1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Version:	$Id: ip_fragment.c,v 1.58.2.1 2002/01/12 07:53:15 davem Exp $
9  *
10  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11  *		Alan Cox <Alan.Cox@linux.org>
12  *
13  * Fixes:
14  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
15  *		David S. Miller :	Begin massive cleanup...
16  *		Andi Kleen	:	Add sysctls.
17  *		xxxx		:	Overlapfrag bug.
18  *		Ultima          :       ip_expire() kernel panic.
19  *		Bill Hawes	:	Frag accounting and evictor fixes.
20  *		John McDonald	:	0 length frag bug.
21  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
22  *		Patrick McHardy :	LRU queue of frag heads for evictor.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/skbuff.h>
30 #include <linux/list.h>
31 #include <linux/ip.h>
32 #include <linux/icmp.h>
33 #include <linux/netdevice.h>
34 #include <linux/jhash.h>
35 #include <linux/random.h>
36 #include <net/sock.h>
37 #include <net/ip.h>
38 #include <net/icmp.h>
39 #include <net/checksum.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/inet.h>
43 #include <linux/netfilter_ipv4.h>
44 
45 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
46  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
47  * as well. Or notify me, at least. --ANK
48  */
49 
50 /* Fragment cache limits. We will commit 256K at one time. Should we
51  * cross that limit we will prune down to 192K. This should cope with
52  * even the most extreme cases without allowing an attacker to measurably
53  * harm machine performance.
54  */
55 int sysctl_ipfrag_high_thresh = 256*1024;
56 int sysctl_ipfrag_low_thresh = 192*1024;
57 
58 /* Important NOTE! Fragment queue must be destroyed before MSL expires.
59  * RFC791 is wrong proposing to prolongate timer each fragment arrival by TTL.
60  */
61 int sysctl_ipfrag_time = IP_FRAG_TIME;
62 
63 struct ipfrag_skb_cb
64 {
65 	struct inet_skb_parm	h;
66 	int			offset;
67 };
68 
69 #define FRAG_CB(skb)	((struct ipfrag_skb_cb*)((skb)->cb))
70 
71 /* Describe an entry in the "incomplete datagrams" queue. */
72 struct ipq {
73 	struct ipq	*next;		/* linked list pointers			*/
74 	struct list_head lru_list;	/* lru list member 			*/
75 	u32		user;
76 	u32		saddr;
77 	u32		daddr;
78 	u16		id;
79 	u8		protocol;
80 	u8		last_in;
81 #define COMPLETE		4
82 #define FIRST_IN		2
83 #define LAST_IN			1
84 
85 	struct sk_buff	*fragments;	/* linked list of received fragments	*/
86 	int		len;		/* total length of original datagram	*/
87 	int		meat;
88 	spinlock_t	lock;
89 	atomic_t	refcnt;
90 	struct timer_list timer;	/* when will this queue expire?		*/
91 	struct ipq	**pprev;
92 	int		iif;
93 	struct timeval	stamp;
94 };
95 
96 /* Hash table. */
97 
98 #define IPQ_HASHSZ	64
99 
100 /* Per-bucket lock is easy to add now. */
101 static struct ipq *ipq_hash[IPQ_HASHSZ];
102 static rwlock_t ipfrag_lock = RW_LOCK_UNLOCKED;
103 static u32 ipfrag_hash_rnd;
104 static LIST_HEAD(ipq_lru_list);
105 int ip_frag_nqueues = 0;
106 
__ipq_unlink(struct ipq * qp)107 static __inline__ void __ipq_unlink(struct ipq *qp)
108 {
109 	if(qp->next)
110 		qp->next->pprev = qp->pprev;
111 	*qp->pprev = qp->next;
112 	list_del(&qp->lru_list);
113 	ip_frag_nqueues--;
114 }
115 
