1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		IPv4 Forwarding Information Base: FIB frontend.
7  *
8  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <asm/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/capability.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/string.h>
24 #include <linux/socket.h>
25 #include <linux/sockios.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/inetdevice.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_addr.h>
32 #include <linux/if_arp.h>
33 #include <linux/skbuff.h>
34 #include <linux/init.h>
35 #include <linux/list.h>
36 #include <linux/slab.h>
37 
38 #include <net/ip.h>
39 #include <net/protocol.h>
40 #include <net/route.h>
41 #include <net/tcp.h>
42 #include <net/sock.h>
43 #include <net/arp.h>
44 #include <net/ip_fib.h>
45 #include <net/rtnetlink.h>
46 #include <net/xfrm.h>
47 
48 #ifndef CONFIG_IP_MULTIPLE_TABLES
49 
fib4_rules_init(struct net * net)50 static int __net_init fib4_rules_init(struct net *net)
51 {
52 	struct fib_table *local_table, *main_table;
53 
54 	local_table = fib_trie_table(RT_TABLE_LOCAL);
55 	if (local_table == NULL)
56 		return -ENOMEM;
57 
58 	main_table  = fib_trie_table(RT_TABLE_MAIN);
59 	if (main_table == NULL)
60 		goto fail;
61 
62 	hlist_add_head_rcu(&local_table->tb_hlist,
63 				&net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
64 	hlist_add_head_rcu(&main_table->tb_hlist,
65 				&net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
66 	return 0;
67 
68 fail:
69 	kfree(local_table);
70 	return -ENOMEM;
71 }
72 #else
73 
fib_new_table(struct net * net,u32 id)74 struct fib_table *fib_new_table(struct net *net, u32 id)
75 {
76 	struct fib_table *tb;
77 	unsigned int h;
78 
79 	if (id == 0)
80 		id = RT_TABLE_MAIN;
81 	tb = fib_get_table(net, id);
82 	if (tb)
83 		return tb;
84 
85 	tb = fib_trie_table(id);
86 	if (!tb)
87 		return NULL;
88 	h = id & (FIB_TABLE_HASHSZ - 1);
89 	hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
90 	return tb;
91 }
92 
fib_get_table(struct net * net,u32 id)93 struct fib_table *fib_get_table(struct net *net, u32 id)
94 {
95 	struct fib_table *tb;
96 	struct hlist_node *node;
97 	struct hlist_head *head;
98 	unsigned int h;
99 
100 	if (id == 0)
101 		id = RT_TABLE_MAIN;
102 	h = id & (FIB_TABLE_HASHSZ - 1);
103 
104 	rcu_read_lock();
105 	head = &net->ipv4.fib_table_hash[h];
106 	hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
107 		if (tb->tb_id == id) {
108 			rcu_read_unlock();
109 			return tb;
110 		}
111 	}
112 	rcu_read_unlock();
113 	return NULL;
114 }
115 #endif /* CONFIG_IP_MULTIPLE_TABLES */
116 
fib_flush(struct net * net)117 static void fib_flush(struct net *net)
118 {
119 	int flushed = 0;
120 	struct fib_table *tb;
121 	struct hlist_node *node;
122 	struct hlist_head *head;
123 	unsigned int h;
124 
125 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
126 		head = &net->ipv4.fib_table_hash[h];
127 		hlist_for_each_entry(tb, node, head, tb_hlist)
128 			flushed += fib_table_flush(tb);
129 	}
130 
131 	if (flushed)
132 		rt_cache_flush(net, -1);
133 }
134 
135 /*
136  * Find address type as if only "dev" was present in the system. If
137  * on_dev is NULL then all interfaces are taken into consideration.
138  */
__inet_dev_addr_type(struct net * net,const struct net_device * dev,__be32 addr)139 static inline unsigned __inet_dev_addr_type(struct net *net,
140 					    const struct net_device *dev,
141 					    __be32 addr)
142 {
143 	struct flowi4		fl4 = { .daddr = addr };
144 	struct fib_result	res;
145 	unsigned ret = RTN_BROADCAST;
146 	struct fib_table *local_table;
147 
148 	if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
149 		return RTN_BROADCAST;
150 	if (ipv4_is_multicast(addr))
151 		return RTN_MULTICAST;
152 
153 #ifdef CONFIG_IP_MULTIPLE_TABLES
154 	res.r = NULL;
155 #endif
156 
157 	local_table = fib_get_table(net, RT_TABLE_LOCAL);
158 	if (local_table) {
159 		ret = RTN_UNICAST;
160 		rcu_read_lock();
161 		if (!fib_table_lookup(local_table, &fl4, &res, FIB_LOOKUP_NOREF)) {
162 			if (!dev || dev == res.fi->fib_dev)
163 				ret = res.type;
164 		}
165 		rcu_read_unlock();
166 	}
167 	return ret;
168 }
169 
inet_addr_type(struct net * net,__be32 addr)170 unsigned int inet_addr_type(struct net *net, __be32 addr)
171 {
172 	return __inet_dev_addr_type(net, NULL, addr);
173 }
174 EXPORT_SYMBOL(inet_addr_type);
175 
inet_dev_addr_type(struct net * net,const struct net_device * dev,__be32 addr)176 unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
177 				__be32 addr)
178 {
179 	return __inet_dev_addr_type(net, dev, addr);
180 }
181 EXPORT_SYMBOL(inet_dev_addr_type);
182 
183 /* Given (packet source, input interface) and optional (dst, oif, tos):
184  * - (main) check, that source is valid i.e. not broadcast or our local
185  *   address.
