1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79
80 #include <uapi/linux/io_uring.h>
81
82 #include "io-wq.h"
83
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95
96 #include "timeout.h"
97 #include "poll.h"
98 #include "rw.h"
99 #include "alloc_cache.h"
100
101 #define IORING_MAX_ENTRIES 32768
102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
103
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 REQ_F_ASYNC_DATA)
116
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 IO_REQ_CLEAN_FLAGS)
119
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
121
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124
125 enum {
126 IO_CHECK_CQ_OVERFLOW_BIT,
127 IO_CHECK_CQ_DROPPED_BIT,
128 };
129
130 enum {
131 IO_EVENTFD_OP_SIGNAL_BIT,
132 IO_EVENTFD_OP_FREE_BIT,
133 };
134
135 struct io_defer_entry {
136 struct list_head list;
137 struct io_kiocb *req;
138 u32 seq;
139 };
140
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 struct task_struct *task,
147 bool cancel_all);
148
149 static void io_queue_sqe(struct io_kiocb *req);
150
151 struct kmem_cache *req_cachep;
152
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 {
159 .procname = "io_uring_disabled",
160 .data = &sysctl_io_uring_disabled,
161 .maxlen = sizeof(sysctl_io_uring_disabled),
162 .mode = 0644,
163 .proc_handler = proc_dointvec_minmax,
164 .extra1 = SYSCTL_ZERO,
165 .extra2 = SYSCTL_TWO,
166 },
167 {
168 .procname = "io_uring_group",
169 .data = &sysctl_io_uring_group,
170 .maxlen = sizeof(gid_t),
171 .mode = 0644,
172 .proc_handler = proc_dointvec,
173 },
174 {},
175 };
176 #endif
177
io_uring_get_socket(struct file * file)178 struct sock *io_uring_get_socket(struct file *file)
179 {
180 #if defined(CONFIG_UNIX)
181 if (io_is_uring_fops(file)) {
182 struct io_ring_ctx *ctx = file->private_data;
183
184 return ctx->ring_sock->sk;
185 }
186 #endif
187 return NULL;
188 }
189 EXPORT_SYMBOL(io_uring_get_socket);
190
io_submit_flush_completions(struct io_ring_ctx * ctx)191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
192 {
193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
194 ctx->submit_state.cqes_count)
195 __io_submit_flush_completions(ctx);
196 }
197
__io_cqring_events(struct io_ring_ctx * ctx)198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
199 {
200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
201 }
202
__io_cqring_events_user(struct io_ring_ctx * ctx)203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
204 {
205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
206 }
207
io_match_linked(struct io_kiocb * head)208 static bool io_match_linked(struct io_kiocb *head)
209 {
210 struct io_kiocb *req;
211
212 io_for_each_link(req, head) {
213 if (req->flags & REQ_F_INFLIGHT)
214 return true;
215 }
216 return false;
217 }
218
219 /*
220 * As io_match_task() but protected against racing with linked timeouts.
221 * User must not hold timeout_lock.
222 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
224 bool cancel_all)
225 {
226 bool matched;
227
228 if (task && head->task != task)
229 return false;
230 if (cancel_all)
231 return true;
232
233 if (head->flags & REQ_F_LINK_TIMEOUT) {
234 struct io_ring_ctx *ctx = head->ctx;
235
236 /* protect against races with linked timeouts */
237 spin_lock_irq(&ctx->timeout_lock);
238 matched = io_match_linked(head);
239 spin_unlock_irq(&ctx->timeout_lock);
240 } else {
241 matched = io_match_linked(head);
242 }
243 return matched;
244 }
245
req_fail_link_node(struct io_kiocb * req,int res)246 static inline void req_fail_link_node(struct io_kiocb *req, int res)
247 {
248 req_set_fail(req);
249 io_req_set_res(req, res, 0);
250 }
251
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
253 {
254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
255 }
256
io_ring_ctx_ref_free(struct percpu_ref * ref)257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
258 {
259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
260
261 complete(&ctx->ref_comp);
262 }
263
io_fallback_req_func(struct work_struct * work)264 static __cold void io_fallback_req_func(struct work_struct *work)
265 {
266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
267 fallback_work.work);
268 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
269 struct io_kiocb *req, *tmp;
270 struct io_tw_state ts = { .locked = true, };
271
272 percpu_ref_get(&ctx->refs);
273 mutex_lock(&ctx->uring_lock);
274 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
275 req->io_task_work.func(req, &ts);
276 if (WARN_ON_ONCE(!ts.locked))
277 return;
278 io_submit_flush_completions(ctx);
279 mutex_unlock(&ctx->uring_lock);
280 percpu_ref_put(&ctx->refs);
281 }
282
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)283 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
284 {
285 unsigned hash_buckets = 1U << bits;
286 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
287
288 table->hbs = kmalloc(hash_size, GFP_KERNEL);
289 if (!table->hbs)
290 return -ENOMEM;
291
292 table->hash_bits = bits;
293 init_hash_table(table, hash_buckets);
294 return 0;
295 }
296
io_ring_ctx_alloc(struct io_uring_params * p)297 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
298 {
299 struct io_ring_ctx *ctx;
300 int hash_bits;
301
302 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
303 if (!ctx)
304 return NULL;
305
306 xa_init(&ctx->io_bl_xa);
307
308 /*
309 * Use 5 bits less than the max cq entries, that should give us around
310 * 32 entries per hash list if totally full and uniformly spread, but
311 * don't keep too many buckets to not overconsume memory.