ipq_unlink(struct ipq * ipq)116 static __inline__ void ipq_unlink(struct ipq *ipq)
117 {
118 	write_lock(&ipfrag_lock);
119 	__ipq_unlink(ipq);
120 	write_unlock(&ipfrag_lock);
121 }
122 
ipqhashfn(u16 id,u32 saddr,u32 daddr,u8 prot)123 static unsigned int ipqhashfn(u16 id, u32 saddr, u32 daddr, u8 prot)
124 {
125 	return jhash_3words((u32)id << 16 | prot, saddr, daddr,
126 			    ipfrag_hash_rnd) & (IPQ_HASHSZ - 1);
127 }
128 
129 static struct timer_list ipfrag_secret_timer;
130 int sysctl_ipfrag_secret_interval = 10 * 60 * HZ;
131 
ipfrag_secret_rebuild(unsigned long dummy)132 static void ipfrag_secret_rebuild(unsigned long dummy)
133 {
134 	unsigned long now = jiffies;
135 	int i;
136 
137 	write_lock(&ipfrag_lock);
138 	get_random_bytes(&ipfrag_hash_rnd, sizeof(u32));
139 	for (i = 0; i < IPQ_HASHSZ; i++) {
140 		struct ipq *q;
141 
142 		q = ipq_hash[i];
143 		while (q) {
144 			struct ipq *next = q->next;
145 			unsigned int hval = ipqhashfn(q->id, q->saddr,
146 						      q->daddr, q->protocol);
147 
148 			if (hval != i) {
149 				/* Unlink. */
150 				if (q->next)
151 					q->next->pprev = q->pprev;
152 				*q->pprev = q->next;
153 
154 				/* Relink to new hash chain. */
155 				if ((q->next = ipq_hash[hval]) != NULL)
156 					q->next->pprev = &q->next;
157 				ipq_hash[hval] = q;
158 				q->pprev = &ipq_hash[hval];
159 			}
160 
161 			q = next;
162 		}
163 	}
164 	write_unlock(&ipfrag_lock);
165 
166 	mod_timer(&ipfrag_secret_timer, now + sysctl_ipfrag_secret_interval);
167 }
168 
169 atomic_t ip_frag_mem = ATOMIC_INIT(0);	/* Memory used for fragments */
170 
171 /* Memory Tracking Functions. */
frag_kfree_skb(struct sk_buff * skb,int * work)172 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
173 {
174 	if (work)
175 		*work -= skb->truesize;
176 	atomic_sub(skb->truesize, &ip_frag_mem);
177 	kfree_skb(skb);
178 }
179 
frag_free_queue(struct ipq * qp,int * work)180 static __inline__ void frag_free_queue(struct ipq *qp, int *work)
181 {
182 	if (work)
183 		*work -= sizeof(struct ipq);
184 	atomic_sub(sizeof(struct ipq), &ip_frag_mem);
185 	kfree(qp);
186 }
187 
frag_alloc_queue(void)188 static __inline__ struct ipq *frag_alloc_queue(void)
189 {
190 	struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC);
191 
192 	if(!qp)
193 		return NULL;
194 	atomic_add(sizeof(struct ipq), &ip_frag_mem);
195 	return qp;
196 }
197 
198 
199 /* Destruction primitives. */
200 
201 /* Complete destruction of ipq. */
ip_frag_destroy(struct ipq * qp,int * work)202 static void ip_frag_destroy(struct ipq *qp, int *work)
203 {
204 	struct sk_buff *fp;
205 
206 	BUG_TRAP(qp->last_in&COMPLETE);
207 	BUG_TRAP(del_timer(&qp->timer) == 0);
208 
209 	/* Release all fragment data. */
210 	fp = qp->fragments;
211 	while (fp) {
212 		struct sk_buff *xp = fp->next;
213 
214 		frag_kfree_skb(fp, work);
215 		fp = xp;
216 	}
217 
218 	/* Finally, release the queue descriptor itself. */
219 	frag_free_queue(qp, work);
220 }
221 
ipq_put(struct ipq * ipq,int * work)222 static __inline__ void ipq_put(struct ipq *ipq, int *work)
223 {
224 	if (atomic_dec_and_test(&ipq->refcnt))
225 		ip_frag_destroy(ipq, work);
226 }
227 
228 /* Kill ipq entry. It is not destroyed immediately,
229  * because caller (and someone more) holds reference count.