186  * - figure out what "logical" interface this packet arrived
187  *   and calculate "specific destination" address.
188  * - check, that packet arrived from expected physical interface.
189  * called with rcu_read_lock()
190  */
fib_validate_source(struct sk_buff * skb,__be32 src,__be32 dst,u8 tos,int oif,struct net_device * dev,__be32 * spec_dst,u32 * itag)191 int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos,
192 			int oif, struct net_device *dev, __be32 *spec_dst,
193 			u32 *itag)
194 {
195 	struct in_device *in_dev;
196 	struct flowi4 fl4;
197 	struct fib_result res;
198 	int no_addr, rpf, accept_local;
199 	bool dev_match;
200 	int ret;
201 	struct net *net;
202 
203 	fl4.flowi4_oif = 0;
204 	fl4.flowi4_iif = oif;
205 	fl4.daddr = src;
206 	fl4.saddr = dst;
207 	fl4.flowi4_tos = tos;
208 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
209 
210 	no_addr = rpf = accept_local = 0;
211 	in_dev = __in_dev_get_rcu(dev);
212 	if (in_dev) {
213 		no_addr = in_dev->ifa_list == NULL;
214 
215 		/* Ignore rp_filter for packets protected by IPsec. */
216 		rpf = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(in_dev);
217 
218 		accept_local = IN_DEV_ACCEPT_LOCAL(in_dev);
219 		fl4.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0;
220 	}
221 
222 	if (in_dev == NULL)
223 		goto e_inval;
224 
225 	net = dev_net(dev);
226 	if (fib_lookup(net, &fl4, &res))
227 		goto last_resort;
228 	if (res.type != RTN_UNICAST) {
229 		if (res.type != RTN_LOCAL || !accept_local)
230 			goto e_inval;
231 	}
232 	*spec_dst = FIB_RES_PREFSRC(net, res);
233 	fib_combine_itag(itag, &res);
234 	dev_match = false;
235 
236 #ifdef CONFIG_IP_ROUTE_MULTIPATH
237 	for (ret = 0; ret < res.fi->fib_nhs; ret++) {
238 		struct fib_nh *nh = &res.fi->fib_nh[ret];
239 
240 		if (nh->nh_dev == dev) {
241 			dev_match = true;
242 			break;
243 		}
244 	}
245 #else
246 	if (FIB_RES_DEV(res) == dev)
247 		dev_match = true;
248 #endif
249 	if (dev_match) {
250 		ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
251 		return ret;
252 	}
253 	if (no_addr)
254 		goto last_resort;
255 	if (rpf == 1)
256 		goto e_rpf;
257 	fl4.flowi4_oif = dev->ifindex;
258 
259 	ret = 0;
260 	if (fib_lookup(net, &fl4, &res) == 0) {
261 		if (res.type == RTN_UNICAST) {
262 			*spec_dst = FIB_RES_PREFSRC(net, res);
263 			ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
264 		}
265 	}
266 	return ret;
267 
268 last_resort:
269 	if (rpf)
270 		goto e_rpf;
271 	*spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
272 	*itag = 0;
273 	return 0;
274 
275 e_inval:
276 	return -EINVAL;
277 e_rpf:
278 	return -EXDEV;
279 }
280 
sk_extract_addr(struct sockaddr * addr)281 static inline __be32 sk_extract_addr(struct sockaddr *addr)
282 {
283 	return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
284 }
285 
put_rtax(struct nlattr * mx,int len,int type,u32 value)286 static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
287 {
288 	struct nlattr *nla;
289 
290 	nla = (struct nlattr *) ((char *) mx + len);
291 	nla->nla_type = type;
292 	nla->nla_len = nla_attr_size(4);
293 	*(u32 *) nla_data(nla) = value;
294 
295 	return len + nla_total_size(4);
296 }
297 
rtentry_to_fib_config(struct net * net,int cmd,struct rtentry * rt,struct fib_config * cfg)298 static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
299 				 struct fib_config *cfg)
300 {
301 	__be32 addr;
302 	int plen;
303 
304 	memset(cfg, 0, sizeof(*cfg));
305 	cfg->fc_nlinfo.nl_net = net;
306 
307 	if (rt->rt_dst.sa_family != AF_INET)
308 		return -EAFNOSUPPORT;
309 
310 	/*
311 	 * Check mask for validity:
312 	 * a) it must be contiguous.
