1 /*
2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/sched.h>
35 #include <linux/spinlock.h>
36 #include <linux/idr.h>
37 #include <linux/pci.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/vmalloc.h>
42 #include <linux/bitmap.h>
43 #include <linux/slab.h>
44
45 #include "ipath_kernel.h"
46 #include "ipath_verbs.h"
47
48 static void ipath_update_pio_bufs(struct ipath_devdata *);
49
ipath_get_unit_name(int unit)50 const char *ipath_get_unit_name(int unit)
51 {
52 static char iname[16];
53 snprintf(iname, sizeof iname, "infinipath%u", unit);
54 return iname;
55 }
56
57 #define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: "
58 #define PFX IPATH_DRV_NAME ": "
59
60 /*
61 * The size has to be longer than this string, so we can append
62 * board/chip information to it in the init code.
63 */
64 const char ib_ipath_version[] = IPATH_IDSTR "\n";
65
66 static struct idr unit_table;
67 DEFINE_SPINLOCK(ipath_devs_lock);
68 LIST_HEAD(ipath_dev_list);
69
70 wait_queue_head_t ipath_state_wait;
71
72 unsigned ipath_debug = __IPATH_INFO;
73
74 module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
75 MODULE_PARM_DESC(debug, "mask for debug prints");
76 EXPORT_SYMBOL_GPL(ipath_debug);
77
78 unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */
79 module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO);
80 MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported");
81
82 static unsigned ipath_hol_timeout_ms = 13000;
83 module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO);
84 MODULE_PARM_DESC(hol_timeout_ms,
85 "duration of user app suspension after link failure");
86
87 unsigned ipath_linkrecovery = 1;
88 module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO);
89 MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue");
90
91 MODULE_LICENSE("GPL");
92 MODULE_AUTHOR("QLogic <support@qlogic.com>");
93 MODULE_DESCRIPTION("QLogic InfiniPath driver");
94
95 /*
96 * Table to translate the LINKTRAININGSTATE portion of
97 * IBCStatus to a human-readable form.
98 */
99 const char *ipath_ibcstatus_str[] = {
100 "Disabled",
101 "LinkUp",
102 "PollActive",
103 "PollQuiet",
104 "SleepDelay",
105 "SleepQuiet",
106 "LState6", /* unused */
107 "LState7", /* unused */
108 "CfgDebounce",
109 "CfgRcvfCfg",
110 "CfgWaitRmt",
111 "CfgIdle",
112 "RecovRetrain",
113 "CfgTxRevLane", /* unused before IBA7220 */
114 "RecovWaitRmt",
115 "RecovIdle",
116 /* below were added for IBA7220 */
117 "CfgEnhanced",
118 "CfgTest",
119 "CfgWaitRmtTest",
120 "CfgWaitCfgEnhanced",
121 "SendTS_T",
122 "SendTstIdles",
123 "RcvTS_T",
124 "SendTst_TS1s",
125 "LTState18", "LTState19", "LTState1A", "LTState1B",
126 "LTState1C", "LTState1D", "LTState1E", "LTState1F"
127 };
128
129 static void __devexit ipath_remove_one(struct pci_dev *);
130 static int __devinit ipath_init_one(struct pci_dev *,
131 const struct pci_device_id *);
132
133 /* Only needed for registration, nothing else needs this info */
134 #define PCI_VENDOR_ID_PATHSCALE 0x1fc1
135 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd
136
137 /* Number of seconds before our card status check... */
138 #define STATUS_TIMEOUT 60
139
140 static const struct pci_device_id ipath_pci_tbl[] = {
141 { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
142 { 0, }
143 };
144
145 MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
146
147 static struct pci_driver ipath_driver = {
148 .name = IPATH_DRV_NAME,
149 .probe = ipath_init_one,
150 .remove = __devexit_p(ipath_remove_one),
151 .id_table = ipath_pci_tbl,
152 .driver = {
153 .groups = ipath_driver_attr_groups,
154 },
155 };
156
read_bars(struct ipath_devdata * dd,struct pci_dev * dev,u32 * bar0,u32 * bar1)157 static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
158 u32 *bar0, u32 *bar1)
159 {
160 int ret;
161
162 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
163 if (ret)
164 ipath_dev_err(dd, "failed to read bar0 before enable: "
165 "error %d\n", -ret);
166
167 ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
168 if (ret)
169 ipath_dev_err(dd, "failed to read bar1 before enable: "
170 "error %d\n", -ret);
171
172 ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
173 }
174
ipath_free_devdata(struct pci_dev * pdev,struct ipath_devdata * dd)175 static void ipath_free_devdata(struct pci_dev *pdev,
176 struct ipath_devdata *dd)
177 {
178 unsigned long flags;
179
180 pci_set_drvdata(pdev, NULL);
181
182 if (dd->ipath_unit != -1) {
183 spin_lock_irqsave(&ipath_devs_lock, flags);
184 idr_remove(&unit_table, dd->ipath_unit);
185 list_del(&dd->ipath_list);
186 spin_unlock_irqrestore(&ipath_devs_lock, flags);
187 }
188 vfree(dd);
189 }
190
ipath_alloc_devdata(struct pci_dev * pdev)191 static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
192 {
193 unsigned long flags;
194 struct ipath_devdata *dd;
195 int ret;
196
197 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
198 dd = ERR_PTR(-ENOMEM);
199 goto bail;
200 }
201
202 dd = vzalloc(sizeof(*dd));
203 if (!dd) {
204 dd = ERR_PTR(-ENOMEM);
205 goto bail;
206 }
207 dd->ipath_unit = -1;
208
209 spin_lock_irqsave(&ipath_devs_lock, flags);
210
211 ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
212 if (ret < 0) {
213 printk(KERN_ERR IPATH_DRV_NAME
214 ": Could not allocate unit ID: error %d\n", -ret);
215 ipath_free_devdata(pdev, dd);
216 dd = ERR_PTR(ret);
217 goto bail_unlock;
218 }
219
220 dd->pcidev = pdev;
221 pci_set_drvdata(pdev, dd);
222
223 list_add(&dd->ipath_list, &ipath_dev_list);
224
225 bail_unlock:
226 spin_unlock_irqrestore(&ipath_devs_lock, flags);
227
228 bail:
229 return dd;
230 }
231
__ipath_lookup(int unit)232 static inline struct ipath_devdata *__ipath_lookup(int unit)
233 {
234 return idr_find(&unit_table, unit);
235 }
236
ipath_lookup(int unit)237 struct ipath_devdata *ipath_lookup(int unit)
238 {
239 struct ipath_devdata *dd;
240 unsigned long flags;
241
242 spin_lock_irqsave(&ipath_devs_lock, flags);
243 dd = __ipath_lookup(unit);
244 spin_unlock_irqrestore(&ipath_devs_lock, flags);
245
246 return dd;
247 }
248
ipath_count_units(int * npresentp,int * nupp,int * maxportsp)249 int ipath_count_units(int *npresentp, int *nupp, int *maxportsp)
250 {
251 int nunits, npresent, nup;
252 struct ipath_devdata *dd;
253 unsigned long flags;
254 int maxports;
255
256 nunits = npresent = nup = maxports = 0;
257
258 spin_lock_irqsave(&ipath_devs_lock, flags);
259
260 list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
261 nunits++;
262 if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
263 npresent++;
264 if (dd->ipath_lid &&
265 !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
266 | IPATH_LINKUNK)))
267 nup++;
268 if (dd->ipath_cfgports > maxports)
269 maxports = dd->ipath_cfgports;
270 }
271
272 spin_unlock_irqrestore(&ipath_devs_lock, flags);
273
274 if (npresentp)
275 *npresentp = npresent;
276 if (nupp)
277 *nupp = nup;
278 if (maxportsp)
279 *maxportsp = maxports;
280
281 return nunits;
282 }
283
284 /*
285 * These next two routines are placeholders in case we don't have per-arch
286 * code for controlling write combining. If explicit control of write
287 * combining is not available, performance will probably be awful.
288 */
289
ipath_enable_wc(struct ipath_devdata * dd)290 int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
291 {
292 return -EOPNOTSUPP;
293 }
294
ipath_disable_wc(struct ipath_devdata * dd)295 void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
296 {
297 }
298
299 /*
300 * Perform a PIO buffer bandwidth write test, to verify proper system
301 * configuration. Even when all the setup calls work, occasionally
302 * BIOS or other issues can prevent write combining from working, or
303 * can cause other bandwidth problems to the chip.
304 *
305 * This test simply writes the same buffer over and over again, and
306 * measures close to the peak bandwidth to the chip (not testing
307 * data bandwidth to the wire). On chips that use an address-based
308 * trigger to send packets to the wire, this is easy. On chips that
309 * use a count to trigger, we want to make sure that the packet doesn't
310 * go out on the wire, or trigger flow control checks.
311 */
ipath_verify_pioperf(struct ipath_devdata * dd)312 static void ipath_verify_pioperf(struct ipath_devdata *dd)
313 {
314 u32 pbnum, cnt, lcnt;
315 u32 __iomem *piobuf;
316 u32 *addr;
317 u64 msecs, emsecs;
318
319 piobuf = ipath_getpiobuf(dd, 0, &pbnum);
320 if (!piobuf) {
321 dev_info(&dd->pcidev->dev,
322 "No PIObufs for checking perf, skipping\n");
323 return;
324 }
325
326 /*
327 * Enough to give us a reasonable test, less than piobuf size, and
328 * likely multiple of store buffer length.
329 */
330 cnt = 1024;
331
332 addr = vmalloc(cnt);
333 if (!addr) {
334 dev_info(&dd->pcidev->dev,
335 "Couldn't get memory for checking PIO perf,"
336 " skipping\n");
337 goto done;
338 }
339
340 preempt_disable(); /* we want reasonably accurate elapsed time */
341 msecs = 1 + jiffies_to_msecs(jiffies);
342 for (lcnt = 0; lcnt < 10000U; lcnt++) {
343 /* wait until we cross msec boundary */
344 if (jiffies_to_msecs(jiffies) >= msecs)
345 break;
346 udelay(1);
347 }
348
349 ipath_disable_armlaunch(dd);
350
351 /*
352 * length 0, no dwords actually sent, and mark as VL15
353 * on chips where that may matter (due to IB flowcontrol)
354 */
355 if ((dd->ipath_flags & IPATH_HAS_PBC_CNT))
356 writeq(1UL << 63, piobuf);
357 else
358 writeq(0, piobuf);
359 ipath_flush_wc();
360
361 /*
362 * this is only roughly accurate, since even with preempt we
363 * still take interrupts that could take a while. Running for
364 * >= 5 msec seems to get us "close enough" to accurate values
365 */
366 msecs = jiffies_to_msecs(jiffies);
367 for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) {
368 __iowrite32_copy(piobuf + 64, addr, cnt >> 2);
369 emsecs = jiffies_to_msecs(jiffies) - msecs;
370 }
371
372 /* 1 GiB/sec, slightly over IB SDR line rate */
373 if (lcnt < (emsecs * 1024U))
374 ipath_dev_err(dd,
375 "Performance problem: bandwidth to PIO buffers is "
376 "only %u MiB/sec\n",
377 lcnt / (u32) emsecs);
378 else
379 ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n",
380 lcnt / (u32) emsecs);
381
382 preempt_enable();
383
384 vfree(addr);
385
386 done:
387 /* disarm piobuf, so it's available again */
388 ipath_disarm_piobufs(dd, pbnum, 1);
389 ipath_enable_armlaunch(dd);
390 }
391
392 static void cleanup_device(struct ipath_devdata *dd);
393
ipath_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)394 static int __devinit ipath_init_one(struct pci_dev *pdev,
395 const struct pci_device_id *ent)
396 {
397 int ret, len, j;
398 struct ipath_devdata *dd;
399 unsigned long long addr;
400 u32 bar0 = 0, bar1 = 0;
401 u8 rev;
402
403 dd = ipath_alloc_devdata(pdev);
404 if (IS_ERR(dd)) {
405 ret = PTR_ERR(dd);
406 printk(KERN_ERR IPATH_DRV_NAME
407 ": Could not allocate devdata: error %d\n", -ret);
408 goto bail;
409 }
410
411 ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
412
413 ret = pci_enable_device(pdev);
414 if (ret) {
415 /* This can happen iff:
416 *
417 * We did a chip reset, and then failed to reprogram the
418 * BAR, or the chip reset due to an internal error. We then
419 * unloaded the driver and reloaded it.
