1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		ROUTE - implementation of the IP router.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *		Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12  *		Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13  *
14  * Fixes:
15  *		Alan Cox	:	Verify area fixes.
16  *		Alan Cox	:	cli() protects routing changes
17  *		Rui Oliveira	:	ICMP routing table updates
18  *		(rco@di.uminho.pt)	Routing table insertion and update
19  *		Linus Torvalds	:	Rewrote bits to be sensible
20  *		Alan Cox	:	Added BSD route gw semantics
21  *		Alan Cox	:	Super /proc >4K
22  *		Alan Cox	:	MTU in route table
23  *		Alan Cox	: 	MSS actually. Also added the window
24  *					clamper.
25  *		Sam Lantinga	:	Fixed route matching in rt_del()
26  *		Alan Cox	:	Routing cache support.
27  *		Alan Cox	:	Removed compatibility cruft.
28  *		Alan Cox	:	RTF_REJECT support.
29  *		Alan Cox	:	TCP irtt support.
30  *		Jonathan Naylor	:	Added Metric support.
31  *	Miquel van Smoorenburg	:	BSD API fixes.
32  *	Miquel van Smoorenburg	:	Metrics.
33  *		Alan Cox	:	Use __u32 properly
34  *		Alan Cox	:	Aligned routing errors more closely with BSD
35  *					our system is still very different.
36  *		Alan Cox	:	Faster /proc handling
37  *	Alexey Kuznetsov	:	Massive rework to support tree based routing,
38  *					routing caches and better behaviour.
39  *
40  *		Olaf Erb	:	irtt wasn't being copied right.
41  *		Bjorn Ekwall	:	Kerneld route support.
42  *		Alan Cox	:	Multicast fixed (I hope)
43  * 		Pavel Krauz	:	Limited broadcast fixed
44  *		Mike McLagan	:	Routing by source
45  *	Alexey Kuznetsov	:	End of old history. Split to fib.c and
46  *					route.c and rewritten from scratch.
47  *		Andi Kleen	:	Load-limit warning messages.
48  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
49  *	Vitaly E. Lavrov	:	Race condition in ip_route_input_slow.
50  *	Tobias Ringstrom	:	Uninitialized res.type in ip_route_output_slow.
51  *	Vladimir V. Ivanov	:	IP rule info (flowid) is really useful.
52  *		Marc Boucher	:	routing by fwmark
53  *	Robert Olsson		:	Added rt_cache statistics
54  *	Arnaldo C. Melo		:	Convert proc stuff to seq_file
55  *	Eric Dumazet		:	hashed spinlocks and rt_check_expire() fixes.
56  * 	Ilia Sotnikov		:	Ignore TOS on PMTUD and Redirect
57  * 	Ilia Sotnikov		:	Removed TOS from hash calculations
58  *
59  *		This program is free software; you can redistribute it and/or
60  *		modify it under the terms of the GNU General Public License
61  *		as published by the Free Software Foundation; either version
62  *		2 of the License, or (at your option) any later version.
63  */
64 
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
94 #include <net/dst.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
97 #include <net/ip.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
102 #include <net/arp.h>
103 #include <net/tcp.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
108 #ifdef CONFIG_SYSCTL
109 #include <linux/sysctl.h>
110 #endif
111 
112 #define RT_FL_TOS(oldflp4) \
113     ((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114 
115 #define IP_MAX_MTU	0xFFF0
116 
117 #define RT_GC_TIMEOUT (300*HZ)
118 
119 static int ip_rt_max_size;
120 static int ip_rt_gc_timeout __read_mostly	= RT_GC_TIMEOUT;
121 static int ip_rt_gc_interval __read_mostly	= 60 * HZ;
122 static int ip_rt_gc_min_interval __read_mostly	= HZ / 2;
123 static int ip_rt_redirect_number __read_mostly	= 9;
124 static int ip_rt_redirect_load __read_mostly	= HZ / 50;
125 static int ip_rt_redirect_silence __read_mostly	= ((HZ / 50) << (9 + 1));
126 static int ip_rt_error_cost __read_mostly	= HZ;
127 static int ip_rt_error_burst __read_mostly	= 5 * HZ;
128 static int ip_rt_gc_elasticity __read_mostly	= 8;
129 static int ip_rt_mtu_expires __read_mostly	= 10 * 60 * HZ;
130 static int ip_rt_min_pmtu __read_mostly		= 512 + 20 + 20;
131 static int ip_rt_min_advmss __read_mostly	= 256;
132 static int rt_chain_length_max __read_mostly	= 20;
133 
134 /*
135  *	Interface to generic destination cache.
136  */
137 
138 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
139 static unsigned int	 ipv4_default_advmss(const struct dst_entry *dst);
140 static unsigned int	 ipv4_default_mtu(const struct dst_entry *dst);
141 static void		 ipv4_dst_destroy(struct dst_entry *dst);
142 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
143 static void		 ipv4_link_failure(struct sk_buff *skb);
144 static void		 ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
145 static int rt_garbage_collect(struct dst_ops *ops);
146 
ipv4_dst_ifdown(struct dst_entry * dst,struct net_device * dev,int how)147 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
148 			    int how)
149 {
150 }
151 
ipv4_cow_metrics(struct dst_entry * dst,unsigned long old)152 static u32 *ipv4_cow_metrics(struct dst_entry *dst, unsigned long old)
153 {
154 	struct rtable *rt = (struct rtable *) dst;
155 	struct inet_peer *peer;
156 	u32 *p = NULL;
157 
158 	if (!rt->peer)
159 		rt_bind_peer(rt, 1);
160 
161 	peer = rt->peer;
162 	if (peer) {
163 		u32 *old_p = __DST_METRICS_PTR(old);
164 		unsigned long prev, new;
165 
166 		p = peer->metrics;
167 		if (inet_metrics_new(peer))
168 			memcpy(p, old_p, sizeof(u32) * RTAX_MAX);
169 
170 		new = (unsigned long) p;
171 		prev = cmpxchg(&dst->_metrics, old, new);
172 
173 		if (prev != old) {
174 			p = __DST_METRICS_PTR(prev);
175 			if (prev & DST_METRICS_READ_ONLY)
176 				p = NULL;
177 		} else {
178 			if (rt->fi) {
179 				fib_info_put(rt->fi);
180 				rt->fi = NULL;
181 			}
182 		}
183 	}
184 	return p;
185 }
186 
187 static struct dst_ops ipv4_dst_ops = {
188 	.family =		AF_INET,
189 	.protocol =		cpu_to_be16(ETH_P_IP),
190 	.gc =			rt_garbage_collect,
191 	.check =		ipv4_dst_check,
192 	.default_advmss =	ipv4_default_advmss,
193 	.default_mtu =		ipv4_default_mtu,
194 	.cow_metrics =		ipv4_cow_metrics,
195 	.destroy =		ipv4_dst_destroy,
196 	.ifdown =		ipv4_dst_ifdown,
197 	.negative_advice =	ipv4_negative_advice,
198 	.link_failure =		ipv4_link_failure,
199 	.update_pmtu =		ip_rt_update_pmtu,
200 	.local_out =		__ip_local_out,
201 };
202 
203 #define ECN_OR_COST(class)	TC_PRIO_##class
204 
205 const __u8 ip_tos2prio[16] = {
206 	TC_PRIO_BESTEFFORT,
207 	ECN_OR_COST(BESTEFFORT),
208 	TC_PRIO_BESTEFFORT,
209 	ECN_OR_COST(BESTEFFORT),
210 	TC_PRIO_BULK,
211 	ECN_OR_COST(BULK),
212 	TC_PRIO_BULK,
213 	ECN_OR_COST(BULK),
214 	TC_PRIO_INTERACTIVE,
215 	ECN_OR_COST(INTERACTIVE),
216 	TC_PRIO_INTERACTIVE,
217 	ECN_OR_COST(INTERACTIVE),
218 	TC_PRIO_INTERACTIVE_BULK,
219 	ECN_OR_COST(INTERACTIVE_BULK),
220 	TC_PRIO_INTERACTIVE_BULK,
221 	ECN_OR_COST(INTERACTIVE_BULK)
222 };
223 
224 
225 /*
226  * Route cache.
227  */
228 
229 /* The locking scheme is rather straight forward:
230  *
231  * 1) Read-Copy Update protects the buckets of the central route hash.
232  * 2) Only writers remove entries, and they hold the lock
233  *    as they look at rtable reference counts.
234  * 3) Only readers acquire references to rtable entries,
235  *    they do so with atomic increments and with the
236  *    lock held.
237  */
238 
239 struct rt_hash_bucket {
240 	struct rtable __rcu	*chain;
241 };
242 
243 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
244 	defined(CONFIG_PROVE_LOCKING)
245 /*
246  * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
247  * The size of this table is a power of two and depends on the number of CPUS.
248  * (on lockdep we have a quite big spinlock_t, so keep the size down there)
249  */
250 #ifdef CONFIG_LOCKDEP
251 # define RT_HASH_LOCK_SZ	256
252 #else
253 # if NR_CPUS >= 32
254 #  define RT_HASH_LOCK_SZ	4096
255 # elif NR_CPUS >= 16
256 #  define RT_HASH_LOCK_SZ	2048
257 # elif NR_CPUS >= 8
258 #  define RT_HASH_LOCK_SZ	1024
259 # elif NR_CPUS >= 4
260 #  define RT_HASH_LOCK_SZ	512
261 # else
262 #  define RT_HASH_LOCK_SZ	256
263 # endif
264 #endif
265 
266 static spinlock_t	*rt_hash_locks;
267 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
268 
rt_hash_lock_init(void)269 static __init void rt_hash_lock_init(void)
270 {
271 	int i;
272 
273 	rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
274 			GFP_KERNEL);
275 	if (!rt_hash_locks)
276 		panic("IP: failed to allocate rt_hash_locks\n");
277 
278 	for (i = 0; i < RT_HASH_LOCK_SZ; i++)
279 		spin_lock_init(&rt_hash_locks[i]);
280 }
281 #else
282 # define rt_hash_lock_addr(slot) NULL
283 
rt_hash_lock_init(void)284 static inline void rt_hash_lock_init(void)
285 {
286 }
287 #endif
288 
289 static struct rt_hash_bucket 	*rt_hash_table __read_mostly;
290 static unsigned			rt_hash_mask __read_mostly;
291 static unsigned int		rt_hash_log  __read_mostly;
292 
293 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
294 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
295 
rt_hash(__be32 daddr,__be32 saddr,int idx,int genid)296 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
297 				   int genid)
298 {
299 	return jhash_3words((__force u32)daddr, (__force u32)saddr,
300 			    idx, genid)
301 		& rt_hash_mask;
302 }
303 
rt_genid(struct net * net)304 static inline int rt_genid(struct net *net)
305 {
306 	return atomic_read(&net->ipv4.rt_genid);
307 }
308 
309 #ifdef CONFIG_PROC_FS
310 struct rt_cache_iter_state {
311 	struct seq_net_private p;
312 	int bucket;
313 	int genid;
314 };
315 
rt_cache_get_first(struct seq_file * seq)316 static struct rtable *rt_cache_get_first(struct seq_file *seq)
317 {
318 	struct rt_cache_iter_state *st = seq->private;
319 	struct rtable *r = NULL;
320 
321 	for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
322 		if (!rcu_dereference_raw(rt_hash_table[st->bucket].chain))
323 			continue;
324 		rcu_read_lock_bh();
325 		r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
326 		while (r) {
327 			if (dev_net(r->dst.dev) == seq_file_net(seq) &&
328 			    r->rt_genid == st->genid)
329 				return r;
330 			r = rcu_dereference_bh(r->dst.rt_next);
331 		}
332 		rcu_read_unlock_bh();
333 	}
334 	return r;
335 }
336 
__rt_cache_get_next(struct seq_file * seq,struct rtable * r)337 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
338 					  struct rtable *r)
339 {
340 	struct rt_cache_iter_state *st = seq->private;
341 
342 	r = rcu_dereference_bh(r->dst.rt_next);
343 	while (!r) {
344 		rcu_read_unlock_bh();
345 		do {
346 			if (--st->bucket < 0)
347 				return NULL;
348 		} while (!rcu_dereference_raw(rt_hash_table[st->bucket].chain));
349 		rcu_read_lock_bh();
350 		r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
351 	}
352 	return r;
353 }
354 
rt_cache_get_next(struct seq_file * seq,struct rtable * r)355 static struct rtable *rt_cache_get_next(struct seq_file *seq,
356 					struct rtable *r)
357 {
358 	struct rt_cache_iter_state *st = seq->private;
359 	while ((r = __rt_cache_get_next(seq, r)) != NULL) {
360 		if (dev_net(r->dst.dev) != seq_file_net(seq))
361 			continue;
362 		if (r->rt_genid == st->genid)
363 			break;
364 	}
365 	return r;
366 }
367 
rt_cache_get_idx(struct seq_file * seq,loff_t pos)368 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
369 {
370 	struct rtable *r = rt_cache_get_first(seq);
371 
372 	if (r)
373 		while (pos && (r = rt_cache_get_next(seq, r)))
374 			--pos;
375 	return pos ? NULL : r;
376 }
377 
rt_cache_seq_start(struct seq_file * seq,loff_t * pos)378 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
379 {
380 	struct rt_cache_iter_state *st = seq->private;
381 	if (*pos)
382 		return rt_cache_get_idx(seq, *pos - 1);
383 	st->genid = rt_genid(seq_file_net(seq));
384 	return SEQ_START_TOKEN;
385 }
386 
rt_cache_seq_next(struct seq_file * seq,void * v,loff_t * pos)387 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
388 {
389 	struct rtable *r;
390 
391 	if (v == SEQ_START_TOKEN)
392 		r = rt_cache_get_first(seq);
393 	else
394 		r = rt_cache_get_next(seq, v);
395 	++*pos;
396 	return r;
397 }
398 
rt_cache_seq_stop(struct seq_file * seq,void * v)399 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
400 {
401 	if (v && v != SEQ_START_TOKEN)
402 		rcu_read_unlock_bh();
403 }
404 
rt_cache_seq_show(struct seq_file * seq,void * v)405 static int rt_cache_seq_show(struct seq_file *seq, void *v)
406 {
407 	if (v == SEQ_START_TOKEN)
408 		seq_printf(seq, "%-127s\n",
409 			   "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
410 			   "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
411 			   "HHUptod\tSpecDst");
412 	else {
413 		struct rtable *r = v;
414 		int len;
415 
416 		seq_printf(seq, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
417 			      "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
418 			r->dst.dev ? r->dst.dev->name : "*",
419 			(__force u32)r->rt_dst,
420 			(__force u32)r->rt_gateway,
421 			r->rt_flags, atomic_read(&r->dst.__refcnt),
422 			r->dst.__use, 0, (__force u32)r->rt_src,
423 			dst_metric_advmss(&r->dst) + 40,
424 			dst_metric(&r->dst, RTAX_WINDOW),
425 			(int)((dst_metric(&r->dst, RTAX_RTT) >> 3) +
426 			      dst_metric(&r->dst, RTAX_RTTVAR)),
427 			r->rt_tos,
428 			r->dst.hh ? atomic_read(&r->dst.hh->hh_refcnt) : -1,
429 			r->dst.hh ? (r->dst.hh->hh_output ==
430 				       dev_queue_xmit) : 0,
431 			r->rt_spec_dst, &len);
432 
433 		seq_printf(seq, "%*s\n", 127 - len, "");
434 	}
435 	return 0;
436 }
437 
438 static const struct seq_operations rt_cache_seq_ops = {
439 	.start  = rt_cache_seq_start,
440 	.next   = rt_cache_seq_next,
441 	.stop   = rt_cache_seq_stop,
442 	.show   = rt_cache_seq_show,
443 };
444 
rt_cache_seq_open(struct inode * inode,struct file * file)445 static int rt_cache_seq_open(struct inode *inode, struct file *file)