313 	 * b) destination must have all host bits clear.
314 	 * c) if application forgot to set correct family (AF_INET),
315 	 *    reject request unless it is absolutely clear i.e.
316 	 *    both family and mask are zero.
317 	 */
318 	plen = 32;
319 	addr = sk_extract_addr(&rt->rt_dst);
320 	if (!(rt->rt_flags & RTF_HOST)) {
321 		__be32 mask = sk_extract_addr(&rt->rt_genmask);
322 
323 		if (rt->rt_genmask.sa_family != AF_INET) {
324 			if (mask || rt->rt_genmask.sa_family)
325 				return -EAFNOSUPPORT;
326 		}
327 
328 		if (bad_mask(mask, addr))
329 			return -EINVAL;
330 
331 		plen = inet_mask_len(mask);
332 	}
333 
334 	cfg->fc_dst_len = plen;
335 	cfg->fc_dst = addr;
336 
337 	if (cmd != SIOCDELRT) {
338 		cfg->fc_nlflags = NLM_F_CREATE;
339 		cfg->fc_protocol = RTPROT_BOOT;
340 	}
341 
342 	if (rt->rt_metric)
343 		cfg->fc_priority = rt->rt_metric - 1;
344 
345 	if (rt->rt_flags & RTF_REJECT) {
346 		cfg->fc_scope = RT_SCOPE_HOST;
347 		cfg->fc_type = RTN_UNREACHABLE;
348 		return 0;
349 	}
350 
351 	cfg->fc_scope = RT_SCOPE_NOWHERE;
352 	cfg->fc_type = RTN_UNICAST;
353 
354 	if (rt->rt_dev) {
355 		char *colon;
356 		struct net_device *dev;
357 		char devname[IFNAMSIZ];
358 
359 		if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
360 			return -EFAULT;
361 
362 		devname[IFNAMSIZ-1] = 0;
363 		colon = strchr(devname, ':');
364 		if (colon)
365 			*colon = 0;
366 		dev = __dev_get_by_name(net, devname);
367 		if (!dev)
368 			return -ENODEV;
369 		cfg->fc_oif = dev->ifindex;
370 		if (colon) {
371 			struct in_ifaddr *ifa;
372 			struct in_device *in_dev = __in_dev_get_rtnl(dev);
373 			if (!in_dev)
374 				return -ENODEV;
375 			*colon = ':';
376 			for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
377 				if (strcmp(ifa->ifa_label, devname) == 0)
378 					break;
379 			if (ifa == NULL)
380 				return -ENODEV;
381 			cfg->fc_prefsrc = ifa->ifa_local;
382 		}
383 	}
384 
385 	addr = sk_extract_addr(&rt->rt_gateway);
386 	if (rt->rt_gateway.sa_family == AF_INET && addr) {
387 		cfg->fc_gw = addr;
388 		if (rt->rt_flags & RTF_GATEWAY &&
389 		    inet_addr_type(net, addr) == RTN_UNICAST)
390 			cfg->fc_scope = RT_SCOPE_UNIVERSE;
391 	}
392 
393 	if (cmd == SIOCDELRT)
394 		return 0;
395 
396 	if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
397 		return -EINVAL;
398 
399 	if (cfg->fc_scope == RT_SCOPE_NOWHERE)
400 		cfg->fc_scope = RT_SCOPE_LINK;
401 
402 	if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
403 		struct nlattr *mx;
404 		int len = 0;
405 
406 		mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
407 		if (mx == NULL)
408 			return -ENOMEM;
409 
410 		if (rt->rt_flags & RTF_MTU)
411 			len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
412 
413 		if (rt->rt_flags & RTF_WINDOW)
414 			len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
415 
416 		if (rt->rt_flags & RTF_IRTT)
417 			len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
418 
419 		cfg->fc_mx = mx;
420 		cfg->fc_mx_len = len;
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  * Handle IP routing ioctl calls.
