes
446  * the I2C chain on this board. To minimize impact on struct ipath_devdata,
447  * the (small integer) index into the table is actually memoized, rather
448  * then the pointer.
449  * Memoization is because the type is determined on the first call per chip.
450  * An alternative would be to move type determination to early
451  * init code.
452  */
ipath_i2c_type(struct ipath_devdata * dd)453 static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd)
454 {
455 	int idx;
456 
457 	/* Get memoized index, from previous successful probes */
458 	idx = dd->ipath_i2c_chain_type - 1;
459 	if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1))
460 		goto done;
461 
462 	idx = 0;
463 	while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) {
464 		/* if probe succeeds, this is type */
465 		if (!i2c_probe(dd, i2c_chains[idx].probe_dev))
466 			break;
467 		++idx;
468 	}
469 
470 	/*
471 	 * Old EEPROM (first entry) may require a reset after probe,
472 	 * rather than being able to "start" after "stop"
473 	 */
474 	if (idx == 0)
475 		eeprom_reset(dd);
476 
477 	if (i2c_chains[idx].probe_dev == IPATH_NO_DEV)
478 		idx = -1;
479 	else
480 		dd->ipath_i2c_chain_type = idx + 1;
481 done:
482 	return (idx >= 0) ? i2c_chains + idx : NULL;
483 }
484 
ipath_eeprom_internal_read(struct ipath_devdata * dd,u8 eeprom_offset,void * buffer,int len)485 static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
486 					u8 eeprom_offset, void *buffer, int len)
487 {
488 	int ret;
489 	struct i2c_chain_desc *icd;
490 	u8 *bp = buffer;
491 
492 	ret = 1;
493 	icd = ipath_i2c_type(dd);
494 	if (!icd)
495 		goto bail;
496 
497 	if (icd->eeprom_dev == IPATH_NO_DEV) {
498 		/* legacy not-really-I2C */
499 		ipath_cdbg(VERBOSE, "Start command only address\n");
500 		eeprom_offset = (eeprom_offset << 1) | READ_CMD;
501 		ret = i2c_startcmd(dd, eeprom_offset);
502 	} else {
503 		/* Actual I2C */
504 		ipath_cdbg(VERBOSE, "Start command uses devaddr\n");
505 		if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
506 			ipath_dbg("Failed EEPROM startcmd\n");
507 			stop_cmd(dd);
508 			ret = 1;
509 			goto bail;
510 		}
511 		ret = wr_byte(dd, eeprom_offset);
512 		stop_cmd(dd);
513 		if (ret) {
514 			ipath_dev_err(dd, "Failed to write EEPROM address\n");
515 			ret = 1;
516 			goto bail;
517 		}
518 		ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD);
519 	}
520 	if (ret) {
521 		ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev);
522 		stop_cmd(dd);
523 		ret = 1;
524 		goto bail;
525 	}
526 
527 	/*
528 	 * eeprom keeps clocking data out as long as we ack, automatically
529 	 * incrementing the address.
530 	 */
531 	while (len-- > 0) {
532 		/* get and store data */
533 		*bp++ = rd_byte(dd);
534 		/* send ack if not the last byte */
535 		if (len)
536 			send_ack(dd);
537 	}
538 
539 	stop_cmd(dd);
540 
541 	ret = 0;
542 
543 bail:
544 	return ret;
545 }
546 
ipath_eeprom_internal_write(struct ipath_devdata * dd,u8 eeprom_offset,const void * buffer,int len)547 static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
548 				       const void *buffer, int len)
549 {
550 	int sub_len;
551 	const u8 *bp = buffer;
552 	int max_wait_time, i;
553 	int ret;
554 	struct i2c_chain_desc *icd;
555 
556 	ret = 1;
557 	icd = ipath_i2c_type(dd);
558 	if (!icd)
559 		goto bail;
560 
561 	while (len > 0) {
562 		if (icd->eeprom_dev == IPATH_NO_DEV) {
563 			if (i2c_startcmd(dd,
564 					 (eeprom_offset << 1) | WRITE_CMD)) {
565 				ipath_dbg("Failed to start cmd offset %u\n",
566 					eeprom_offset);
567 				goto failed_write;
568 			}
569 		} else {
570 			/* Real I2C */
571 			if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) {
572 				ipath_dbg("Failed EEPROM startcmd\n");
573 				goto failed_write;
574 			}
575 			ret = wr_byte(dd, eeprom_offset);
576 			if (ret) {
577 				ipath_dev_err(dd, "Failed to write EEPROM "
578 					      "address\n");
579 				goto failed_write;
580 			}
581 		}
582 
583 		sub_len = min(len, 4);
584 		eeprom_offset += sub_len;
585 		len -= sub_len;
586 
587 		for (i = 0; i < sub_len; i++) {
588 			if (wr_byte(dd, *bp++)) {
589 				ipath_dbg("no ack after byte %u/%u (%u "
590 					  "total remain)\n", i, sub_len,
591 					  len + sub_len - i);
592 				goto failed_write;
593 			}
594 		}
595 
596 		stop_cmd(dd);
597 
598 		/*
599 		 * wait for write complete by waiting for a successful
600 		 * read (the chip replies with a zero after the write
601 		 * cmd completes, and before it writes to the eeprom.