446 {
447 	return seq_open_net(inode, file, &rt_cache_seq_ops,
448 			sizeof(struct rt_cache_iter_state));
449 }
450 
451 static const struct file_operations rt_cache_seq_fops = {
452 	.owner	 = THIS_MODULE,
453 	.open	 = rt_cache_seq_open,
454 	.read	 = seq_read,
455 	.llseek	 = seq_lseek,
456 	.release = seq_release_net,
457 };
458 
459 
rt_cpu_seq_start(struct seq_file * seq,loff_t * pos)460 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
461 {
462 	int cpu;
463 
464 	if (*pos == 0)
465 		return SEQ_START_TOKEN;
466 
467 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
468 		if (!cpu_possible(cpu))
469 			continue;
470 		*pos = cpu+1;
471 		return &per_cpu(rt_cache_stat, cpu);
472 	}
473 	return NULL;
474 }
475 
rt_cpu_seq_next(struct seq_file * seq,void * v,loff_t * pos)476 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
477 {
478 	int cpu;
479 
480 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
481 		if (!cpu_possible(cpu))
482 			continue;
483 		*pos = cpu+1;
484 		return &per_cpu(rt_cache_stat, cpu);
485 	}
486 	return NULL;
487 
488 }
489 
rt_cpu_seq_stop(struct seq_file * seq,void * v)490 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
491 {
492 
493 }
494 
rt_cpu_seq_show(struct seq_file * seq,void * v)495 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
496 {
497 	struct rt_cache_stat *st = v;
498 
499 	if (v == SEQ_START_TOKEN) {
500 		seq_printf(seq, "entries  in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src  out_hit out_slow_tot out_slow_mc  gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
501 		return 0;
502 	}
503 
504 	seq_printf(seq,"%08x  %08x %08x %08x %08x %08x %08x %08x "
505 		   " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
506 		   dst_entries_get_slow(&ipv4_dst_ops),
507 		   st->in_hit,
508 		   st->in_slow_tot,
509 		   st->in_slow_mc,
510 		   st->in_no_route,
511 		   st->in_brd,
512 		   st->in_martian_dst,
513 		   st->in_martian_src,
514 
515 		   st->out_hit,
516 		   st->out_slow_tot,
517 		   st->out_slow_mc,
518 
519 		   st->gc_total,
520 		   st->gc_ignored,
521 		   st->gc_goal_miss,
522 		   st->gc_dst_overflow,
523 		   st->in_hlist_search,
524 		   st->out_hlist_search
525 		);
526 	return 0;
527 }
528 
529 static const struct seq_operations rt_cpu_seq_ops = {
530 	.start  = rt_cpu_seq_start,
531 	.next   = rt_cpu_seq_next,
532 	.stop   = rt_cpu_seq_stop,
533 	.show   = rt_cpu_seq_show,
534 };
535 
536 
rt_cpu_seq_open(struct inode * inode,struct file * file)537 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
538 {
539 	return seq_open(file, &rt_cpu_seq_ops);
540 }
541 
542 static const struct file_operations rt_cpu_seq_fops = {
543 	.owner	 = THIS_MODULE,
544 	.open	 = rt_cpu_seq_open,
545 	.read	 = seq_read,
546 	.llseek	 = seq_lseek,
547 	.release = seq_release,
548 };
549 
550 #ifdef CONFIG_IP_ROUTE_CLASSID
rt_acct_proc_show(struct seq_file * m,void * v)551 static int rt_acct_proc_show(struct seq_file *m, void *v)
552 {
553 	struct ip_rt_acct *dst, *src;
554 	unsigned int i, j;
555 
556 	dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
557 	if (!dst)
558 		return -ENOMEM;
559 
560 	for_each_possible_cpu(i) {
561 		src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
562 		for (j = 0; j < 256; j++) {
563 			dst[j].o_bytes   += src[j].o_bytes;
564 			dst[j].o_packets += src[j].o_packets;
565 			dst[j].i_bytes   += src[j].i_bytes;
566 			dst[j].i_packets += src[j].i_packets;
567 		}
568 	}
569 
570 	seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
571 	kfree(dst);
572 	return 0;
573 }
574 
rt_acct_proc_open(struct inode * inode,struct file * file)575 static int rt_acct_proc_open(struct inode *inode, struct file *file)
576 {
577 	return single_open(file, rt_acct_proc_show, NULL);
578 }
579 
580 static const struct file_operations rt_acct_proc_fops = {
581 	.owner		= THIS_MODULE,
582 	.open		= rt_acct_proc_open,
583 	.read		= seq_read,
584 	.llseek		= seq_lseek,
585 	.release	= single_release,
586 };
587 #endif
588 
ip_rt_do_proc_init(struct net * net)589 static int __net_init ip_rt_do_proc_init(struct net *net)
590 {
591 	struct proc_dir_entry *pde;
592 
593 	pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
594 			&rt_cache_seq_fops);
595 	if (!pde)
596 		goto err1;
597 
598 	pde = proc_create("rt_cache", S_IRUGO,
599 			  net->proc_net_stat, &rt_cpu_seq_fops);
600 	if (!pde)
601 		goto err2;
602 
603 #ifdef CONFIG_IP_ROUTE_CLASSID
604 	pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
605 	if (!pde)
606 		goto err3;
607 #endif
608 	return 0;
609 
610 #ifdef CONFIG_IP_ROUTE_CLASSID
611 err3:
612 	remove_proc_entry("rt_cache", net->proc_net_stat);
613 #endif
614 err2:
615 	remove_proc_entry("rt_cache", net->proc_net);
616 err1:
617 	return -ENOMEM;
618 }
619 
ip_rt_do_proc_exit(struct net * net)620 static void __net_exit ip_rt_do_proc_exit(struct net *net)
621 {
622 	remove_proc_entry("rt_cache", net->proc_net_stat);
623 	remove_proc_entry("rt_cache", net->proc_net);
624 #ifdef CONFIG_IP_ROUTE_CLASSID
625 	remove_proc_entry("rt_acct", net->proc_net);
626 #endif
627 }
628 
629 static struct pernet_operations ip_rt_proc_ops __net_initdata =  {
630 	.init = ip_rt_do_proc_init,
631 	.exit = ip_rt_do_proc_exit,
632 };
633 
ip_rt_proc_init(void)634 static int __init ip_rt_proc_init(void)
635 {
636 	return register_pernet_subsys(&ip_rt_proc_ops);
637 }
638 
639 #else
ip_rt_proc_init(void)640 static inline int ip_rt_proc_init(void)
641 {
642 	return 0;
643 }
644 #endif /* CONFIG_PROC_FS */
645 
rt_free(struct rtable * rt)646 static inline void rt_free(struct rtable *rt)
647 {
648 	call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
649 }
650 
rt_drop(struct rtable * rt)651 static inline void rt_drop(struct rtable *rt)
652 {
653 	ip_rt_put(rt);
654 	call_rcu_bh(&rt->dst.rcu_head, dst_rcu_free);
655 }
656 
rt_fast_clean(struct rtable * rth)657 static inline int rt_fast_clean(struct rtable *rth)
658 {
659 	/* Kill broadcast/multicast entries very aggresively, if they
660 	   collide in hash table with more useful entries */
661 	return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
662 		rt_is_input_route(rth) && rth->dst.rt_next;
663 }
664 
rt_valuable(struct rtable * rth)665 static inline int rt_valuable(struct rtable *rth)
666 {
667 	return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
668 		(rth->peer && rth->peer->pmtu_expires);
669 }
670 
rt_may_expire(struct rtable * rth,unsigned long tmo1,unsigned long tmo2)671 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
672 {
673 	unsigned long age;
674 	int ret = 0;
675 
676 	if (atomic_read(&rth->dst.__refcnt))
677 		goto out;
678 
679 	age = jiffies - rth->dst.lastuse;
680 	if ((age <= tmo1 && !rt_fast_clean(rth)) ||
681 	    (age <= tmo2 && rt_valuable(rth)))
682 		goto out;
683 	ret = 1;
684 out:	return ret;
685 }
686 
687 /* Bits of score are:
688  * 31: very valuable
689  * 30: not quite useless
690  * 29..0: usage counter
691  */
rt_score(struct rtable * rt)692 static inline u32 rt_score(struct rtable *rt)
693 {
694 	u32 score = jiffies - rt->dst.lastuse;
695 
696 	score = ~score & ~(3<<30);
697 
698 	if (rt_valuable(rt))
699 		score |= (1<<31);
700 
701 	if (rt_is_output_route(rt) ||
702 	    !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
703 		score |= (1<<30);
704 
705 	return score;
706 }
707 
rt_caching(const struct net * net)708 static inline bool rt_caching(const struct net *net)
709 {
710 	return net->ipv4.current_rt_cache_rebuild_count <=
711 		net->ipv4.sysctl_rt_cache_rebuild_count;
712 }
713 
compare_hash_inputs(const struct rtable * rt1,const struct rtable * rt2)714 static inline bool compare_hash_inputs(const struct rtable *rt1,
715 				       const struct rtable *rt2)
716 {
717 	return ((((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
718 		((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
719 		(rt1->rt_iif ^ rt2->rt_iif)) == 0);
720 }
721 
compare_keys(struct rtable * rt1,struct rtable * rt2)722 static inline int compare_keys(struct rtable *rt1, struct rtable *rt2)
723 {
724 	return (((__force u32)rt1->rt_key_dst ^ (__force u32)rt2->rt_key_dst) |
725 		((__force u32)rt1->rt_key_src ^ (__force u32)rt2->rt_key_src) |
726 		(rt1->rt_mark ^ rt2->rt_mark) |
727 		(rt1->rt_tos ^ rt2->rt_tos) |
728 		(rt1->rt_oif ^ rt2->rt_oif) |
729 		(rt1->rt_iif ^ rt2->rt_iif)) == 0;
730 }
731 
compare_netns(struct rtable * rt1,struct rtable * rt2)732 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
733 {
734 	return net_eq(dev_net(rt1->dst.dev), dev_net(rt2->dst.dev));
735 }
736 
rt_is_expired(struct rtable * rth)737 static inline int rt_is_expired(struct rtable *rth)
738 {
739 	return rth->rt_genid != rt_genid(dev_net(rth->dst.dev));
740 }
741 
742 /*
743  * Perform a full scan of hash table and free all entries.
744  * Can be called by a softirq or a process.
745  * In the later case, we want to be reschedule if necessary
746  */
rt_do_flush(struct net * net,int process_context)747 static void rt_do_flush(struct net *net, int process_context)
748 {
749 	unsigned int i;
750 	struct rtable *rth, *next;
751 
752 	for (i = 0; i <= rt_hash_mask; i++) {
753 		struct rtable __rcu **pprev;
754 		struct rtable *list;
755 
756 		if (process_context && need_resched())
757 			cond_resched();
758 		rth = rcu_dereference_raw(rt_hash_table[i].chain);
759 		if (!rth)
760 			continue;
761 
762 		spin_lock_bh(rt_hash_lock_addr(i));
763 
764 		list = NULL;
765 		pprev = &rt_hash_table[i].chain;
766 		rth = rcu_dereference_protected(*pprev,
767 			lockdep_is_held(rt_hash_lock_addr(i)));
768 
769 		while (rth) {
770 			next = rcu_dereference_protected(rth->dst.rt_next,
771 				lockdep_is_held(rt_hash_lock_addr(i)));
772 
773 			if (!net ||
774 			    net_eq(dev_net(rth->dst.dev), net)) {
775 				rcu_assign_pointer(*pprev, next);
776 				rcu_assign_pointer(rth->dst.rt_next, list);
777 				list = rth;
778 			} else {
779 				pprev = &rth->dst.rt_next;
780 			}
781 			rth = next;
782 		}
783 
784 		spin_unlock_bh(rt_hash_lock_addr(i));
785 
786 		for (; list; list = next) {
787 			next = rcu_dereference_protected(list->dst.rt_next, 1);
788 			rt_free(list);
789 		}
790 	}
791 }
792 
793 /*
794  * While freeing expired entries, we compute average chain length
795  * and standard deviation, using fixed-point arithmetic.
796  * This to have an estimation of rt_chain_length_max
797  *  rt_chain_length_max = max(elasticity, AVG + 4*SD)
798  * We use 3 bits for frational part, and 29 (or 61) for magnitude.
799  */
800 
801 #define FRACT_BITS 3
802 #define ONE (1UL << FRACT_BITS)
803 
804 /*
805  * Given a hash chain and an item in this hash chain,
806  * find if a previous entry has the same hash_inputs
807  * (but differs on tos, mark or oif)
808  * Returns 0 if an alias is found.
809  * Returns ONE if rth has no alias before itself.
810  */
has_noalias(const struct rtable * head,const struct rtable * rth)811 static int has_noalias(const struct rtable *head, const struct rtable *rth)
812 {
813 	const struct rtable *aux = head;
814 
815 	while (aux != rth) {
816 		if (compare_hash_inputs(aux, rth))
817 			return 0;
818 		aux = rcu_dereference_protected(aux->dst.rt_next, 1);
819 	}
820 	return ONE;
821 }
822 
823 /*
824  * Perturbation of rt_genid by a small quantity [1..256]
825  * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
826  * many times (2^24) without giving recent rt_genid.
827  * Jenkins hash is strong enough that litle changes of rt_genid are OK.
828  */
rt_cache_invalidate(struct net * net)829 static void rt_cache_invalidate(struct net *net)
830 {
831 	unsigned char shuffle;
832 
833 	get_random_bytes(&shuffle, sizeof(shuffle));
834 	atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
835 }
836 
837 /*
838  * delay < 0  : invalidate cache (fast : entries will be deleted later)
839  * delay >= 0 : invalidate & flush cache (can be long)
840  */
rt_cache_flush(struct net * net,int delay)841 void rt_cache_flush(struct net *net, int delay)
842 {
843 	rt_cache_invalidate(net);
844 	if (delay >= 0)
845 		rt_do_flush(net, !in_softirq());
846 }
847 
848 /* Flush previous cache invalidated entries from the cache */
rt_cache_flush_batch(struct net * net)849 void rt_cache_flush_batch(struct net *net)
850 {
851 	rt_do_flush(net, !in_softirq());
852 }
853 
rt_emergency_hash_rebuild(struct net * net)854 static void rt_emergency_hash_rebuild(struct net *net)
855 {
856 	if (net_ratelimit())
857 		printk(KERN_WARNING "Route hash chain too long!\n");
858 	rt_cache_invalidate(net);
859 }
860 
861 /*
862    Short description of GC goals.
863 
864    We want to build algorithm, which will keep routing cache
865    at some equilibrium point, when number of aged off entries
866    is kept approximately equal to newly generated ones.
867 
868    Current expiration strength is variable "expire".
869    We try to adjust it dynamically, so that if networking
870    is idle expires is large enough to keep enough of warm entries,
871    and when load increases it reduces to limit cache size.
872  */
873 
rt_garbage_collect(struct dst_ops * ops)874 static int rt_garbage_collect(struct dst_ops *ops)
875 {
876 	static unsigned long expire = RT_GC_TIMEOUT;
877 	static unsigned long last_gc;
878 	static int rover;
879 	static int equilibrium;
880 	struct rtable *rth;
881 	struct rtable __rcu **rthp;
882 	unsigned long now = jiffies;
883 	int goal;
884 	int entries = dst_entries_get_fast(&ipv4_dst_ops);
885 
886 	/*
887 	 * Garbage collection is pretty expensive,
888 	 * do not make it too frequently.