312 */
313 hash_bits = ilog2(p->cq_entries) - 5;
314 hash_bits = clamp(hash_bits, 1, 8);
315 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
316 goto err;
317 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
318 goto err;
319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 0, GFP_KERNEL))
321 goto err;
322
323 ctx->flags = p->flags;
324 init_waitqueue_head(&ctx->sqo_sq_wait);
325 INIT_LIST_HEAD(&ctx->sqd_list);
326 INIT_LIST_HEAD(&ctx->cq_overflow_list);
327 INIT_LIST_HEAD(&ctx->io_buffers_cache);
328 INIT_HLIST_HEAD(&ctx->io_buf_list);
329 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
330 sizeof(struct io_rsrc_node));
331 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
332 sizeof(struct async_poll));
333 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
334 sizeof(struct io_async_msghdr));
335 init_completion(&ctx->ref_comp);
336 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
337 mutex_init(&ctx->uring_lock);
338 init_waitqueue_head(&ctx->cq_wait);
339 init_waitqueue_head(&ctx->poll_wq);
340 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
341 spin_lock_init(&ctx->completion_lock);
342 spin_lock_init(&ctx->timeout_lock);
343 INIT_WQ_LIST(&ctx->iopoll_list);
344 INIT_LIST_HEAD(&ctx->io_buffers_pages);
345 INIT_LIST_HEAD(&ctx->io_buffers_comp);
346 INIT_LIST_HEAD(&ctx->defer_list);
347 INIT_LIST_HEAD(&ctx->timeout_list);
348 INIT_LIST_HEAD(&ctx->ltimeout_list);
349 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
350 init_llist_head(&ctx->work_llist);
351 INIT_LIST_HEAD(&ctx->tctx_list);
352 ctx->submit_state.free_list.next = NULL;
353 INIT_WQ_LIST(&ctx->locked_free_list);
354 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
355 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
356 return ctx;
357 err:
358 kfree(ctx->cancel_table.hbs);
359 kfree(ctx->cancel_table_locked.hbs);
360 kfree(ctx->io_bl);
361 xa_destroy(&ctx->io_bl_xa);
362 kfree(ctx);
363 return NULL;
364 }
365
io_account_cq_overflow(struct io_ring_ctx * ctx)366 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
367 {
368 struct io_rings *r = ctx->rings;
369
370 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
371 ctx->cq_extra--;
372 }
373
req_need_defer(struct io_kiocb * req,u32 seq)374 static bool req_need_defer(struct io_kiocb *req, u32 seq)
375 {
376 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
377 struct io_ring_ctx *ctx = req->ctx;
378
379 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
380 }
381
382 return false;
383 }
384
io_clean_op(struct io_kiocb * req)385 static void io_clean_op(struct io_kiocb *req)
386 {
387 if (req->flags & REQ_F_BUFFER_SELECTED) {
388 spin_lock(&req->ctx->completion_lock);
389 io_put_kbuf_comp(req);
390 spin_unlock(&req->ctx->completion_lock);
391 }
392
393 if (req->flags & REQ_F_NEED_CLEANUP) {
394 const struct io_cold_def *def = &io_cold_defs[req->opcode];
395
396 if (def->cleanup)
397 def->cleanup(req);
398 }
399 if ((req->flags & REQ_F_POLLED) && req->apoll) {
400 kfree(req->apoll->double_poll);
401 kfree(req->apoll);
402 req->apoll = NULL;
403 }
404 if (req->flags & REQ_F_INFLIGHT) {
405 struct io_uring_task *tctx = req->task->io_uring;
406
407 atomic_dec(&tctx->inflight_tracked);
408 }
409 if (req->flags & REQ_F_CREDS)
410 put_cred(req->creds);
411 if (req->flags & REQ_F_ASYNC_DATA) {
412 kfree(req->async_data);
413 req->async_data = NULL;
414 }
415 req->flags &= ~IO_REQ_CLEAN_FLAGS;
416 }
417
io_req_track_inflight(struct io_kiocb * req)418 static inline void io_req_track_inflight(struct io_kiocb *req)
419 {
420 if (!(req->flags & REQ_F_INFLIGHT)) {
421 req->flags |= REQ_F_INFLIGHT;
422 atomic_inc(&req->task->io_uring->inflight_tracked);
423 }
424 }
425
__io_prep_linked_timeout(struct io_kiocb * req)426 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 if (WARN_ON_ONCE(!req->link))
429 return NULL;
430
431 req->flags &= ~REQ_F_ARM_LTIMEOUT;
432 req->flags |= REQ_F_LINK_TIMEOUT;
433
434 /* linked timeouts should have two refs once prep'ed */
435 io_req_set_refcount(req);
436 __io_req_set_refcount(req->link, 2);
437 return req->link;
438 }
439
io_prep_linked_timeout(struct io_kiocb * req)440 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
441 {
442 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
443 return NULL;
444 return __io_prep_linked_timeout(req);
445 }
446
__io_arm_ltimeout(struct io_kiocb * req)447 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
448 {
449 io_queue_linked_timeout(__io_prep_linked_timeout(req));
450 }
451
io_arm_ltimeout(struct io_kiocb * req)452 static inline void io_arm_ltimeout(struct io_kiocb *req)
453 {
454 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
455 __io_arm_ltimeout(req);
456 }
457
io_prep_async_work(struct io_kiocb * req)458 static void io_prep_async_work(struct io_kiocb *req)
459 {
460 const struct io_issue_def *def = &io_issue_defs[req->opcode];
461 struct io_ring_ctx *ctx = req->ctx;
462
463 if (!(req->flags & REQ_F_CREDS)) {
464 req->flags |= REQ_F_CREDS;
465 req->creds = get_current_cred();
466 }
467
468 req->work.list.next = NULL;
469 req->work.flags = 0;
470 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
471 if (req->flags & REQ_F_FORCE_ASYNC)
472 req->work.flags |= IO_WQ_WORK_CONCURRENT;
473
474 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
475 req->flags |= io_file_get_flags(req->file);
476
477 if (req->file && (req->flags & REQ_F_ISREG)) {
478 bool should_hash = def->hash_reg_file;
479
480 /* don't serialize this request if the fs doesn't need it */
481 if (should_hash && (req->file->f_flags & O_DIRECT) &&
482 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
483 should_hash = false;
484 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
485 io_wq_hash_work(&req->work, file_inode(req->file));
486 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
487 if (def->unbound_nonreg_file)
488 req->work.flags |= IO_WQ_WORK_UNBOUND;
489 }
490 }
491
io_prep_async_link(struct io_kiocb * req)492 static void io_prep_async_link(struct io_kiocb *req)
493 {
494 struct io_kiocb *cur;
495
496 if (req->flags & REQ_F_LINK_TIMEOUT) {
497 struct io_ring_ctx *ctx = req->ctx;
498
499 spin_lock_irq(&ctx->timeout_lock);
500 io_for_each_link(cur, req)
501 io_prep_async_work(cur);
502 spin_unlock_irq(&ctx->timeout_lock);
503 } else {
504 io_for_each_link(cur, req)
505 io_prep_async_work(cur);
506 }
507 }
508
io_queue_iowq(struct io_kiocb * req,struct io_tw_state * ts_dont_use)509 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
510 {
511 struct io_kiocb *link = io_prep_linked_timeout(req);
512 struct io_uring_task *tctx = req->task->io_uring;
513
514 BUG_ON(!tctx);
515 BUG_ON(!tctx->io_wq);
516
517 /* init ->work of the whole link before punting */
518 io_prep_async_link(req);
519
520 /*
521 * Not expected to happen, but if we do have a bug where this _can_
522 * happen, catch it here and ensure the request is marked as
523 * canceled. That will make io-wq go through the usual work cancel
524 * procedure rather than attempt to run this request (or create a new
525 * worker for it).