428  * These are used to manipulate the routing tables
429  */
ip_rt_ioctl(struct net * net,unsigned int cmd,void __user * arg)430 int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
431 {
432 	struct fib_config cfg;
433 	struct rtentry rt;
434 	int err;
435 
436 	switch (cmd) {
437 	case SIOCADDRT:		/* Add a route */
438 	case SIOCDELRT:		/* Delete a route */
439 		if (!capable(CAP_NET_ADMIN))
440 			return -EPERM;
441 
442 		if (copy_from_user(&rt, arg, sizeof(rt)))
443 			return -EFAULT;
444 
445 		rtnl_lock();
446 		err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
447 		if (err == 0) {
448 			struct fib_table *tb;
449 
450 			if (cmd == SIOCDELRT) {
451 				tb = fib_get_table(net, cfg.fc_table);
452 				if (tb)
453 					err = fib_table_delete(tb, &cfg);
454 				else
455 					err = -ESRCH;
456 			} else {
457 				tb = fib_new_table(net, cfg.fc_table);
458 				if (tb)
459 					err = fib_table_insert(tb, &cfg);
460 				else
461 					err = -ENOBUFS;
462 			}
463 
464 			/* allocated by rtentry_to_fib_config() */
465 			kfree(cfg.fc_mx);
466 		}
467 		rtnl_unlock();
468 		return err;
469 	}
470 	return -EINVAL;
471 }
472 
473 const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
474 	[RTA_DST]		= { .type = NLA_U32 },
475 	[RTA_SRC]		= { .type = NLA_U32 },
476 	[RTA_IIF]		= { .type = NLA_U32 },
477 	[RTA_OIF]		= { .type = NLA_U32 },
478 	[RTA_GATEWAY]		= { .type = NLA_U32 },
479 	[RTA_PRIORITY]		= { .type = NLA_U32 },
480 	[RTA_PREFSRC]		= { .type = NLA_U32 },
481 	[RTA_METRICS]		= { .type = NLA_NESTED },
482 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
483 	[RTA_FLOW]		= { .type = NLA_U32 },
484 };
485 
rtm_to_fib_config(struct net * net,struct sk_buff * skb,struct nlmsghdr * nlh,struct fib_config * cfg)486 static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
487 			     struct nlmsghdr *nlh, struct fib_config *cfg)
488 {
489 	struct nlattr *attr;
490 	int err, remaining;
491 	struct rtmsg *rtm;
492 
493 	err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
494 	if (err < 0)
495 		goto errout;
496 
497 	memset(cfg, 0, sizeof(*cfg));
498 
499 	rtm = nlmsg_data(nlh);
500 	cfg->fc_dst_len = rtm->rtm_dst_len;
501 	cfg->fc_tos = rtm->rtm_tos;
502 	cfg->fc_table = rtm->rtm_table;
503 	cfg->fc_protocol = rtm->rtm_protocol;
504 	cfg->fc_scope = rtm->rtm_scope;
505 	cfg->fc_type = rtm->rtm_type;
506 	cfg->fc_flags = rtm->rtm_flags;
507 	cfg->fc_nlflags = nlh->nlmsg_flags;
508 
509 	cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
510 	cfg->fc_nlinfo.nlh = nlh;
511 	cfg->fc_nlinfo.nl_net = net;
512 
513 	if (cfg->fc_type > RTN_MAX) {
514 		err = -EINVAL;
515 		goto errout;
516 	}
517 
518 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
519 		switch (nla_type(attr)) {
520 		case RTA_DST:
521 			cfg->fc_dst = nla_get_be32(attr);
522 			break;
523 		case RTA_OIF:
524 			cfg->fc_oif = nla_get_u32(attr);
525 			break;
526 		case RTA_GATEWAY:
527 			cfg->fc_gw = nla_get_be32(attr);
528 			break;
529 		case RTA_PRIORITY:
530 			cfg->fc_priority = nla_get_u32(attr);
531 			break;
532 		case RTA_PREFSRC:
533 			cfg->fc_prefsrc = nla_get_be32(attr);
534 			break;
535 		case RTA_METRICS:
536 			cfg->fc_mx = nla_data(attr);
537 			cfg->fc_mx_len = nla_len(attr);
538 			break;
539 		case RTA_MULTIPATH:
540 			cfg->fc_mp = nla_data(attr);
541 			cfg->fc_mp_len = nla_len(attr);
542 			break;
543 		case RTA_FLOW:
544 			cfg->fc_flow = nla_get_u32(attr);
545 			break;
546 		case RTA_TABLE:
547 			cfg->fc_table = nla_get_u32(attr);
548 			break;
549 		}
550 	}
551 
552 	return 0;
553 errout:
554 	return err;
555 }
556 
inet_rtm_delroute(struct sk_buff * skb,struct nlmsghdr * nlh,void * arg)557 static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
558 {
559 	struct net *net = sock_net(skb->sk);
560 	struct fib_config cfg;
561 	struct fib_table *tb;
562 	int err;
563 
564 	err = rtm_to_fib_config(net, skb, nlh, &cfg);
565 	if (err < 0)
566 		goto errout;
567 
568 	tb = fib_get_table(net, cfg.fc_table);
569 	if (tb == NULL) {
570 		err = -ESRCH;
571 		goto errout;
572 	}
573 
574 	err = fib_table_delete(tb, &cfg);
575 errout:
576 	return err;
577 }
578 
inet_rtm_newroute(struct sk_buff * skb,struct nlmsghdr * nlh,void * arg)579 static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
580 {
581 	struct net *net = sock_net(skb->sk);
582 	struct fib_config cfg;