889 	 */
890 
891 	RT_CACHE_STAT_INC(gc_total);
892 
893 	if (now - last_gc < ip_rt_gc_min_interval &&
894 	    entries < ip_rt_max_size) {
895 		RT_CACHE_STAT_INC(gc_ignored);
896 		goto out;
897 	}
898 
899 	entries = dst_entries_get_slow(&ipv4_dst_ops);
900 	/* Calculate number of entries, which we want to expire now. */
901 	goal = entries - (ip_rt_gc_elasticity << rt_hash_log);
902 	if (goal <= 0) {
903 		if (equilibrium < ipv4_dst_ops.gc_thresh)
904 			equilibrium = ipv4_dst_ops.gc_thresh;
905 		goal = entries - equilibrium;
906 		if (goal > 0) {
907 			equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
908 			goal = entries - equilibrium;
909 		}
910 	} else {
911 		/* We are in dangerous area. Try to reduce cache really
912 		 * aggressively.
913 		 */
914 		goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
915 		equilibrium = entries - goal;
916 	}
917 
918 	if (now - last_gc >= ip_rt_gc_min_interval)
919 		last_gc = now;
920 
921 	if (goal <= 0) {
922 		equilibrium += goal;
923 		goto work_done;
924 	}
925 
926 	do {
927 		int i, k;
928 
929 		for (i = rt_hash_mask, k = rover; i >= 0; i--) {
930 			unsigned long tmo = expire;
931 
932 			k = (k + 1) & rt_hash_mask;
933 			rthp = &rt_hash_table[k].chain;
934 			spin_lock_bh(rt_hash_lock_addr(k));
935 			while ((rth = rcu_dereference_protected(*rthp,
936 					lockdep_is_held(rt_hash_lock_addr(k)))) != NULL) {
937 				if (!rt_is_expired(rth) &&
938 					!rt_may_expire(rth, tmo, expire)) {
939 					tmo >>= 1;
940 					rthp = &rth->dst.rt_next;
941 					continue;
942 				}
943 				*rthp = rth->dst.rt_next;
944 				rt_free(rth);
945 				goal--;
946 			}
947 			spin_unlock_bh(rt_hash_lock_addr(k));
948 			if (goal <= 0)
949 				break;
950 		}
951 		rover = k;
952 
953 		if (goal <= 0)
954 			goto work_done;
955 
956 		/* Goal is not achieved. We stop process if:
957 
958 		   - if expire reduced to zero. Otherwise, expire is halfed.
959 		   - if table is not full.
960 		   - if we are called from interrupt.
961 		   - jiffies check is just fallback/debug loop breaker.
962 		     We will not spin here for long time in any case.
963 		 */
964 
965 		RT_CACHE_STAT_INC(gc_goal_miss);
966 
967 		if (expire == 0)
968 			break;
969 
970 		expire >>= 1;
971 #if RT_CACHE_DEBUG >= 2
972 		printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
973 				dst_entries_get_fast(&ipv4_dst_ops), goal, i);
974 #endif
975 
976 		if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
977 			goto out;
978 	} while (!in_softirq() && time_before_eq(jiffies, now));
979 
980 	if (dst_entries_get_fast(&ipv4_dst_ops) < ip_rt_max_size)
981 		goto out;
982 	if (dst_entries_get_slow(&ipv4_dst_ops) < ip_rt_max_size)
983 		goto out;
984 	if (net_ratelimit())
985 		printk(KERN_WARNING "dst cache overflow\n");
986 	RT_CACHE_STAT_INC(gc_dst_overflow);
987 	return 1;
988 
989 work_done:
990 	expire += ip_rt_gc_min_interval;
991 	if (expire > ip_rt_gc_timeout ||
992 	    dst_entries_get_fast(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh ||
993 	    dst_entries_get_slow(&ipv4_dst_ops) < ipv4_dst_ops.gc_thresh)
994 		expire = ip_rt_gc_timeout;
995 #if RT_CACHE_DEBUG >= 2
996 	printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
997 			dst_entries_get_fast(&ipv4_dst_ops), goal, rover);
998 #endif
999 out:	return 0;
1000 }
1001 
1002 /*
1003  * Returns number of entries in a hash chain that have different hash_inputs
1004  */
slow_chain_length(const struct rtable * head)1005 static int slow_chain_length(const struct rtable *head)
1006 {
1007 	int length = 0;
1008 	const struct rtable *rth = head;
1009 
1010 	while (rth) {
1011 		length += has_noalias(head, rth);
1012 		rth = rcu_dereference_protected(rth->dst.rt_next, 1);
1013 	}
1014 	return length >> FRACT_BITS;
1015 }
1016 
rt_intern_hash(unsigned hash,struct rtable * rt,struct sk_buff * skb,int ifindex)1017 static struct rtable *rt_intern_hash(unsigned hash, struct rtable *rt,
1018 				     struct sk_buff *skb, int ifindex)
1019 {
1020 	struct rtable	*rth, *cand;
1021 	struct rtable __rcu **rthp, **candp;
1022 	unsigned long	now;
1023 	u32 		min_score;
1024 	int		chain_length;
1025 	int attempts = !in_softirq();
1026 
1027 restart:
1028 	chain_length = 0;
1029 	min_score = ~(u32)0;
1030 	cand = NULL;
1031 	candp = NULL;
1032 	now = jiffies;
1033 
1034 	if (!rt_caching(dev_net(rt->dst.dev))) {
1035 		/*
1036 		 * If we're not caching, just tell the caller we
1037 		 * were successful and don't touch the route.  The
1038 		 * caller hold the sole reference to the cache entry, and
1039 		 * it will be released when the caller is done with it.
1040 		 * If we drop it here, the callers have no way to resolve routes
1041 		 * when we're not caching.  Instead, just point *rp at rt, so
1042 		 * the caller gets a single use out of the route
1043 		 * Note that we do rt_free on this new route entry, so that
1044 		 * once its refcount hits zero, we are still able to reap it
1045 		 * (Thanks Alexey)
1046 		 * Note: To avoid expensive rcu stuff for this uncached dst,
1047 		 * we set DST_NOCACHE so that dst_release() can free dst without
1048 		 * waiting a grace period.
1049 		 */
1050 
1051 		rt->dst.flags |= DST_NOCACHE;
1052 		if (rt->rt_type == RTN_UNICAST || rt_is_output_route(rt)) {
1053 			int err = arp_bind_neighbour(&rt->dst);
1054 			if (err) {
1055 				if (net_ratelimit())
1056 					printk(KERN_WARNING
1057 					    "Neighbour table failure & not caching routes.\n");
1058 				ip_rt_put(rt);
1059 				return ERR_PTR(err);
1060 			}
1061 		}
1062 
1063 		goto skip_hashing;
1064 	}
1065 
1066 	rthp = &rt_hash_table[hash].chain;
1067 
1068 	spin_lock_bh(rt_hash_lock_addr(hash));
1069 	while ((rth = rcu_dereference_protected(*rthp,
1070 			lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1071 		if (rt_is_expired(rth)) {
1072 			*rthp = rth->dst.rt_next;
1073 			rt_free(rth);
1074 			continue;
1075 		}
1076 		if (compare_keys(rth, rt) && compare_netns(rth, rt)) {
1077 			/* Put it first */
1078 			*rthp = rth->dst.rt_next;
1079 			/*
1080 			 * Since lookup is lockfree, the deletion
1081 			 * must be visible to another weakly ordered CPU before
1082 			 * the insertion at the start of the hash chain.
1083 			 */
1084 			rcu_assign_pointer(rth->dst.rt_next,
1085 					   rt_hash_table[hash].chain);
1086 			/*
1087 			 * Since lookup is lockfree, the update writes
1088 			 * must be ordered for consistency on SMP.
1089 			 */
1090 			rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1091 
1092 			dst_use(&rth->dst, now);
1093 			spin_unlock_bh(rt_hash_lock_addr(hash));
1094 
1095 			rt_drop(rt);
1096 			if (skb)
1097 				skb_dst_set(skb, &rth->dst);
1098 			return rth;
1099 		}
1100 
1101 		if (!atomic_read(&rth->dst.__refcnt)) {
1102 			u32 score = rt_score(rth);
1103 
1104 			if (score <= min_score) {
1105 				cand = rth;
1106 				candp = rthp;
1107 				min_score = score;
1108 			}
1109 		}
1110 
1111 		chain_length++;
1112 
1113 		rthp = &rth->dst.rt_next;
1114 	}
1115 
1116 	if (cand) {
1117 		/* ip_rt_gc_elasticity used to be average length of chain
1118 		 * length, when exceeded gc becomes really aggressive.
1119 		 *
1120 		 * The second limit is less certain. At the moment it allows
1121 		 * only 2 entries per bucket. We will see.
1122 		 */
1123 		if (chain_length > ip_rt_gc_elasticity) {
1124 			*candp = cand->dst.rt_next;
1125 			rt_free(cand);
1126 		}
1127 	} else {
1128 		if (chain_length > rt_chain_length_max &&
1129 		    slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1130 			struct net *net = dev_net(rt->dst.dev);
1131 			int num = ++net->ipv4.current_rt_cache_rebuild_count;
1132 			if (!rt_caching(net)) {
1133 				printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1134 					rt->dst.dev->name, num);
1135 			}
1136 			rt_emergency_hash_rebuild(net);
1137 			spin_unlock_bh(rt_hash_lock_addr(hash));
1138 
1139 			hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1140 					ifindex, rt_genid(net));
1141 			goto restart;
1142 		}
1143 	}
1144 
1145 	/* Try to bind route to arp only if it is output
1146 	   route or unicast forwarding path.
1147 	 */
1148 	if (rt->rt_type == RTN_UNICAST || rt_is_output_route(rt)) {
1149 		int err = arp_bind_neighbour(&rt->dst);
1150 		if (err) {
1151 			spin_unlock_bh(rt_hash_lock_addr(hash));
1152 
1153 			if (err != -ENOBUFS) {
1154 				rt_drop(rt);
1155 				return ERR_PTR(err);
1156 			}
1157 
1158 			/* Neighbour tables are full and nothing
1159 			   can be released. Try to shrink route cache,
1160 			   it is most likely it holds some neighbour records.
1161 			 */
1162 			if (attempts-- > 0) {
1163 				int saved_elasticity = ip_rt_gc_elasticity;
1164 				int saved_int = ip_rt_gc_min_interval;
1165 				ip_rt_gc_elasticity	= 1;
1166 				ip_rt_gc_min_interval	= 0;
1167 				rt_garbage_collect(&ipv4_dst_ops);
1168 				ip_rt_gc_min_interval	= saved_int;
1169 				ip_rt_gc_elasticity	= saved_elasticity;
1170 				goto restart;
1171 			}
1172 
1173 			if (net_ratelimit())
1174 				printk(KERN_WARNING "ipv4: Neighbour table overflow.\n");
1175 			rt_drop(rt);
1176 			return ERR_PTR(-ENOBUFS);
1177 		}
1178 	}
1179 
1180 	rt->dst.rt_next = rt_hash_table[hash].chain;
1181 
1182 #if RT_CACHE_DEBUG >= 2
1183 	if (rt->dst.rt_next) {
1184 		struct rtable *trt;
1185 		printk(KERN_DEBUG "rt_cache @%02x: %pI4",
1186 		       hash, &rt->rt_dst);
1187 		for (trt = rt->dst.rt_next; trt; trt = trt->dst.rt_next)
1188 			printk(" . %pI4", &trt->rt_dst);
1189 		printk("\n");
1190 	}
1191 #endif
1192 	/*
1193 	 * Since lookup is lockfree, we must make sure
1194 	 * previous writes to rt are committed to memory
1195 	 * before making rt visible to other CPUS.
1196 	 */
1197 	rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1198 
1199 	spin_unlock_bh(rt_hash_lock_addr(hash));
1200 
1201 skip_hashing:
1202 	if (skb)
1203 		skb_dst_set(skb, &rt->dst);
1204 	return rt;
1205 }
1206 
1207 static atomic_t __rt_peer_genid = ATOMIC_INIT(0);
1208 
rt_peer_genid(void)1209 static u32 rt_peer_genid(void)
1210 {
1211 	return atomic_read(&__rt_peer_genid);
1212 }
1213 
rt_bind_peer(struct rtable * rt,int create)1214 void rt_bind_peer(struct rtable *rt, int create)
1215 {
1216 	struct inet_peer *peer;
1217 
1218 	peer = inet_getpeer_v4(rt->rt_dst, create);
1219 
1220 	if (peer && cmpxchg(&rt->peer, NULL, peer) != NULL)
1221 		inet_putpeer(peer);
1222 	else
1223 		rt->rt_peer_genid = rt_peer_genid();
1224 }
1225 
1226 /*
1227  * Peer allocation may fail only in serious out-of-memory conditions.  However
1228  * we still can generate some output.
1229  * Random ID selection looks a bit dangerous because we have no chances to
1230  * select ID being unique in a reasonable period of time.
1231  * But broken packet identifier may be better than no packet at all.
1232  */
ip_select_fb_ident(struct iphdr * iph)1233 static void ip_select_fb_ident(struct iphdr *iph)
1234 {
1235 	static DEFINE_SPINLOCK(ip_fb_id_lock);
1236 	static u32 ip_fallback_id;
1237 	u32 salt;
1238 
1239 	spin_lock_bh(&ip_fb_id_lock);
1240 	salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1241 	iph->id = htons(salt & 0xFFFF);
1242 	ip_fallback_id = salt;
1243 	spin_unlock_bh(&ip_fb_id_lock);
1244 }
1245 
__ip_select_ident(struct iphdr * iph,struct dst_entry * dst,int more)1246 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1247 {
1248 	struct rtable *rt = (struct rtable *) dst;
1249 
1250 	if (rt) {
1251 		if (rt->peer == NULL)
1252 			rt_bind_peer(rt, 1);
1253 
1254 		/* If peer is attached to destination, it is never detached,
1255 		   so that we need not to grab a lock to dereference it.
1256 		 */
1257 		if (rt->peer) {
1258 			iph->id = htons(inet_getid(rt->peer, more));
1259 			return;
1260 		}
1261 	} else
1262 		printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1263 		       __builtin_return_address(0));
1264 
1265 	ip_select_fb_ident(iph);
1266 }
1267 EXPORT_SYMBOL(__ip_select_ident);
1268 
rt_del(unsigned hash,struct rtable * rt)1269 static void rt_del(unsigned hash, struct rtable *rt)
1270 {
1271 	struct rtable __rcu **rthp;
1272 	struct rtable *aux;
1273 
1274 	rthp = &rt_hash_table[hash].chain;
1275 	spin_lock_bh(rt_hash_lock_addr(hash));
1276 	ip_rt_put(rt);
1277 	while ((aux = rcu_dereference_protected(*rthp,
1278 			lockdep_is_held(rt_hash_lock_addr(hash)))) != NULL) {
1279 		if (aux == rt || rt_is_expired(aux)) {
1280 			*rthp = aux->dst.rt_next;
1281 			rt_free(aux);
1282 			continue;
1283 		}
1284 		rthp = &aux->dst.rt_next;
1285 	}
1286 	spin_unlock_bh(rt_hash_lock_addr(hash));
1287 }
1288 
1289 /* called in rcu_read_lock() section */
ip_rt_redirect(__be32 old_gw,__be32 daddr,__be32 new_gw,__be32 saddr,struct net_device * dev)1290 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1291 		    __be32 saddr, struct net_device *dev)
1292 {
1293 	struct in_device *in_dev = __in_dev_get_rcu(dev);
1294 	struct inet_peer *peer;
1295 	struct net *net;
1296 
1297 	if (!in_dev)
1298 		return;
1299 
1300 	net = dev_net(dev);
1301 	if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1302 	    ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1303 	    ipv4_is_zeronet(new_gw))
1304 		goto reject_redirect;
1305 
1306 	if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1307 		if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1308 			goto reject_redirect;
1309 		if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1310 			goto reject_redirect;
1311 	} else {
1312 		if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1313 			goto reject_redirect;
1314 	}
1315 
1316 	peer = inet_getpeer_v4(daddr, 1);
1317 	if (peer) {
1318 		peer->redirect_learned.a4 = new_gw;
1319 
1320 		inet_putpeer(peer);
1321 
1322 		atomic_inc(&__rt_peer_genid);
1323 	}
1324 	return;
1325 
1326 reject_redirect:
1327 #ifdef CONFIG_IP_ROUTE_VERBOSE
1328 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1329 		printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1330 			"  Advised path = %pI4 -> %pI4\n",
1331 		       &old_gw, dev->name, &new_gw,
1332 		       &saddr, &daddr);
1333 #endif
1334 	;
1335 }
1336 
ipv4_negative_advice(struct dst_entry * dst)1337 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1338 {
1339 	struct rtable *rt = (struct rtable *)dst;
1340 	struct dst_entry *ret = dst;
1341 
1342 	if (rt) {
1343 		if (dst->obsolete > 0) {
1344 			ip_rt_put(rt);
1345 			ret = NULL;
1346 		} else if (rt->rt_flags & RTCF_REDIRECTED) {
1347 			unsigned hash = rt_hash(rt->rt_key_dst, rt->rt_key_src,
1348 						rt->rt_oif,
1349 						rt_genid(dev_net(dst->dev)));
1350 #if RT_CACHE_DEBUG >= 1
1351 			printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1352 				&rt->rt_dst, rt->rt_tos);
1353 #endif
1354 			rt_del(hash, rt);
1355 			ret = NULL;
1356 		} else if (rt->peer &&
1357 			   rt->peer->pmtu_expires &&
1358 			   time_after_eq(jiffies, rt->peer->pmtu_expires)) {
1359 			unsigned long orig = rt->peer->pmtu_expires;
1360 
1361 			if (cmpxchg(&rt->peer->pmtu_expires, orig, 0) == orig)
1362 				dst_metric_set(dst, RTAX_MTU,
1363 					       rt->peer->pmtu_orig);
1364 		}
1365 	}
1366 	return ret;
1367 }
1368 
1369 /*
1370  * Algorithm:
1371  *	1. The first ip_rt_redirect_number redirects are sent
1372  *	   with exponential backoff, then we stop sending them at all,
1373  *	   assuming that the host ignores our redirects.