420 *
421 * Both reset cases set the BAR back to initial state. For
422 * the latter case, the AER sticky error bit at offset 0x718
423 * should be set, but the Linux kernel doesn't yet know
424 * about that, it appears. If the original BAR was retained
425 * in the kernel data structures, this may be OK.
426 */
427 ipath_dev_err(dd, "enable unit %d failed: error %d\n",
428 dd->ipath_unit, -ret);
429 goto bail_devdata;
430 }
431 addr = pci_resource_start(pdev, 0);
432 len = pci_resource_len(pdev, 0);
433 ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x "
434 "driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
435 ent->device, ent->driver_data);
436
437 read_bars(dd, pdev, &bar0, &bar1);
438
439 if (!bar1 && !(bar0 & ~0xf)) {
440 if (addr) {
441 dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
442 "rewriting as %llx\n", addr);
443 ret = pci_write_config_dword(
444 pdev, PCI_BASE_ADDRESS_0, addr);
445 if (ret) {
446 ipath_dev_err(dd, "rewrite of BAR0 "
447 "failed: err %d\n", -ret);
448 goto bail_disable;
449 }
450 ret = pci_write_config_dword(
451 pdev, PCI_BASE_ADDRESS_1, addr >> 32);
452 if (ret) {
453 ipath_dev_err(dd, "rewrite of BAR1 "
454 "failed: err %d\n", -ret);
455 goto bail_disable;
456 }
457 } else {
458 ipath_dev_err(dd, "BAR is 0 (probable RESET), "
459 "not usable until reboot\n");
460 ret = -ENODEV;
461 goto bail_disable;
462 }
463 }
464
465 ret = pci_request_regions(pdev, IPATH_DRV_NAME);
466 if (ret) {
467 dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
468 "err %d\n", dd->ipath_unit, -ret);
469 goto bail_disable;
470 }
471
472 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
473 if (ret) {
474 /*
475 * if the 64 bit setup fails, try 32 bit. Some systems
476 * do not setup 64 bit maps on systems with 2GB or less
477 * memory installed.
478 */
479 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
480 if (ret) {
481 dev_info(&pdev->dev,
482 "Unable to set DMA mask for unit %u: %d\n",
483 dd->ipath_unit, ret);
484 goto bail_regions;
485 }
486 else {
487 ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
488 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
489 if (ret)
490 dev_info(&pdev->dev,
491 "Unable to set DMA consistent mask "
492 "for unit %u: %d\n",
493 dd->ipath_unit, ret);
494
495 }
496 }
497 else {
498 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
499 if (ret)
500 dev_info(&pdev->dev,
501 "Unable to set DMA consistent mask "
502 "for unit %u: %d\n",
503 dd->ipath_unit, ret);
504 }
505
506 pci_set_master(pdev);
507
508 /*
509 * Save BARs to rewrite after device reset. Save all 64 bits of
510 * BAR, just in case.
511 */
512 dd->ipath_pcibar0 = addr;
513 dd->ipath_pcibar1 = addr >> 32;
514 dd->ipath_deviceid = ent->device; /* save for later use */
515 dd->ipath_vendorid = ent->vendor;
516
517 /* setup the chip-specific functions, as early as possible. */
518 switch (ent->device) {
519 case PCI_DEVICE_ID_INFINIPATH_HT:
520 ipath_init_iba6110_funcs(dd);
521 break;
522
523 default:
524 ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, "
525 "failing\n", ent->device);
526 return -ENODEV;
527 }
528
529 for (j = 0; j < 6; j++) {
530 if (!pdev->resource[j].start)
531 continue;
532 ipath_cdbg(VERBOSE, "BAR %d %pR, len %llx\n",
533 j, &pdev->resource[j],
534 (unsigned long long)pci_resource_len(pdev, j));
535 }
536
537 if (!addr) {
538 ipath_dev_err(dd, "No valid address in BAR 0!\n");
539 ret = -ENODEV;
540 goto bail_regions;
541 }
542
543 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
544 if (ret) {
545 ipath_dev_err(dd, "Failed to read PCI revision ID unit "
546 "%u: err %d\n", dd->ipath_unit, -ret);
547 goto bail_regions; /* shouldn't ever happen */
548 }
549 dd->ipath_pcirev = rev;
550
551 #if defined(__powerpc__)
552 /* There isn't a generic way to specify writethrough mappings */
553 dd->ipath_kregbase = __ioremap(addr, len,
554 (_PAGE_NO_CACHE|_PAGE_WRITETHRU));
555 #else
556 dd->ipath_kregbase = ioremap_nocache(addr, len);
557 #endif
558
559 if (!dd->ipath_kregbase) {
560 ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
561 addr);
562 ret = -ENOMEM;
563 goto bail_iounmap;
564 }
565 dd->ipath_kregend = (u64 __iomem *)
566 ((void __iomem *)dd->ipath_kregbase + len);
567 dd->ipath_physaddr = addr; /* used for io_remap, etc. */
568 /* for user mmap */
569 ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n",
570 addr, dd->ipath_kregbase);
571
572 if (dd->ipath_f_bus(dd, pdev))
573 ipath_dev_err(dd, "Failed to setup config space; "
574 "continuing anyway\n");
575
576 /*
577 * set up our interrupt handler; IRQF_SHARED probably not needed,
578 * since MSI interrupts shouldn't be shared but won't hurt for now.
579 * check 0 irq after we return from chip-specific bus setup, since
580 * that can affect this due to setup
581 */
582 if (!dd->ipath_irq)
583 ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
584 "work\n");
585 else {
586 ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED,
587 IPATH_DRV_NAME, dd);
588 if (ret) {
589 ipath_dev_err(dd, "Couldn't setup irq handler, "
590 "irq=%d: %d\n", dd->ipath_irq, ret);
591 goto bail_iounmap;
592 }
593 }
594
595 ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
596 if (ret)
597 goto bail_irqsetup;
598
599 ret = ipath_enable_wc(dd);
600
601 if (ret) {
602 ipath_dev_err(dd, "Write combining not enabled "
603 "(err %d): performance may be poor\n",
604 -ret);
605 ret = 0;
606 }
607
608 ipath_verify_pioperf(dd);
609
610 ipath_device_create_group(&pdev->dev, dd);
611 ipathfs_add_device(dd);
612 ipath_user_add(dd);
613 ipath_diag_add(dd);
614 ipath_register_ib_device(dd);
615
616 goto bail;
617
618 bail_irqsetup:
619 cleanup_device(dd);
620
621 if (dd->ipath_irq)
622 dd->ipath_f_free_irq(dd);
623
624 if (dd->ipath_f_cleanup)
625 dd->ipath_f_cleanup(dd);
626
627 bail_iounmap:
628 iounmap((volatile void __iomem *) dd->ipath_kregbase);
629
630 bail_regions:
631 pci_release_regions(pdev);
632
633 bail_disable:
634 pci_disable_device(pdev);
635
636 bail_devdata:
637 ipath_free_devdata(pdev, dd);
638
639 bail:
640 return ret;
641 }
642
cleanup_device(struct ipath_devdata * dd)643 static void cleanup_device(struct ipath_devdata *dd)
644 {
645 int port;
646 struct ipath_portdata **tmp;
647 unsigned long flags;
648
649 if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
650 /* can't do anything more with chip; needs re-init */
651 *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
652 if (dd->ipath_kregbase) {
653 /*
654 * if we haven't already cleaned up before these are
655 * to ensure any register reads/writes "fail" until
656 * re-init
657 */
658 dd->ipath_kregbase = NULL;
659 dd->ipath_uregbase = 0;
660 dd->ipath_sregbase = 0;
661 dd->ipath_cregbase = 0;
662 dd->ipath_kregsize = 0;
663 }
664 ipath_disable_wc(dd);
665 }
666
667 if (dd->ipath_spectriggerhit)
668 dev_info(&dd->pcidev->dev, "%lu special trigger hits\n",
669 dd->ipath_spectriggerhit);
670
671 if (dd->ipath_pioavailregs_dma) {
672 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
673 (void *) dd->ipath_pioavailregs_dma,
674 dd->ipath_pioavailregs_phys);
675 dd->ipath_pioavailregs_dma = NULL;
676 }
677 if (dd->ipath_dummy_hdrq) {
678 dma_free_coherent(&dd->pcidev->dev,
679 dd->ipath_pd[0]->port_rcvhdrq_size,
680 dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys);
681 dd->ipath_dummy_hdrq = NULL;
682 }
683
684 if (dd->ipath_pageshadow) {
685 struct page **tmpp = dd->ipath_pageshadow;
686 dma_addr_t *tmpd = dd->ipath_physshadow;
687 int i, cnt = 0;
688
689 ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
690 "locked\n");
691 for (port = 0; port < dd->ipath_cfgports; port++) {
692 int port_tidbase = port * dd->ipath_rcvtidcnt;
693 int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
694 for (i = port_tidbase; i < maxtid; i++) {
695 if (!tmpp[i])
696 continue;
697 pci_unmap_page(dd->pcidev, tmpd[i],
698 PAGE_SIZE, PCI_DMA_FROMDEVICE);
699 ipath_release_user_pages(&tmpp[i], 1);
700 tmpp[i] = NULL;
701 cnt++;
702 }
703 }
704 if (cnt) {
705 ipath_stats.sps_pageunlocks += cnt;
706 ipath_cdbg(VERBOSE, "There were still %u expTID "
707 "entries locked\n", cnt);
708 }
709 if (ipath_stats.sps_pagelocks ||
710 ipath_stats.sps_pageunlocks)
711 ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
712 "unlocked via ipath_m{un}lock\n",
713 (unsigned long long)
714 ipath_stats.sps_pagelocks,
715 (unsigned long long)
716 ipath_stats.sps_pageunlocks);
717
718 ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
719 dd->ipath_pageshadow);
720 tmpp = dd->ipath_pageshadow;
721 dd->ipath_pageshadow = NULL;
722 vfree(tmpp);
723
724 dd->ipath_egrtidbase = NULL;
725 }
726
727 /*
728 * free any resources still in use (usually just kernel ports)
729 * at unload; we do for portcnt, because that's what we allocate.
730 * We acquire lock to be really paranoid that ipath_pd isn't being
731 * accessed from some interrupt-related code (that should not happen,
732 * but best to be sure).
733 */
734 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
735 tmp = dd->ipath_pd;
736 dd->ipath_pd = NULL;
737 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
738 for (port = 0; port < dd->ipath_portcnt; port++) {
739 struct ipath_portdata *pd = tmp[port];
740 tmp[port] = NULL; /* debugging paranoia */
741 ipath_free_pddata(dd, pd);
742 }
743 kfree(tmp);
744 }
745
ipath_remove_one(struct pci_dev * pdev)746 static void __devexit ipath_remove_one(struct pci_dev *pdev)
747 {
748 struct ipath_devdata *dd = pci_get_drvdata(pdev);
749
750 ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd);
751
752 /*
753 * disable the IB link early, to be sure no new packets arrive, which
754 * complicates the shutdown process
755 */
756 ipath_shutdown_device(dd);
757
758 flush_workqueue(ib_wq);
759
760 if (dd->verbs_dev)
761 ipath_unregister_ib_device(dd->verbs_dev);
762
763 ipath_diag_remove(dd);
764 ipath_user_remove(dd);
765 ipathfs_remove_device(dd);
766 ipath_device_remove_group(&pdev->dev, dd);
767
768 ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
769 "unit %u\n", dd, (u32) dd->ipath_unit);
770
771 cleanup_device(dd);
772
773 /*
774 * turn off rcv, send, and interrupts for all ports, all drivers
775 * should also hard reset the chip here?
776 * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
777 * for all versions of the driver, if they were allocated
778 */
779 if (dd->ipath_irq) {
780 ipath_cdbg(VERBOSE, "unit %u free irq %d\n",
781 dd->ipath_unit, dd->ipath_irq);
782 dd->ipath_f_free_irq(dd);
783 } else
784 ipath_dbg("irq is 0, not doing free_irq "
785 "for unit %u\n", dd->ipath_unit);
786 /*
787 * we check for NULL here, because it's outside
788 * the kregbase check, and we need to call it
789 * after the free_irq. Thus it's possible that
790 * the function pointers were never initialized.