583 	struct fib_table *tb;
584 	int err;
585 
586 	err = rtm_to_fib_config(net, skb, nlh, &cfg);
587 	if (err < 0)
588 		goto errout;
589 
590 	tb = fib_new_table(net, cfg.fc_table);
591 	if (tb == NULL) {
592 		err = -ENOBUFS;
593 		goto errout;
594 	}
595 
596 	err = fib_table_insert(tb, &cfg);
597 errout:
598 	return err;
599 }
600 
inet_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)601 static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
602 {
603 	struct net *net = sock_net(skb->sk);
604 	unsigned int h, s_h;
605 	unsigned int e = 0, s_e;
606 	struct fib_table *tb;
607 	struct hlist_node *node;
608 	struct hlist_head *head;
609 	int dumped = 0;
610 
611 	if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
612 	    ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
613 		return ip_rt_dump(skb, cb);
614 
615 	s_h = cb->args[0];
616 	s_e = cb->args[1];
617 
618 	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
619 		e = 0;
620 		head = &net->ipv4.fib_table_hash[h];
621 		hlist_for_each_entry(tb, node, head, tb_hlist) {
622 			if (e < s_e)
623 				goto next;
624 			if (dumped)
625 				memset(&cb->args[2], 0, sizeof(cb->args) -
626 						 2 * sizeof(cb->args[0]));
627 			if (fib_table_dump(tb, skb, cb) < 0)
628 				goto out;
629 			dumped = 1;
630 next:
631 			e++;
632 		}
633 	}
634 out:
635 	cb->args[1] = e;
636 	cb->args[0] = h;
637 
638 	return skb->len;
639 }
640 
641 /* Prepare and feed intra-kernel routing request.
642  * Really, it should be netlink message, but :-( netlink
643  * can be not configured, so that we feed it directly
644  * to fib engine. It is legal, because all events occur
645  * only when netlink is already locked.
646  */
fib_magic(int cmd,int type,__be32 dst,int dst_len,struct in_ifaddr * ifa)647 static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
648 {
649 	struct net *net = dev_net(ifa->ifa_dev->dev);
650 	struct fib_table *tb;
651 	struct fib_config cfg = {
652 		.fc_protocol = RTPROT_KERNEL,
653 		.fc_type = type,
654 		.fc_dst = dst,
655 		.fc_dst_len = dst_len,
656 		.fc_prefsrc = ifa->ifa_local,
657 		.fc_oif = ifa->ifa_dev->dev->ifindex,
658 		.fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
659 		.fc_nlinfo = {
660 			.nl_net = net,
661 		},
662 	};
663 
664 	if (type == RTN_UNICAST)
665 		tb = fib_new_table(net, RT_TABLE_MAIN);
666 	else
667 		tb = fib_new_table(net, RT_TABLE_LOCAL);
668 
669 	if (tb == NULL)
670 		return;
671 
672 	cfg.fc_table = tb->tb_id;
673 
674 	if (type != RTN_LOCAL)
675 		cfg.fc_scope = RT_SCOPE_LINK;
676 	else
677 		cfg.fc_scope = RT_SCOPE_HOST;
678 
679 	if (cmd == RTM_NEWROUTE)
680 		fib_table_insert(tb, &cfg);
681 	else
682 		fib_table_delete(tb, &cfg);
683 }
684 
fib_add_ifaddr(struct in_ifaddr * ifa)685 void fib_add_ifaddr(struct in_ifaddr *ifa)
686 {
687 	struct in_device *in_dev = ifa->ifa_dev;
688 	struct net_device *dev = in_dev->dev;
689 	struct in_ifaddr *prim = ifa;
690 	__be32 mask = ifa->ifa_mask;
691 	__be32 addr = ifa->ifa_local;
692 	__be32 prefix = ifa->ifa_address & mask;
693 
694 	if (ifa->ifa_flags & IFA_F_SECONDARY) {
695 		prim = inet_ifa_byprefix(in_dev, prefix, mask);
696 		if (prim == NULL) {
697 			pr_warn("%s: bug: prim == NULL\n", __func__);
698 			return;
699 		}
700 	}
701 
702 	fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
703 
704 	if (!(dev->flags & IFF_UP))
705 		return;
706 
707 	/* Add broadcast address, if it is explicitly assigned. */
708 	if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
709 		fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
710 
711 	if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
712 	    (prefix != addr || ifa->ifa_prefixlen < 32)) {
713 		fib_magic(RTM_NEWROUTE,
714 			  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
715 			  prefix, ifa->ifa_prefixlen, prim);
716 
717 		/* Add network specific broadcasts, when it takes a sense */
718 		if (ifa->ifa_prefixlen < 31) {
719 			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
720 			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
721 				  32, prim);
722 		}
723 	}
724 }
725 
726 /* Delete primary or secondary address.
727  * Optionally, on secondary address promotion consider the addresses
728  * from subnet iprim as deleted, even if they are in device list.
729  * In this case the secondary ifa can be in device list.