1374  *	2. If we did not see packets requiring redirects
1375  *	   during ip_rt_redirect_silence, we assume that the host
1376  *	   forgot redirected route and start to send redirects again.
1377  *
1378  * This algorithm is much cheaper and more intelligent than dumb load limiting
1379  * in icmp.c.
1380  *
1381  * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1382  * and "frag. need" (breaks PMTU discovery) in icmp.c.
1383  */
1384 
ip_rt_send_redirect(struct sk_buff * skb)1385 void ip_rt_send_redirect(struct sk_buff *skb)
1386 {
1387 	struct rtable *rt = skb_rtable(skb);
1388 	struct in_device *in_dev;
1389 	struct inet_peer *peer;
1390 	int log_martians;
1391 
1392 	rcu_read_lock();
1393 	in_dev = __in_dev_get_rcu(rt->dst.dev);
1394 	if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1395 		rcu_read_unlock();
1396 		return;
1397 	}
1398 	log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1399 	rcu_read_unlock();
1400 
1401 	if (!rt->peer)
1402 		rt_bind_peer(rt, 1);
1403 	peer = rt->peer;
1404 	if (!peer) {
1405 		icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1406 		return;
1407 	}
1408 
1409 	/* No redirected packets during ip_rt_redirect_silence;
1410 	 * reset the algorithm.
1411 	 */
1412 	if (time_after(jiffies, peer->rate_last + ip_rt_redirect_silence))
1413 		peer->rate_tokens = 0;
1414 
1415 	/* Too many ignored redirects; do not send anything
1416 	 * set dst.rate_last to the last seen redirected packet.
1417 	 */
1418 	if (peer->rate_tokens >= ip_rt_redirect_number) {
1419 		peer->rate_last = jiffies;
1420 		return;
1421 	}
1422 
1423 	/* Check for load limit; set rate_last to the latest sent
1424 	 * redirect.
1425 	 */
1426 	if (peer->rate_tokens == 0 ||
1427 	    time_after(jiffies,
1428 		       (peer->rate_last +
1429 			(ip_rt_redirect_load << peer->rate_tokens)))) {
1430 		icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1431 		peer->rate_last = jiffies;
1432 		++peer->rate_tokens;
1433 #ifdef CONFIG_IP_ROUTE_VERBOSE
1434 		if (log_martians &&
1435 		    peer->rate_tokens == ip_rt_redirect_number &&
1436 		    net_ratelimit())
1437 			printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1438 				&rt->rt_src, rt->rt_iif,
1439 				&rt->rt_dst, &rt->rt_gateway);
1440 #endif
1441 	}
1442 }
1443 
ip_error(struct sk_buff * skb)1444 static int ip_error(struct sk_buff *skb)
1445 {
1446 	struct rtable *rt = skb_rtable(skb);
1447 	struct inet_peer *peer;
1448 	unsigned long now;
1449 	bool send;
1450 	int code;
1451 
1452 	switch (rt->dst.error) {
1453 		case EINVAL:
1454 		default:
1455 			goto out;
1456 		case EHOSTUNREACH:
1457 			code = ICMP_HOST_UNREACH;
1458 			break;
1459 		case ENETUNREACH:
1460 			code = ICMP_NET_UNREACH;
1461 			IP_INC_STATS_BH(dev_net(rt->dst.dev),
1462 					IPSTATS_MIB_INNOROUTES);
1463 			break;
1464 		case EACCES:
1465 			code = ICMP_PKT_FILTERED;
1466 			break;
1467 	}
1468 
1469 	if (!rt->peer)
1470 		rt_bind_peer(rt, 1);
1471 	peer = rt->peer;
1472 
1473 	send = true;
1474 	if (peer) {
1475 		now = jiffies;
1476 		peer->rate_tokens += now - peer->rate_last;
1477 		if (peer->rate_tokens > ip_rt_error_burst)
1478 			peer->rate_tokens = ip_rt_error_burst;
1479 		peer->rate_last = now;
1480 		if (peer->rate_tokens >= ip_rt_error_cost)
1481 			peer->rate_tokens -= ip_rt_error_cost;
1482 		else
1483 			send = false;
1484 	}
1485 	if (send)
1486 		icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1487 
1488 out:	kfree_skb(skb);
1489 	return 0;
1490 }
1491 
1492 /*
1493  *	The last two values are not from the RFC but
1494  *	are needed for AMPRnet AX.25 paths.
1495  */
1496 
1497 static const unsigned short mtu_plateau[] =
1498 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1499 
guess_mtu(unsigned short old_mtu)1500 static inline unsigned short guess_mtu(unsigned short old_mtu)
1501 {
1502 	int i;
1503 
1504 	for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1505 		if (old_mtu > mtu_plateau[i])
1506 			return mtu_plateau[i];
1507 	return 68;
1508 }
1509 
ip_rt_frag_needed(struct net * net,struct iphdr * iph,unsigned short new_mtu,struct net_device * dev)1510 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1511 				 unsigned short new_mtu,
1512 				 struct net_device *dev)
1513 {
1514 	unsigned short old_mtu = ntohs(iph->tot_len);
1515 	unsigned short est_mtu = 0;
1516 	struct inet_peer *peer;
1517 
1518 	peer = inet_getpeer_v4(iph->daddr, 1);
1519 	if (peer) {
1520 		unsigned short mtu = new_mtu;
1521 
1522 		if (new_mtu < 68 || new_mtu >= old_mtu) {
1523 			/* BSD 4.2 derived systems incorrectly adjust
1524 			 * tot_len by the IP header length, and report
1525 			 * a zero MTU in the ICMP message.
1526 			 */
1527 			if (mtu == 0 &&
1528 			    old_mtu >= 68 + (iph->ihl << 2))
1529 				old_mtu -= iph->ihl << 2;
1530 			mtu = guess_mtu(old_mtu);
1531 		}
1532 
1533 		if (mtu < ip_rt_min_pmtu)
1534 			mtu = ip_rt_min_pmtu;
1535 		if (!peer->pmtu_expires || mtu < peer->pmtu_learned) {
1536 			unsigned long pmtu_expires;
1537 
1538 			pmtu_expires = jiffies + ip_rt_mtu_expires;
1539 			if (!pmtu_expires)
1540 				pmtu_expires = 1UL;
1541 
1542 			est_mtu = mtu;
1543 			peer->pmtu_learned = mtu;
1544 			peer->pmtu_expires = pmtu_expires;
1545 		}
1546 
1547 		inet_putpeer(peer);
1548 
1549 		atomic_inc(&__rt_peer_genid);
1550 	}
1551 	return est_mtu ? : new_mtu;
1552 }
1553 
check_peer_pmtu(struct dst_entry * dst,struct inet_peer * peer)1554 static void check_peer_pmtu(struct dst_entry *dst, struct inet_peer *peer)
1555 {
1556 	unsigned long expires = peer->pmtu_expires;
1557 
1558 	if (time_before(jiffies, expires)) {
1559 		u32 orig_dst_mtu = dst_mtu(dst);
1560 		if (peer->pmtu_learned < orig_dst_mtu) {
1561 			if (!peer->pmtu_orig)
1562 				peer->pmtu_orig = dst_metric_raw(dst, RTAX_MTU);
1563 			dst_metric_set(dst, RTAX_MTU, peer->pmtu_learned);
1564 		}
1565 	} else if (cmpxchg(&peer->pmtu_expires, expires, 0) == expires)
1566 		dst_metric_set(dst, RTAX_MTU, peer->pmtu_orig);
1567 }
1568 
ip_rt_update_pmtu(struct dst_entry * dst,u32 mtu)1569 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1570 {
1571 	struct rtable *rt = (struct rtable *) dst;
1572 	struct inet_peer *peer;
1573 
1574 	dst_confirm(dst);
1575 
1576 	if (!rt->peer)
1577 		rt_bind_peer(rt, 1);
1578 	peer = rt->peer;
1579 	if (peer) {
1580 		if (mtu < ip_rt_min_pmtu)
1581 			mtu = ip_rt_min_pmtu;
1582 		if (!peer->pmtu_expires || mtu < peer->pmtu_learned) {
1583 			unsigned long pmtu_expires;
1584 
1585 			pmtu_expires = jiffies + ip_rt_mtu_expires;
1586 			if (!pmtu_expires)
1587 				pmtu_expires = 1UL;
1588 
1589 			peer->pmtu_learned = mtu;
1590 			peer->pmtu_expires = pmtu_expires;
1591 
1592 			atomic_inc(&__rt_peer_genid);
1593 			rt->rt_peer_genid = rt_peer_genid();
1594 		}
1595 		check_peer_pmtu(dst, peer);
1596 	}
1597 }
1598 
check_peer_redir(struct dst_entry * dst,struct inet_peer * peer)1599 static int check_peer_redir(struct dst_entry *dst, struct inet_peer *peer)
1600 {
1601 	struct rtable *rt = (struct rtable *) dst;
1602 	__be32 orig_gw = rt->rt_gateway;
1603 
1604 	dst_confirm(&rt->dst);
1605 
1606 	neigh_release(rt->dst.neighbour);
1607 	rt->dst.neighbour = NULL;
1608 
1609 	rt->rt_gateway = peer->redirect_learned.a4;
1610 	if (arp_bind_neighbour(&rt->dst) ||
1611 	    !(rt->dst.neighbour->nud_state & NUD_VALID)) {
1612 		if (rt->dst.neighbour)
1613 			neigh_event_send(rt->dst.neighbour, NULL);
1614 		rt->rt_gateway = orig_gw;
1615 		return -EAGAIN;
1616 	} else {
1617 		rt->rt_flags |= RTCF_REDIRECTED;
1618 		call_netevent_notifiers(NETEVENT_NEIGH_UPDATE,
1619 					rt->dst.neighbour);
1620 	}
1621 	return 0;
1622 }
1623 
ipv4_dst_check(struct dst_entry * dst,u32 cookie)1624 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1625 {
1626 	struct rtable *rt = (struct rtable *) dst;
1627 
1628 	if (rt_is_expired(rt))
1629 		return NULL;
1630 	if (rt->rt_peer_genid != rt_peer_genid()) {
1631 		struct inet_peer *peer;
1632 
1633 		if (!rt->peer)
1634 			rt_bind_peer(rt, 0);
1635 
1636 		peer = rt->peer;
1637 		if (peer && peer->pmtu_expires)
1638 			check_peer_pmtu(dst, peer);
1639 
1640 		if (peer && peer->redirect_learned.a4 &&
1641 		    peer->redirect_learned.a4 != rt->rt_gateway) {
1642 			if (check_peer_redir(dst, peer))
1643 				return NULL;
1644 		}
1645 
1646 		rt->rt_peer_genid = rt_peer_genid();
1647 	}
1648 	return dst;
1649 }
1650 
ipv4_dst_destroy(struct dst_entry * dst)1651 static void ipv4_dst_destroy(struct dst_entry *dst)
1652 {
1653 	struct rtable *rt = (struct rtable *) dst;
1654 	struct inet_peer *peer = rt->peer;
1655 
1656 	if (rt->fi) {
1657 		fib_info_put(rt->fi);
1658 		rt->fi = NULL;
1659 	}
1660 	if (peer) {
1661 		rt->peer = NULL;
1662 		inet_putpeer(peer);
1663 	}
1664 }
1665 
1666 
ipv4_link_failure(struct sk_buff * skb)1667 static void ipv4_link_failure(struct sk_buff *skb)
1668 {
1669 	struct rtable *rt;
1670 
1671 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1672 
1673 	rt = skb_rtable(skb);
1674 	if (rt &&
1675 	    rt->peer &&
1676 	    rt->peer->pmtu_expires) {
1677 		unsigned long orig = rt->peer->pmtu_expires;
1678 
1679 		if (cmpxchg(&rt->peer->pmtu_expires, orig, 0) == orig)
1680 			dst_metric_set(&rt->dst, RTAX_MTU, rt->peer->pmtu_orig);
1681 	}
1682 }
1683 
ip_rt_bug(struct sk_buff * skb)1684 static int ip_rt_bug(struct sk_buff *skb)
1685 {
1686 	printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1687 		&ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1688 		skb->dev ? skb->dev->name : "?");
1689 	kfree_skb(skb);
1690 	return 0;
1691 }
1692 
1693 /*
1694    We do not cache source address of outgoing interface,
1695    because it is used only by IP RR, TS and SRR options,
1696    so that it out of fast path.
1697 
1698    BTW remember: "addr" is allowed to be not aligned
1699    in IP options!