230  */
ipq_kill(struct ipq * ipq)231 static __inline__ void ipq_kill(struct ipq *ipq)
232 {
233 	if (del_timer(&ipq->timer))
234 		atomic_dec(&ipq->refcnt);
235 
236 	if (!(ipq->last_in & COMPLETE)) {
237 		ipq_unlink(ipq);
238 		atomic_dec(&ipq->refcnt);
239 		ipq->last_in |= COMPLETE;
240 	}
241 }
242 
243 /* Memory limiting on fragments.  Evictor trashes the oldest
244  * fragment queue until we are back under the threshold.
245  */
ip_evictor(void)246 static void ip_evictor(void)
247 {
248 	struct ipq *qp;
249 	struct list_head *tmp;
250 	int work;
251 
252 	work = atomic_read(&ip_frag_mem) - sysctl_ipfrag_low_thresh;
253 	if (work <= 0)
254 		return;
255 
256 	while (work > 0) {
257 		read_lock(&ipfrag_lock);
258 		if (list_empty(&ipq_lru_list)) {
259 			read_unlock(&ipfrag_lock);
260 			return;
261 		}
262 		tmp = ipq_lru_list.next;
263 		qp = list_entry(tmp, struct ipq, lru_list);
264 		atomic_inc(&qp->refcnt);
265 		read_unlock(&ipfrag_lock);
266 
267 		spin_lock(&qp->lock);
268 		if (!(qp->last_in&COMPLETE))
269 			ipq_kill(qp);
270 		spin_unlock(&qp->lock);
271 
272 		ipq_put(qp, &work);
273 		IP_INC_STATS_BH(IpReasmFails);
274 	}
275 }
276 
277 /*
278  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
279  */
ip_expire(unsigned long arg)280 static void ip_expire(unsigned long arg)
281 {
282 	struct ipq *qp = (struct ipq *) arg;
283 
284 	spin_lock(&qp->lock);
285 
286 	if (qp->last_in & COMPLETE)
287 		goto out;
288 
289 	ipq_kill(qp);
290 
291 	IP_INC_STATS_BH(IpReasmTimeout);
292 	IP_INC_STATS_BH(IpReasmFails);
293 
294 	if ((qp->last_in&FIRST_IN) && qp->fragments != NULL) {
295 		struct sk_buff *head = qp->fragments;
296 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
297 		if ((head->dev = dev_get_by_index(qp->iif)) != NULL) {
298 			icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
299 			dev_put(head->dev);
300 		}
301 	}
302 out:
303 	spin_unlock(&qp->lock);
304 	ipq_put(qp, NULL);
305 }
306 
307 /* Creation primitives. */
308 
ip_frag_intern(unsigned int hash,struct ipq * qp_in)309 static struct ipq *ip_frag_intern(unsigned int hash, struct ipq *qp_in)
310 {
311 	struct ipq *qp;
312 
313 	write_lock(&ipfrag_lock);
314 #ifdef CONFIG_SMP
315 	/* With SMP race we have to recheck hash table, because
316 	 * such entry could be created on other cpu, while we
317 	 * promoted read lock to write lock.