730  */
fib_del_ifaddr(struct in_ifaddr * ifa,struct in_ifaddr * iprim)731 void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
732 {
733 	struct in_device *in_dev = ifa->ifa_dev;
734 	struct net_device *dev = in_dev->dev;
735 	struct in_ifaddr *ifa1;
736 	struct in_ifaddr *prim = ifa, *prim1 = NULL;
737 	__be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
738 	__be32 any = ifa->ifa_address & ifa->ifa_mask;
739 #define LOCAL_OK	1
740 #define BRD_OK		2
741 #define BRD0_OK		4
742 #define BRD1_OK		8
743 	unsigned ok = 0;
744 	int subnet = 0;		/* Primary network */
745 	int gone = 1;		/* Address is missing */
746 	int same_prefsrc = 0;	/* Another primary with same IP */
747 
748 	if (ifa->ifa_flags & IFA_F_SECONDARY) {
749 		prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
750 		if (prim == NULL) {
751 			pr_warn("%s: bug: prim == NULL\n", __func__);
752 			return;
753 		}
754 		if (iprim && iprim != prim) {
755 			pr_warn("%s: bug: iprim != prim\n", __func__);
756 			return;
757 		}
758 	} else if (!ipv4_is_zeronet(any) &&
759 		   (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
760 		fib_magic(RTM_DELROUTE,
761 			  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
762 			  any, ifa->ifa_prefixlen, prim);
763 		subnet = 1;
764 	}
765 
766 	/* Deletion is more complicated than add.
767 	 * We should take care of not to delete too much :-)
768 	 *
769 	 * Scan address list to be sure that addresses are really gone.
770 	 */
771 
772 	for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
773 		if (ifa1 == ifa) {
774 			/* promotion, keep the IP */
775 			gone = 0;
776 			continue;
777 		}
778 		/* Ignore IFAs from our subnet */
779 		if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
780 		    inet_ifa_match(ifa1->ifa_address, iprim))
781 			continue;
782 
783 		/* Ignore ifa1 if it uses different primary IP (prefsrc) */
784 		if (ifa1->ifa_flags & IFA_F_SECONDARY) {
785 			/* Another address from our subnet? */
786 			if (ifa1->ifa_mask == prim->ifa_mask &&
787 			    inet_ifa_match(ifa1->ifa_address, prim))
788 				prim1 = prim;
789 			else {
790 				/* We reached the secondaries, so
791 				 * same_prefsrc should be determined.
792 				 */
793 				if (!same_prefsrc)
794 					continue;
795 				/* Search new prim1 if ifa1 is not
796 				 * using the current prim1
797 				 */
798 				if (!prim1 ||
799 				    ifa1->ifa_mask != prim1->ifa_mask ||
800 				    !inet_ifa_match(ifa1->ifa_address, prim1))
801 					prim1 = inet_ifa_byprefix(in_dev,
802 							ifa1->ifa_address,
803 							ifa1->ifa_mask);
804 				if (!prim1)
805 					continue;
806 				if (prim1->ifa_local != prim->ifa_local)
807 					continue;
808 			}
809 		} else {
810 			if (prim->ifa_local != ifa1->ifa_local)
811 				continue;
812 			prim1 = ifa1;
813 			if (prim != prim1)
814 				same_prefsrc = 1;
815 		}
816 		if (ifa->ifa_local == ifa1->ifa_local)
817 			ok |= LOCAL_OK;
818 		if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
819 			ok |= BRD_OK;
820 		if (brd == ifa1->ifa_broadcast)
821 			ok |= BRD1_OK;
822 		if (any == ifa1->ifa_broadcast)
823 			ok |= BRD0_OK;
824 		/* primary has network specific broadcasts */
825 		if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
826 			__be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
827 			__be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
828 
829 			if (!ipv4_is_zeronet(any1)) {
830 				if (ifa->ifa_broadcast == brd1 ||
831 				    ifa->ifa_broadcast == any1)
832 					ok |= BRD_OK;
833 				if (brd == brd1 || brd == any1)
834 					ok |= BRD1_OK;
835 				if (any == brd1 || any == any1)
836 					ok |= BRD0_OK;
837 			}
838 		}
839 	}
840 
841 	if (!(ok & BRD_OK))
842 		fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
843 	if (subnet && ifa->ifa_prefixlen < 31) {
844 		if (!(ok & BRD1_OK))
845 			fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
846 		if (!(ok & BRD0_OK))
847 			fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
848 	}
849 	if (!(ok & LOCAL_OK)) {
850 		fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
851 
852 		/* Check, that this local address finally disappeared. */
853 		if (gone &&
854 		    inet_addr_type(dev_net(dev), ifa->ifa_local) != RTN_LOCAL) {
855 			/* And the last, but not the least thing.
856 			 * We must flush stray FIB entries.
857 			 *
858 			 * First of all, we scan fib_info list searching
859 			 * for stray nexthop entries, then ignite fib_flush.