1700  */
1701 
ip_rt_get_source(u8 * addr,struct rtable * rt)1702 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1703 {
1704 	__be32 src;
1705 	struct fib_result res;
1706 
1707 	if (rt_is_output_route(rt))
1708 		src = rt->rt_src;
1709 	else {
1710 		struct flowi4 fl4 = {
1711 			.daddr = rt->rt_key_dst,
1712 			.saddr = rt->rt_key_src,
1713 			.flowi4_tos = rt->rt_tos,
1714 			.flowi4_oif = rt->rt_oif,
1715 			.flowi4_iif = rt->rt_iif,
1716 			.flowi4_mark = rt->rt_mark,
1717 		};
1718 
1719 		rcu_read_lock();
1720 		if (fib_lookup(dev_net(rt->dst.dev), &fl4, &res) == 0)
1721 			src = FIB_RES_PREFSRC(dev_net(rt->dst.dev), res);
1722 		else
1723 			src = inet_select_addr(rt->dst.dev, rt->rt_gateway,
1724 					RT_SCOPE_UNIVERSE);
1725 		rcu_read_unlock();
1726 	}
1727 	memcpy(addr, &src, 4);
1728 }
1729 
1730 #ifdef CONFIG_IP_ROUTE_CLASSID
set_class_tag(struct rtable * rt,u32 tag)1731 static void set_class_tag(struct rtable *rt, u32 tag)
1732 {
1733 	if (!(rt->dst.tclassid & 0xFFFF))
1734 		rt->dst.tclassid |= tag & 0xFFFF;
1735 	if (!(rt->dst.tclassid & 0xFFFF0000))
1736 		rt->dst.tclassid |= tag & 0xFFFF0000;
1737 }
1738 #endif
1739 
ipv4_default_advmss(const struct dst_entry * dst)1740 static unsigned int ipv4_default_advmss(const struct dst_entry *dst)
1741 {
1742 	unsigned int advmss = dst_metric_raw(dst, RTAX_ADVMSS);
1743 
1744 	if (advmss == 0) {
1745 		advmss = max_t(unsigned int, dst->dev->mtu - 40,
1746 			       ip_rt_min_advmss);
1747 		if (advmss > 65535 - 40)
1748 			advmss = 65535 - 40;
1749 	}
1750 	return advmss;
1751 }
1752 
ipv4_default_mtu(const struct dst_entry * dst)1753 static unsigned int ipv4_default_mtu(const struct dst_entry *dst)
1754 {
1755 	unsigned int mtu = dst->dev->mtu;
1756 
1757 	if (unlikely(dst_metric_locked(dst, RTAX_MTU))) {
1758 		const struct rtable *rt = (const struct rtable *) dst;
1759 
1760 		if (rt->rt_gateway != rt->rt_dst && mtu > 576)
1761 			mtu = 576;
1762 	}
1763 
1764 	if (mtu > IP_MAX_MTU)
1765 		mtu = IP_MAX_MTU;
1766 
1767 	return mtu;
1768 }
1769 
rt_init_metrics(struct rtable * rt,const struct flowi4 * oldflp4,struct fib_info * fi)1770 static void rt_init_metrics(struct rtable *rt, const struct flowi4 *oldflp4,
1771 			    struct fib_info *fi)
1772 {
1773 	struct inet_peer *peer;
1774 	int create = 0;
1775 
1776 	/* If a peer entry exists for this destination, we must hook
1777 	 * it up in order to get at cached metrics.
1778 	 */
1779 	if (oldflp4 && (oldflp4->flowi4_flags & FLOWI_FLAG_PRECOW_METRICS))
1780 		create = 1;
1781 
1782 	rt->peer = peer = inet_getpeer_v4(rt->rt_dst, create);
1783 	if (peer) {
1784 		rt->rt_peer_genid = rt_peer_genid();
1785 		if (inet_metrics_new(peer))
1786 			memcpy(peer->metrics, fi->fib_metrics,
1787 			       sizeof(u32) * RTAX_MAX);
1788 		dst_init_metrics(&rt->dst, peer->metrics, false);
1789 
1790 		if (peer->pmtu_expires)
1791 			check_peer_pmtu(&rt->dst, peer);
1792 		if (peer->redirect_learned.a4 &&
1793 		    peer->redirect_learned.a4 != rt->rt_gateway) {
1794 			rt->rt_gateway = peer->redirect_learned.a4;
1795 			rt->rt_flags |= RTCF_REDIRECTED;
1796 		}
1797 	} else {
1798 		if (fi->fib_metrics != (u32 *) dst_default_metrics) {
1799 			rt->fi = fi;
1800 			atomic_inc(&fi->fib_clntref);
1801 		}
1802 		dst_init_metrics(&rt->dst, fi->fib_metrics, true);
1803 	}
1804 }
1805 
rt_set_nexthop(struct rtable * rt,const struct flowi4 * oldflp4,const struct fib_result * res,struct fib_info * fi,u16 type,u32 itag)1806 static void rt_set_nexthop(struct rtable *rt, const struct flowi4 *oldflp4,
1807 			   const struct fib_result *res,
1808 			   struct fib_info *fi, u16 type, u32 itag)
1809 {
1810 	struct dst_entry *dst = &rt->dst;
1811 
1812 	if (fi) {
1813 		if (FIB_RES_GW(*res) &&
1814 		    FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1815 			rt->rt_gateway = FIB_RES_GW(*res);
1816 		rt_init_metrics(rt, oldflp4, fi);
1817 #ifdef CONFIG_IP_ROUTE_CLASSID
1818 		dst->tclassid = FIB_RES_NH(*res).nh_tclassid;
1819 #endif
1820 	}
1821 
1822 	if (dst_mtu(dst) > IP_MAX_MTU)
1823 		dst_metric_set(dst, RTAX_MTU, IP_MAX_MTU);
1824 	if (dst_metric_raw(dst, RTAX_ADVMSS) > 65535 - 40)
1825 		dst_metric_set(dst, RTAX_ADVMSS, 65535 - 40);
1826 
1827 #ifdef CONFIG_IP_ROUTE_CLASSID
1828 #ifdef CONFIG_IP_MULTIPLE_TABLES
1829 	set_class_tag(rt, fib_rules_tclass(res));
1830 #endif
1831 	set_class_tag(rt, itag);
1832 #endif
1833 	rt->rt_type = type;
1834 }
1835 
rt_dst_alloc(bool nopolicy,bool noxfrm)1836 static struct rtable *rt_dst_alloc(bool nopolicy, bool noxfrm)
1837 {
1838 	struct rtable *rt = dst_alloc(&ipv4_dst_ops, 1);
1839 	if (rt) {
1840 		rt->dst.obsolete = -1;
1841 
1842 		rt->dst.flags = DST_HOST |
1843 			(nopolicy ? DST_NOPOLICY : 0) |
1844 			(noxfrm ? DST_NOXFRM : 0);
1845 	}
1846 	return rt;
1847 }
1848 
1849 /* called in rcu_read_lock() section */
ip_route_input_mc(struct sk_buff * skb,__be32 daddr,__be32 saddr,u8 tos,struct net_device * dev,int our)1850 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1851 				u8 tos, struct net_device *dev, int our)
1852 {
1853 	unsigned int hash;
1854 	struct rtable *rth;
1855 	__be32 spec_dst;
1856 	struct in_device *in_dev = __in_dev_get_rcu(dev);
1857 	u32 itag = 0;
1858 	int err;
1859 
1860 	/* Primary sanity checks. */
1861 
1862 	if (in_dev == NULL)
1863 		return -EINVAL;
1864 
1865 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1866 	    ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1867 		goto e_inval;
1868 
1869 	if (ipv4_is_zeronet(saddr)) {
1870 		if (!ipv4_is_local_multicast(daddr))
1871 			goto e_inval;
1872 		spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1873 	} else {
1874 		err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1875 					  &itag, 0);
1876 		if (err < 0)
1877 			goto e_err;
1878 	}
1879 	rth = rt_dst_alloc(IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
1880 	if (!rth)
1881 		goto e_nobufs;
1882 
1883 	rth->dst.output = ip_rt_bug;
1884 
1885 	rth->rt_key_dst	= daddr;
1886 	rth->rt_dst	= daddr;
1887 	rth->rt_tos	= tos;
1888 	rth->rt_mark    = skb->mark;
1889 	rth->rt_key_src	= saddr;
1890 	rth->rt_src	= saddr;
1891 #ifdef CONFIG_IP_ROUTE_CLASSID
1892 	rth->dst.tclassid = itag;
1893 #endif
1894 	rth->rt_route_iif = dev->ifindex;
1895 	rth->rt_iif	= dev->ifindex;
1896 	rth->dst.dev	= init_net.loopback_dev;
1897 	dev_hold(rth->dst.dev);
1898 	rth->rt_oif	= 0;
1899 	rth->rt_gateway	= daddr;
1900 	rth->rt_spec_dst= spec_dst;
1901 	rth->rt_genid	= rt_genid(dev_net(dev));
1902 	rth->rt_flags	= RTCF_MULTICAST;
1903 	rth->rt_type	= RTN_MULTICAST;
1904 	if (our) {
1905 		rth->dst.input= ip_local_deliver;
1906 		rth->rt_flags |= RTCF_LOCAL;
1907 	}
1908 
1909 #ifdef CONFIG_IP_MROUTE
1910 	if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1911 		rth->dst.input = ip_mr_input;
1912 #endif
1913 	RT_CACHE_STAT_INC(in_slow_mc);
1914 
1915 	hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1916 	rth = rt_intern_hash(hash, rth, skb, dev->ifindex);
1917 	err = 0;
1918 	if (IS_ERR(rth))
1919 		err = PTR_ERR(rth);
1920 
1921 e_nobufs:
1922 	return -ENOBUFS;
1923 e_inval:
1924 	return -EINVAL;
1925 e_err:
1926 	return err;
1927 }
1928 
1929 
ip_handle_martian_source(struct net_device * dev,struct in_device * in_dev,struct sk_buff * skb,__be32 daddr,__be32 saddr)1930 static void ip_handle_martian_source(struct net_device *dev,
1931 				     struct in_device *in_dev,
1932 				     struct sk_buff *skb,
1933 				     __be32 daddr,
1934 				     __be32 saddr)
1935 {
1936 	RT_CACHE_STAT_INC(in_martian_src);
1937 #ifdef CONFIG_IP_ROUTE_VERBOSE
1938 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1939 		/*
1940 		 *	RFC1812 recommendation, if source is martian,
1941 		 *	the only hint is MAC header.
1942 		 */
1943 		printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1944 			&daddr, &saddr, dev->name);
1945 		if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1946 			int i;
1947 			const unsigned char *p = skb_mac_header(skb);
1948 			printk(KERN_WARNING "ll header: ");
1949 			for (i = 0; i < dev->hard_header_len; i++, p++) {
1950 				printk("%02x", *p);
1951 				if (i < (dev->hard_header_len - 1))
1952 					printk(":");
1953 			}
1954 			printk("\n");
1955 		}
1956 	}
1957 #endif
1958 }
1959 
1960 /* called in rcu_read_lock() section */
__mkroute_input(struct sk_buff * skb,const struct fib_result * res,struct in_device * in_dev,__be32 daddr,__be32 saddr,u32 tos,struct rtable ** result)1961 static int __mkroute_input(struct sk_buff *skb,
1962 			   const struct fib_result *res,
1963 			   struct in_device *in_dev,
1964 			   __be32 daddr, __be32 saddr, u32 tos,
1965 			   struct rtable **result)
1966 {
1967 	struct rtable *rth;
1968 	int err;
1969 	struct in_device *out_dev;
1970 	unsigned int flags = 0;
1971 	__be32 spec_dst;
1972 	u32 itag;
1973 
1974 	/* get a working reference to the output device */
1975 	out_dev = __in_dev_get_rcu(FIB_RES_DEV(*res));
1976 	if (out_dev == NULL) {
1977 		if (net_ratelimit())
1978 			printk(KERN_CRIT "Bug in ip_route_input" \
1979 			       "_slow(). Please, report\n");
1980 		return -EINVAL;
1981 	}
1982 
1983 
1984 	err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1985 				  in_dev->dev, &spec_dst, &itag, skb->mark);
1986 	if (err < 0) {
1987 		ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1988 					 saddr);
1989 
1990 		goto cleanup;
1991 	}
1992 
1993 	if (err)
1994 		flags |= RTCF_DIRECTSRC;
1995 
1996 	if (out_dev == in_dev && err &&
1997 	    (IN_DEV_SHARED_MEDIA(out_dev) ||
1998 	     inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1999 		flags |= RTCF_DOREDIRECT;
2000 
2001 	if (skb->protocol != htons(ETH_P_IP)) {
2002 		/* Not IP (i.e. ARP). Do not create route, if it is
2003 		 * invalid for proxy arp. DNAT routes are always valid.
2004 		 *
2005 		 * Proxy arp feature have been extended to allow, ARP
2006 		 * replies back to the same interface, to support
2007 		 * Private VLAN switch technologies. See arp.c.
2008 		 */
2009 		if (out_dev == in_dev &&
2010 		    IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
2011 			err = -EINVAL;
2012 			goto cleanup;
2013 		}
2014 	}
2015 
2016 	rth = rt_dst_alloc(IN_DEV_CONF_GET(in_dev, NOPOLICY),
2017 			   IN_DEV_CONF_GET(out_dev, NOXFRM));
2018 	if (!rth) {
2019 		err = -ENOBUFS;
2020 		goto cleanup;
2021 	}
2022 
2023 	rth->rt_key_dst	= daddr;
2024 	rth->rt_dst	= daddr;
2025 	rth->rt_tos	= tos;
2026 	rth->rt_mark    = skb->mark;
2027 	rth->rt_key_src	= saddr;
2028 	rth->rt_src	= saddr;
2029 	rth->rt_gateway	= daddr;
2030 	rth->rt_route_iif = in_dev->dev->ifindex;
2031 	rth->rt_iif 	= in_dev->dev->ifindex;
2032 	rth->dst.dev	= (out_dev)->dev;
2033 	dev_hold(rth->dst.dev);
2034 	rth->rt_oif 	= 0;
2035 	rth->rt_spec_dst= spec_dst;
2036 
2037 	rth->dst.input = ip_forward;
2038 	rth->dst.output = ip_output;
2039 	rth->rt_genid = rt_genid(dev_net(rth->dst.dev));
2040 
2041 	rt_set_nexthop(rth, NULL, res, res->fi, res->type, itag);
2042 
2043 	rth->rt_flags = flags;
2044 
2045 	*result = rth;
2046 	err = 0;
2047  cleanup:
2048 	return err;
2049 }
2050 
ip_mkroute_input(struct sk_buff * skb,struct fib_result * res,const struct flowi4 * fl4,struct in_device * in_dev,__be32 daddr,__be32 saddr,u32 tos)2051 static int ip_mkroute_input(struct sk_buff *skb,
2052 			    struct fib_result *res,
2053 			    const struct flowi4 *fl4,
2054 			    struct in_device *in_dev,
2055 			    __be32 daddr, __be32 saddr, u32 tos)
2056 {
2057 	struct rtable* rth = NULL;
2058 	int err;
2059 	unsigned hash;
2060 
2061 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2062 	if (res->fi && res->fi->fib_nhs > 1)
2063 		fib_select_multipath(res);
2064 #endif
2065 
2066 	/* create a routing cache entry */
2067 	err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2068 	if (err)
2069 		return err;
2070 
2071 	/* put it into the cache */
2072 	hash = rt_hash(daddr, saddr, fl4->flowi4_iif,
2073 		       rt_genid(dev_net(rth->dst.dev)));
2074 	rth = rt_intern_hash(hash, rth, skb, fl4->flowi4_iif);
2075 	if (IS_ERR(rth))
2076 		return PTR_ERR(rth);
2077 	return 0;
2078 }
2079 
2080 /*
2081  *	NOTE. We drop all the packets that has local source
2082  *	addresses, because every properly looped back packet
2083  *	must have correct destination already attached by output routine.
2084  *
2085  *	Such approach solves two big problems:
2086  *	1. Not simplex devices are handled properly.
2087  *	2. IP spoofing attempts are filtered with 100% of guarantee.
2088  *	called with rcu_read_lock()
2089  */
2090 
ip_route_input_slow(struct sk_buff * skb,__be32 daddr,__be32 saddr,u8 tos,struct net_device * dev)2091 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2092 			       u8 tos, struct net_device *dev)
2093 {
2094 	struct fib_result res;
2095 	struct in_device *in_dev = __in_dev_get_rcu(dev);
2096 	struct flowi4	fl4;
2097 	unsigned	flags = 0;
2098 	u32		itag = 0;
2099 	struct rtable * rth;
2100 	unsigned	hash;
2101 	__be32		spec_dst;
2102 	int		err = -EINVAL;
2103 	struct net    * net = dev_net(dev);
2104 
2105 	/* IP on this device is disabled. */
2106 
2107 	if (!in_dev)
2108 		goto out;
2109 
2110 	/* Check for the most weird martians, which can be not detected
2111 	   by fib_lookup.