602 		 * The startcmd for the read will fail the ack until
603 		 * the writes have completed.   We do this inline to avoid
604 		 * the debug prints that are in the real read routine
605 		 * if the startcmd fails.
606 		 * We also use the proper device address, so it doesn't matter
607 		 * whether we have real eeprom_dev. legacy likes any address.
608 		 */
609 		max_wait_time = 100;
610 		while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) {
611 			stop_cmd(dd);
612 			if (!--max_wait_time) {
613 				ipath_dbg("Did not get successful read to "
614 					  "complete write\n");
615 				goto failed_write;
616 			}
617 		}
618 		/* now read (and ignore) the resulting byte */
619 		rd_byte(dd);
620 		stop_cmd(dd);
621 	}
622 
623 	ret = 0;
624 	goto bail;
625 
626 failed_write:
627 	stop_cmd(dd);
628 	ret = 1;
629 
630 bail:
631 	return ret;
632 }
633 
634 /**
635  * ipath_eeprom_read - receives bytes from the eeprom via I2C
636  * @dd: the infinipath device
637  * @eeprom_offset: address to read from
638  * @buffer: where to store result
639  * @len: number of bytes to receive
640  */
ipath_eeprom_read(struct ipath_devdata * dd,u8 eeprom_offset,void * buff,int len)641 int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
642 			void *buff, int len)
643 {
644 	int ret;
645 
646 	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
647 	if (!ret) {
648 		ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
649 		mutex_unlock(&dd->ipath_eep_lock);
650 	}
651 
652 	return ret;
653 }
654 
655 /**
656  * ipath_eeprom_write - writes data to the eeprom via I2C
657  * @dd: the infinipath device
658  * @eeprom_offset: where to place data
659  * @buffer: data to write
660  * @len: number of bytes to write
661  */
ipath_eeprom_write(struct ipath_devdata * dd,u8 eeprom_offset,const void * buff,int len)662 int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
663 			const void *buff, int len)
664 {
665 	int ret;
666 
667 	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
668 	if (!ret) {
669 		ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
670 		mutex_unlock(&dd->ipath_eep_lock);
671 	}
672 
673 	return ret;
674 }
675 
flash_csum(struct ipath_flash * ifp,int adjust)676 static u8 flash_csum(struct ipath_flash *ifp, int adjust)
677 {
678 	u8 *ip = (u8 *) ifp;
679 	u8 csum = 0, len;
680 
681 	/*
682 	 * Limit length checksummed to max length of actual data.
683 	 * Checksum of erased eeprom will still be bad, but we avoid
684 	 * reading past the end of the buffer we were passed.
685 	 */
686 	len = ifp->if_length;
687 	if (len > sizeof(struct ipath_flash))
688 		len = sizeof(struct ipath_flash);
689 	while (len--)
690 		csum += *ip++;
691 	csum -= ifp->if_csum;
692 	csum = ~csum;
693 	if (adjust)
694 		ifp->if_csum = csum;
695 
696 	return csum;
697 }
698 
699 /**
700  * ipath_get_guid - get the GUID from the i2c device
701  * @dd: the infinipath device
702  *
703  * We have the capability to use the ipath_nguid field, and get
704  * the guid from the first chip's flash, to use for all of them.