791 */
792 if (dd->ipath_f_cleanup)
793 /* clean up chip-specific stuff */
794 dd->ipath_f_cleanup(dd);
795
796 ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase);
797 iounmap((volatile void __iomem *) dd->ipath_kregbase);
798 pci_release_regions(pdev);
799 ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
800 pci_disable_device(pdev);
801
802 ipath_free_devdata(pdev, dd);
803 }
804
805 /* general driver use */
806 DEFINE_MUTEX(ipath_mutex);
807
808 static DEFINE_SPINLOCK(ipath_pioavail_lock);
809
810 /**
811 * ipath_disarm_piobufs - cancel a range of PIO buffers
812 * @dd: the infinipath device
813 * @first: the first PIO buffer to cancel
814 * @cnt: the number of PIO buffers to cancel
815 *
816 * cancel a range of PIO buffers, used when they might be armed, but
817 * not triggered. Used at init to ensure buffer state, and also user
818 * process close, in case it died while writing to a PIO buffer
819 * Also after errors.
820 */
ipath_disarm_piobufs(struct ipath_devdata * dd,unsigned first,unsigned cnt)821 void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
822 unsigned cnt)
823 {
824 unsigned i, last = first + cnt;
825 unsigned long flags;
826
827 ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
828 for (i = first; i < last; i++) {
829 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
830 /*
831 * The disarm-related bits are write-only, so it
832 * is ok to OR them in with our copy of sendctrl
833 * while we hold the lock.
834 */
835 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
836 dd->ipath_sendctrl | INFINIPATH_S_DISARM |
837 (i << INFINIPATH_S_DISARMPIOBUF_SHIFT));
838 /* can't disarm bufs back-to-back per iba7220 spec */
839 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
840 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
841 }
842 /* on some older chips, update may not happen after cancel */
843 ipath_force_pio_avail_update(dd);
844 }
845
846 /**
847 * ipath_wait_linkstate - wait for an IB link state change to occur
848 * @dd: the infinipath device
849 * @state: the state to wait for
850 * @msecs: the number of milliseconds to wait
851 *
852 * wait up to msecs milliseconds for IB link state change to occur for
853 * now, take the easy polling route. Currently used only by
854 * ipath_set_linkstate. Returns 0 if state reached, otherwise
855 * -ETIMEDOUT state can have multiple states set, for any of several
856 * transitions.
857 */
ipath_wait_linkstate(struct ipath_devdata * dd,u32 state,int msecs)858 int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
859 {
860 dd->ipath_state_wanted = state;
861 wait_event_interruptible_timeout(ipath_state_wait,
862 (dd->ipath_flags & state),
863 msecs_to_jiffies(msecs));
864 dd->ipath_state_wanted = 0;
865
866 if (!(dd->ipath_flags & state)) {
867 u64 val;
868 ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u"
869 " ms\n",
870 /* test INIT ahead of DOWN, both can be set */
871 (state & IPATH_LINKINIT) ? "INIT" :
872 ((state & IPATH_LINKDOWN) ? "DOWN" :
873 ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
874 msecs);
875 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
876 ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
877 (unsigned long long) ipath_read_kreg64(
878 dd, dd->ipath_kregs->kr_ibcctrl),
879 (unsigned long long) val,
880 ipath_ibcstatus_str[val & dd->ibcs_lts_mask]);
881 }
882 return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
883 }
884
decode_sdma_errs(struct ipath_devdata * dd,ipath_err_t err,char * buf,size_t blen)885 static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err,
886 char *buf, size_t blen)
887 {
888 static const struct {
889 ipath_err_t err;
890 const char *msg;
891 } errs[] = {
892 { INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" },
893 { INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" },
894 { INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" },
895 { INFINIPATH_E_SDMABASE, "SDmaBase" },
896 { INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" },
897 { INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" },
898 { INFINIPATH_E_SDMADWEN, "SDmaDwEn" },
899 { INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" },
900 { INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" },
901 { INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" },
902 { INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" },
903 { INFINIPATH_E_SDMADISABLED, "SDmaDisabled" },
904 };
905 int i;
906 int expected;
907 size_t bidx = 0;
908
909 for (i = 0; i < ARRAY_SIZE(errs); i++) {
910 expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 :
911 test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status);
912 if ((err & errs[i].err) && !expected)
913 bidx += snprintf(buf + bidx, blen - bidx,
914 "%s ", errs[i].msg);
915 }
916 }
917
918 /*
919 * Decode the error status into strings, deciding whether to always
920 * print * it or not depending on "normal packet errors" vs everything
921 * else. Return 1 if "real" errors, otherwise 0 if only packet
922 * errors, so caller can decide what to print with the string.
923 */
ipath_decode_err(struct ipath_devdata * dd,char * buf,size_t blen,ipath_err_t err)924 int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen,
925 ipath_err_t err)
926 {
927 int iserr = 1;
928 *buf = '\0';
929 if (err & INFINIPATH_E_PKTERRS) {
930 if (!(err & ~INFINIPATH_E_PKTERRS))
931 iserr = 0; // if only packet errors.
932 if (ipath_debug & __IPATH_ERRPKTDBG) {
933 if (err & INFINIPATH_E_REBP)
934 strlcat(buf, "EBP ", blen);
935 if (err & INFINIPATH_E_RVCRC)
936 strlcat(buf, "VCRC ", blen);
937 if (err & INFINIPATH_E_RICRC) {
938 strlcat(buf, "CRC ", blen);
939 // clear for check below, so only once
940 err &= INFINIPATH_E_RICRC;
941 }
942 if (err & INFINIPATH_E_RSHORTPKTLEN)
943 strlcat(buf, "rshortpktlen ", blen);
944 if (err & INFINIPATH_E_SDROPPEDDATAPKT)
945 strlcat(buf, "sdroppeddatapkt ", blen);
946 if (err & INFINIPATH_E_SPKTLEN)
947 strlcat(buf, "spktlen ", blen);
948 }
949 if ((err & INFINIPATH_E_RICRC) &&
950 !(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP)))
951 strlcat(buf, "CRC ", blen);
952 if (!iserr)
953 goto done;
954 }
955 if (err & INFINIPATH_E_RHDRLEN)
956 strlcat(buf, "rhdrlen ", blen);
957 if (err & INFINIPATH_E_RBADTID)
958 strlcat(buf, "rbadtid ", blen);
959 if (err & INFINIPATH_E_RBADVERSION)
960 strlcat(buf, "rbadversion ", blen);
961 if (err & INFINIPATH_E_RHDR)
962 strlcat(buf, "rhdr ", blen);
963 if (err & INFINIPATH_E_SENDSPECIALTRIGGER)
964 strlcat(buf, "sendspecialtrigger ", blen);
965 if (err & INFINIPATH_E_RLONGPKTLEN)
966 strlcat(buf, "rlongpktlen ", blen);
967 if (err & INFINIPATH_E_RMAXPKTLEN)
968 strlcat(buf, "rmaxpktlen ", blen);
969 if (err & INFINIPATH_E_RMINPKTLEN)
970 strlcat(buf, "rminpktlen ", blen);
971 if (err & INFINIPATH_E_SMINPKTLEN)
972 strlcat(buf, "sminpktlen ", blen);
973 if (err & INFINIPATH_E_RFORMATERR)
974 strlcat(buf, "rformaterr ", blen);
975 if (err & INFINIPATH_E_RUNSUPVL)
976 strlcat(buf, "runsupvl ", blen);
977 if (err & INFINIPATH_E_RUNEXPCHAR)
978 strlcat(buf, "runexpchar ", blen);
979 if (err & INFINIPATH_E_RIBFLOW)
980 strlcat(buf, "ribflow ", blen);
981 if (err & INFINIPATH_E_SUNDERRUN)
982 strlcat(buf, "sunderrun ", blen);
983 if (err & INFINIPATH_E_SPIOARMLAUNCH)
984 strlcat(buf, "spioarmlaunch ", blen);
985 if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
986 strlcat(buf, "sunexperrpktnum ", blen);
987 if (err & INFINIPATH_E_SDROPPEDSMPPKT)
988 strlcat(buf, "sdroppedsmppkt ", blen);
989 if (err & INFINIPATH_E_SMAXPKTLEN)
990 strlcat(buf, "smaxpktlen ", blen);
991 if (err & INFINIPATH_E_SUNSUPVL)
992 strlcat(buf, "sunsupVL ", blen);
993 if (err & INFINIPATH_E_INVALIDADDR)
994 strlcat(buf, "invalidaddr ", blen);
995 if (err & INFINIPATH_E_RRCVEGRFULL)
996 strlcat(buf, "rcvegrfull ", blen);
997 if (err & INFINIPATH_E_RRCVHDRFULL)
998 strlcat(buf, "rcvhdrfull ", blen);
999 if (err & INFINIPATH_E_IBSTATUSCHANGED)
1000 strlcat(buf, "ibcstatuschg ", blen);
1001 if (err & INFINIPATH_E_RIBLOSTLINK)
1002 strlcat(buf, "riblostlink ", blen);
1003 if (err & INFINIPATH_E_HARDWARE)
1004 strlcat(buf, "hardware ", blen);
1005 if (err & INFINIPATH_E_RESET)
1006 strlcat(buf, "reset ", blen);
1007 if (err & INFINIPATH_E_SDMAERRS)
1008 decode_sdma_errs(dd, err, buf, blen);
1009 if (err & INFINIPATH_E_INVALIDEEPCMD)
1010 strlcat(buf, "invalideepromcmd ", blen);
1011 done:
1012 return iserr;
1013 }
1014
1015 /**
1016 * get_rhf_errstring - decode RHF errors
1017 * @err: the err number
1018 * @msg: the output buffer
1019 * @len: the length of the output buffer
1020 *
1021 * only used one place now, may want more later
1022 */
get_rhf_errstring(u32 err,char * msg,size_t len)1023 static void get_rhf_errstring(u32 err, char *msg, size_t len)
1024 {
1025 /* if no errors, and so don't need to check what's first */
1026 *msg = '\0';
1027
1028 if (err & INFINIPATH_RHF_H_ICRCERR)
1029 strlcat(msg, "icrcerr ", len);
1030 if (err & INFINIPATH_RHF_H_VCRCERR)
1031 strlcat(msg, "vcrcerr ", len);
1032 if (err & INFINIPATH_RHF_H_PARITYERR)
1033 strlcat(msg, "parityerr ", len);
1034 if (err & INFINIPATH_RHF_H_LENERR)
1035 strlcat(msg, "lenerr ", len);
1036 if (err & INFINIPATH_RHF_H_MTUERR)
1037 strlcat(msg, "mtuerr ", len);
1038 if (err & INFINIPATH_RHF_H_IHDRERR)
1039 /* infinipath hdr checksum error */
1040 strlcat(msg, "ipathhdrerr ", len);
1041 if (err & INFINIPATH_RHF_H_TIDERR)
1042 strlcat(msg, "tiderr ", len);
1043 if (err & INFINIPATH_RHF_H_MKERR)
1044 /* bad port, offset, etc. */
1045 strlcat(msg, "invalid ipathhdr ", len);
1046 if (err & INFINIPATH_RHF_H_IBERR)
1047 strlcat(msg, "iberr ", len);
1048 if (err & INFINIPATH_RHF_L_SWA)
1049 strlcat(msg, "swA ", len);
1050 if (err & INFINIPATH_RHF_L_SWB)
1051 strlcat(msg, "swB ", len);
1052 }
1053
1054 /**
1055 * ipath_get_egrbuf - get an eager buffer
1056 * @dd: the infinipath device
1057 * @bufnum: the eager buffer to get
1058 *
1059 * must only be called if ipath_pd[port] is known to be allocated
1060 */
ipath_get_egrbuf(struct ipath_devdata * dd,u32 bufnum)1061 static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum)
1062 {
1063 return dd->ipath_port0_skbinfo ?
1064 (void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL;
1065 }
1066
1067 /**
1068 * ipath_alloc_skb - allocate an skb and buffer with possible constraints
1069 * @dd: the infinipath device
1070 * @gfp_mask: the sk_buff SFP mask
1071 */
ipath_alloc_skb(struct ipath_devdata * dd,gfp_t gfp_mask)1072 struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
1073 gfp_t gfp_mask)
1074 {
1075 struct sk_buff *skb;
1076 u32 len;
1077
1078 /*
1079 * Only fully supported way to handle this is to allocate lots
1080 * extra, align as needed, and then do skb_reserve(). That wastes
1081 * a lot of memory... I'll have to hack this into infinipath_copy
1082 * also.
1083 */
1084
1085 /*
1086 * We need 2 extra bytes for ipath_ether data sent in the
1087 * key header. In order to keep everything dword aligned,
1088 * we'll reserve 4 bytes.