2112 	 */
2113 
2114 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2115 	    ipv4_is_loopback(saddr))
2116 		goto martian_source;
2117 
2118 	if (ipv4_is_lbcast(daddr) || (saddr == 0 && daddr == 0))
2119 		goto brd_input;
2120 
2121 	/* Accept zero addresses only to limited broadcast;
2122 	 * I even do not know to fix it or not. Waiting for complains :-)
2123 	 */
2124 	if (ipv4_is_zeronet(saddr))
2125 		goto martian_source;
2126 
2127 	if (ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr))
2128 		goto martian_destination;
2129 
2130 	/*
2131 	 *	Now we are ready to route packet.
2132 	 */
2133 	fl4.flowi4_oif = 0;
2134 	fl4.flowi4_iif = dev->ifindex;
2135 	fl4.flowi4_mark = skb->mark;
2136 	fl4.flowi4_tos = tos;
2137 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
2138 	fl4.daddr = daddr;
2139 	fl4.saddr = saddr;
2140 	err = fib_lookup(net, &fl4, &res);
2141 	if (err != 0) {
2142 		if (!IN_DEV_FORWARD(in_dev))
2143 			goto e_hostunreach;
2144 		goto no_route;
2145 	}
2146 
2147 	RT_CACHE_STAT_INC(in_slow_tot);
2148 
2149 	if (res.type == RTN_BROADCAST)
2150 		goto brd_input;
2151 
2152 	if (res.type == RTN_LOCAL) {
2153 		err = fib_validate_source(saddr, daddr, tos,
2154 					  net->loopback_dev->ifindex,
2155 					  dev, &spec_dst, &itag, skb->mark);
2156 		if (err < 0)
2157 			goto martian_source_keep_err;
2158 		if (err)
2159 			flags |= RTCF_DIRECTSRC;
2160 		spec_dst = daddr;
2161 		goto local_input;
2162 	}
2163 
2164 	if (!IN_DEV_FORWARD(in_dev))
2165 		goto e_hostunreach;
2166 	if (res.type != RTN_UNICAST)
2167 		goto martian_destination;
2168 
2169 	err = ip_mkroute_input(skb, &res, &fl4, in_dev, daddr, saddr, tos);
2170 out:	return err;
2171 
2172 brd_input:
2173 	if (skb->protocol != htons(ETH_P_IP))
2174 		goto e_inval;
2175 
2176 	if (ipv4_is_zeronet(saddr))
2177 		spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2178 	else {
2179 		err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2180 					  &itag, skb->mark);
2181 		if (err < 0)
2182 			goto martian_source_keep_err;
2183 		if (err)
2184 			flags |= RTCF_DIRECTSRC;
2185 	}
2186 	flags |= RTCF_BROADCAST;
2187 	res.type = RTN_BROADCAST;
2188 	RT_CACHE_STAT_INC(in_brd);
2189 
2190 local_input:
2191 	rth = rt_dst_alloc(IN_DEV_CONF_GET(in_dev, NOPOLICY), false);
2192 	if (!rth)
2193 		goto e_nobufs;
2194 
2195 	rth->dst.output= ip_rt_bug;
2196 	rth->rt_genid = rt_genid(net);
2197 
2198 	rth->rt_key_dst	= daddr;
2199 	rth->rt_dst	= daddr;
2200 	rth->rt_tos	= tos;
2201 	rth->rt_mark    = skb->mark;
2202 	rth->rt_key_src	= saddr;
2203 	rth->rt_src	= saddr;
2204 #ifdef CONFIG_IP_ROUTE_CLASSID
2205 	rth->dst.tclassid = itag;
2206 #endif
2207 	rth->rt_route_iif = dev->ifindex;
2208 	rth->rt_iif	= dev->ifindex;
2209 	rth->dst.dev	= net->loopback_dev;
2210 	dev_hold(rth->dst.dev);
2211 	rth->rt_gateway	= daddr;
2212 	rth->rt_spec_dst= spec_dst;
2213 	rth->dst.input= ip_local_deliver;
2214 	rth->rt_flags 	= flags|RTCF_LOCAL;
2215 	if (res.type == RTN_UNREACHABLE) {
2216 		rth->dst.input= ip_error;
2217 		rth->dst.error= -err;
2218 		rth->rt_flags 	&= ~RTCF_LOCAL;
2219 	}
2220 	rth->rt_type	= res.type;
2221 	hash = rt_hash(daddr, saddr, fl4.flowi4_iif, rt_genid(net));
2222 	rth = rt_intern_hash(hash, rth, skb, fl4.flowi4_iif);
2223 	err = 0;
2224 	if (IS_ERR(rth))
2225 		err = PTR_ERR(rth);
2226 	goto out;
2227 
2228 no_route:
2229 	RT_CACHE_STAT_INC(in_no_route);
2230 	spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2231 	res.type = RTN_UNREACHABLE;
2232 	if (err == -ESRCH)
2233 		err = -ENETUNREACH;
2234 	goto local_input;
2235 
2236 	/*
2237 	 *	Do not cache martian addresses: they should be logged (RFC1812)
2238 	 */
2239 martian_destination:
2240 	RT_CACHE_STAT_INC(in_martian_dst);
2241 #ifdef CONFIG_IP_ROUTE_VERBOSE
2242 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2243 		printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2244 			&daddr, &saddr, dev->name);
2245 #endif
2246 
2247 e_hostunreach:
2248 	err = -EHOSTUNREACH;
2249 	goto out;
2250 
2251 e_inval:
2252 	err = -EINVAL;
2253 	goto out;
2254 
2255 e_nobufs:
2256 	err = -ENOBUFS;
2257 	goto out;
2258 
2259 martian_source:
2260 	err = -EINVAL;
2261 martian_source_keep_err:
2262 	ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2263 	goto out;
2264 }
2265 
ip_route_input_common(struct sk_buff * skb,__be32 daddr,__be32 saddr,u8 tos,struct net_device * dev,bool noref)2266 int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2267 			   u8 tos, struct net_device *dev, bool noref)
2268 {
2269 	struct rtable * rth;
2270 	unsigned	hash;
2271 	int iif = dev->ifindex;
2272 	struct net *net;
2273 	int res;
2274 
2275 	net = dev_net(dev);
2276 
2277 	rcu_read_lock();
2278 
2279 	if (!rt_caching(net))
2280 		goto skip_cache;
2281 
2282 	tos &= IPTOS_RT_MASK;
2283 	hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2284 
2285 	for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2286 	     rth = rcu_dereference(rth->dst.rt_next)) {
2287 		if ((((__force u32)rth->rt_key_dst ^ (__force u32)daddr) |
2288 		     ((__force u32)rth->rt_key_src ^ (__force u32)saddr) |
2289 		     (rth->rt_iif ^ iif) |
2290 		     rth->rt_oif |
2291 		     (rth->rt_tos ^ tos)) == 0 &&
2292 		    rth->rt_mark == skb->mark &&
2293 		    net_eq(dev_net(rth->dst.dev), net) &&
2294 		    !rt_is_expired(rth)) {
2295 			if (noref) {
2296 				dst_use_noref(&rth->dst, jiffies);
2297 				skb_dst_set_noref(skb, &rth->dst);
2298 			} else {
2299 				dst_use(&rth->dst, jiffies);
2300 				skb_dst_set(skb, &rth->dst);
2301 			}
2302 			RT_CACHE_STAT_INC(in_hit);
2303 			rcu_read_unlock();
2304 			return 0;
2305 		}
2306 		RT_CACHE_STAT_INC(in_hlist_search);
2307 	}
2308 
2309 skip_cache:
2310 	/* Multicast recognition logic is moved from route cache to here.
2311 	   The problem was that too many Ethernet cards have broken/missing
2312 	   hardware multicast filters :-( As result the host on multicasting
2313 	   network acquires a lot of useless route cache entries, sort of
2314 	   SDR messages from all the world. Now we try to get rid of them.
2315 	   Really, provided software IP multicast filter is organized
2316 	   reasonably (at least, hashed), it does not result in a slowdown
2317 	   comparing with route cache reject entries.
2318 	   Note, that multicast routers are not affected, because
2319 	   route cache entry is created eventually.
2320 	 */
2321 	if (ipv4_is_multicast(daddr)) {
2322 		struct in_device *in_dev = __in_dev_get_rcu(dev);
2323 
2324 		if (in_dev) {
2325 			int our = ip_check_mc_rcu(in_dev, daddr, saddr,
2326 						  ip_hdr(skb)->protocol);
2327 			if (our
2328 #ifdef CONFIG_IP_MROUTE
2329 				||
2330 			    (!ipv4_is_local_multicast(daddr) &&
2331 			     IN_DEV_MFORWARD(in_dev))
2332 #endif
2333 			   ) {
2334 				int res = ip_route_input_mc(skb, daddr, saddr,
2335 							    tos, dev, our);
2336 				rcu_read_unlock();
2337 				return res;
2338 			}
2339 		}
2340 		rcu_read_unlock();
2341 		return -EINVAL;
2342 	}
2343 	res = ip_route_input_slow(skb, daddr, saddr, tos, dev);
2344 	rcu_read_unlock();
2345 	return res;
2346 }
2347 EXPORT_SYMBOL(ip_route_input_common);
2348 
2349 /* called with rcu_read_lock() */
__mkroute_output(const struct fib_result * res,const struct flowi4 * fl4,const struct flowi4 * oldflp4,struct net_device * dev_out,unsigned int flags)2350 static struct rtable *__mkroute_output(const struct fib_result *res,
2351 				       const struct flowi4 *fl4,
2352 				       const struct flowi4 *oldflp4,
2353 				       struct net_device *dev_out,
2354 				       unsigned int flags)
2355 {
2356 	struct fib_info *fi = res->fi;
2357 	u32 tos = RT_FL_TOS(oldflp4);
2358 	struct in_device *in_dev;
2359 	u16 type = res->type;
2360 	struct rtable *rth;
2361 
2362 	if (ipv4_is_loopback(fl4->saddr) && !(dev_out->flags & IFF_LOOPBACK))
2363 		return ERR_PTR(-EINVAL);
2364 
2365 	if (ipv4_is_lbcast(fl4->daddr))
2366 		type = RTN_BROADCAST;
2367 	else if (ipv4_is_multicast(fl4->daddr))
2368 		type = RTN_MULTICAST;
2369 	else if (ipv4_is_zeronet(fl4->daddr))
2370 		return ERR_PTR(-EINVAL);
2371 
2372 	if (dev_out->flags & IFF_LOOPBACK)
2373 		flags |= RTCF_LOCAL;
2374 
2375 	in_dev = __in_dev_get_rcu(dev_out);
2376 	if (!in_dev)
2377 		return ERR_PTR(-EINVAL);
2378 
2379 	if (type == RTN_BROADCAST) {
2380 		flags |= RTCF_BROADCAST | RTCF_LOCAL;
2381 		fi = NULL;
2382 	} else if (type == RTN_MULTICAST) {
2383 		flags |= RTCF_MULTICAST | RTCF_LOCAL;
2384 		if (!ip_check_mc_rcu(in_dev, oldflp4->daddr, oldflp4->saddr,
2385 				     oldflp4->flowi4_proto))
2386 			flags &= ~RTCF_LOCAL;
2387 		/* If multicast route do not exist use
2388 		 * default one, but do not gateway in this case.
2389 		 * Yes, it is hack.
2390 		 */
2391 		if (fi && res->prefixlen < 4)
2392 			fi = NULL;
2393 	}
2394 
2395 	rth = rt_dst_alloc(IN_DEV_CONF_GET(in_dev, NOPOLICY),
2396 			   IN_DEV_CONF_GET(in_dev, NOXFRM));
2397 	if (!rth)
2398 		return ERR_PTR(-ENOBUFS);
2399 
2400 	rth->rt_key_dst	= oldflp4->daddr;
2401 	rth->rt_tos	= tos;
2402 	rth->rt_key_src	= oldflp4->saddr;
2403 	rth->rt_oif	= oldflp4->flowi4_oif;
2404 	rth->rt_mark    = oldflp4->flowi4_mark;
2405 	rth->rt_dst	= fl4->daddr;
2406 	rth->rt_src	= fl4->saddr;
2407 	rth->rt_route_iif = 0;
2408 	rth->rt_iif	= oldflp4->flowi4_oif ? : dev_out->ifindex;
2409 	/* get references to the devices that are to be hold by the routing
2410 	   cache entry */
2411 	rth->dst.dev	= dev_out;
2412 	dev_hold(dev_out);
2413 	rth->rt_gateway = fl4->daddr;
2414 	rth->rt_spec_dst= fl4->saddr;
2415 
2416 	rth->dst.output=ip_output;
2417 	rth->rt_genid = rt_genid(dev_net(dev_out));
2418 
2419 	RT_CACHE_STAT_INC(out_slow_tot);
2420 
2421 	if (flags & RTCF_LOCAL) {
2422 		rth->dst.input = ip_local_deliver;
2423 		rth->rt_spec_dst = fl4->daddr;
2424 	}
2425 	if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2426 		rth->rt_spec_dst = fl4->saddr;
2427 		if (flags & RTCF_LOCAL &&
2428 		    !(dev_out->flags & IFF_LOOPBACK)) {
2429 			rth->dst.output = ip_mc_output;
2430 			RT_CACHE_STAT_INC(out_slow_mc);
2431 		}
2432 #ifdef CONFIG_IP_MROUTE
2433 		if (type == RTN_MULTICAST) {
2434 			if (IN_DEV_MFORWARD(in_dev) &&
2435 			    !ipv4_is_local_multicast(oldflp4->daddr)) {
2436 				rth->dst.input = ip_mr_input;
2437 				rth->dst.output = ip_mc_output;
2438 			}
2439 		}
2440 #endif
2441 	}
2442 
2443 	rt_set_nexthop(rth, oldflp4, res, fi, type, 0);
2444 
2445 	rth->rt_flags = flags;
2446 	return rth;
2447 }
2448 
2449 /*
2450  * Major route resolver routine.
2451  * called with rcu_read_lock();
2452  */
2453 
ip_route_output_slow(struct net * net,const struct flowi4 * oldflp4)2454 static struct rtable *ip_route_output_slow(struct net *net,
2455 					   const struct flowi4 *oldflp4)
2456 {
2457 	u32 tos	= RT_FL_TOS(oldflp4);
2458 	struct flowi4 fl4;
2459 	struct fib_result res;
2460 	unsigned int flags = 0;
2461 	struct net_device *dev_out = NULL;
2462 	struct rtable *rth;
2463 
2464 	res.fi		= NULL;
2465 #ifdef CONFIG_IP_MULTIPLE_TABLES
2466 	res.r		= NULL;
2467 #endif
2468 
2469 	fl4.flowi4_oif = oldflp4->flowi4_oif;
2470 	fl4.flowi4_iif = net->loopback_dev->ifindex;
2471 	fl4.flowi4_mark = oldflp4->flowi4_mark;
2472 	fl4.daddr = oldflp4->daddr;
2473 	fl4.saddr = oldflp4->saddr;
2474 	fl4.flowi4_tos = tos & IPTOS_RT_MASK;
2475 	fl4.flowi4_scope = ((tos & RTO_ONLINK) ?
2476 			RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
2477 
2478 	rcu_read_lock();
2479 	if (oldflp4->saddr) {
2480 		rth = ERR_PTR(-EINVAL);
2481 		if (ipv4_is_multicast(oldflp4->saddr) ||
2482 		    ipv4_is_lbcast(oldflp4->saddr) ||
2483 		    ipv4_is_zeronet(oldflp4->saddr))
2484 			goto out;
2485 
2486 		/* I removed check for oif == dev_out->oif here.
2487 		   It was wrong for two reasons:
2488 		   1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2489 		      is assigned to multiple interfaces.
2490 		   2. Moreover, we are allowed to send packets with saddr
2491 		      of another iface. --ANK
2492 		 */
2493 
2494 		if (oldflp4->flowi4_oif == 0 &&
2495 		    (ipv4_is_multicast(oldflp4->daddr) ||
2496 		     ipv4_is_lbcast(oldflp4->daddr))) {
2497 			/* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2498 			dev_out = __ip_dev_find(net, oldflp4->saddr, false);
2499 			if (dev_out == NULL)
2500 				goto out;
2501 
2502 			/* Special hack: user can direct multicasts
2503 			   and limited broadcast via necessary interface
2504 			   without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2505 			   This hack is not just for fun, it allows
2506 			   vic,vat and friends to work.