318 	 */
319 	for(qp = ipq_hash[hash]; qp; qp = qp->next) {
320 		if(qp->id == qp_in->id		&&
321 		   qp->saddr == qp_in->saddr	&&
322 		   qp->daddr == qp_in->daddr	&&
323 		   qp->protocol == qp_in->protocol &&
324 		   qp->user == qp_in->user) {
325 			atomic_inc(&qp->refcnt);
326 			write_unlock(&ipfrag_lock);
327 			qp_in->last_in |= COMPLETE;
328 			ipq_put(qp_in, NULL);
329 			return qp;
330 		}
331 	}
332 #endif
333 	qp = qp_in;
334 
335 	if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time))
336 		atomic_inc(&qp->refcnt);
337 
338 	atomic_inc(&qp->refcnt);
339 	if((qp->next = ipq_hash[hash]) != NULL)
340 		qp->next->pprev = &qp->next;
341 	ipq_hash[hash] = qp;
342 	qp->pprev = &ipq_hash[hash];
343 	INIT_LIST_HEAD(&qp->lru_list);
344 	list_add_tail(&qp->lru_list, &ipq_lru_list);
345 	ip_frag_nqueues++;
346 	write_unlock(&ipfrag_lock);
347 	return qp;
348 }
349 
350 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
ip_frag_create(unsigned hash,struct iphdr * iph,u32 user)351 static struct ipq *ip_frag_create(unsigned hash, struct iphdr *iph, u32 user)
352 {
353 	struct ipq *qp;
354 
355 	if ((qp = frag_alloc_queue()) == NULL)
356 		goto out_nomem;
357 
358 	qp->protocol = iph->protocol;
359 	qp->last_in = 0;
360 	qp->id = iph->id;
361 	qp->saddr = iph->saddr;
362 	qp->daddr = iph->daddr;
363 	qp->user = user;
364 	qp->len = 0;
365 	qp->meat = 0;
366 	qp->fragments = NULL;
367 	qp->iif = 0;
368 
369 	/* Initialize a timer for this entry. */
370 	init_timer(&qp->timer);
371 	qp->timer.data = (unsigned long) qp;	/* pointer to queue	*/
372 	qp->timer.function = ip_expire;		/* expire function	*/
373 	qp->lock = SPIN_LOCK_UNLOCKED;
374 	atomic_set(&qp->refcnt, 1);
375 
376 	return ip_frag_intern(hash, qp);
377 
378 out_nomem:
379 	NETDEBUG(if (net_ratelimit()) printk(KERN_ERR "ip_frag_create: no memory left !\n"));
380 	return NULL;
381 }
382 
383 /* Find the correct entry in the "incomplete datagrams" queue for
384  * this IP datagram, and create new one, if nothing is found.
385  */
ip_find(struct iphdr * iph,u32 user)386 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
387 {
388 	__u16 id = iph->id;
389 	__u32 saddr = iph->saddr;
390 	__u32 daddr = iph->daddr;
391 	__u8 protocol = iph->protocol;
392 	unsigned int hash = ipqhashfn(id, saddr, daddr, protocol);
393 	struct ipq *qp;
394 
395 	read_lock(&ipfrag_lock);
396 	for(qp = ipq_hash[hash]; qp; qp = qp->next) {
397 		if(qp->id == id		&&
398 		   qp->saddr == saddr	&&
399 		   qp->daddr == daddr	&&
400 		   qp->protocol == protocol &&
401 		   qp->user == user) {
402 			atomic_inc(&qp->refcnt);
403 			read_unlock(&ipfrag_lock);
404 			return qp;
405 		}
406 	}
407 	read_unlock(&ipfrag_lock);
408 
409 	return ip_frag_create(hash, iph, user);
410 }
411 
412 /* Add new segment to existing queue. */
ip_frag_queue(struct ipq * qp,struct sk_buff * skb)413 static void ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
414 {
415 	struct sk_buff *prev, *next;
416 	int flags, offset;
417 	int ihl, end;
418 
419 	if (qp->last_in & COMPLETE)
420 		goto err;
421 
422  	offset = ntohs(skb->nh.iph->frag_off);
423 	flags = offset & ~IP_OFFSET;
424 	offset &= IP_OFFSET;
425 	offset <<= 3;		/* offset is in 8-byte chunks */
426  	ihl = skb->nh.iph->ihl * 4;
427 
428 	/* Determine the position of this fragment. */
429  	end = offset + skb->len - ihl;
430 
431 	/* Is this the final fragment? */
432 	if ((flags & IP_MF) == 0) {
433 		/* If we already have some bits beyond end
434 		 * or have different end, the segment is corrrupted.