860 			 */
861 			if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local))
862 				fib_flush(dev_net(dev));
863 		}
864 	}
865 #undef LOCAL_OK
866 #undef BRD_OK
867 #undef BRD0_OK
868 #undef BRD1_OK
869 }
870 
nl_fib_lookup(struct fib_result_nl * frn,struct fib_table * tb)871 static void nl_fib_lookup(struct fib_result_nl *frn, struct fib_table *tb)
872 {
873 
874 	struct fib_result       res;
875 	struct flowi4           fl4 = {
876 		.flowi4_mark = frn->fl_mark,
877 		.daddr = frn->fl_addr,
878 		.flowi4_tos = frn->fl_tos,
879 		.flowi4_scope = frn->fl_scope,
880 	};
881 
882 #ifdef CONFIG_IP_MULTIPLE_TABLES
883 	res.r = NULL;
884 #endif
885 
886 	frn->err = -ENOENT;
887 	if (tb) {
888 		local_bh_disable();
889 
890 		frn->tb_id = tb->tb_id;
891 		rcu_read_lock();
892 		frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
893 
894 		if (!frn->err) {
895 			frn->prefixlen = res.prefixlen;
896 			frn->nh_sel = res.nh_sel;
897 			frn->type = res.type;
898 			frn->scope = res.scope;
899 		}
900 		rcu_read_unlock();
901 		local_bh_enable();
902 	}
903 }
904 
nl_fib_input(struct sk_buff * skb)905 static void nl_fib_input(struct sk_buff *skb)
906 {
907 	struct net *net;
908 	struct fib_result_nl *frn;
909 	struct nlmsghdr *nlh;
910 	struct fib_table *tb;
911 	u32 pid;
912 
913 	net = sock_net(skb->sk);
914 	nlh = nlmsg_hdr(skb);
915 	if (skb->len < NLMSG_SPACE(0) || skb->len < nlh->nlmsg_len ||
916 	    nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*frn)))
917 		return;
918 
919 	skb = skb_clone(skb, GFP_KERNEL);
920 	if (skb == NULL)
921 		return;
922 	nlh = nlmsg_hdr(skb);
923 
924 	frn = (struct fib_result_nl *) NLMSG_DATA(nlh);
925 	tb = fib_get_table(net, frn->tb_id_in);
926 
927 	nl_fib_lookup(frn, tb);
928 
929 	pid = NETLINK_CB(skb).pid;      /* pid of sending process */
930 	NETLINK_CB(skb).pid = 0;        /* from kernel */
931 	NETLINK_CB(skb).dst_group = 0;  /* unicast */
932 	netlink_unicast(net->ipv4.fibnl, skb, pid, MSG_DONTWAIT);
933 }
934 
nl_fib_lookup_init(struct net * net)935 static int __net_init nl_fib_lookup_init(struct net *net)
936 {
937 	struct sock *sk;
938 	sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, 0,
939 				   nl_fib_input, NULL, THIS_MODULE);
940 	if (sk == NULL)
941 		return -EAFNOSUPPORT;
942 	net->ipv4.fibnl = sk;
943 	return 0;
944 }
945 
nl_fib_lookup_exit(struct net * net)946 static void nl_fib_lookup_exit(struct net *net)
947 {
948 	netlink_kernel_release(net->ipv4.fibnl);
949 	net->ipv4.fibnl = NULL;
950 }
951 
fib_disable_ip(struct net_device * dev,int force,int delay)952 static void fib_disable_ip(struct net_device *dev, int force, int delay)
953 {
954 	if (fib_sync_down_dev(dev, force))
955 		fib_flush(dev_net(dev));
956 	rt_cache_flush(dev_net(dev), delay);
957 	arp_ifdown(dev);
958 }
959 
fib_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)960 static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
961 {
962 	struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
963 	struct net_device *dev = ifa->ifa_dev->dev;
964 	struct net *net = dev_net(dev);
965 
966 	switch (event) {
967 	case NETDEV_UP:
968 		fib_add_ifaddr(ifa);
969 #ifdef CONFIG_IP_ROUTE_MULTIPATH
970 		fib_sync_up(dev);
971 #endif
972 		atomic_inc(&net->ipv4.dev_addr_genid);
973 		rt_cache_flush(dev_net(dev), -1);
974 		break;
975 	case NETDEV_DOWN:
976 		fib_del_ifaddr(ifa, NULL);
977 		atomic_inc(&net->ipv4.dev_addr_genid);
978 		if (ifa->ifa_dev->ifa_list == NULL) {
979 			/* Last address was deleted from this interface.
980 			 * Disable IP.