526 */
527 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
528 req->work.flags |= IO_WQ_WORK_CANCEL;
529
530 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
531 io_wq_enqueue(tctx->io_wq, &req->work);
532 if (link)
533 io_queue_linked_timeout(link);
534 }
535
io_queue_deferred(struct io_ring_ctx * ctx)536 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
537 {
538 while (!list_empty(&ctx->defer_list)) {
539 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
540 struct io_defer_entry, list);
541
542 if (req_need_defer(de->req, de->seq))
543 break;
544 list_del_init(&de->list);
545 io_req_task_queue(de->req);
546 kfree(de);
547 }
548 }
549
550
io_eventfd_ops(struct rcu_head * rcu)551 static void io_eventfd_ops(struct rcu_head *rcu)
552 {
553 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
554 int ops = atomic_xchg(&ev_fd->ops, 0);
555
556 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
557 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
558
559 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
560 * ordering in a race but if references are 0 we know we have to free
561 * it regardless.
562 */
563 if (atomic_dec_and_test(&ev_fd->refs)) {
564 eventfd_ctx_put(ev_fd->cq_ev_fd);
565 kfree(ev_fd);
566 }
567 }
568
io_eventfd_signal(struct io_ring_ctx * ctx)569 static void io_eventfd_signal(struct io_ring_ctx *ctx)
570 {
571 struct io_ev_fd *ev_fd = NULL;
572
573 rcu_read_lock();
574 /*
575 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
576 * and eventfd_signal
577 */
578 ev_fd = rcu_dereference(ctx->io_ev_fd);
579
580 /*
581 * Check again if ev_fd exists incase an io_eventfd_unregister call
582 * completed between the NULL check of ctx->io_ev_fd at the start of
583 * the function and rcu_read_lock.
584 */
585 if (unlikely(!ev_fd))
586 goto out;
587 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
588 goto out;
589 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
590 goto out;
591
592 if (likely(eventfd_signal_allowed())) {
593 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
594 } else {
595 atomic_inc(&ev_fd->refs);
596 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
597 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
598 else
599 atomic_dec(&ev_fd->refs);
600 }
601
602 out:
603 rcu_read_unlock();
604 }
605
io_eventfd_flush_signal(struct io_ring_ctx * ctx)606 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
607 {
608 bool skip;
609
610 spin_lock(&ctx->completion_lock);
611
612 /*
613 * Eventfd should only get triggered when at least one event has been
614 * posted. Some applications rely on the eventfd notification count
615 * only changing IFF a new CQE has been added to the CQ ring. There's
616 * no depedency on 1:1 relationship between how many times this
617 * function is called (and hence the eventfd count) and number of CQEs
618 * posted to the CQ ring.
619 */
620 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
621 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
622 spin_unlock(&ctx->completion_lock);
623 if (skip)
624 return;
625
626 io_eventfd_signal(ctx);
627 }
628
__io_commit_cqring_flush(struct io_ring_ctx * ctx)629 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
630 {
631 if (ctx->poll_activated)
632 io_poll_wq_wake(ctx);
633 if (ctx->off_timeout_used)
634 io_flush_timeouts(ctx);
635 if (ctx->drain_active) {
636 spin_lock(&ctx->completion_lock);
637 io_queue_deferred(ctx);
638 spin_unlock(&ctx->completion_lock);
639 }
640 if (ctx->has_evfd)
641 io_eventfd_flush_signal(ctx);
642 }
643
__io_cq_lock(struct io_ring_ctx * ctx)644 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
645 {
646 if (!ctx->lockless_cq)
647 spin_lock(&ctx->completion_lock);
648 }
649
io_cq_lock(struct io_ring_ctx * ctx)650 static inline void io_cq_lock(struct io_ring_ctx *ctx)
651 __acquires(ctx->completion_lock)
652 {
653 spin_lock(&ctx->completion_lock);
654 }
655
__io_cq_unlock_post(struct io_ring_ctx * ctx)656 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
657 {
658 io_commit_cqring(ctx);
659 if (!ctx->task_complete) {
660 if (!ctx->lockless_cq)
661 spin_unlock(&ctx->completion_lock);
662 /* IOPOLL rings only need to wake up if it's also SQPOLL */
663 if (!ctx->syscall_iopoll)
664 io_cqring_wake(ctx);
665 }
666 io_commit_cqring_flush(ctx);
667 }
668
io_cq_unlock_post(struct io_ring_ctx * ctx)669 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
670 __releases(ctx->completion_lock)
671 {
672 io_commit_cqring(ctx);
673 spin_unlock(&ctx->completion_lock);
674 io_cqring_wake(ctx);
675 io_commit_cqring_flush(ctx);
676 }
677
678 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)679 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
680 {
681 struct io_overflow_cqe *ocqe;
682 LIST_HEAD(list);
683
684 spin_lock(&ctx->completion_lock);
685 list_splice_init(&ctx->cq_overflow_list, &list);
686 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
687 spin_unlock(&ctx->completion_lock);
688
689 while (!list_empty(&list)) {
690 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
691 list_del(&ocqe->list);
692 kfree(ocqe);
693 }
694 }
695
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)696 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
697 {
698 size_t cqe_size = sizeof(struct io_uring_cqe);
699
700 if (__io_cqring_events(ctx) == ctx->cq_entries)
701 return;
702
703 if (ctx->flags & IORING_SETUP_CQE32)
704 cqe_size <<= 1;
705
706 io_cq_lock(ctx);
707 while (!list_empty(&ctx->cq_overflow_list)) {
708 struct io_uring_cqe *cqe;
709 struct io_overflow_cqe *ocqe;
710
711 if (!io_get_cqe_overflow(ctx, &cqe, true))