435 		 */
436 		if (end < qp->len ||
437 		    ((qp->last_in & LAST_IN) && end != qp->len))
438 			goto err;
439 		qp->last_in |= LAST_IN;
440 		qp->len = end;
441 	} else {
442 		if (end&7) {
443 			end &= ~7;
444 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
445 				skb->ip_summed = CHECKSUM_NONE;
446 		}
447 		if (end > qp->len) {
448 			/* Some bits beyond end -> corruption. */
449 			if (qp->last_in & LAST_IN)
450 				goto err;
451 			qp->len = end;
452 		}
453 	}
454 	if (end == offset)
455 		goto err;
456 
457 	if (pskb_pull(skb, ihl) == NULL)
458 		goto err;
459 	if (pskb_trim(skb, end-offset))
460 		goto err;
461 
462 	/* Find out which fragments are in front and at the back of us
463 	 * in the chain of fragments so far.  We must know where to put
464 	 * this fragment, right?
465 	 */
466 	prev = NULL;
467 	for(next = qp->fragments; next != NULL; next = next->next) {
468 		if (FRAG_CB(next)->offset >= offset)
469 			break;	/* bingo! */
470 		prev = next;
471 	}
472 
473 	/* We found where to put this one.  Check for overlap with
474 	 * preceding fragment, and, if needed, align things so that
475 	 * any overlaps are eliminated.
476 	 */
477 	if (prev) {
478 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
479 
480 		if (i > 0) {
481 			offset += i;
482 			if (end <= offset)
483 				goto err;
484 			if (!pskb_pull(skb, i))
485 				goto err;
486 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
487 				skb->ip_summed = CHECKSUM_NONE;
488 		}
489 	}
490 
491 	while (next && FRAG_CB(next)->offset < end) {
492 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
493 
494 		if (i < next->len) {
495 			/* Eat head of the next overlapped fragment
496 			 * and leave the loop. The next ones cannot overlap.
497 			 */
498 			if (!pskb_pull(next, i))
499 				goto err;
500 			FRAG_CB(next)->offset += i;
501 			qp->meat -= i;
502 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
503 				next->ip_summed = CHECKSUM_NONE;
504 			break;
505 		} else {
506 			struct sk_buff *free_it = next;
507 
508 			/* Old fragmnet is completely overridden with
509 			 * new one drop it.
510 			 */
511 			next = next->next;
512 
513 			if (prev)
514 				prev->next = next;
515 			else
516 				qp->fragments = next;
517 
518 			qp->meat -= free_it->len;
519 			frag_kfree_skb(free_it, NULL);
520 		}
521 	}
522 
523 	FRAG_CB(skb)->offset = offset;
524 
525 	/* Insert this fragment in the chain of fragments. */
526 	skb->next = next;
527 	if (prev)
528 		prev->next = skb;
529 	else
530 		qp->fragments = skb;
531 
532  	if (skb->dev)
533  		qp->iif = skb->dev->ifindex;
534 	skb->dev = NULL;
535 	qp->stamp = skb->stamp;
536 	qp->meat += skb->len;
537 	atomic_add(skb->truesize, &ip_frag_mem);
538 	if (offset == 0)
539 		qp->last_in |= FIRST_IN;
540 
541 	write_lock(&ipfrag_lock);
542 	list_move_tail(&qp->lru_list, &ipq_lru_list);
543 	write_unlock(&ipfrag_lock);
544 
545 	return;
546 
547 err:
548 	kfree_skb(skb);
549 }
550 
551 
552 /* Build a new IP datagram from all its fragments. */
553 
ip_frag_reasm(struct ipq * qp,struct net_device * dev)554 static struct sk_buff *ip_frag_reasm(struct ipq *qp, struct net_device *dev)
555 {
556 	struct iphdr *iph;
557 	struct sk_buff *fp, *head = qp->fragments;
558 	int len;
559 	int ihlen;
560 
561 	ipq_kill(qp);
562 
563 	BUG_TRAP(head != NULL);
564 	BUG_TRAP(FRAG_CB(head)->offset == 0);
565 
566 	/* Allocate a new buffer for the datagram. */
567 	ihlen = head->nh.iph->ihl*4;
568 	len = ihlen + qp->len;
569 
570 	if(len > 65535)