1089 */
1090 len = dd->ipath_ibmaxlen + 4;
1091
1092 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1093 /* We need a 2KB multiple alignment, and there is no way
1094 * to do it except to allocate extra and then skb_reserve
1095 * enough to bring it up to the right alignment.
1096 */
1097 len += 2047;
1098 }
1099
1100 skb = __dev_alloc_skb(len, gfp_mask);
1101 if (!skb) {
1102 ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
1103 len);
1104 goto bail;
1105 }
1106
1107 skb_reserve(skb, 4);
1108
1109 if (dd->ipath_flags & IPATH_4BYTE_TID) {
1110 u32 una = (unsigned long)skb->data & 2047;
1111 if (una)
1112 skb_reserve(skb, 2048 - una);
1113 }
1114
1115 bail:
1116 return skb;
1117 }
1118
ipath_rcv_hdrerr(struct ipath_devdata * dd,u32 eflags,u32 l,u32 etail,__le32 * rhf_addr,struct ipath_message_header * hdr)1119 static void ipath_rcv_hdrerr(struct ipath_devdata *dd,
1120 u32 eflags,
1121 u32 l,
1122 u32 etail,
1123 __le32 *rhf_addr,
1124 struct ipath_message_header *hdr)
1125 {
1126 char emsg[128];
1127
1128 get_rhf_errstring(eflags, emsg, sizeof emsg);
1129 ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
1130 "tlen=%x opcode=%x egridx=%x: %s\n",
1131 eflags, l,
1132 ipath_hdrget_rcv_type(rhf_addr),
1133 ipath_hdrget_length_in_bytes(rhf_addr),
1134 be32_to_cpu(hdr->bth[0]) >> 24,
1135 etail, emsg);
1136
1137 /* Count local link integrity errors. */
1138 if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) {
1139 u8 n = (dd->ipath_ibcctrl >>
1140 INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) &
1141 INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK;
1142
1143 if (++dd->ipath_lli_counter > n) {
1144 dd->ipath_lli_counter = 0;
1145 dd->ipath_lli_errors++;
1146 }
1147 }
1148 }
1149
1150 /*
1151 * ipath_kreceive - receive a packet
1152 * @pd: the infinipath port
1153 *
1154 * called from interrupt handler for errors or receive interrupt
1155 */
ipath_kreceive(struct ipath_portdata * pd)1156 void ipath_kreceive(struct ipath_portdata *pd)
1157 {
1158 struct ipath_devdata *dd = pd->port_dd;
1159 __le32 *rhf_addr;
1160 void *ebuf;
1161 const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
1162 const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
1163 u32 etail = -1, l, hdrqtail;
1164 struct ipath_message_header *hdr;
1165 u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0;
1166 static u64 totcalls; /* stats, may eventually remove */
1167 int last;
1168
1169 l = pd->port_head;
1170 rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset;
1171 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1172 u32 seq = ipath_hdrget_seq(rhf_addr);
1173
1174 if (seq != pd->port_seq_cnt)
1175 goto bail;
1176 hdrqtail = 0;
1177 } else {
1178 hdrqtail = ipath_get_rcvhdrtail(pd);
1179 if (l == hdrqtail)
1180 goto bail;
1181 smp_rmb();
1182 }
1183
1184 reloop:
1185 for (last = 0, i = 1; !last; i += !last) {
1186 hdr = dd->ipath_f_get_msgheader(dd, rhf_addr);
1187 eflags = ipath_hdrget_err_flags(rhf_addr);
1188 etype = ipath_hdrget_rcv_type(rhf_addr);
1189 /* total length */
1190 tlen = ipath_hdrget_length_in_bytes(rhf_addr);
1191 ebuf = NULL;
1192 if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ?
1193 ipath_hdrget_use_egr_buf(rhf_addr) :
1194 (etype != RCVHQ_RCV_TYPE_EXPECTED)) {
1195 /*
1196 * It turns out that the chip uses an eager buffer
1197 * for all non-expected packets, whether it "needs"
1198 * one or not. So always get the index, but don't
1199 * set ebuf (so we try to copy data) unless the
1200 * length requires it.
1201 */
1202 etail = ipath_hdrget_index(rhf_addr);
1203 updegr = 1;
1204 if (tlen > sizeof(*hdr) ||
1205 etype == RCVHQ_RCV_TYPE_NON_KD)
1206 ebuf = ipath_get_egrbuf(dd, etail);
1207 }
1208
1209 /*
1210 * both tiderr and ipathhdrerr are set for all plain IB
1211 * packets; only ipathhdrerr should be set.
1212 */
1213
1214 if (etype != RCVHQ_RCV_TYPE_NON_KD &&
1215 etype != RCVHQ_RCV_TYPE_ERROR &&
1216 ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) !=
1217 IPS_PROTO_VERSION)
1218 ipath_cdbg(PKT, "Bad InfiniPath protocol version "
1219 "%x\n", etype);
1220
1221 if (unlikely(eflags))
1222 ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr);
1223 else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
1224 ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen);
1225 if (dd->ipath_lli_counter)
1226 dd->ipath_lli_counter--;
1227 } else if (etype == RCVHQ_RCV_TYPE_EAGER) {
1228 u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24;
1229 u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff;
1230 ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
1231 "qp=%x), len %x; ignored\n",
1232 etype, opcode, qp, tlen);
1233 }
1234 else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
1235 ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
1236 be32_to_cpu(hdr->bth[0]) >> 24);
1237 else {
1238 /*
1239 * error packet, type of error unknown.
1240 * Probably type 3, but we don't know, so don't
1241 * even try to print the opcode, etc.
1242 * Usually caused by a "bad packet", that has no
1243 * BTH, when the LRH says it should.
1244 */
1245 ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf"
1246 " %x, len %x hdrq+%x rhf: %Lx\n",
1247 etail, tlen, l, (unsigned long long)
1248 le64_to_cpu(*(__le64 *) rhf_addr));
1249 if (ipath_debug & __IPATH_ERRPKTDBG) {
1250 u32 j, *d, dw = rsize-2;
1251 if (rsize > (tlen>>2))
1252 dw = tlen>>2;
1253 d = (u32 *)hdr;
1254 printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n",
1255 dw);
1256 for (j = 0; j < dw; j++)
1257 printk(KERN_DEBUG "%8x%s", d[j],
1258 (j%8) == 7 ? "\n" : " ");
1259 printk(KERN_DEBUG ".\n");
1260 }
1261 }
1262 l += rsize;
1263 if (l >= maxcnt)
1264 l = 0;
1265 rhf_addr = (__le32 *) pd->port_rcvhdrq +
1266 l + dd->ipath_rhf_offset;
1267 if (dd->ipath_flags & IPATH_NODMA_RTAIL) {
1268 u32 seq = ipath_hdrget_seq(rhf_addr);
1269
1270 if (++pd->port_seq_cnt > 13)
1271 pd->port_seq_cnt = 1;
1272 if (seq != pd->port_seq_cnt)
1273 last = 1;
1274 } else if (l == hdrqtail)
1275 last = 1;
1276 /*
1277 * update head regs on last packet, and every 16 packets.
1278 * Reduce bus traffic, while still trying to prevent
1279 * rcvhdrq overflows, for when the queue is nearly full
1280 */
1281 if (last || !(i & 0xf)) {
1282 u64 lval = l;
1283
1284 /* request IBA6120 and 7220 interrupt only on last */
1285 if (last)
1286 lval |= dd->ipath_rhdrhead_intr_off;
1287 ipath_write_ureg(dd, ur_rcvhdrhead, lval,
1288 pd->port_port);
1289 if (updegr) {
1290 ipath_write_ureg(dd, ur_rcvegrindexhead,
1291 etail, pd->port_port);
1292 updegr = 0;
1293 }
1294 }
1295 }
1296
1297 if (!dd->ipath_rhdrhead_intr_off && !reloop &&
1298 !(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1299 /* IBA6110 workaround; we can have a race clearing chip
1300 * interrupt with another interrupt about to be delivered,
1301 * and can clear it before it is delivered on the GPIO
1302 * workaround. By doing the extra check here for the
1303 * in-memory tail register updating while we were doing
1304 * earlier packets, we "almost" guarantee we have covered
1305 * that case.
1306 */
1307 u32 hqtail = ipath_get_rcvhdrtail(pd);
1308 if (hqtail != hdrqtail) {
1309 hdrqtail = hqtail;
1310 reloop = 1; /* loop 1 extra time at most */
1311 goto reloop;
1312 }
1313 }
1314
1315 pkttot += i;
1316
1317 pd->port_head = l;
1318
1319 if (pkttot > ipath_stats.sps_maxpkts_call)
1320 ipath_stats.sps_maxpkts_call = pkttot;
1321 ipath_stats.sps_port0pkts += pkttot;
1322 ipath_stats.sps_avgpkts_call =
1323 ipath_stats.sps_port0pkts / ++totcalls;
1324
1325 bail:;
1326 }
1327
1328 /**
1329 * ipath_update_pio_bufs - update shadow copy of the PIO availability map
1330 * @dd: the infinipath device
1331 *
1332 * called whenever our local copy indicates we have run out of send buffers
1333 * NOTE: This can be called from interrupt context by some code
1334 * and from non-interrupt context by ipath_getpiobuf().
1335 */
1336
ipath_update_pio_bufs(struct ipath_devdata * dd)1337 static void ipath_update_pio_bufs(struct ipath_devdata *dd)
1338 {
1339 unsigned long flags;
1340 int i;
1341 const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
1342
1343 /* If the generation (check) bits have changed, then we update the
1344 * busy bit for the corresponding PIO buffer. This algorithm will
1345 * modify positions to the value they already have in some cases
1346 * (i.e., no change), but it's faster than changing only the bits
1347 * that have changed.
1348 *
1349 * We would like to do this atomicly, to avoid spinlocks in the
1350 * critical send path, but that's not really possible, given the
1351 * type of changes, and that this routine could be called on
1352 * multiple cpu's simultaneously, so we lock in this routine only,
1353 * to avoid conflicting updates; all we change is the shadow, and
1354 * it's a single 64 bit memory location, so by definition the update
1355 * is atomic in terms of what other cpu's can see in testing the
1356 * bits. The spin_lock overhead isn't too bad, since it only
1357 * happens when all buffers are in use, so only cpu overhead, not
1358 * latency or bandwidth is affected.
1359 */
1360 if (!dd->ipath_pioavailregs_dma) {
1361 ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
1362 return;
1363 }
1364 if (ipath_debug & __IPATH_VERBDBG) {
1365 /* only if packet debug and verbose */
1366 volatile __le64 *dma = dd->ipath_pioavailregs_dma;
1367 unsigned long *shadow = dd->ipath_pioavailshadow;
1368
1369 ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
1370 "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
1371 "s3=%lx\n",
1372 (unsigned long long) le64_to_cpu(dma[0]),
1373 shadow[0],
1374 (unsigned long long) le64_to_cpu(dma[1]),
1375 shadow[1],
1376 (unsigned long long) le64_to_cpu(dma[2]),
1377 shadow[2],
1378 (unsigned long long) le64_to_cpu(dma[3]),
1379 shadow[3]);
1380 if (piobregs > 4)
1381 ipath_cdbg(
1382 PKT, "2nd group, dma4=%llx shad4=%lx, "
1383 "d5=%llx s5=%lx, d6=%llx s6=%lx, "
1384 "d7=%llx s7=%lx\n",
1385 (unsigned long long) le64_to_cpu(dma[4]),
1386 shadow[4],
1387 (unsigned long long) le64_to_cpu(dma[5]),
1388 shadow[5],
1389 (unsigned long long) le64_to_cpu(dma[6]),
1390 shadow[6],
1391 (unsigned long long) le64_to_cpu(dma[7]),
1392 shadow[7]);
1393 }
1394 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1395 for (i = 0; i < piobregs; i++) {
1396 u64 pchbusy, pchg, piov, pnew;
1397 /*
1398 * Chip Errata: bug 6641; even and odd qwords>3 are swapped
1399 */
1400 if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS))
1401 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]);
1402 else
1403 piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
1404 pchg = dd->ipath_pioavailkernel[i] &
1405 ~(dd->ipath_pioavailshadow[i] ^ piov);
1406 pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
1407 if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
1408 pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
1409 pnew |= piov & pchbusy;
1410 dd->ipath_pioavailshadow[i] = pnew;
1411 }
1412 }
1413 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1414 }
1415
1416 /*
1417 * used to force update of pioavailshadow if we can't get a pio buffer.