705  */
ipath_get_eeprom_info(struct ipath_devdata * dd)706 void ipath_get_eeprom_info(struct ipath_devdata *dd)
707 {
708 	void *buf;
709 	struct ipath_flash *ifp;
710 	__be64 guid;
711 	int len, eep_stat;
712 	u8 csum, *bguid;
713 	int t = dd->ipath_unit;
714 	struct ipath_devdata *dd0 = ipath_lookup(0);
715 
716 	if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
717 		u8 oguid;
718 		dd->ipath_guid = dd0->ipath_guid;
719 		bguid = (u8 *) & dd->ipath_guid;
720 
721 		oguid = bguid[7];
722 		bguid[7] += t;
723 		if (oguid > bguid[7]) {
724 			if (bguid[6] == 0xff) {
725 				if (bguid[5] == 0xff) {
726 					ipath_dev_err(
727 						dd,
728 						"Can't set %s GUID from "
729 						"base, wraps to OUI!\n",
730 						ipath_get_unit_name(t));
731 					dd->ipath_guid = 0;
732 					goto bail;
733 				}
734 				bguid[5]++;
735 			}
736 			bguid[6]++;
737 		}
738 		dd->ipath_nguid = 1;
739 
740 		ipath_dbg("nguid %u, so adding %u to device 0 guid, "
741 			  "for %llx\n",
742 			  dd0->ipath_nguid, t,
743 			  (unsigned long long) be64_to_cpu(dd->ipath_guid));
744 		goto bail;
745 	}
746 
747 	/*
748 	 * read full flash, not just currently used part, since it may have
749 	 * been written with a newer definition
750 	 * */
751 	len = sizeof(struct ipath_flash);
752 	buf = vmalloc(len);
753 	if (!buf) {
754 		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
755 			      "bytes from eeprom for GUID\n", len);
756 		goto bail;
757 	}
758 
759 	mutex_lock(&dd->ipath_eep_lock);
760 	eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
761 	mutex_unlock(&dd->ipath_eep_lock);
762 
763 	if (eep_stat) {
764 		ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
765 		goto done;
766 	}
767 	ifp = (struct ipath_flash *)buf;
768 
769 	csum = flash_csum(ifp, 0);
770 	if (csum != ifp->if_csum) {
771 		dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
772 			 "0x%x, not 0x%x\n", csum, ifp->if_csum);
773 		goto done;
774 	}
775 	if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) ||
776 	    *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) {
777 		ipath_dev_err(dd, "Invalid GUID %llx from flash; "
778 			      "ignoring\n",
779 			      *(unsigned long long *) ifp->if_guid);
780 		/* don't allow GUID if all 0 or all 1's */
781 		goto done;
782 	}
783 
784 	/* complain, but allow it */
785 	if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
786 		dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
787 			 "default, probably not correct!\n",
788 			 *(unsigned long long *) ifp->if_guid);
789 
790 	bguid = ifp->if_guid;
791 	if (!bguid[0] && !bguid[1] && !bguid[2]) {
792 		/* original incorrect GUID format in flash; fix in
793 		 * core copy, by shifting up 2 octets; don't need to
794 		 * change top octet, since both it and shifted are
795 		 * 0.. */
796 		bguid[1] = bguid[3];
797 		bguid[2] = bguid[4];
798 		bguid[3] = bguid[4] = 0;
799 		guid = *(__be64 *) ifp->if_guid;
800 		ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
801 			   "shifting 2 octets\n");
802 	} else
803 		guid = *(__be64 *) ifp->if_guid;
804 	dd->ipath_guid = guid;
805 	dd->ipath_nguid = ifp->if_numguid;
806 	/*
807 	 * Things are slightly complicated by the desire to transparently
808 	 * support both the Pathscale 10-digit serial number and the QLogic
809 	 * 13-character version.
810 	 */
811 	if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
812 		&& ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
813 		/* This board has a Serial-prefix, which is stored
814 		 * elsewhere for backward-compatibility.