571 		goto out_oversize;
572 
573 	/* Head of list must not be cloned. */
574 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
575 		goto out_nomem;
576 
577 	/* If the first fragment is fragmented itself, we split
578 	 * it to two chunks: the first with data and paged part
579 	 * and the second, holding only fragments. */
580 	if (skb_shinfo(head)->frag_list) {
581 		struct sk_buff *clone;
582 		int i, plen = 0;
583 
584 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
585 			goto out_nomem;
586 		clone->next = head->next;
587 		head->next = clone;
588 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
589 		skb_shinfo(head)->frag_list = NULL;
590 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
591 			plen += skb_shinfo(head)->frags[i].size;
592 		clone->len = clone->data_len = head->data_len - plen;
593 		head->data_len -= clone->len;
594 		head->len -= clone->len;
595 		clone->csum = 0;
596 		clone->ip_summed = head->ip_summed;
597 		atomic_add(clone->truesize, &ip_frag_mem);
598 	}
599 
600 	skb_shinfo(head)->frag_list = head->next;
601 	skb_push(head, head->data - head->nh.raw);
602 	atomic_sub(head->truesize, &ip_frag_mem);
603 
604 	for (fp=head->next; fp; fp = fp->next) {
605 		head->data_len += fp->len;
606 		head->len += fp->len;
607 		if (head->ip_summed != fp->ip_summed)
608 			head->ip_summed = CHECKSUM_NONE;
609 		else if (head->ip_summed == CHECKSUM_HW)
610 			head->csum = csum_add(head->csum, fp->csum);
611 		head->truesize += fp->truesize;
612 		atomic_sub(fp->truesize, &ip_frag_mem);
613 	}
614 
615 	head->next = NULL;
616 	head->dev = dev;
617 	head->stamp = qp->stamp;
618 
619 	iph = head->nh.iph;
620 	iph->frag_off = 0;
621 	iph->tot_len = htons(len);
622 	IP_INC_STATS_BH(IpReasmOKs);
623 	qp->fragments = NULL;
624 	return head;
625 
626 out_nomem:
627  	NETDEBUG(if (net_ratelimit())
628 	         printk(KERN_ERR
629 			"IP: queue_glue: no memory for gluing queue %p\n",
630 			qp));
631 	goto out_fail;
632 out_oversize:
633 	if (net_ratelimit())
634 		printk(KERN_INFO
635 			"Oversized IP packet from %d.%d.%d.%d.\n",
636 			NIPQUAD(qp->saddr));
637 out_fail:
638 	IP_INC_STATS_BH(IpReasmFails);
639 	return NULL;
640 }
641 
642 /* Process an incoming IP datagram fragment. */
ip_defrag(struct sk_buff * skb,u32 user)643 struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user)
644 {
645 	struct iphdr *iph = skb->nh.iph;
646 	struct ipq *qp;
647 	struct net_device *dev;
648 
649 	IP_INC_STATS_BH(IpReasmReqds);
650 
651 	/* Start by cleaning up the memory. */
652 	if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh)
653 		ip_evictor();
654 
655 	dev = skb->dev;
656 
657 	/* Lookup (or create) queue header */
658 	if ((qp = ip_find(iph, user)) != NULL) {
659 		struct sk_buff *ret = NULL;
660 
661 		spin_lock(&qp->lock);
662 
663 		ip_frag_queue(qp, skb);
664 
665 		if (qp->last_in == (FIRST_IN|LAST_IN) &&
666 		    qp->meat == qp->len)
667 			ret = ip_frag_reasm(qp, dev);
668 
669 		spin_unlock(&qp->lock);
670 		ipq_put(qp, NULL);
671 		return ret;
672 	}
673 
674 	IP_INC_STATS_BH(IpReasmFails);
675 	kfree_skb(skb);
676 	return NULL;
677 }
678 
ipfrag_init(void)679 void ipfrag_init(void)
680 {
681 	ipfrag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
682 				 (jiffies ^ (jiffies >> 6)));
683 
684 	init_timer(&ipfrag_secret_timer);
685 	ipfrag_secret_timer.function = ipfrag_secret_rebuild;
686 	ipfrag_secret_timer.expires = jiffies + sysctl_ipfrag_secret_interval;
687 	add_timer(&ipfrag_secret_timer);
688 }
689