712 break;
713 ocqe = list_first_entry(&ctx->cq_overflow_list,
714 struct io_overflow_cqe, list);
715 memcpy(cqe, &ocqe->cqe, cqe_size);
716 list_del(&ocqe->list);
717 kfree(ocqe);
718 }
719
720 if (list_empty(&ctx->cq_overflow_list)) {
721 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
722 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
723 }
724 io_cq_unlock_post(ctx);
725 }
726
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)727 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
728 {
729 /* iopoll syncs against uring_lock, not completion_lock */
730 if (ctx->flags & IORING_SETUP_IOPOLL)
731 mutex_lock(&ctx->uring_lock);
732 __io_cqring_overflow_flush(ctx);
733 if (ctx->flags & IORING_SETUP_IOPOLL)
734 mutex_unlock(&ctx->uring_lock);
735 }
736
io_cqring_overflow_flush(struct io_ring_ctx * ctx)737 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
738 {
739 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
740 io_cqring_do_overflow_flush(ctx);
741 }
742
743 /* can be called by any task */
io_put_task_remote(struct task_struct * task)744 static void io_put_task_remote(struct task_struct *task)
745 {
746 struct io_uring_task *tctx = task->io_uring;
747
748 percpu_counter_sub(&tctx->inflight, 1);
749 if (unlikely(atomic_read(&tctx->in_cancel)))
750 wake_up(&tctx->wait);
751 put_task_struct(task);
752 }
753
754 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)755 static void io_put_task_local(struct task_struct *task)
756 {
757 task->io_uring->cached_refs++;
758 }
759
760 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)761 static inline void io_put_task(struct task_struct *task)
762 {
763 if (likely(task == current))
764 io_put_task_local(task);
765 else
766 io_put_task_remote(task);
767 }
768
io_task_refs_refill(struct io_uring_task * tctx)769 void io_task_refs_refill(struct io_uring_task *tctx)
770 {
771 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
772
773 percpu_counter_add(&tctx->inflight, refill);
774 refcount_add(refill, ¤t->usage);
775 tctx->cached_refs += refill;
776 }
777
io_uring_drop_tctx_refs(struct task_struct * task)778 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
779 {
780 struct io_uring_task *tctx = task->io_uring;
781 unsigned int refs = tctx->cached_refs;
782
783 if (refs) {
784 tctx->cached_refs = 0;
785 percpu_counter_sub(&tctx->inflight, refs);
786 put_task_struct_many(task, refs);
787 }
788 }
789
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)790 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
791 s32 res, u32 cflags, u64 extra1, u64 extra2)
792 {
793 struct io_overflow_cqe *ocqe;
794 size_t ocq_size = sizeof(struct io_overflow_cqe);
795 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
796
797 lockdep_assert_held(&ctx->completion_lock);
798
799 if (is_cqe32)
800 ocq_size += sizeof(struct io_uring_cqe);
801
802 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
803 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
804 if (!ocqe) {
805 /*
806 * If we're in ring overflow flush mode, or in task cancel mode,
807 * or cannot allocate an overflow entry, then we need to drop it
808 * on the floor.
809 */
810 io_account_cq_overflow(ctx);
811 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
812 return false;
813 }
814 if (list_empty(&ctx->cq_overflow_list)) {
815 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
816 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
817
818 }
819 ocqe->cqe.user_data = user_data;
820 ocqe->cqe.res = res;
821 ocqe->cqe.flags = cflags;
822 if (is_cqe32) {
823 ocqe->cqe.big_cqe[0] = extra1;
824 ocqe->cqe.big_cqe[1] = extra2;
825 }
826 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
827 return true;
828 }
829
io_req_cqe_overflow(struct io_kiocb * req)830 void io_req_cqe_overflow(struct io_kiocb *req)
831 {
832 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
833 req->cqe.res, req->cqe.flags,
834 req->big_cqe.extra1, req->big_cqe.extra2);
835 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
836 }
837
838 /*
839 * writes to the cq entry need to come after reading head; the
840 * control dependency is enough as we're using WRITE_ONCE to
841 * fill the cq entry
842 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)843 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
844 {
845 struct io_rings *rings = ctx->rings;
846 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
847 unsigned int free, queued, len;
848
849 /*
850 * Posting into the CQ when there are pending overflowed CQEs may break
851 * ordering guarantees, which will affect links, F_MORE users and more.
852 * Force overflow the completion.
853 */
854 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
855 return false;
856
857 /* userspace may cheat modifying the tail, be safe and do min */
858 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
859 free = ctx->cq_entries - queued;
860 /* we need a contiguous range, limit based on the current array offset */
861 len = min(free, ctx->cq_entries - off);
862 if (!len)
863 return false;
864
865 if (ctx->flags & IORING_SETUP_CQE32) {
866 off <<= 1;
867 len <<= 1;
868 }
869
870 ctx->cqe_cached = &rings->cqes[off];
871 ctx->cqe_sentinel = ctx->cqe_cached + len;
872 return true;
873 }
874
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)875 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
876 u32 cflags)
877 {
878 struct io_uring_cqe *cqe;
879
880 ctx->cq_extra++;
881
882 /*
883 * If we can't get a cq entry, userspace overflowed the
884 * submission (by quite a lot). Increment the overflow count in
885 * the ring.