815 		 */
816 		char *snp = dd->ipath_serial;
817 		memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
818 		snp[sizeof ifp->if_sprefix] = '\0';
819 		len = strlen(snp);
820 		snp += len;
821 		len = (sizeof dd->ipath_serial) - len;
822 		if (len > sizeof ifp->if_serial) {
823 			len = sizeof ifp->if_serial;
824 		}
825 		memcpy(snp, ifp->if_serial, len);
826 	} else
827 		memcpy(dd->ipath_serial, ifp->if_serial,
828 		       sizeof ifp->if_serial);
829 	if (!strstr(ifp->if_comment, "Tested successfully"))
830 		ipath_dev_err(dd, "Board SN %s did not pass functional "
831 			"test: %s\n", dd->ipath_serial,
832 			ifp->if_comment);
833 
834 	ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
835 		   (unsigned long long) be64_to_cpu(dd->ipath_guid));
836 
837 	memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
838 	/*
839 	 * Power-on (actually "active") hours are kept as little-endian value
840 	 * in EEPROM, but as seconds in a (possibly as small as 24-bit)
841 	 * atomic_t while running.
842 	 */
843 	atomic_set(&dd->ipath_active_time, 0);
844 	dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);
845 
846 done:
847 	vfree(buf);
848 
849 bail:;
850 }
851 
852 /**
853  * ipath_update_eeprom_log - copy active-time and error counters to eeprom
854  * @dd: the infinipath device
855  *
856  * Although the time is kept as seconds in the ipath_devdata struct, it is
857  * rounded to hours for re-write, as we have only 16 bits in EEPROM.
858  * First-cut code reads whole (expected) struct ipath_flash, modifies,
859  * re-writes. Future direction: read/write only what we need, assuming
860  * that the EEPROM had to have been "good enough" for driver init, and
861  * if not, we aren't making it worse.
862  *
863  */
864 
ipath_update_eeprom_log(struct ipath_devdata * dd)865 int ipath_update_eeprom_log(struct ipath_devdata *dd)
866 {
867 	void *buf;
868 	struct ipath_flash *ifp;
869 	int len, hi_water;
870 	uint32_t new_time, new_hrs;
871 	u8 csum;
872 	int ret, idx;
873 	unsigned long flags;
874 
875 	/* first, check if we actually need to do anything. */
876 	ret = 0;
877 	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
878 		if (dd->ipath_eep_st_new_errs[idx]) {
879 			ret = 1;
880 			break;
881 		}
882 	}
883 	new_time = atomic_read(&dd->ipath_active_time);
884 
885 	if (ret == 0 && new_time < 3600)
886 		return 0;
887 
888 	/*
889 	 * The quick-check above determined that there is something worthy
890 	 * of logging, so get current contents and do a more detailed idea.
891 	 * read full flash, not just currently used part, since it may have
892 	 * been written with a newer definition
893 	 */
894 	len = sizeof(struct ipath_flash);
895 	buf = vmalloc(len);
896 	ret = 1;
897 	if (!buf) {
898 		ipath_dev_err(dd, "Couldn't allocate memory to read %u "
899 				"bytes from eeprom for logging\n", len);
900 		goto bail;
901 	}
902 
903 	/* Grab semaphore and read current EEPROM. If we get an
904 	 * error, let go, but if not, keep it until we finish write.
905 	 */
906 	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
907 	if (ret) {
908 		ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
909 		goto free_bail;
910 	}
911 	ret = ipath_eeprom_internal_read(dd, 0, buf, len);
912 	if (ret) {
913 		mutex_unlock(&dd->ipath_eep_lock);
914 		ipath_dev_err(dd, "Unable read EEPROM for logging\n");
915 		goto free_bail;
916 	}
917 	ifp = (struct ipath_flash *)buf;
918 
919 	csum = flash_csum(ifp, 0);
920 	if (csum != ifp->if_csum) {
921 		mutex_unlock(&dd->ipath_eep_lock);
922 		ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
923 				csum, ifp->if_csum);
924 		ret = 1;
925 		goto free_bail;
926 	}
927 	hi_water = 0;
928 	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
929 	for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
930 		int new_val = dd->ipath_eep_st_new_errs[idx];
931 		if (new_val) {
932 			/*
933 			 * If we have seen any errors, add to EEPROM values
934 			 * We need to saturate at 0xFF (255) and we also
935 			 * would need to adjust the checksum if we were
936 			 * trying to minimize EEPROM traffic
937 			 * Note that we add to actual current count in EEPROM,
938 			 * in case it was altered while we were running.