2507 			   They bind socket to loopback, set ttl to zero
2508 			   and expect that it will work.
2509 			   From the viewpoint of routing cache they are broken,
2510 			   because we are not allowed to build multicast path
2511 			   with loopback source addr (look, routing cache
2512 			   cannot know, that ttl is zero, so that packet
2513 			   will not leave this host and route is valid).
2514 			   Luckily, this hack is good workaround.
2515 			 */
2516 
2517 			fl4.flowi4_oif = dev_out->ifindex;
2518 			goto make_route;
2519 		}
2520 
2521 		if (!(oldflp4->flowi4_flags & FLOWI_FLAG_ANYSRC)) {
2522 			/* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2523 			if (!__ip_dev_find(net, oldflp4->saddr, false))
2524 				goto out;
2525 		}
2526 	}
2527 
2528 
2529 	if (oldflp4->flowi4_oif) {
2530 		dev_out = dev_get_by_index_rcu(net, oldflp4->flowi4_oif);
2531 		rth = ERR_PTR(-ENODEV);
2532 		if (dev_out == NULL)
2533 			goto out;
2534 
2535 		/* RACE: Check return value of inet_select_addr instead. */
2536 		if (!(dev_out->flags & IFF_UP) || !__in_dev_get_rcu(dev_out)) {
2537 			rth = ERR_PTR(-ENETUNREACH);
2538 			goto out;
2539 		}
2540 		if (ipv4_is_local_multicast(oldflp4->daddr) ||
2541 		    ipv4_is_lbcast(oldflp4->daddr)) {
2542 			if (!fl4.saddr)
2543 				fl4.saddr = inet_select_addr(dev_out, 0,
2544 							     RT_SCOPE_LINK);
2545 			goto make_route;
2546 		}
2547 		if (!fl4.saddr) {
2548 			if (ipv4_is_multicast(oldflp4->daddr))
2549 				fl4.saddr = inet_select_addr(dev_out, 0,
2550 							     fl4.flowi4_scope);
2551 			else if (!oldflp4->daddr)
2552 				fl4.saddr = inet_select_addr(dev_out, 0,
2553 							     RT_SCOPE_HOST);
2554 		}
2555 	}
2556 
2557 	if (!fl4.daddr) {
2558 		fl4.daddr = fl4.saddr;
2559 		if (!fl4.daddr)
2560 			fl4.daddr = fl4.saddr = htonl(INADDR_LOOPBACK);
2561 		dev_out = net->loopback_dev;
2562 		fl4.flowi4_oif = net->loopback_dev->ifindex;
2563 		res.type = RTN_LOCAL;
2564 		flags |= RTCF_LOCAL;
2565 		goto make_route;
2566 	}
2567 
2568 	if (fib_lookup(net, &fl4, &res)) {
2569 		res.fi = NULL;
2570 		if (oldflp4->flowi4_oif) {
2571 			/* Apparently, routing tables are wrong. Assume,
2572 			   that the destination is on link.
2573 
2574 			   WHY? DW.
2575 			   Because we are allowed to send to iface
2576 			   even if it has NO routes and NO assigned
2577 			   addresses. When oif is specified, routing
2578 			   tables are looked up with only one purpose:
2579 			   to catch if destination is gatewayed, rather than
2580 			   direct. Moreover, if MSG_DONTROUTE is set,
2581 			   we send packet, ignoring both routing tables
2582 			   and ifaddr state. --ANK
2583 
2584 
2585 			   We could make it even if oif is unknown,
2586 			   likely IPv6, but we do not.
2587 			 */
2588 
2589 			if (fl4.saddr == 0)
2590 				fl4.saddr = inet_select_addr(dev_out, 0,
2591 							     RT_SCOPE_LINK);
2592 			res.type = RTN_UNICAST;
2593 			goto make_route;
2594 		}
2595 		rth = ERR_PTR(-ENETUNREACH);
2596 		goto out;
2597 	}
2598 
2599 	if (res.type == RTN_LOCAL) {
2600 		if (!fl4.saddr) {
2601 			if (res.fi->fib_prefsrc)
2602 				fl4.saddr = res.fi->fib_prefsrc;
2603 			else
2604 				fl4.saddr = fl4.daddr;
2605 		}
2606 		dev_out = net->loopback_dev;
2607 		fl4.flowi4_oif = dev_out->ifindex;
2608 		res.fi = NULL;
2609 		flags |= RTCF_LOCAL;
2610 		goto make_route;
2611 	}
2612 
2613 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2614 	if (res.fi->fib_nhs > 1 && fl4.flowi4_oif == 0)
2615 		fib_select_multipath(&res);
2616 	else
2617 #endif
2618 	if (!res.prefixlen && res.type == RTN_UNICAST && !fl4.flowi4_oif)
2619 		fib_select_default(&res);
2620 
2621 	if (!fl4.saddr)
2622 		fl4.saddr = FIB_RES_PREFSRC(net, res);
2623 
2624 	dev_out = FIB_RES_DEV(res);
2625 	fl4.flowi4_oif = dev_out->ifindex;
2626 
2627 
2628 make_route:
2629 	rth = __mkroute_output(&res, &fl4, oldflp4, dev_out, flags);
2630 	if (!IS_ERR(rth)) {
2631 		unsigned int hash;
2632 
2633 		hash = rt_hash(oldflp4->daddr, oldflp4->saddr, oldflp4->flowi4_oif,
2634 			       rt_genid(dev_net(dev_out)));
2635 		rth = rt_intern_hash(hash, rth, NULL, oldflp4->flowi4_oif);
2636 	}
2637 
2638 out:
2639 	rcu_read_unlock();
2640 	return rth;
2641 }
2642 
__ip_route_output_key(struct net * net,const struct flowi4 * flp4)2643 struct rtable *__ip_route_output_key(struct net *net, const struct flowi4 *flp4)
2644 {
2645 	struct rtable *rth;
2646 	unsigned int hash;
2647 
2648 	if (!rt_caching(net))
2649 		goto slow_output;
2650 
2651 	hash = rt_hash(flp4->daddr, flp4->saddr, flp4->flowi4_oif, rt_genid(net));
2652 
2653 	rcu_read_lock_bh();
2654 	for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2655 		rth = rcu_dereference_bh(rth->dst.rt_next)) {
2656 		if (rth->rt_key_dst == flp4->daddr &&
2657 		    rth->rt_key_src == flp4->saddr &&
2658 		    rt_is_output_route(rth) &&
2659 		    rth->rt_oif == flp4->flowi4_oif &&
2660 		    rth->rt_mark == flp4->flowi4_mark &&
2661 		    !((rth->rt_tos ^ flp4->flowi4_tos) &
2662 			    (IPTOS_RT_MASK | RTO_ONLINK)) &&
2663 		    net_eq(dev_net(rth->dst.dev), net) &&
2664 		    !rt_is_expired(rth)) {
2665 			dst_use(&rth->dst, jiffies);
2666 			RT_CACHE_STAT_INC(out_hit);
2667 			rcu_read_unlock_bh();
2668 			return rth;
2669 		}
2670 		RT_CACHE_STAT_INC(out_hlist_search);
2671 	}
2672 	rcu_read_unlock_bh();
2673 
2674 slow_output:
2675 	return ip_route_output_slow(net, flp4);
2676 }
2677 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2678 
ipv4_blackhole_dst_check(struct dst_entry * dst,u32 cookie)2679 static struct dst_entry *ipv4_blackhole_dst_check(struct dst_entry *dst, u32 cookie)
2680 {
2681 	return NULL;
2682 }
2683 
ipv4_blackhole_default_mtu(const struct dst_entry * dst)2684 static unsigned int ipv4_blackhole_default_mtu(const struct dst_entry *dst)
2685 {
2686 	return 0;
2687 }
2688 
ipv4_rt_blackhole_update_pmtu(struct dst_entry * dst,u32 mtu)2689 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2690 {
2691 }
2692 
ipv4_rt_blackhole_cow_metrics(struct dst_entry * dst,unsigned long old)2693 static u32 *ipv4_rt_blackhole_cow_metrics(struct dst_entry *dst,
2694 					  unsigned long old)
2695 {
2696 	return NULL;
2697 }
2698 
2699 static struct dst_ops ipv4_dst_blackhole_ops = {
2700 	.family			=	AF_INET,
2701 	.protocol		=	cpu_to_be16(ETH_P_IP),
2702 	.destroy		=	ipv4_dst_destroy,
2703 	.check			=	ipv4_blackhole_dst_check,
2704 	.default_mtu		=	ipv4_blackhole_default_mtu,
2705 	.default_advmss		=	ipv4_default_advmss,
2706 	.update_pmtu		=	ipv4_rt_blackhole_update_pmtu,
2707 	.cow_metrics		=	ipv4_rt_blackhole_cow_metrics,
2708 };
2709 
ipv4_blackhole_route(struct net * net,struct dst_entry * dst_orig)2710 struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2711 {
2712 	struct rtable *rt = dst_alloc(&ipv4_dst_blackhole_ops, 1);
2713 	struct rtable *ort = (struct rtable *) dst_orig;
2714 
2715 	if (rt) {
2716 		struct dst_entry *new = &rt->dst;
2717 
2718 		new->__use = 1;
2719 		new->input = dst_discard;
2720 		new->output = dst_discard;
2721 		dst_copy_metrics(new, &ort->dst);
2722 
2723 		new->dev = ort->dst.dev;
2724 		if (new->dev)
2725 			dev_hold(new->dev);
2726 
2727 		rt->rt_key_dst = ort->rt_key_dst;
2728 		rt->rt_key_src = ort->rt_key_src;
2729 		rt->rt_tos = ort->rt_tos;
2730 		rt->rt_route_iif = ort->rt_route_iif;
2731 		rt->rt_iif = ort->rt_iif;
2732 		rt->rt_oif = ort->rt_oif;
2733 		rt->rt_mark = ort->rt_mark;
2734 
2735 		rt->rt_genid = rt_genid(net);
2736 		rt->rt_flags = ort->rt_flags;
2737 		rt->rt_type = ort->rt_type;
2738 		rt->rt_dst = ort->rt_dst;
2739 		rt->rt_src = ort->rt_src;
2740 		rt->rt_gateway = ort->rt_gateway;
2741 		rt->rt_spec_dst = ort->rt_spec_dst;
2742 		rt->peer = ort->peer;
2743 		if (rt->peer)
2744 			atomic_inc(&rt->peer->refcnt);
2745 		rt->fi = ort->fi;
2746 		if (rt->fi)
2747 			atomic_inc(&rt->fi->fib_clntref);
2748 
2749 		dst_free(new);
2750 	}
2751 
2752 	dst_release(dst_orig);
2753 
2754 	return rt ? &rt->dst : ERR_PTR(-ENOMEM);
2755 }
2756 
ip_route_output_flow(struct net * net,struct flowi4 * flp4,struct sock * sk)2757 struct rtable *ip_route_output_flow(struct net *net, struct flowi4 *flp4,
2758 				    struct sock *sk)
2759 {
2760 	struct rtable *rt = __ip_route_output_key(net, flp4);
2761 
2762 	if (IS_ERR(rt))
2763 		return rt;
2764 
2765 	if (flp4->flowi4_proto) {
2766 		if (!flp4->saddr)
2767 			flp4->saddr = rt->rt_src;
2768 		if (!flp4->daddr)
2769 			flp4->daddr = rt->rt_dst;
2770 		rt = (struct rtable *) xfrm_lookup(net, &rt->dst,
2771 						   flowi4_to_flowi(flp4),
2772 						   sk, 0);
2773 	}
2774 
2775 	return rt;
2776 }
2777 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2778 
rt_fill_info(struct net * net,struct sk_buff * skb,u32 pid,u32 seq,int event,int nowait,unsigned int flags)2779 static int rt_fill_info(struct net *net,
2780 			struct sk_buff *skb, u32 pid, u32 seq, int event,
2781 			int nowait, unsigned int flags)
2782 {
2783 	struct rtable *rt = skb_rtable(skb);
2784 	struct rtmsg *r;
2785 	struct nlmsghdr *nlh;
2786 	long expires;
2787 	u32 id = 0, ts = 0, tsage = 0, error;
2788 
2789 	nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2790 	if (nlh == NULL)
2791 		return -EMSGSIZE;
2792 
2793 	r = nlmsg_data(nlh);
2794 	r->rtm_family	 = AF_INET;
2795 	r->rtm_dst_len	= 32;
2796 	r->rtm_src_len	= 0;
2797 	r->rtm_tos	= rt->rt_tos;
2798 	r->rtm_table	= RT_TABLE_MAIN;
2799 	NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2800 	r->rtm_type	= rt->rt_type;
2801 	r->rtm_scope	= RT_SCOPE_UNIVERSE;
2802 	r->rtm_protocol = RTPROT_UNSPEC;
2803 	r->rtm_flags	= (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2804 	if (rt->rt_flags & RTCF_NOTIFY)
2805 		r->rtm_flags |= RTM_F_NOTIFY;
2806 
2807 	NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2808 
2809 	if (rt->rt_key_src) {
2810 		r->rtm_src_len = 32;
2811 		NLA_PUT_BE32(skb, RTA_SRC, rt->rt_key_src);
2812 	}
2813 	if (rt->dst.dev)
2814 		NLA_PUT_U32(skb, RTA_OIF, rt->dst.dev->ifindex);
2815 #ifdef CONFIG_IP_ROUTE_CLASSID
2816 	if (rt->dst.tclassid)
2817 		NLA_PUT_U32(skb, RTA_FLOW, rt->dst.tclassid);
2818 #endif
2819 	if (rt_is_input_route(rt))
2820 		NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2821 	else if (rt->rt_src != rt->rt_key_src)
2822 		NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2823 
2824 	if (rt->rt_dst != rt->rt_gateway)
2825 		NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2826 
2827 	if (rtnetlink_put_metrics(skb, dst_metrics_ptr(&rt->dst)) < 0)
2828 		goto nla_put_failure;
2829 
2830 	if (rt->rt_mark)
2831 		NLA_PUT_BE32(skb, RTA_MARK, rt->rt_mark);
2832 
2833 	error = rt->dst.error;
2834 	expires = (rt->peer && rt->peer->pmtu_expires) ?
2835 		rt->peer->pmtu_expires - jiffies : 0;
2836 	if (rt->peer) {
2837 		inet_peer_refcheck(rt->peer);
2838 		id = atomic_read(&rt->peer->ip_id_count) & 0xffff;
2839 		if (rt->peer->tcp_ts_stamp) {
2840 			ts = rt->peer->tcp_ts;
2841 			tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2842 		}
2843 	}
2844 
2845 	if (rt_is_input_route(rt)) {
2846 #ifdef CONFIG_IP_MROUTE
2847 		__be32 dst = rt->rt_dst;
2848 
2849 		if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2850 		    IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2851 			int err = ipmr_get_route(net, skb, r, nowait);
2852 			if (err <= 0) {
2853 				if (!nowait) {
2854 					if (err == 0)
2855 						return 0;
2856 					goto nla_put_failure;
2857 				} else {
2858 					if (err == -EMSGSIZE)
2859 						goto nla_put_failure;
2860 					error = err;
2861 				}
2862 			}
2863 		} else
2864 #endif
2865 			NLA_PUT_U32(skb, RTA_IIF, rt->rt_iif);
2866 	}
2867 
2868 	if (rtnl_put_cacheinfo(skb, &rt->dst, id, ts, tsage,
2869 			       expires, error) < 0)
2870 		goto nla_put_failure;
2871 
2872 	return nlmsg_end(skb, nlh);
2873 
2874 nla_put_failure:
2875 	nlmsg_cancel(skb, nlh);
2876 	return -EMSGSIZE;
2877 }
2878 
inet_rtm_getroute(struct sk_buff * in_skb,struct nlmsghdr * nlh,void * arg)2879 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2880 {
2881 	struct net *net = sock_net(in_skb->sk);
2882 	struct rtmsg *rtm;
2883 	struct nlattr *tb[RTA_MAX+1];
2884 	struct rtable *rt = NULL;
2885 	__be32 dst = 0;
2886 	__be32 src = 0;
2887 	u32 iif;
2888 	int err;
2889 	int mark;
2890 	struct sk_buff *skb;
2891 
2892 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2893 	if (err < 0)
2894 		goto errout;
2895 
2896 	rtm = nlmsg_data(nlh);
2897 
2898 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2899 	if (skb == NULL) {
2900 		err = -ENOBUFS;
2901 		goto errout;
2902 	}
2903 
2904 	/* Reserve room for dummy headers, this skb can pass
2905 	   through good chunk of routing engine.