886 */
887 if (likely(io_get_cqe(ctx, &cqe))) {
888 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
889
890 WRITE_ONCE(cqe->user_data, user_data);
891 WRITE_ONCE(cqe->res, res);
892 WRITE_ONCE(cqe->flags, cflags);
893
894 if (ctx->flags & IORING_SETUP_CQE32) {
895 WRITE_ONCE(cqe->big_cqe[0], 0);
896 WRITE_ONCE(cqe->big_cqe[1], 0);
897 }
898 return true;
899 }
900 return false;
901 }
902
__io_flush_post_cqes(struct io_ring_ctx * ctx)903 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
904 __must_hold(&ctx->uring_lock)
905 {
906 struct io_submit_state *state = &ctx->submit_state;
907 unsigned int i;
908
909 lockdep_assert_held(&ctx->uring_lock);
910 for (i = 0; i < state->cqes_count; i++) {
911 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
912
913 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
914 if (ctx->lockless_cq) {
915 spin_lock(&ctx->completion_lock);
916 io_cqring_event_overflow(ctx, cqe->user_data,
917 cqe->res, cqe->flags, 0, 0);
918 spin_unlock(&ctx->completion_lock);
919 } else {
920 io_cqring_event_overflow(ctx, cqe->user_data,
921 cqe->res, cqe->flags, 0, 0);
922 }
923 }
924 }
925 state->cqes_count = 0;
926 }
927
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)928 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
929 bool allow_overflow)
930 {
931 bool filled;
932
933 io_cq_lock(ctx);
934 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
935 if (!filled && allow_overflow)
936 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
937
938 io_cq_unlock_post(ctx);
939 return filled;
940 }
941
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)942 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
943 {
944 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
945 }
946
947 /*
948 * A helper for multishot requests posting additional CQEs.
949 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
950 */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)951 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
952 {
953 struct io_ring_ctx *ctx = req->ctx;
954 u64 user_data = req->cqe.user_data;
955 struct io_uring_cqe *cqe;
956
957 if (!defer)
958 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
959
960 lockdep_assert_held(&ctx->uring_lock);
961
962 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
963 __io_cq_lock(ctx);
964 __io_flush_post_cqes(ctx);
965 /* no need to flush - flush is deferred */
966 __io_cq_unlock_post(ctx);
967 }
968
969 /* For defered completions this is not as strict as it is otherwise,
970 * however it's main job is to prevent unbounded posted completions,
971 * and in that it works just as well.
972 */
973 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
974 return false;
975
976 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
977 cqe->user_data = user_data;
978 cqe->res = res;
979 cqe->flags = cflags;
980 return true;
981 }
982
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)983 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
984 {
985 struct io_ring_ctx *ctx = req->ctx;
986 struct io_rsrc_node *rsrc_node = NULL;
987
988 io_cq_lock(ctx);
989 if (!(req->flags & REQ_F_CQE_SKIP)) {
990 if (!io_fill_cqe_req(ctx, req))
991 io_req_cqe_overflow(req);
992 }
993
994 /*
995 * If we're the last reference to this request, add to our locked
996 * free_list cache.
997 */
998 if (req_ref_put_and_test(req)) {
999 if (req->flags & IO_REQ_LINK_FLAGS) {
1000 if (req->flags & IO_DISARM_MASK)
1001 io_disarm_next(req);
1002 if (req->link) {
1003 io_req_task_queue(req->link);
1004 req->link = NULL;
1005 }
1006 }
1007 io_put_kbuf_comp(req);
1008 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1009 io_clean_op(req);
1010 io_put_file(req);
1011
1012 rsrc_node = req->rsrc_node;
1013 /*
1014 * Selected buffer deallocation in io_clean_op() assumes that
1015 * we don't hold ->completion_lock. Clean them here to avoid
1016 * deadlocks.
1017 */
1018 io_put_task_remote(req->task);
1019 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1020 ctx->locked_free_nr++;
1021 }
1022 io_cq_unlock_post(ctx);
1023
1024 if (rsrc_node) {
1025 io_ring_submit_lock(ctx, issue_flags);
1026 io_put_rsrc_node(ctx, rsrc_node);
1027 io_ring_submit_unlock(ctx, issue_flags);
1028 }
1029 }
1030
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1031 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1032 {
1033 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1034 req->io_task_work.func = io_req_task_complete;
1035 io_req_task_work_add(req);
1036 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1037 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1038 __io_req_complete_post(req, issue_flags);
1039 } else {
1040 struct io_ring_ctx *ctx = req->ctx;
1041
1042 mutex_lock(&ctx->uring_lock);
1043 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1044 mutex_unlock(&ctx->uring_lock);
1045 }
1046 }
1047
io_req_defer_failed(struct io_kiocb * req,s32 res)1048 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1049 __must_hold(&ctx->uring_lock)
1050 {
1051 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1052
1053 lockdep_assert_held(&req->ctx->uring_lock);
1054
1055 req_set_fail(req);
1056 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1057 if (def->fail)
1058 def->fail(req);
1059 io_req_complete_defer(req);
1060 }
1061
1062 /*
1063 * Don't initialise the fields below on every allocation, but do that in
1064 * advance and keep them valid across allocations.
1065 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1066 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1067 {
1068 req->ctx = ctx;
1069 req->link = NULL;
1070 req->async_data = NULL;
1071 /* not necessary, but safer to zero */
1072 memset(&req->cqe, 0, sizeof(req->cqe));
1073 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1074 }
1075
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1076 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1077 struct io_submit_state *state)
1078 {
1079 spin_lock(&ctx->completion_lock);
1080 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1081 ctx->locked_free_nr = 0;
1082 spin_unlock(&ctx->completion_lock);
1083 }
1084
1085 /*
1086 * A request might get retired back into the request caches even before opcode
1087 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1088 * Because of that, io_alloc_req() should be called only under ->uring_lock
1089 * and with extra caution to not get a request that is still worked on.