939 			 */
940 			new_val += ifp->if_errcntp[idx];
941 			if (new_val > 0xFF)
942 				new_val = 0xFF;
943 			if (ifp->if_errcntp[idx] != new_val) {
944 				ifp->if_errcntp[idx] = new_val;
945 				hi_water = offsetof(struct ipath_flash,
946 						if_errcntp) + idx;
947 			}
948 			/*
949 			 * update our shadow (used to minimize EEPROM
950 			 * traffic), to match what we are about to write.
951 			 */
952 			dd->ipath_eep_st_errs[idx] = new_val;
953 			dd->ipath_eep_st_new_errs[idx] = 0;
954 		}
955 	}
956 	/*
957 	 * now update active-time. We would like to round to the nearest hour
958 	 * but unless atomic_t are sure to be proper signed ints we cannot,
959 	 * because we need to account for what we "transfer" to EEPROM and
960 	 * if we log an hour at 31 minutes, then we would need to set
961 	 * active_time to -29 to accurately count the _next_ hour.
962 	 */
963 	if (new_time >= 3600) {
964 		new_hrs = new_time / 3600;
965 		atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
966 		new_hrs += dd->ipath_eep_hrs;
967 		if (new_hrs > 0xFFFF)
968 			new_hrs = 0xFFFF;
969 		dd->ipath_eep_hrs = new_hrs;
970 		if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
971 			ifp->if_powerhour[0] = new_hrs & 0xFF;
972 			hi_water = offsetof(struct ipath_flash, if_powerhour);
973 		}
974 		if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
975 			ifp->if_powerhour[1] = new_hrs >> 8;
976 			hi_water = offsetof(struct ipath_flash, if_powerhour)
977 					+ 1;
978 		}
979 	}
980 	/*
981 	 * There is a tiny possibility that we could somehow fail to write
982 	 * the EEPROM after updating our shadows, but problems from holding
983 	 * the spinlock too long are a much bigger issue.
984 	 */
985 	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
986 	if (hi_water) {
987 		/* we made some change to the data, uopdate cksum and write */
988 		csum = flash_csum(ifp, 1);
989 		ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
990 	}
991 	mutex_unlock(&dd->ipath_eep_lock);
992 	if (ret)
993 		ipath_dev_err(dd, "Failed updating EEPROM\n");
994 
995 free_bail:
996 	vfree(buf);
997 bail:
998 	return ret;
999 
1000 }
1001 
1002 /**
1003  * ipath_inc_eeprom_err - increment one of the four error counters
1004  * that are logged to EEPROM.
1005  * @dd: the infinipath device
1006  * @eidx: 0..3, the counter to increment
1007  * @incr: how much to add
1008  *
1009  * Each counter is 8-bits, and saturates at 255 (0xFF). They
1010  * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
1011  * is called, but it can only be called in a context that allows sleep.
1012  * This function can be called even at interrupt level.
1013  */
1014 
ipath_inc_eeprom_err(struct ipath_devdata * dd,u32 eidx,u32 incr)1015 void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
1016 {
1017 	uint new_val;
1018 	unsigned long flags;
1019 
1020 	spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
1021 	new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
1022 	if (new_val > 255)
1023 		new_val = 255;
1024 	dd->ipath_eep_st_new_errs[eidx] = new_val;
1025 	spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
1026 	return;
1027 }
1028 
ipath_tempsense_internal_read(struct ipath_devdata * dd,u8 regnum)1029 static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum)
1030 {
1031 	int ret;
1032 	struct i2c_chain_desc *icd;
1033 
1034 	ret = -ENOENT;
1035 
1036 	icd = ipath_i2c_type(dd);
1037 	if (!icd)
1038 		goto bail;
1039 
1040 	if (icd->temp_dev == IPATH_NO_DEV) {
1041 		/* tempsense only exists on new, real-I2C boards */
1042 		ret = -ENXIO;
1043 		goto bail;
1044 	}
1045 
1046 	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
1047 		ipath_dbg("Failed tempsense startcmd\n");
1048 		stop_cmd(dd);
1049 		ret = -ENXIO;
1050 		goto bail;