2906 	 */
2907 	skb_reset_mac_header(skb);
2908 	skb_reset_network_header(skb);
2909 
2910 	/* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2911 	ip_hdr(skb)->protocol = IPPROTO_ICMP;
2912 	skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2913 
2914 	src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2915 	dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2916 	iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2917 	mark = tb[RTA_MARK] ? nla_get_u32(tb[RTA_MARK]) : 0;
2918 
2919 	if (iif) {
2920 		struct net_device *dev;
2921 
2922 		dev = __dev_get_by_index(net, iif);
2923 		if (dev == NULL) {
2924 			err = -ENODEV;
2925 			goto errout_free;
2926 		}
2927 
2928 		skb->protocol	= htons(ETH_P_IP);
2929 		skb->dev	= dev;
2930 		skb->mark	= mark;
2931 		local_bh_disable();
2932 		err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2933 		local_bh_enable();
2934 
2935 		rt = skb_rtable(skb);
2936 		if (err == 0 && rt->dst.error)
2937 			err = -rt->dst.error;
2938 	} else {
2939 		struct flowi4 fl4 = {
2940 			.daddr = dst,
2941 			.saddr = src,
2942 			.flowi4_tos = rtm->rtm_tos,
2943 			.flowi4_oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2944 			.flowi4_mark = mark,
2945 		};
2946 		rt = ip_route_output_key(net, &fl4);
2947 
2948 		err = 0;
2949 		if (IS_ERR(rt))
2950 			err = PTR_ERR(rt);
2951 	}
2952 
2953 	if (err)
2954 		goto errout_free;
2955 
2956 	skb_dst_set(skb, &rt->dst);
2957 	if (rtm->rtm_flags & RTM_F_NOTIFY)
2958 		rt->rt_flags |= RTCF_NOTIFY;
2959 
2960 	err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2961 			   RTM_NEWROUTE, 0, 0);
2962 	if (err <= 0)
2963 		goto errout_free;
2964 
2965 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2966 errout:
2967 	return err;
2968 
2969 errout_free:
2970 	kfree_skb(skb);
2971 	goto errout;
2972 }
2973 
ip_rt_dump(struct sk_buff * skb,struct netlink_callback * cb)2974 int ip_rt_dump(struct sk_buff *skb,  struct netlink_callback *cb)
2975 {
2976 	struct rtable *rt;
2977 	int h, s_h;
2978 	int idx, s_idx;
2979 	struct net *net;
2980 
2981 	net = sock_net(skb->sk);
2982 
2983 	s_h = cb->args[0];
2984 	if (s_h < 0)
2985 		s_h = 0;
2986 	s_idx = idx = cb->args[1];
2987 	for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
2988 		if (!rt_hash_table[h].chain)
2989 			continue;
2990 		rcu_read_lock_bh();
2991 		for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
2992 		     rt = rcu_dereference_bh(rt->dst.rt_next), idx++) {
2993 			if (!net_eq(dev_net(rt->dst.dev), net) || idx < s_idx)
2994 				continue;
2995 			if (rt_is_expired(rt))
2996 				continue;
2997 			skb_dst_set_noref(skb, &rt->dst);
2998 			if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
2999 					 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3000 					 1, NLM_F_MULTI) <= 0) {
3001 				skb_dst_drop(skb);
3002 				rcu_read_unlock_bh();
3003 				goto done;
3004 			}
3005 			skb_dst_drop(skb);
3006 		}
3007 		rcu_read_unlock_bh();
3008 	}
3009 
3010 done:
3011 	cb->args[0] = h;
3012 	cb->args[1] = idx;
3013 	return skb->len;
3014 }
3015 
ip_rt_multicast_event(struct in_device * in_dev)3016 void ip_rt_multicast_event(struct in_device *in_dev)
3017 {
3018 	rt_cache_flush(dev_net(in_dev->dev), 0);
3019 }
3020 
3021 #ifdef CONFIG_SYSCTL
ipv4_sysctl_rtcache_flush(ctl_table * __ctl,int write,void __user * buffer,size_t * lenp,loff_t * ppos)3022 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3023 					void __user *buffer,
3024 					size_t *lenp, loff_t *ppos)
3025 {
3026 	if (write) {
3027 		int flush_delay;
3028 		ctl_table ctl;
3029 		struct net *net;
3030 
3031 		memcpy(&ctl, __ctl, sizeof(ctl));
3032 		ctl.data = &flush_delay;
3033 		proc_dointvec(&ctl, write, buffer, lenp, ppos);
3034 
3035 		net = (struct net *)__ctl->extra1;
3036 		rt_cache_flush(net, flush_delay);
3037 		return 0;
3038 	}
3039 
3040 	return -EINVAL;
3041 }
3042 
3043 static ctl_table ipv4_route_table[] = {
3044 	{
3045 		.procname	= "gc_thresh",
3046 		.data		= &ipv4_dst_ops.gc_thresh,
3047 		.maxlen		= sizeof(int),
3048 		.mode		= 0644,
3049 		.proc_handler	= proc_dointvec,
3050 	},
3051 	{
3052 		.procname	= "max_size",
3053 		.data		= &ip_rt_max_size,
3054 		.maxlen		= sizeof(int),
3055 		.mode		= 0644,
3056 		.proc_handler	= proc_dointvec,
3057 	},
3058 	{
3059 		/*  Deprecated. Use gc_min_interval_ms */
3060 
3061 		.procname	= "gc_min_interval",
3062 		.data		= &ip_rt_gc_min_interval,
3063 		.maxlen		= sizeof(int),
3064 		.mode		= 0644,
3065 		.proc_handler	= proc_dointvec_jiffies,
3066 	},
3067 	{
3068 		.procname	= "gc_min_interval_ms",
3069 		.data		= &ip_rt_gc_min_interval,
3070 		.maxlen		= sizeof(int),
3071 		.mode		= 0644,
3072 		.proc_handler	= proc_dointvec_ms_jiffies,
3073 	},
3074 	{
3075 		.procname	= "gc_timeout",
3076 		.data		= &ip_rt_gc_timeout,
3077 		.maxlen		= sizeof(int),
3078 		.mode		= 0644,
3079 		.proc_handler	= proc_dointvec_jiffies,
3080 	},
3081 	{
3082 		.procname	= "gc_interval",
3083 		.data		= &ip_rt_gc_interval,
3084 		.maxlen		= sizeof(int),
3085 		.mode		= 0644,
3086 		.proc_handler	= proc_dointvec_jiffies,
3087 	},
3088 	{
3089 		.procname	= "redirect_load",
3090 		.data		= &ip_rt_redirect_load,
3091 		.maxlen		= sizeof(int),
3092 		.mode		= 0644,
3093 		.proc_handler	= proc_dointvec,
3094 	},
3095 	{
3096 		.procname	= "redirect_number",
3097 		.data		= &ip_rt_redirect_number,
3098 		.maxlen		= sizeof(int),
3099 		.mode		= 0644,
3100 		.proc_handler	= proc_dointvec,
3101 	},
3102 	{
3103 		.procname	= "redirect_silence",
3104 		.data		= &ip_rt_redirect_silence,
3105 		.maxlen		= sizeof(int),
3106 		.mode		= 0644,
3107 		.proc_handler	= proc_dointvec,
3108 	},
3109 	{
3110 		.procname	= "error_cost",
3111 		.data		= &ip_rt_error_cost,
3112 		.maxlen		= sizeof(int),
3113 		.mode		= 0644,
3114 		.proc_handler	= proc_dointvec,
3115 	},
3116 	{
3117 		.procname	= "error_burst",
3118 		.data		= &ip_rt_error_burst,
3119 		.maxlen		= sizeof(int),
3120 		.mode		= 0644,
3121 		.proc_handler	= proc_dointvec,
3122 	},
3123 	{
3124 		.procname	= "gc_elasticity",
3125 		.data		= &ip_rt_gc_elasticity,
3126 		.maxlen		= sizeof(int),
3127 		.mode		= 0644,
3128 		.proc_handler	= proc_dointvec,
3129 	},
3130 	{
3131 		.procname	= "mtu_expires",
3132 		.data		= &ip_rt_mtu_expires,
3133 		.maxlen		= sizeof(int),
3134 		.mode		= 0644,
3135 		.proc_handler	= proc_dointvec_jiffies,
3136 	},
3137 	{
3138 		.procname	= "min_pmtu",
3139 		.data		= &ip_rt_min_pmtu,
3140 		.maxlen		= sizeof(int),
3141 		.mode		= 0644,
3142 		.proc_handler	= proc_dointvec,
3143 	},
3144 	{
3145 		.procname	= "min_adv_mss",
3146 		.data		= &ip_rt_min_advmss,
3147 		.maxlen		= sizeof(int),
3148 		.mode		= 0644,
3149 		.proc_handler	= proc_dointvec,
3150 	},
3151 	{ }
3152 };
3153 
3154 static struct ctl_table empty[1];
3155 
3156 static struct ctl_table ipv4_skeleton[] =
3157 {
3158 	{ .procname = "route",
3159 	  .mode = 0555, .child = ipv4_route_table},
3160 	{ .procname = "neigh",
3161 	  .mode = 0555, .child = empty},
3162 	{ }
3163 };
3164 
3165 static __net_initdata struct ctl_path ipv4_path[] = {
3166 	{ .procname = "net", },
3167 	{ .procname = "ipv4", },
3168 	{ },
3169 };
3170 
3171 static struct ctl_table ipv4_route_flush_table[] = {
3172 	{
3173 		.procname	= "flush",
3174 		.maxlen		= sizeof(int),
3175 		.mode		= 0200,
3176 		.proc_handler	= ipv4_sysctl_rtcache_flush,
3177 	},
3178 	{ },
3179 };
3180 
3181 static __net_initdata struct ctl_path ipv4_route_path[] = {
3182 	{ .procname = "net", },
3183 	{ .procname = "ipv4", },
3184 	{ .procname = "route", },
3185 	{ },
3186 };
3187 
sysctl_route_net_init(struct net * net)3188 static __net_init int sysctl_route_net_init(struct net *net)
3189 {
3190 	struct ctl_table *tbl;
3191 
3192 	tbl = ipv4_route_flush_table;
3193 	if (!net_eq(net, &init_net)) {
3194 		tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3195 		if (tbl == NULL)
3196 			goto err_dup;
3197 	}
3198 	tbl[0].extra1 = net;
3199 
3200 	net->ipv4.route_hdr =
3201 		register_net_sysctl_table(net, ipv4_route_path, tbl);
3202 	if (net->ipv4.route_hdr == NULL)
3203 		goto err_reg;
3204 	return 0;
3205 
3206 err_reg:
3207 	if (tbl != ipv4_route_flush_table)
3208 		kfree(tbl);
3209 err_dup:
3210 	return -ENOMEM;
3211 }
3212 
sysctl_route_net_exit(struct net * net)3213 static __net_exit void sysctl_route_net_exit(struct net *net)
3214 {
3215 	struct ctl_table *tbl;
3216 
3217 	tbl = net->ipv4.route_hdr->ctl_table_arg;
3218 	unregister_net_sysctl_table(net->ipv4.route_hdr);
3219 	BUG_ON(tbl == ipv4_route_flush_table);
3220 	kfree(tbl);
3221 }
3222 
3223 static __net_initdata struct pernet_operations sysctl_route_ops = {
3224 	.init = sysctl_route_net_init,
3225 	.exit = sysctl_route_net_exit,
3226 };
3227 #endif
3228 
rt_genid_init(struct net * net)3229 static __net_init int rt_genid_init(struct net *net)
3230 {
3231 	get_random_bytes(&net->ipv4.rt_genid,
3232 			 sizeof(net->ipv4.rt_genid));
3233 	get_random_bytes(&net->ipv4.dev_addr_genid,
3234 			 sizeof(net->ipv4.dev_addr_genid));
3235 	return 0;
3236 }
3237 
3238 static __net_initdata struct pernet_operations rt_genid_ops = {
3239 	.init = rt_genid_init,
3240 };
3241 
3242 
3243 #ifdef CONFIG_IP_ROUTE_CLASSID
3244 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3245 #endif /* CONFIG_IP_ROUTE_CLASSID */
3246 
3247 static __initdata unsigned long rhash_entries;
set_rhash_entries(char * str)3248 static int __init set_rhash_entries(char *str)
3249 {
3250 	if (!str)
3251 		return 0;
3252 	rhash_entries = simple_strtoul(str, &str, 0);
3253 	return 1;
3254 }
3255 __setup("rhash_entries=", set_rhash_entries);
3256 
ip_rt_init(void)3257 int __init ip_rt_init(void)
3258 {
3259 	int rc = 0;
3260 
3261 #ifdef CONFIG_IP_ROUTE_CLASSID
3262 	ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3263 	if (!ip_rt_acct)
3264 		panic("IP: failed to allocate ip_rt_acct\n");
3265 #endif
3266 
3267 	ipv4_dst_ops.kmem_cachep =
3268 		kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3269 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3270 
3271 	ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3272 
3273 	if (dst_entries_init(&ipv4_dst_ops) < 0)
3274 		panic("IP: failed to allocate ipv4_dst_ops counter\n");
3275 
3276 	if (dst_entries_init(&ipv4_dst_blackhole_ops) < 0)
3277 		panic("IP: failed to allocate ipv4_dst_blackhole_ops counter\n");
3278 
3279 	rt_hash_table = (struct rt_hash_bucket *)
3280 		alloc_large_system_hash("IP route cache",
3281 					sizeof(struct rt_hash_bucket),
3282 					rhash_entries,
3283 					(totalram_pages >= 128 * 1024) ?
3284 					15 : 17,
3285 					0,
3286 					&rt_hash_log,
3287 					&rt_hash_mask,
3288 					rhash_entries ? 0 : 512 * 1024);
3289 	memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3290 	rt_hash_lock_init();
3291 
3292 	ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3293 	ip_rt_max_size = (rt_hash_mask + 1) * 16;
3294 
3295 	devinet_init();
3296 	ip_fib_init();
3297 
3298 	if (ip_rt_proc_init())
3299 		printk(KERN_ERR "Unable to create route proc files\n");
3300 #ifdef CONFIG_XFRM
3301 	xfrm_init();
3302 	xfrm4_init(ip_rt_max_size);
3303 #endif
3304 	rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3305 
3306 #ifdef CONFIG_SYSCTL
3307 	register_pernet_subsys(&sysctl_route_ops);
3308 #endif
3309 	register_pernet_subsys(&rt_genid_ops);
3310 	return rc;
3311 }
3312 
3313 #ifdef CONFIG_SYSCTL
3314 /*
3315  * We really need to sanitize the damn ipv4 init order, then all
3316  * this nonsense will go away.
3317  */
ip_static_sysctl_init(void)3318 void __init ip_static_sysctl_init(void)
3319 {
3320 	register_sysctl_paths(ipv4_path, ipv4_skeleton);
3321 }
3322 #endif
3323