1418 * Needed primarily due to exitting freeze mode after recovering
1419 * from errors. Done lazily, because it's safer (known to not
1420 * be writing pio buffers).
1421 */
ipath_reset_availshadow(struct ipath_devdata * dd)1422 static void ipath_reset_availshadow(struct ipath_devdata *dd)
1423 {
1424 int i, im;
1425 unsigned long flags;
1426
1427 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1428 for (i = 0; i < dd->ipath_pioavregs; i++) {
1429 u64 val, oldval;
1430 /* deal with 6110 chip bug on high register #s */
1431 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1432 i ^ 1 : i;
1433 val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]);
1434 /*
1435 * busy out the buffers not in the kernel avail list,
1436 * without changing the generation bits.
1437 */
1438 oldval = dd->ipath_pioavailshadow[i];
1439 dd->ipath_pioavailshadow[i] = val |
1440 ((~dd->ipath_pioavailkernel[i] <<
1441 INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) &
1442 0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */
1443 if (oldval != dd->ipath_pioavailshadow[i])
1444 ipath_dbg("shadow[%d] was %Lx, now %lx\n",
1445 i, (unsigned long long) oldval,
1446 dd->ipath_pioavailshadow[i]);
1447 }
1448 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1449 }
1450
1451 /**
1452 * ipath_setrcvhdrsize - set the receive header size
1453 * @dd: the infinipath device
1454 * @rhdrsize: the receive header size
1455 *
1456 * called from user init code, and also layered driver init
1457 */
ipath_setrcvhdrsize(struct ipath_devdata * dd,unsigned rhdrsize)1458 int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
1459 {
1460 int ret = 0;
1461
1462 if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
1463 if (dd->ipath_rcvhdrsize != rhdrsize) {
1464 dev_info(&dd->pcidev->dev,
1465 "Error: can't set protocol header "
1466 "size %u, already %u\n",
1467 rhdrsize, dd->ipath_rcvhdrsize);
1468 ret = -EAGAIN;
1469 } else
1470 ipath_cdbg(VERBOSE, "Reuse same protocol header "
1471 "size %u\n", dd->ipath_rcvhdrsize);
1472 } else if (rhdrsize > (dd->ipath_rcvhdrentsize -
1473 (sizeof(u64) / sizeof(u32)))) {
1474 ipath_dbg("Error: can't set protocol header size %u "
1475 "(> max %u)\n", rhdrsize,
1476 dd->ipath_rcvhdrentsize -
1477 (u32) (sizeof(u64) / sizeof(u32)));
1478 ret = -EOVERFLOW;
1479 } else {
1480 dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
1481 dd->ipath_rcvhdrsize = rhdrsize;
1482 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
1483 dd->ipath_rcvhdrsize);
1484 ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
1485 dd->ipath_rcvhdrsize);
1486 }
1487 return ret;
1488 }
1489
1490 /*
1491 * debugging code and stats updates if no pio buffers available.
1492 */
no_pio_bufs(struct ipath_devdata * dd)1493 static noinline void no_pio_bufs(struct ipath_devdata *dd)
1494 {
1495 unsigned long *shadow = dd->ipath_pioavailshadow;
1496 __le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma;
1497
1498 dd->ipath_upd_pio_shadow = 1;
1499
1500 /*
1501 * not atomic, but if we lose a stat count in a while, that's OK
1502 */
1503 ipath_stats.sps_nopiobufs++;
1504 if (!(++dd->ipath_consec_nopiobuf % 100000)) {
1505 ipath_force_pio_avail_update(dd); /* at start */
1506 ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: "
1507 "%llx %llx %llx %llx\n"
1508 "ipath shadow: %lx %lx %lx %lx\n",
1509 dd->ipath_consec_nopiobuf,
1510 (unsigned long)get_cycles(),
1511 (unsigned long long) le64_to_cpu(dma[0]),
1512 (unsigned long long) le64_to_cpu(dma[1]),
1513 (unsigned long long) le64_to_cpu(dma[2]),
1514 (unsigned long long) le64_to_cpu(dma[3]),
1515 shadow[0], shadow[1], shadow[2], shadow[3]);
1516 /*
1517 * 4 buffers per byte, 4 registers above, cover rest
1518 * below
1519 */
1520 if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
1521 (sizeof(shadow[0]) * 4 * 4))
1522 ipath_dbg("2nd group: dmacopy: "
1523 "%llx %llx %llx %llx\n"
1524 "ipath shadow: %lx %lx %lx %lx\n",
1525 (unsigned long long)le64_to_cpu(dma[4]),
1526 (unsigned long long)le64_to_cpu(dma[5]),
1527 (unsigned long long)le64_to_cpu(dma[6]),
1528 (unsigned long long)le64_to_cpu(dma[7]),
1529 shadow[4], shadow[5], shadow[6], shadow[7]);
1530
1531 /* at end, so update likely happened */
1532 ipath_reset_availshadow(dd);
1533 }
1534 }
1535
1536 /*
1537 * common code for normal driver pio buffer allocation, and reserved
1538 * allocation.
1539 *
1540 * do appropriate marking as busy, etc.
1541 * returns buffer number if one found (>=0), negative number is error.
1542 */
ipath_getpiobuf_range(struct ipath_devdata * dd,u32 * pbufnum,u32 first,u32 last,u32 firsti)1543 static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd,
1544 u32 *pbufnum, u32 first, u32 last, u32 firsti)
1545 {
1546 int i, j, updated = 0;
1547 unsigned piobcnt;
1548 unsigned long flags;
1549 unsigned long *shadow = dd->ipath_pioavailshadow;
1550 u32 __iomem *buf;
1551
1552 piobcnt = last - first;
1553 if (dd->ipath_upd_pio_shadow) {
1554 /*
1555 * Minor optimization. If we had no buffers on last call,
1556 * start out by doing the update; continue and do scan even
1557 * if no buffers were updated, to be paranoid
1558 */
1559 ipath_update_pio_bufs(dd);
1560 updated++;
1561 i = first;
1562 } else
1563 i = firsti;
1564 rescan:
1565 /*
1566 * while test_and_set_bit() is atomic, we do that and then the
1567 * change_bit(), and the pair is not. See if this is the cause
1568 * of the remaining armlaunch errors.
1569 */
1570 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1571 for (j = 0; j < piobcnt; j++, i++) {
1572 if (i >= last)
1573 i = first;
1574 if (__test_and_set_bit((2 * i) + 1, shadow))
1575 continue;
1576 /* flip generation bit */
1577 __change_bit(2 * i, shadow);
1578 break;
1579 }
1580 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1581
1582 if (j == piobcnt) {
1583 if (!updated) {
1584 /*
1585 * first time through; shadow exhausted, but may be
1586 * buffers available, try an update and then rescan.
1587 */
1588 ipath_update_pio_bufs(dd);
1589 updated++;
1590 i = first;
1591 goto rescan;
1592 } else if (updated == 1 && piobcnt <=
1593 ((dd->ipath_sendctrl
1594 >> INFINIPATH_S_UPDTHRESH_SHIFT) &
1595 INFINIPATH_S_UPDTHRESH_MASK)) {
1596 /*
1597 * for chips supporting and using the update
1598 * threshold we need to force an update of the
1599 * in-memory copy if the count is less than the
1600 * thershold, then check one more time.
1601 */
1602 ipath_force_pio_avail_update(dd);
1603 ipath_update_pio_bufs(dd);
1604 updated++;
1605 i = first;
1606 goto rescan;
1607 }
1608
1609 no_pio_bufs(dd);
1610 buf = NULL;
1611 } else {
1612 if (i < dd->ipath_piobcnt2k)
1613 buf = (u32 __iomem *) (dd->ipath_pio2kbase +
1614 i * dd->ipath_palign);
1615 else
1616 buf = (u32 __iomem *)
1617 (dd->ipath_pio4kbase +
1618 (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
1619 if (pbufnum)
1620 *pbufnum = i;
1621 }
1622
1623 return buf;
1624 }
1625
1626 /**
1627 * ipath_getpiobuf - find an available pio buffer
1628 * @dd: the infinipath device
1629 * @plen: the size of the PIO buffer needed in 32-bit words
1630 * @pbufnum: the buffer number is placed here
1631 */
ipath_getpiobuf(struct ipath_devdata * dd,u32 plen,u32 * pbufnum)1632 u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum)
1633 {
1634 u32 __iomem *buf;
1635 u32 pnum, nbufs;
1636 u32 first, lasti;
1637
1638 if (plen + 1 >= IPATH_SMALLBUF_DWORDS) {
1639 first = dd->ipath_piobcnt2k;
1640 lasti = dd->ipath_lastpioindexl;
1641 } else {
1642 first = 0;
1643 lasti = dd->ipath_lastpioindex;
1644 }
1645 nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k;
1646 buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti);
1647
1648 if (buf) {
1649 /*
1650 * Set next starting place. It's just an optimization,
1651 * it doesn't matter who wins on this, so no locking
1652 */
1653 if (plen + 1 >= IPATH_SMALLBUF_DWORDS)
1654 dd->ipath_lastpioindexl = pnum + 1;
1655 else
1656 dd->ipath_lastpioindex = pnum + 1;
1657 if (dd->ipath_upd_pio_shadow)
1658 dd->ipath_upd_pio_shadow = 0;
1659 if (dd->ipath_consec_nopiobuf)
1660 dd->ipath_consec_nopiobuf = 0;
1661 ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
1662 pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf);
1663 if (pbufnum)
1664 *pbufnum = pnum;
1665
1666 }
1667 return buf;
1668 }
1669
1670 /**
1671 * ipath_chg_pioavailkernel - change which send buffers are available for kernel
1672 * @dd: the infinipath device
1673 * @start: the starting send buffer number
1674 * @len: the number of send buffers
1675 * @avail: true if the buffers are available for kernel use, false otherwise
1676 */
ipath_chg_pioavailkernel(struct ipath_devdata * dd,unsigned start,unsigned len,int avail)1677 void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start,
1678 unsigned len, int avail)
1679 {
1680 unsigned long flags;
1681 unsigned end, cnt = 0;
1682
1683 /* There are two bits per send buffer (busy and generation) */
1684 start *= 2;
1685 end = start + len * 2;
1686
1687 spin_lock_irqsave(&ipath_pioavail_lock, flags);
1688 /* Set or clear the busy bit in the shadow. */
1689 while (start < end) {
1690 if (avail) {
1691 unsigned long dma;
1692 int i, im;
1693 /*
1694 * the BUSY bit will never be set, because we disarm
1695 * the user buffers before we hand them back to the
1696 * kernel. We do have to make sure the generation
1697 * bit is set correctly in shadow, since it could
1698 * have changed many times while allocated to user.
1699 * We can't use the bitmap functions on the full
1700 * dma array because it is always little-endian, so
1701 * we have to flip to host-order first.
1702 * BITS_PER_LONG is slightly wrong, since it's
1703 * always 64 bits per register in chip...
1704 * We only work on 64 bit kernels, so that's OK.
1705 */
1706 /* deal with 6110 chip bug on high register #s */
1707 i = start / BITS_PER_LONG;
1708 im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ?
1709 i ^ 1 : i;
1710 __clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT
1711 + start, dd->ipath_pioavailshadow);
1712 dma = (unsigned long) le64_to_cpu(
1713 dd->ipath_pioavailregs_dma[im]);
1714 if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1715 + start) % BITS_PER_LONG, &dma))
1716 __set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1717 + start, dd->ipath_pioavailshadow);
1718 else
1719 __clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT
1720 + start, dd->ipath_pioavailshadow);
1721 __set_bit(start, dd->ipath_pioavailkernel);
1722 } else {
1723 __set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT,
1724 dd->ipath_pioavailshadow);
1725 __clear_bit(start, dd->ipath_pioavailkernel);
1726 }
1727 start += 2;
1728 }
1729
1730 if (dd->ipath_pioupd_thresh) {
1731 end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1732 cnt = bitmap_weight(dd->ipath_pioavailkernel, end);
1733 }
1734 spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
1735
1736 /*
1737 * When moving buffers from kernel to user, if number assigned to
1738 * the user is less than the pio update threshold, and threshold
1739 * is supported (cnt was computed > 0), drop the update threshold
1740 * so we update at least once per allocated number of buffers.
1741 * In any case, if the kernel buffers are less than the threshold,
1742 * drop the threshold. We don't bother increasing it, having once
1743 * decreased it, since it would typically just cycle back and forth.