1090 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1091 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1092 __must_hold(&ctx->uring_lock)
1093 {
1094 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1095 void *reqs[IO_REQ_ALLOC_BATCH];
1096 int ret, i;
1097
1098 /*
1099 * If we have more than a batch's worth of requests in our IRQ side
1100 * locked cache, grab the lock and move them over to our submission
1101 * side cache.
1102 */
1103 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1104 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1105 if (!io_req_cache_empty(ctx))
1106 return true;
1107 }
1108
1109 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1110
1111 /*
1112 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1113 * retry single alloc to be on the safe side.
1114 */
1115 if (unlikely(ret <= 0)) {
1116 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1117 if (!reqs[0])
1118 return false;
1119 ret = 1;
1120 }
1121
1122 percpu_ref_get_many(&ctx->refs, ret);
1123 for (i = 0; i < ret; i++) {
1124 struct io_kiocb *req = reqs[i];
1125
1126 io_preinit_req(req, ctx);
1127 io_req_add_to_cache(req, ctx);
1128 }
1129 return true;
1130 }
1131
io_free_req(struct io_kiocb * req)1132 __cold void io_free_req(struct io_kiocb *req)
1133 {
1134 /* refs were already put, restore them for io_req_task_complete() */
1135 req->flags &= ~REQ_F_REFCOUNT;
1136 /* we only want to free it, don't post CQEs */
1137 req->flags |= REQ_F_CQE_SKIP;
1138 req->io_task_work.func = io_req_task_complete;
1139 io_req_task_work_add(req);
1140 }
1141
__io_req_find_next_prep(struct io_kiocb * req)1142 static void __io_req_find_next_prep(struct io_kiocb *req)
1143 {
1144 struct io_ring_ctx *ctx = req->ctx;
1145
1146 spin_lock(&ctx->completion_lock);
1147 io_disarm_next(req);
1148 spin_unlock(&ctx->completion_lock);
1149 }
1150
io_req_find_next(struct io_kiocb * req)1151 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1152 {
1153 struct io_kiocb *nxt;
1154
1155 /*
1156 * If LINK is set, we have dependent requests in this chain. If we
1157 * didn't fail this request, queue the first one up, moving any other
1158 * dependencies to the next request. In case of failure, fail the rest
1159 * of the chain.
1160 */
1161 if (unlikely(req->flags & IO_DISARM_MASK))
1162 __io_req_find_next_prep(req);
1163 nxt = req->link;
1164 req->link = NULL;
1165 return nxt;
1166 }
1167
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1169 {
1170 if (!ctx)
1171 return;
1172 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1173 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1174 if (ts->locked) {
1175 io_submit_flush_completions(ctx);
1176 mutex_unlock(&ctx->uring_lock);
1177 ts->locked = false;
1178 }
1179 percpu_ref_put(&ctx->refs);
1180 }
1181
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts,struct llist_node * last)1182 static unsigned int handle_tw_list(struct llist_node *node,
1183 struct io_ring_ctx **ctx,
1184 struct io_tw_state *ts,
1185 struct llist_node *last)
1186 {
1187 unsigned int count = 0;
1188
1189 while (node && node != last) {
1190 struct llist_node *next = node->next;
1191 struct io_kiocb *req = container_of(node, struct io_kiocb,
1192 io_task_work.node);
1193
1194 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1195
1196 if (req->ctx != *ctx) {
1197 ctx_flush_and_put(*ctx, ts);
1198 *ctx = req->ctx;
1199 /* if not contended, grab and improve batching */
1200 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1201 percpu_ref_get(&(*ctx)->refs);
1202 }
1203 INDIRECT_CALL_2(req->io_task_work.func,
1204 io_poll_task_func, io_req_rw_complete,
1205 req, ts);
1206 node = next;
1207 count++;
1208 if (unlikely(need_resched())) {
1209 ctx_flush_and_put(*ctx, ts);
1210 *ctx = NULL;
1211 cond_resched();
1212 }
1213 }
1214
1215 return count;
1216 }
1217
1218 /**
1219 * io_llist_xchg - swap all entries in a lock-less list
1220 * @head: the head of lock-less list to delete all entries
1221 * @new: new entry as the head of the list
1222 *
1223 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1224 * The order of entries returned is from the newest to the oldest added one.
1225 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1226 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1227 struct llist_node *new)
1228 {
1229 return xchg(&head->first, new);
1230 }
1231
1232 /**
1233 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1234 * @head: the head of lock-less list to delete all entries
1235 * @old: expected old value of the first entry of the list
1236 * @new: new entry as the head of the list
1237 *
1238 * perform a cmpxchg on the first entry of the list.