1051 	}
1052 	ret = wr_byte(dd, regnum);
1053 	stop_cmd(dd);
1054 	if (ret) {
1055 		ipath_dev_err(dd, "Failed tempsense WR command %02X\n",
1056 			      regnum);
1057 		ret = -ENXIO;
1058 		goto bail;
1059 	}
1060 	if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) {
1061 		ipath_dbg("Failed tempsense RD startcmd\n");
1062 		stop_cmd(dd);
1063 		ret = -ENXIO;
1064 		goto bail;
1065 	}
1066 	/*
1067 	 * We can only clock out one byte per command, sensibly
1068 	 */
1069 	ret = rd_byte(dd);
1070 	stop_cmd(dd);
1071 
1072 bail:
1073 	return ret;
1074 }
1075 
1076 #define VALID_TS_RD_REG_MASK 0xBF
1077 
1078 /**
1079  * ipath_tempsense_read - read register of temp sensor via I2C
1080  * @dd: the infinipath device
1081  * @regnum: register to read from
1082  *
1083  * returns reg contents (0..255) or < 0 for error
1084  */
ipath_tempsense_read(struct ipath_devdata * dd,u8 regnum)1085 int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum)
1086 {
1087 	int ret;
1088 
1089 	if (regnum > 7)
1090 		return -EINVAL;
1091 
1092 	/* return a bogus value for (the one) register we do not have */
1093 	if (!((1 << regnum) & VALID_TS_RD_REG_MASK))
1094 		return 0;
1095 
1096 	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
1097 	if (!ret) {
1098 		ret = ipath_tempsense_internal_read(dd, regnum);
1099 		mutex_unlock(&dd->ipath_eep_lock);
1100 	}
1101 
1102 	/*
1103 	 * There are three possibilities here:
1104 	 * ret is actual value (0..255)
1105 	 * ret is -ENXIO or -EINVAL from code in this file
1106 	 * ret is -EINTR from mutex_lock_interruptible.
1107 	 */
1108 	return ret;
1109 }
1110 
ipath_tempsense_internal_write(struct ipath_devdata * dd,u8 regnum,u8 data)1111 static int ipath_tempsense_internal_write(struct ipath_devdata *dd,
1112 					  u8 regnum, u8 data)
1113 {
1114 	int ret = -ENOENT;
1115 	struct i2c_chain_desc *icd;
1116 
1117 	icd = ipath_i2c_type(dd);
1118 	if (!icd)
1119 		goto bail;
1120 
1121 	if (icd->temp_dev == IPATH_NO_DEV) {
1122 		/* tempsense only exists on new, real-I2C boards */
1123 		ret = -ENXIO;
1124 		goto bail;
1125 	}
1126 	if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) {
1127 		ipath_dbg("Failed tempsense startcmd\n");
1128 		stop_cmd(dd);
1129 		ret = -ENXIO;
1130 		goto bail;
1131 	}
1132 	ret = wr_byte(dd, regnum);
1133 	if (ret) {
1134 		stop_cmd(dd);
1135 		ipath_dev_err(dd, "Failed to write tempsense command %02X\n",
1136 			      regnum);
1137 		ret = -ENXIO;
1138 		goto bail;
1139 	}
1140 	ret = wr_byte(dd, data);
1141 	stop_cmd(dd);
1142 	ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD);
1143 	if (ret) {
1144 		ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n",
1145 			      regnum);
1146 		ret = -ENXIO;
1147 	}
1148 
1149 bail:
1150 	return ret;
1151 }
1152 
1153 #define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD))
1154 
1155 /**
1156  * ipath_tempsense_write - write register of temp sensor via I2C
1157  * @dd: the infinipath device
1158  * @regnum: register to write
1159  * @data: data to write
1160  *
1161  * returns 0 for success or < 0 for error
1162  */
ipath_tempsense_write(struct ipath_devdata * dd,u8 regnum,u8 data)1163 int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data)
1164 {
1165 	int ret;
1166 
1167 	if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK))
1168 		return -EINVAL;
1169 
1170 	ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
1171 	if (!ret) {
1172 		ret = ipath_tempsense_internal_write(dd, regnum, data);
1173 		mutex_unlock(&dd->ipath_eep_lock);
1174 	}
1175 
1176 	/*
1177 	 * There are three possibilities here:
1178 	 * ret is 0 for success
1179 	 * ret is -ENXIO or -EINVAL from code in this file
1180 	 * ret is -EINTR from mutex_lock_interruptible.
1181 	 */
1182 	return ret;
1183 }
1184