1744 * If we don't decrease below buffers in use, we can wait a long
1745 * time for an update, until some other context uses PIO buffers.
1746 */
1747 if (!avail && len < cnt)
1748 cnt = len;
1749 if (cnt < dd->ipath_pioupd_thresh) {
1750 dd->ipath_pioupd_thresh = cnt;
1751 ipath_dbg("Decreased pio update threshold to %u\n",
1752 dd->ipath_pioupd_thresh);
1753 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1754 dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK
1755 << INFINIPATH_S_UPDTHRESH_SHIFT);
1756 dd->ipath_sendctrl |= dd->ipath_pioupd_thresh
1757 << INFINIPATH_S_UPDTHRESH_SHIFT;
1758 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1759 dd->ipath_sendctrl);
1760 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1761 }
1762 }
1763
1764 /**
1765 * ipath_create_rcvhdrq - create a receive header queue
1766 * @dd: the infinipath device
1767 * @pd: the port data
1768 *
1769 * this must be contiguous memory (from an i/o perspective), and must be
1770 * DMA'able (which means for some systems, it will go through an IOMMU,
1771 * or be forced into a low address range).
1772 */
ipath_create_rcvhdrq(struct ipath_devdata * dd,struct ipath_portdata * pd)1773 int ipath_create_rcvhdrq(struct ipath_devdata *dd,
1774 struct ipath_portdata *pd)
1775 {
1776 int ret = 0;
1777
1778 if (!pd->port_rcvhdrq) {
1779 dma_addr_t phys_hdrqtail;
1780 gfp_t gfp_flags = GFP_USER | __GFP_COMP;
1781 int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
1782 sizeof(u32), PAGE_SIZE);
1783
1784 pd->port_rcvhdrq = dma_alloc_coherent(
1785 &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
1786 gfp_flags);
1787
1788 if (!pd->port_rcvhdrq) {
1789 ipath_dev_err(dd, "attempt to allocate %d bytes "
1790 "for port %u rcvhdrq failed\n",
1791 amt, pd->port_port);
1792 ret = -ENOMEM;
1793 goto bail;
1794 }
1795
1796 if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) {
1797 pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent(
1798 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1799 GFP_KERNEL);
1800 if (!pd->port_rcvhdrtail_kvaddr) {
1801 ipath_dev_err(dd, "attempt to allocate 1 page "
1802 "for port %u rcvhdrqtailaddr "
1803 "failed\n", pd->port_port);
1804 ret = -ENOMEM;
1805 dma_free_coherent(&dd->pcidev->dev, amt,
1806 pd->port_rcvhdrq,
1807 pd->port_rcvhdrq_phys);
1808 pd->port_rcvhdrq = NULL;
1809 goto bail;
1810 }
1811 pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail;
1812 ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx "
1813 "physical\n", pd->port_port,
1814 (unsigned long long) phys_hdrqtail);
1815 }
1816
1817 pd->port_rcvhdrq_size = amt;
1818
1819 ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
1820 "for port %u rcvhdr Q\n",
1821 amt >> PAGE_SHIFT, pd->port_rcvhdrq,
1822 (unsigned long) pd->port_rcvhdrq_phys,
1823 (unsigned long) pd->port_rcvhdrq_size,
1824 pd->port_port);
1825 }
1826 else
1827 ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; "
1828 "hdrtailaddr@%p %llx physical\n",
1829 pd->port_port, pd->port_rcvhdrq,
1830 (unsigned long long) pd->port_rcvhdrq_phys,
1831 pd->port_rcvhdrtail_kvaddr, (unsigned long long)
1832 pd->port_rcvhdrqtailaddr_phys);
1833
1834 /* clear for security and sanity on each use */
1835 memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size);
1836 if (pd->port_rcvhdrtail_kvaddr)
1837 memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE);
1838
1839 /*
1840 * tell chip each time we init it, even if we are re-using previous
1841 * memory (we zero the register at process close)
1842 */
1843 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr,
1844 pd->port_port, pd->port_rcvhdrqtailaddr_phys);
1845 ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
1846 pd->port_port, pd->port_rcvhdrq_phys);
1847
1848 bail:
1849 return ret;
1850 }
1851
1852
1853 /*
1854 * Flush all sends that might be in the ready to send state, as well as any
1855 * that are in the process of being sent. Used whenever we need to be
1856 * sure the send side is idle. Cleans up all buffer state by canceling
1857 * all pio buffers, and issuing an abort, which cleans up anything in the
1858 * launch fifo. The cancel is superfluous on some chip versions, but
1859 * it's safer to always do it.
1860 * PIOAvail bits are updated by the chip as if normal send had happened.
1861 */
ipath_cancel_sends(struct ipath_devdata * dd,int restore_sendctrl)1862 void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl)
1863 {
1864 unsigned long flags;
1865
1866 if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) {
1867 ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n");
1868 goto bail;
1869 }
1870 /*
1871 * If we have SDMA, and it's not disabled, we have to kick off the
1872 * abort state machine, provided we aren't already aborting.
1873 * If we are in the process of aborting SDMA (!DISABLED, but ABORTING),
1874 * we skip the rest of this routine. It is already "in progress"
1875 */
1876 if (dd->ipath_flags & IPATH_HAS_SEND_DMA) {
1877 int skip_cancel;
1878 unsigned long *statp = &dd->ipath_sdma_status;
1879
1880 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1881 skip_cancel =
1882 test_and_set_bit(IPATH_SDMA_ABORTING, statp)
1883 && !test_bit(IPATH_SDMA_DISABLED, statp);
1884 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1885 if (skip_cancel)
1886 goto bail;
1887 }
1888
1889 ipath_dbg("Cancelling all in-progress send buffers\n");
1890
1891 /* skip armlaunch errs for a while */
1892 dd->ipath_lastcancel = jiffies + HZ / 2;
1893
1894 /*
1895 * The abort bit is auto-clearing. We also don't want pioavail
1896 * update happening during this, and we don't want any other
1897 * sends going out, so turn those off for the duration. We read
1898 * the scratch register to be sure that cancels and the abort
1899 * have taken effect in the chip. Otherwise two parts are same
1900 * as ipath_force_pio_avail_update()
1901 */
1902 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1903 dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD
1904 | INFINIPATH_S_PIOENABLE);
1905 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1906 dd->ipath_sendctrl | INFINIPATH_S_ABORT);
1907 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1908 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1909
1910 /* disarm all send buffers */
1911 ipath_disarm_piobufs(dd, 0,
1912 dd->ipath_piobcnt2k + dd->ipath_piobcnt4k);
1913
1914 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
1915 set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status);
1916
1917 if (restore_sendctrl) {
1918 /* else done by caller later if needed */
1919 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1920 dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD |
1921 INFINIPATH_S_PIOENABLE;
1922 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1923 dd->ipath_sendctrl);
1924 /* and again, be sure all have hit the chip */
1925 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1926 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1927 }
1928
1929 if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) &&
1930 !test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) &&
1931 test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) {
1932 spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
1933 /* only wait so long for intr */
1934 dd->ipath_sdma_abort_intr_timeout = jiffies + HZ;
1935 dd->ipath_sdma_reset_wait = 200;
1936 if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status))
1937 tasklet_hi_schedule(&dd->ipath_sdma_abort_task);
1938 spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
1939 }
1940 bail:;
1941 }
1942
1943 /*
1944 * Force an update of in-memory copy of the pioavail registers, when
1945 * needed for any of a variety of reasons. We read the scratch register
1946 * to make it highly likely that the update will have happened by the
1947 * time we return. If already off (as in cancel_sends above), this
1948 * routine is a nop, on the assumption that the caller will "do the
1949 * right thing".
1950 */
ipath_force_pio_avail_update(struct ipath_devdata * dd)1951 void ipath_force_pio_avail_update(struct ipath_devdata *dd)
1952 {
1953 unsigned long flags;
1954
1955 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
1956 if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) {
1957 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1958 dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD);
1959 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1960 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
1961 dd->ipath_sendctrl);
1962 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
1963 }
1964 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
1965 }
1966
ipath_set_ib_lstate(struct ipath_devdata * dd,int linkcmd,int linitcmd)1967 static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd,
1968 int linitcmd)
1969 {
1970 u64 mod_wd;
1971 static const char *what[4] = {
1972 [0] = "NOP",
1973 [INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN",
1974 [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
1975 [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
1976 };
1977
1978 if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) {
1979 /*
1980 * If we are told to disable, note that so link-recovery
1981 * code does not attempt to bring us back up.
1982 */
1983 preempt_disable();
1984 dd->ipath_flags |= IPATH_IB_LINK_DISABLED;
1985 preempt_enable();
1986 } else if (linitcmd) {
1987 /*
1988 * Any other linkinitcmd will lead to LINKDOWN and then
1989 * to INIT (if all is well), so clear flag to let
1990 * link-recovery code attempt to bring us back up.
1991 */
1992 preempt_disable();
1993 dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED;
1994 preempt_enable();
1995 }
1996
1997 mod_wd = (linkcmd << dd->ibcc_lc_shift) |
1998 (linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT);
1999 ipath_cdbg(VERBOSE,
2000 "Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n",
2001 dd->ipath_unit, what[linkcmd], linitcmd,
2002 ipath_ibcstatus_str[ipath_ib_linktrstate(dd,
2003 ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]);
2004
2005 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2006 dd->ipath_ibcctrl | mod_wd);
2007 /* read from chip so write is flushed */
2008 (void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2009 }
2010
ipath_set_linkstate(struct ipath_devdata * dd,u8 newstate)2011 int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate)
2012 {
2013 u32 lstate;
2014 int ret;
2015
2016 switch (newstate) {
2017 case IPATH_IB_LINKDOWN_ONLY:
2018 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0);
2019 /* don't wait */
2020 ret = 0;
2021 goto bail;
2022
2023 case IPATH_IB_LINKDOWN:
2024 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2025 INFINIPATH_IBCC_LINKINITCMD_POLL);
2026 /* don't wait */
2027 ret = 0;
2028 goto bail;
2029
2030 case IPATH_IB_LINKDOWN_SLEEP:
2031 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2032 INFINIPATH_IBCC_LINKINITCMD_SLEEP);
2033 /* don't wait */
2034 ret = 0;
2035 goto bail;
2036
2037 case IPATH_IB_LINKDOWN_DISABLE:
2038 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN,
2039 INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2040 /* don't wait */
2041 ret = 0;
2042 goto bail;
2043
2044 case IPATH_IB_LINKARM:
2045 if (dd->ipath_flags & IPATH_LINKARMED) {
2046 ret = 0;
2047 goto bail;
2048 }
2049 if (!(dd->ipath_flags &
2050 (IPATH_LINKINIT | IPATH_LINKACTIVE))) {
2051 ret = -EINVAL;
2052 goto bail;
2053 }
2054 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0);
2055
2056 /*
2057 * Since the port can transition to ACTIVE by receiving
2058 * a non VL 15 packet, wait for either state.
2059 */
2060 lstate = IPATH_LINKARMED | IPATH_LINKACTIVE;
2061 break;
2062
2063 case IPATH_IB_LINKACTIVE:
2064 if (dd->ipath_flags & IPATH_LINKACTIVE) {
2065 ret = 0;
2066 goto bail;
2067 }
2068 if (!(dd->ipath_flags & IPATH_LINKARMED)) {
2069 ret = -EINVAL;
2070 goto bail;
2071 }
2072 ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0);
2073 lstate = IPATH_LINKACTIVE;
2074 break;
2075
2076 case IPATH_IB_LINK_LOOPBACK:
2077 dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n");
2078 dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK;
2079 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2080 dd->ipath_ibcctrl);
2081
2082 /* turn heartbeat off, as it causes loopback to fail */
2083 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2084 IPATH_IB_HRTBT_OFF);
2085 /* don't wait */
2086 ret = 0;
2087 goto bail;
2088
2089 case IPATH_IB_LINK_EXTERNAL:
2090 dev_info(&dd->pcidev->dev,
2091 "Disabling IB local loopback (normal)\n");
2092 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2093 IPATH_IB_HRTBT_ON);
2094 dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK;
2095 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2096 dd->ipath_ibcctrl);
2097 /* don't wait */
2098 ret = 0;
2099 goto bail;
2100
2101 /*
2102 * Heartbeat can be explicitly enabled by the user via
2103 * "hrtbt_enable" "file", and if disabled, trying to enable here
2104 * will have no effect. Implicit changes (heartbeat off when
2105 * loopback on, and vice versa) are included to ease testing.