1239 */
1240
io_llist_cmpxchg(struct llist_head * head,struct llist_node * old,struct llist_node * new)1241 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1242 struct llist_node *old,
1243 struct llist_node *new)
1244 {
1245 return cmpxchg(&head->first, old, new);
1246 }
1247
io_fallback_tw(struct io_uring_task * tctx,bool sync)1248 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1249 {
1250 struct llist_node *node = llist_del_all(&tctx->task_list);
1251 struct io_ring_ctx *last_ctx = NULL;
1252 struct io_kiocb *req;
1253
1254 while (node) {
1255 req = container_of(node, struct io_kiocb, io_task_work.node);
1256 node = node->next;
1257 if (sync && last_ctx != req->ctx) {
1258 if (last_ctx) {
1259 flush_delayed_work(&last_ctx->fallback_work);
1260 percpu_ref_put(&last_ctx->refs);
1261 }
1262 last_ctx = req->ctx;
1263 percpu_ref_get(&last_ctx->refs);
1264 }
1265 if (llist_add(&req->io_task_work.node,
1266 &req->ctx->fallback_llist))
1267 schedule_delayed_work(&req->ctx->fallback_work, 1);
1268 }
1269
1270 if (last_ctx) {
1271 flush_delayed_work(&last_ctx->fallback_work);
1272 percpu_ref_put(&last_ctx->refs);
1273 }
1274 }
1275
tctx_task_work(struct callback_head * cb)1276 void tctx_task_work(struct callback_head *cb)
1277 {
1278 struct io_tw_state ts = {};
1279 struct io_ring_ctx *ctx = NULL;
1280 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1281 task_work);
1282 struct llist_node fake = {};
1283 struct llist_node *node;
1284 unsigned int loops = 0;
1285 unsigned int count = 0;
1286
1287 if (unlikely(current->flags & PF_EXITING)) {
1288 io_fallback_tw(tctx, true);
1289 return;
1290 }
1291
1292 do {
1293 loops++;
1294 node = io_llist_xchg(&tctx->task_list, &fake);
1295 count += handle_tw_list(node, &ctx, &ts, &fake);
1296
1297 /* skip expensive cmpxchg if there are items in the list */
1298 if (READ_ONCE(tctx->task_list.first) != &fake)
1299 continue;
1300 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1301 io_submit_flush_completions(ctx);
1302 if (READ_ONCE(tctx->task_list.first) != &fake)
1303 continue;
1304 }
1305 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1306 } while (node != &fake);
1307
1308 ctx_flush_and_put(ctx, &ts);
1309
1310 /* relaxed read is enough as only the task itself sets ->in_cancel */
1311 if (unlikely(atomic_read(&tctx->in_cancel)))
1312 io_uring_drop_tctx_refs(current);
1313
1314 trace_io_uring_task_work_run(tctx, count, loops);
1315 }
1316
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1317 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1318 {
1319 struct io_ring_ctx *ctx = req->ctx;
1320 unsigned nr_wait, nr_tw, nr_tw_prev;
1321 struct llist_node *first;
1322
1323 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1324 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1325
1326 first = READ_ONCE(ctx->work_llist.first);
1327 do {
1328 nr_tw_prev = 0;
1329 if (first) {
1330 struct io_kiocb *first_req = container_of(first,
1331 struct io_kiocb,
1332 io_task_work.node);
1333 /*
1334 * Might be executed at any moment, rely on
1335 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1336 */
1337 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1338 }
1339 nr_tw = nr_tw_prev + 1;
1340 /* Large enough to fail the nr_wait comparison below */
1341 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1342 nr_tw = INT_MAX;
1343
1344 req->nr_tw = nr_tw;
1345 req->io_task_work.node.next = first;
1346 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1347 &req->io_task_work.node));
1348
1349 if (!first) {
1350 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1351 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1352 if (ctx->has_evfd)
1353 io_eventfd_signal(ctx);
1354 }
1355
1356 nr_wait = atomic_read(&ctx->cq_wait_nr);
1357 /* no one is waiting */
1358 if (!nr_wait)
1359 return;
1360 /* either not enough or the previous add has already woken it up */
1361 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1362 return;
1363 /* pairs with set_current_state() in io_cqring_wait() */
1364 smp_mb__after_atomic();
1365 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1366 }
1367
io_req_normal_work_add(struct io_kiocb * req)1368 static void io_req_normal_work_add(struct io_kiocb *req)
1369 {
1370 struct io_uring_task *tctx = req->task->io_uring;
1371 struct io_ring_ctx *ctx = req->ctx;
1372
1373 /* task_work already pending, we're done */
1374 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1375 return;
1376
1377 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1378 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1379
1380 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1381 return;
1382
1383 io_fallback_tw(tctx, false);
1384 }
1385
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1386 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1387 {
1388 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1389 rcu_read_lock();
1390 io_req_local_work_add(req, flags);
1391 rcu_read_unlock();
1392 } else {
1393 io_req_normal_work_add(req);
1394 }
1395 }
1396
io_move_task_work_from_local(struct io_ring_ctx * ctx)1397 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1398 {
1399 struct llist_node *node;
1400
1401 node = llist_del_all(&ctx->work_llist);
1402 while (node) {
1403 struct io_kiocb *req = container_of(node, struct io_kiocb,
1404 io_task_work.node);
1405
1406 node = node->next;
1407 io_req_normal_work_add(req);
1408 }
1409 }
1410
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts)1411 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1412 {
1413 struct llist_node *node;
1414 unsigned int loops = 0;
1415 int ret = 0;
1416
1417 if (WARN_ON_ONCE(ctx->submitter_task != current))
1418 return -EEXIST;
1419 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1420 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1421 again:
1422 /*
1423 * llists are in reverse order, flip it back the right way before
1424 * running the pending items.