981 			 */
982 			fib_disable_ip(dev, 1, 0);
983 		} else {
984 			rt_cache_flush(dev_net(dev), -1);
985 		}
986 		break;
987 	}
988 	return NOTIFY_DONE;
989 }
990 
fib_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)991 static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
992 {
993 	struct net_device *dev = ptr;
994 	struct in_device *in_dev = __in_dev_get_rtnl(dev);
995 	struct net *net = dev_net(dev);
996 
997 	if (event == NETDEV_UNREGISTER) {
998 		fib_disable_ip(dev, 2, -1);
999 		return NOTIFY_DONE;
1000 	}
1001 
1002 	if (!in_dev)
1003 		return NOTIFY_DONE;
1004 
1005 	switch (event) {
1006 	case NETDEV_UP:
1007 		for_ifa(in_dev) {
1008 			fib_add_ifaddr(ifa);
1009 		} endfor_ifa(in_dev);
1010 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1011 		fib_sync_up(dev);
1012 #endif
1013 		atomic_inc(&net->ipv4.dev_addr_genid);
1014 		rt_cache_flush(dev_net(dev), -1);
1015 		break;
1016 	case NETDEV_DOWN:
1017 		fib_disable_ip(dev, 0, 0);
1018 		break;
1019 	case NETDEV_CHANGEMTU:
1020 	case NETDEV_CHANGE:
1021 		rt_cache_flush(dev_net(dev), 0);
1022 		break;
1023 	case NETDEV_UNREGISTER_BATCH:
1024 		/* The batch unregister is only called on the first
1025 		 * device in the list of devices being unregistered.
1026 		 * Therefore we should not pass dev_net(dev) in here.
1027 		 */
1028 		rt_cache_flush_batch(NULL);
1029 		break;
1030 	}
1031 	return NOTIFY_DONE;
1032 }
1033 
1034 static struct notifier_block fib_inetaddr_notifier = {
1035 	.notifier_call = fib_inetaddr_event,
1036 };
1037 
1038 static struct notifier_block fib_netdev_notifier = {
1039 	.notifier_call = fib_netdev_event,
1040 };
1041 
ip_fib_net_init(struct net * net)1042 static int __net_init ip_fib_net_init(struct net *net)
1043 {
1044 	int err;
1045 	size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
1046 
1047 	/* Avoid false sharing : Use at least a full cache line */
1048 	size = max_t(size_t, size, L1_CACHE_BYTES);
1049 
1050 	net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
1051 	if (net->ipv4.fib_table_hash == NULL)
1052 		return -ENOMEM;
1053 
1054 	err = fib4_rules_init(net);
1055 	if (err < 0)
1056 		goto fail;
1057 	return 0;
1058 
1059 fail:
1060 	kfree(net->ipv4.fib_table_hash);
1061 	return err;
1062 }
1063 
ip_fib_net_exit(struct net * net)1064 static void ip_fib_net_exit(struct net *net)
1065 {
1066 	unsigned int i;
1067 
1068 #ifdef CONFIG_IP_MULTIPLE_TABLES
1069 	fib4_rules_exit(net);
1070 #endif
1071 
1072 	rtnl_lock();
1073 	for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
1074 		struct fib_table *tb;
1075 		struct hlist_head *head;
1076 		struct hlist_node *node, *tmp;
1077 
1078 		head = &net->ipv4.fib_table_hash[i];
1079 		hlist_for_each_entry_safe(tb, node, tmp, head, tb_hlist) {
1080 			hlist_del(node);
1081 			fib_table_flush(tb);
1082 			fib_free_table(tb);
1083 		}
1084 	}
1085 	rtnl_unlock();
1086 	kfree(net->ipv4.fib_table_hash);
1087 }
1088 
fib_net_init(struct net * net)1089 static int __net_init fib_net_init(struct net *net)
1090 {
1091 	int error;
1092 
1093 	error = ip_fib_net_init(net);
1094 	if (error < 0)
1095 		goto out;
1096 	error = nl_fib_lookup_init(net);
1097 	if (error < 0)
1098 		goto out_nlfl;
1099 	error = fib_proc_init(net);
1100 	if (error < 0)
1101 		goto out_proc;
1102 out:
1103 	return error;
1104 
1105 out_proc:
1106 	nl_fib_lookup_exit(net);
1107 out_nlfl:
1108 	ip_fib_net_exit(net);
1109 	goto out;
1110 }
1111 
fib_net_exit(struct net * net)1112 static void __net_exit fib_net_exit(struct net *net)
1113 {
1114 	fib_proc_exit(net);
1115 	nl_fib_lookup_exit(net);
1116 	ip_fib_net_exit(net);
1117 }
1118 
1119 static struct pernet_operations fib_net_ops = {
1120 	.init = fib_net_init,
1121 	.exit = fib_net_exit,
1122 };
1123 
ip_fib_init(void)1124 void __init ip_fib_init(void)
1125 {
1126 	rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
1127 	rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
1128 	rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
1129 
1130 	register_pernet_subsys(&fib_net_ops);
1131 	register_netdevice_notifier(&fib_netdev_notifier);
1132 	register_inetaddr_notifier(&fib_inetaddr_notifier);
1133 
1134 	fib_trie_init();
1135 }
1136