2106 */
2107 case IPATH_IB_LINK_HRTBT:
2108 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2109 IPATH_IB_HRTBT_ON);
2110 goto bail;
2111
2112 case IPATH_IB_LINK_NO_HRTBT:
2113 ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT,
2114 IPATH_IB_HRTBT_OFF);
2115 goto bail;
2116
2117 default:
2118 ipath_dbg("Invalid linkstate 0x%x requested\n", newstate);
2119 ret = -EINVAL;
2120 goto bail;
2121 }
2122 ret = ipath_wait_linkstate(dd, lstate, 2000);
2123
2124 bail:
2125 return ret;
2126 }
2127
2128 /**
2129 * ipath_set_mtu - set the MTU
2130 * @dd: the infinipath device
2131 * @arg: the new MTU
2132 *
2133 * we can handle "any" incoming size, the issue here is whether we
2134 * need to restrict our outgoing size. For now, we don't do any
2135 * sanity checking on this, and we don't deal with what happens to
2136 * programs that are already running when the size changes.
2137 * NOTE: changing the MTU will usually cause the IBC to go back to
2138 * link INIT state...
2139 */
ipath_set_mtu(struct ipath_devdata * dd,u16 arg)2140 int ipath_set_mtu(struct ipath_devdata *dd, u16 arg)
2141 {
2142 u32 piosize;
2143 int changed = 0;
2144 int ret;
2145
2146 /*
2147 * mtu is IB data payload max. It's the largest power of 2 less
2148 * than piosize (or even larger, since it only really controls the
2149 * largest we can receive; we can send the max of the mtu and
2150 * piosize). We check that it's one of the valid IB sizes.
2151 */
2152 if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
2153 (arg != 4096 || !ipath_mtu4096)) {
2154 ipath_dbg("Trying to set invalid mtu %u, failing\n", arg);
2155 ret = -EINVAL;
2156 goto bail;
2157 }
2158 if (dd->ipath_ibmtu == arg) {
2159 ret = 0; /* same as current */
2160 goto bail;
2161 }
2162
2163 piosize = dd->ipath_ibmaxlen;
2164 dd->ipath_ibmtu = arg;
2165
2166 if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) {
2167 /* Only if it's not the initial value (or reset to it) */
2168 if (piosize != dd->ipath_init_ibmaxlen) {
2169 if (arg > piosize && arg <= dd->ipath_init_ibmaxlen)
2170 piosize = dd->ipath_init_ibmaxlen;
2171 dd->ipath_ibmaxlen = piosize;
2172 changed = 1;
2173 }
2174 } else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) {
2175 piosize = arg + IPATH_PIO_MAXIBHDR;
2176 ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x "
2177 "(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize,
2178 arg);
2179 dd->ipath_ibmaxlen = piosize;
2180 changed = 1;
2181 }
2182
2183 if (changed) {
2184 u64 ibc = dd->ipath_ibcctrl, ibdw;
2185 /*
2186 * update our housekeeping variables, and set IBC max
2187 * size, same as init code; max IBC is max we allow in
2188 * buffer, less the qword pbc, plus 1 for ICRC, in dwords
2189 */
2190 dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32);
2191 ibdw = (dd->ipath_ibmaxlen >> 2) + 1;
2192 ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK <<
2193 dd->ibcc_mpl_shift);
2194 ibc |= ibdw << dd->ibcc_mpl_shift;
2195 dd->ipath_ibcctrl = ibc;
2196 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
2197 dd->ipath_ibcctrl);
2198 dd->ipath_f_tidtemplate(dd);
2199 }
2200
2201 ret = 0;
2202
2203 bail:
2204 return ret;
2205 }
2206
ipath_set_lid(struct ipath_devdata * dd,u32 lid,u8 lmc)2207 int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc)
2208 {
2209 dd->ipath_lid = lid;
2210 dd->ipath_lmc = lmc;
2211
2212 dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid |
2213 (~((1U << lmc) - 1)) << 16);
2214
2215 dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid);
2216
2217 return 0;
2218 }
2219
2220
2221 /**
2222 * ipath_write_kreg_port - write a device's per-port 64-bit kernel register
2223 * @dd: the infinipath device
2224 * @regno: the register number to write
2225 * @port: the port containing the register
2226 * @value: the value to write
2227 *
2228 * Registers that vary with the chip implementation constants (port)
2229 * use this routine.
2230 */
ipath_write_kreg_port(const struct ipath_devdata * dd,ipath_kreg regno,unsigned port,u64 value)2231 void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
2232 unsigned port, u64 value)
2233 {
2234 u16 where;
2235
2236 if (port < dd->ipath_portcnt &&
2237 (regno == dd->ipath_kregs->kr_rcvhdraddr ||
2238 regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
2239 where = regno + port;
2240 else
2241 where = -1;
2242
2243 ipath_write_kreg(dd, where, value);
2244 }
2245
2246 /*
2247 * Following deal with the "obviously simple" task of overriding the state
2248 * of the LEDS, which normally indicate link physical and logical status.
2249 * The complications arise in dealing with different hardware mappings
2250 * and the board-dependent routine being called from interrupts.
2251 * and then there's the requirement to _flash_ them.
2252 */
2253 #define LED_OVER_FREQ_SHIFT 8
2254 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
2255 /* Below is "non-zero" to force override, but both actual LEDs are off */
2256 #define LED_OVER_BOTH_OFF (8)
2257
ipath_run_led_override(unsigned long opaque)2258 static void ipath_run_led_override(unsigned long opaque)
2259 {
2260 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2261 int timeoff;
2262 int pidx;
2263 u64 lstate, ltstate, val;
2264
2265 if (!(dd->ipath_flags & IPATH_INITTED))
2266 return;
2267
2268 pidx = dd->ipath_led_override_phase++ & 1;
2269 dd->ipath_led_override = dd->ipath_led_override_vals[pidx];
2270 timeoff = dd->ipath_led_override_timeoff;
2271
2272 /*
2273 * below potentially restores the LED values per current status,
2274 * should also possibly setup the traffic-blink register,
2275 * but leave that to per-chip functions.
2276 */
2277 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
2278 ltstate = ipath_ib_linktrstate(dd, val);
2279 lstate = ipath_ib_linkstate(dd, val);
2280
2281 dd->ipath_f_setextled(dd, lstate, ltstate);
2282 mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff);
2283 }
2284
ipath_set_led_override(struct ipath_devdata * dd,unsigned int val)2285 void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val)
2286 {
2287 int timeoff, freq;
2288
2289 if (!(dd->ipath_flags & IPATH_INITTED))
2290 return;
2291
2292 /* First check if we are blinking. If not, use 1HZ polling */
2293 timeoff = HZ;
2294 freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
2295
2296 if (freq) {
2297 /* For blink, set each phase from one nybble of val */
2298 dd->ipath_led_override_vals[0] = val & 0xF;
2299 dd->ipath_led_override_vals[1] = (val >> 4) & 0xF;
2300 timeoff = (HZ << 4)/freq;
2301 } else {
2302 /* Non-blink set both phases the same. */
2303 dd->ipath_led_override_vals[0] = val & 0xF;
2304 dd->ipath_led_override_vals[1] = val & 0xF;
2305 }
2306 dd->ipath_led_override_timeoff = timeoff;
2307
2308 /*
2309 * If the timer has not already been started, do so. Use a "quick"
2310 * timeout so the function will be called soon, to look at our request.
2311 */
2312 if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) {
2313 /* Need to start timer */
2314 init_timer(&dd->ipath_led_override_timer);
2315 dd->ipath_led_override_timer.function =
2316 ipath_run_led_override;
2317 dd->ipath_led_override_timer.data = (unsigned long) dd;
2318 dd->ipath_led_override_timer.expires = jiffies + 1;
2319 add_timer(&dd->ipath_led_override_timer);
2320 } else
2321 atomic_dec(&dd->ipath_led_override_timer_active);
2322 }
2323
2324 /**
2325 * ipath_shutdown_device - shut down a device
2326 * @dd: the infinipath device
2327 *
2328 * This is called to make the device quiet when we are about to
2329 * unload the driver, and also when the device is administratively
2330 * disabled. It does not free any data structures.
2331 * Everything it does has to be setup again by ipath_init_chip(dd,1)
2332 */
ipath_shutdown_device(struct ipath_devdata * dd)2333 void ipath_shutdown_device(struct ipath_devdata *dd)
2334 {
2335 unsigned long flags;
2336
2337 ipath_dbg("Shutting down the device\n");
2338
2339 ipath_hol_up(dd); /* make sure user processes aren't suspended */
2340
2341 dd->ipath_flags |= IPATH_LINKUNK;
2342 dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
2343 IPATH_LINKINIT | IPATH_LINKARMED |
2344 IPATH_LINKACTIVE);
2345 *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
2346 IPATH_STATUS_IB_READY);
2347
2348 /* mask interrupts, but not errors */
2349 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2350
2351 dd->ipath_rcvctrl = 0;
2352 ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
2353 dd->ipath_rcvctrl);
2354
2355 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2356 teardown_sdma(dd);
2357
2358 /*
2359 * gracefully stop all sends allowing any in progress to trickle out
2360 * first.
2361 */
2362 spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags);
2363 dd->ipath_sendctrl = 0;
2364 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl);
2365 /* flush it */
2366 ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
2367 spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags);
2368
2369 /*
2370 * enough for anything that's going to trickle out to have actually
2371 * done so.
2372 */
2373 udelay(5);
2374
2375 dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */
2376
2377 ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE);
2378 ipath_cancel_sends(dd, 0);
2379
2380 /*
2381 * we are shutting down, so tell components that care. We don't do
2382 * this on just a link state change, much like ethernet, a cable
2383 * unplug, etc. doesn't change driver state
2384 */
2385 signal_ib_event(dd, IB_EVENT_PORT_ERR);
2386
2387 /* disable IBC */
2388 dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
2389 ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
2390 dd->ipath_control | INFINIPATH_C_FREEZEMODE);
2391
2392 /*
2393 * clear SerdesEnable and turn the leds off; do this here because
2394 * we are unloading, so don't count on interrupts to move along
2395 * Turn the LEDs off explicitly for the same reason.
2396 */
2397 dd->ipath_f_quiet_serdes(dd);
2398
2399 /* stop all the timers that might still be running */
2400 del_timer_sync(&dd->ipath_hol_timer);
2401 if (dd->ipath_stats_timer_active) {
2402 del_timer_sync(&dd->ipath_stats_timer);
2403 dd->ipath_stats_timer_active = 0;
2404 }
2405 if (dd->ipath_intrchk_timer.data) {
2406 del_timer_sync(&dd->ipath_intrchk_timer);
2407 dd->ipath_intrchk_timer.data = 0;
2408 }
2409 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2410 del_timer_sync(&dd->ipath_led_override_timer);
2411 atomic_set(&dd->ipath_led_override_timer_active, 0);
2412 }
2413
2414 /*
2415 * clear all interrupts and errors, so that the next time the driver
2416 * is loaded or device is enabled, we know that whatever is set
2417 * happened while we were unloaded
2418 */
2419 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
2420 ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
2421 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
2422 ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
2423
2424 ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n");
2425 ipath_update_eeprom_log(dd);
2426 }
2427
2428 /**
2429 * ipath_free_pddata - free a port's allocated data
2430 * @dd: the infinipath device
2431 * @pd: the portdata structure
2432 *
2433 * free up any allocated data for a port
2434 * This should not touch anything that would affect a simultaneous
2435 * re-allocation of port data, because it is called after ipath_mutex
2436 * is released (and can be called from reinit as well).
2437 * It should never change any chip state, or global driver state.
2438 * (The only exception to global state is freeing the port0 port0_skbs.)
2439 */
ipath_free_pddata(struct ipath_devdata * dd,struct ipath_portdata * pd)2440 void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd)
2441 {
2442 if (!pd)
2443 return;
2444
2445 if (pd->port_rcvhdrq) {
2446 ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
2447 "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
2448 (unsigned long) pd->port_rcvhdrq_size);
2449 dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
2450 pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
2451 pd->port_rcvhdrq = NULL;
2452 if (pd->port_rcvhdrtail_kvaddr) {
2453 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
2454 pd->port_rcvhdrtail_kvaddr,
2455 pd->port_rcvhdrqtailaddr_phys);
2456 pd->port_rcvhdrtail_kvaddr = NULL;
2457 }
2458 }
2459 if (pd->port_port && pd->port_rcvegrbuf) {
2460 unsigned e;
2461
2462 for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
2463 void *base = pd->port_rcvegrbuf[e];
2464 size_t size = pd->port_rcvegrbuf_size;
2465
2466 ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
2467 "chunk %u/%u\n", base,
2468 (unsigned long) size,
2469 e, pd->port_rcvegrbuf_chunks);
2470 dma_free_coherent(&dd->pcidev->dev, size,
2471 base, pd->port_rcvegrbuf_phys[e]);
2472 }
2473 kfree(pd->port_rcvegrbuf);
2474 pd->port_rcvegrbuf = NULL;
2475 kfree(pd->port_rcvegrbuf_phys);
2476 pd->port_rcvegrbuf_phys = NULL;
2477 pd->port_rcvegrbuf_chunks = 0;
2478 } else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) {
2479 unsigned e;
2480 struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo;
2481
2482 dd->ipath_port0_skbinfo = NULL;
2483 ipath_cdbg(VERBOSE, "free closed port %d "
2484 "ipath_port0_skbinfo @ %p\n", pd->port_port,
2485 skbinfo);
2486 for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++)
2487 if (skbinfo[e].skb) {
2488 pci_unmap_single(dd->pcidev, skbinfo[e].phys,
2489 dd->ipath_ibmaxlen,
2490 PCI_DMA_FROMDEVICE);
2491 dev_kfree_skb(skbinfo[e].skb);
2492 }
2493 vfree(skbinfo);
2494 }
2495 kfree(pd->port_tid_pg_list);
2496 vfree(pd->subport_uregbase);
2497 vfree(pd->subport_rcvegrbuf);
2498 vfree(pd->subport_rcvhdr_base);
2499 kfree(pd);
2500 }
2501
infinipath_init(void)2502 static int __init infinipath_init(void)
2503 {
2504 int ret;
2505
2506 if (ipath_debug & __IPATH_DBG)
2507 printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version);
2508
2509 /*
2510 * These must be called before the driver is registered with
2511 * the PCI subsystem.
2512 */
2513 idr_init(&unit_table);
2514 if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
2515 printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n");
2516 ret = -ENOMEM;
2517 goto bail;
2518 }
2519
2520 ret = pci_register_driver(&ipath_driver);
2521 if (ret < 0) {
2522 printk(KERN_ERR IPATH_DRV_NAME
2523 ": Unable to register driver: error %d\n", -ret);
2524 goto bail_unit;
2525 }
2526
2527 ret = ipath_init_ipathfs();
2528 if (ret < 0) {
2529 printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
2530 "ipathfs: error %d\n", -ret);
2531 goto bail_pci;
2532 }
2533
2534 goto bail;
2535
2536 bail_pci:
2537 pci_unregister_driver(&ipath_driver);
2538
2539 bail_unit:
2540 idr_destroy(&unit_table);
2541
2542 bail:
2543 return ret;
2544 }
2545
infinipath_cleanup(void)2546 static void __exit infinipath_cleanup(void)
2547 {
2548 ipath_exit_ipathfs();
2549
2550 ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
2551 pci_unregister_driver(&ipath_driver);
2552
2553 idr_destroy(&unit_table);
2554 }
2555
2556 /**
2557 * ipath_reset_device - reset the chip if possible
2558 * @unit: the device to reset
2559 *
2560 * Whether or not reset is successful, we attempt to re-initialize the chip
2561 * (that is, much like a driver unload/reload). We clear the INITTED flag
2562 * so that the various entry points will fail until we reinitialize. For
2563 * now, we only allow this if no user ports are open that use chip resources
2564 */
ipath_reset_device(int unit)2565 int ipath_reset_device(int unit)
2566 {
2567 int ret, i;
2568 struct ipath_devdata *dd = ipath_lookup(unit);
2569 unsigned long flags;
2570
2571 if (!dd) {
2572 ret = -ENODEV;
2573 goto bail;
2574 }
2575
2576 if (atomic_read(&dd->ipath_led_override_timer_active)) {
2577 /* Need to stop LED timer, _then_ shut off LEDs */
2578 del_timer_sync(&dd->ipath_led_override_timer);
2579 atomic_set(&dd->ipath_led_override_timer_active, 0);
2580 }
2581
2582 /* Shut off LEDs after we are sure timer is not running */
2583 dd->ipath_led_override = LED_OVER_BOTH_OFF;
2584 dd->ipath_f_setextled(dd, 0, 0);
2585
2586 dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
2587
2588 if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
2589 dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
2590 "not initialized or not present\n", unit);
2591 ret = -ENXIO;
2592 goto bail;
2593 }
2594
2595 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2596 if (dd->ipath_pd)
2597 for (i = 1; i < dd->ipath_cfgports; i++) {
2598 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2599 continue;
2600 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2601 ipath_dbg("unit %u port %d is in use "
2602 "(PID %u cmd %s), can't reset\n",
2603 unit, i,
2604 pid_nr(dd->ipath_pd[i]->port_pid),
2605 dd->ipath_pd[i]->port_comm);
2606 ret = -EBUSY;
2607 goto bail;
2608 }
2609 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2610
2611 if (dd->ipath_flags & IPATH_HAS_SEND_DMA)
2612 teardown_sdma(dd);
2613
2614 dd->ipath_flags &= ~IPATH_INITTED;
2615 ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
2616 ret = dd->ipath_f_reset(dd);
2617 if (ret == 1) {
2618 ipath_dbg("Reinitializing unit %u after reset attempt\n",
2619 unit);
2620 ret = ipath_init_chip(dd, 1);
2621 } else
2622 ret = -EAGAIN;
2623 if (ret)
2624 ipath_dev_err(dd, "Reinitialize unit %u after "
2625 "reset failed with %d\n", unit, ret);
2626 else
2627 dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
2628 "resetting\n", unit);
2629
2630 bail:
2631 return ret;
2632 }
2633
2634 /*
2635 * send a signal to all the processes that have the driver open
2636 * through the normal interfaces (i.e., everything other than diags
2637 * interface). Returns number of signalled processes.
2638 */
ipath_signal_procs(struct ipath_devdata * dd,int sig)2639 static int ipath_signal_procs(struct ipath_devdata *dd, int sig)
2640 {
2641 int i, sub, any = 0;
2642 struct pid *pid;
2643 unsigned long flags;
2644
2645 if (!dd->ipath_pd)
2646 return 0;
2647
2648 spin_lock_irqsave(&dd->ipath_uctxt_lock, flags);
2649 for (i = 1; i < dd->ipath_cfgports; i++) {
2650 if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt)
2651 continue;
2652 pid = dd->ipath_pd[i]->port_pid;
2653 if (!pid)
2654 continue;
2655
2656 dev_info(&dd->pcidev->dev, "context %d in use "
2657 "(PID %u), sending signal %d\n",
2658 i, pid_nr(pid), sig);
2659 kill_pid(pid, sig, 1);
2660 any++;
2661 for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) {
2662 pid = dd->ipath_pd[i]->port_subpid[sub];
2663 if (!pid)
2664 continue;
2665 dev_info(&dd->pcidev->dev, "sub-context "
2666 "%d:%d in use (PID %u), sending "
2667 "signal %d\n", i, sub, pid_nr(pid), sig);
2668 kill_pid(pid, sig, 1);
2669 any++;
2670 }
2671 }
2672 spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags);
2673 return any;
2674 }
2675
ipath_hol_signal_down(struct ipath_devdata * dd)2676 static void ipath_hol_signal_down(struct ipath_devdata *dd)
2677 {
2678 if (ipath_signal_procs(dd, SIGSTOP))
2679 ipath_dbg("Stopped some processes\n");
2680 ipath_cancel_sends(dd, 1);
2681 }
2682
2683
ipath_hol_signal_up(struct ipath_devdata * dd)2684 static void ipath_hol_signal_up(struct ipath_devdata *dd)
2685 {
2686 if (ipath_signal_procs(dd, SIGCONT))
2687 ipath_dbg("Continued some processes\n");
2688 }
2689
2690 /*
2691 * link is down, stop any users processes, and flush pending sends
2692 * to prevent HoL blocking, then start the HoL timer that
2693 * periodically continues, then stop procs, so they can detect
2694 * link down if they want, and do something about it.
2695 * Timer may already be running, so use mod_timer, not add_timer.
2696 */
ipath_hol_down(struct ipath_devdata * dd)2697 void ipath_hol_down(struct ipath_devdata *dd)
2698 {
2699 dd->ipath_hol_state = IPATH_HOL_DOWN;
2700 ipath_hol_signal_down(dd);
2701 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2702 dd->ipath_hol_timer.expires = jiffies +
2703 msecs_to_jiffies(ipath_hol_timeout_ms);
2704 mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires);
2705 }
2706
2707 /*
2708 * link is up, continue any user processes, and ensure timer
2709 * is a nop, if running. Let timer keep running, if set; it
2710 * will nop when it sees the link is up
2711 */
ipath_hol_up(struct ipath_devdata * dd)2712 void ipath_hol_up(struct ipath_devdata *dd)
2713 {
2714 ipath_hol_signal_up(dd);
2715 dd->ipath_hol_state = IPATH_HOL_UP;
2716 }
2717
2718 /*
2719 * toggle the running/not running state of user proceses
2720 * to prevent HoL blocking on chip resources, but still allow
2721 * user processes to do link down special case handling.
2722 * Should only be called via the timer
2723 */
ipath_hol_event(unsigned long opaque)2724 void ipath_hol_event(unsigned long opaque)
2725 {
2726 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
2727
2728 if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP
2729 && dd->ipath_hol_state != IPATH_HOL_UP) {
2730 dd->ipath_hol_next = IPATH_HOL_DOWNCONT;
2731 ipath_dbg("Stopping processes\n");
2732 ipath_hol_signal_down(dd);
2733 } else { /* may do "extra" if also in ipath_hol_up() */
2734 dd->ipath_hol_next = IPATH_HOL_DOWNSTOP;
2735 ipath_dbg("Continuing processes\n");
2736 ipath_hol_signal_up(dd);
2737 }
2738 if (dd->ipath_hol_state == IPATH_HOL_UP)
2739 ipath_dbg("link's up, don't resched timer\n");
2740 else {
2741 dd->ipath_hol_timer.expires = jiffies +
2742 msecs_to_jiffies(ipath_hol_timeout_ms);
2743 mod_timer(&dd->ipath_hol_timer,
2744 dd->ipath_hol_timer.expires);
2745 }
2746 }
2747
ipath_set_rx_pol_inv(struct ipath_devdata * dd,u8 new_pol_inv)2748 int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv)
2749 {
2750 u64 val;
2751
2752 if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK)
2753 return -1;
2754 if (dd->ipath_rx_pol_inv != new_pol_inv) {
2755 dd->ipath_rx_pol_inv = new_pol_inv;
2756 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig);
2757 val &= ~(INFINIPATH_XGXS_RX_POL_MASK <<
2758 INFINIPATH_XGXS_RX_POL_SHIFT);
2759 val |= ((u64)dd->ipath_rx_pol_inv) <<
2760 INFINIPATH_XGXS_RX_POL_SHIFT;
2761 ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val);
2762 }
2763 return 0;
2764 }
2765
2766 /*
2767 * Disable and enable the armlaunch error. Used for PIO bandwidth testing on
2768 * the 7220, which is count-based, rather than trigger-based. Safe for the
2769 * driver check, since it's at init. Not completely safe when used for
2770 * user-mode checking, since some error checking can be lost, but not
2771 * particularly risky, and only has problematic side-effects in the face of
2772 * very buggy user code. There is no reference counting, but that's also
2773 * fine, given the intended use.
2774 */
ipath_enable_armlaunch(struct ipath_devdata * dd)2775 void ipath_enable_armlaunch(struct ipath_devdata *dd)
2776 {
2777 dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH;
2778 ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear,
2779 INFINIPATH_E_SPIOARMLAUNCH);
2780 dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH;
2781 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2782 dd->ipath_errormask);
2783 }
2784
ipath_disable_armlaunch(struct ipath_devdata * dd)2785 void ipath_disable_armlaunch(struct ipath_devdata *dd)
2786 {
2787 /* so don't re-enable if already set */
2788 dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH;
2789 dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH;
2790 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
2791 dd->ipath_errormask);
2792 }
2793
2794 module_init(infinipath_init);
2795 module_exit(infinipath_cleanup);
2796