1425 */
1426 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1427 while (node) {
1428 struct llist_node *next = node->next;
1429 struct io_kiocb *req = container_of(node, struct io_kiocb,
1430 io_task_work.node);
1431 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1432 INDIRECT_CALL_2(req->io_task_work.func,
1433 io_poll_task_func, io_req_rw_complete,
1434 req, ts);
1435 ret++;
1436 node = next;
1437 }
1438 loops++;
1439
1440 if (!llist_empty(&ctx->work_llist))
1441 goto again;
1442 if (ts->locked) {
1443 io_submit_flush_completions(ctx);
1444 if (!llist_empty(&ctx->work_llist))
1445 goto again;
1446 }
1447 trace_io_uring_local_work_run(ctx, ret, loops);
1448 return ret;
1449 }
1450
io_run_local_work_locked(struct io_ring_ctx * ctx)1451 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1452 {
1453 struct io_tw_state ts = { .locked = true, };
1454 int ret;
1455
1456 if (llist_empty(&ctx->work_llist))
1457 return 0;
1458
1459 ret = __io_run_local_work(ctx, &ts);
1460 /* shouldn't happen! */
1461 if (WARN_ON_ONCE(!ts.locked))
1462 mutex_lock(&ctx->uring_lock);
1463 return ret;
1464 }
1465
io_run_local_work(struct io_ring_ctx * ctx)1466 static int io_run_local_work(struct io_ring_ctx *ctx)
1467 {
1468 struct io_tw_state ts = {};
1469 int ret;
1470
1471 ts.locked = mutex_trylock(&ctx->uring_lock);
1472 ret = __io_run_local_work(ctx, &ts);
1473 if (ts.locked)
1474 mutex_unlock(&ctx->uring_lock);
1475
1476 return ret;
1477 }
1478
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1479 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1480 {
1481 io_tw_lock(req->ctx, ts);
1482 io_req_defer_failed(req, req->cqe.res);
1483 }
1484
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1485 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1486 {
1487 io_tw_lock(req->ctx, ts);
1488 /* req->task == current here, checking PF_EXITING is safe */
1489 if (unlikely(req->task->flags & PF_EXITING))
1490 io_req_defer_failed(req, -EFAULT);
1491 else if (req->flags & REQ_F_FORCE_ASYNC)
1492 io_queue_iowq(req, ts);
1493 else
1494 io_queue_sqe(req);
1495 }
1496
io_req_task_queue_fail(struct io_kiocb * req,int ret)1497 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1498 {
1499 io_req_set_res(req, ret, 0);
1500 req->io_task_work.func = io_req_task_cancel;
1501 io_req_task_work_add(req);
1502 }
1503
io_req_task_queue(struct io_kiocb * req)1504 void io_req_task_queue(struct io_kiocb *req)
1505 {
1506 req->io_task_work.func = io_req_task_submit;
1507 io_req_task_work_add(req);
1508 }
1509
io_queue_next(struct io_kiocb * req)1510 void io_queue_next(struct io_kiocb *req)
1511 {
1512 struct io_kiocb *nxt = io_req_find_next(req);
1513
1514 if (nxt)
1515 io_req_task_queue(nxt);
1516 }
1517
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1518 static void io_free_batch_list(struct io_ring_ctx *ctx,
1519 struct io_wq_work_node *node)
1520 __must_hold(&ctx->uring_lock)
1521 {
1522 do {
1523 struct io_kiocb *req = container_of(node, struct io_kiocb,
1524 comp_list);
1525
1526 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1527 if (req->flags & REQ_F_REFCOUNT) {
1528 node = req->comp_list.next;
1529 if (!req_ref_put_and_test(req))
1530 continue;
1531 }
1532 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1533 struct async_poll *apoll = req->apoll;
1534
1535 if (apoll->double_poll)
1536 kfree(apoll->double_poll);
1537 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1538 kfree(apoll);
1539 req->flags &= ~REQ_F_POLLED;
1540 }
1541 if (req->flags & IO_REQ_LINK_FLAGS)
1542 io_queue_next(req);
1543 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1544 io_clean_op(req);
1545 }
1546 io_put_file(req);
1547
1548 io_req_put_rsrc_locked(req, ctx);
1549
1550 io_put_task(req->task);
1551 node = req->comp_list.next;
1552 io_req_add_to_cache(req, ctx);
1553 } while (node);
1554 }
1555
__io_submit_flush_completions(struct io_ring_ctx * ctx)1556 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1557 __must_hold(&ctx->uring_lock)
1558 {
1559 struct io_submit_state *state = &ctx->submit_state;
1560 struct io_wq_work_node *node;
1561
1562 __io_cq_lock(ctx);
1563 /* must come first to preserve CQE ordering in failure cases */
1564 if (state->cqes_count)
1565 __io_flush_post_cqes(ctx);
1566 __wq_list_for_each(node, &state->compl_reqs) {
1567 struct io_kiocb *req = container_of(node, struct io_kiocb,
1568 comp_list);
1569
1570 if (!(req->flags & REQ_F_CQE_SKIP) &&
1571 unlikely(!io_fill_cqe_req(ctx, req))) {
1572 if (ctx->lockless_cq) {
1573 spin_lock(&ctx->completion_lock);
1574 io_req_cqe_overflow(req);
1575 spin_unlock(&ctx->completion_lock);
1576 } else {
1577 io_req_cqe_overflow(req);
1578 }
1579 }
1580 }
1581 __io_cq_unlock_post(ctx);
1582
1583 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1584 io_free_batch_list(ctx, state->compl_reqs.first);
1585 INIT_WQ_LIST(&state->compl_reqs);
1586 }
1587 }
1588
io_cqring_events(struct io_ring_ctx * ctx)1589 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1590 {
1591 /* See comment at the top of this file */
1592 smp_rmb();
1593 return __io_cqring_events(ctx);
1594 }
1595
1596 /*
1597 * We can't just wait for polled events to come to us, we have to actively
1598 * find and complete them.
1599 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1600 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1601 {
1602 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1603 return;
1604
1605 mutex_lock(&ctx->uring_lock);
1606 while (!wq_list_empty(&ctx->iopoll_list)) {
1607 /* let it sleep and repeat later if can't complete a request */
1608 if (io_do_iopoll(ctx, true) == 0)
1609 break;
1610 /*
1611 * Ensure we allow local-to-the-cpu processing to take place,
1612 * in this case we need to ensure that we reap all events.
1613 * Also let task_work, etc. to progress by releasing the mutex
1614 */
1615 if (need_resched()) {
1616 mutex_unlock(&ctx->uring_lock);
1617 cond_resched();
1618 mutex_lock(&ctx->uring_lock);
1619 }
1620 }
1621 mutex_unlock(&ctx->uring_lock);
1622 }
1623
io_iopoll_check(struct io_ring_ctx * ctx,long min)1624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1625 {
1626 unsigned int nr_events = 0;
1627 unsigned long check_cq;
1628
1629 if (!io_allowed_run_tw(ctx))
1630 return -EEXIST;
1631
1632 check_cq = READ_ONCE(ctx->check_cq);
1633 if (unlikely(check_cq)) {
1634 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1635 __io_cqring_overflow_flush(ctx);
1636 /*
1637 * Similarly do not spin if we have not informed the user of any
1638 * dropped CQE.
1639 */
1640 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1641 return -EBADR;
1642 }
1643 /*
1644 * Don't enter poll loop if we already have events pending.
1645 * If we do, we can potentially be spinning for commands that
1646 * already triggered a CQE (eg in error).
1647 */
1648 if (io_cqring_events(ctx))
1649 return 0;
1650
1651 do {
1652 int ret = 0;
1653
1654 /*
1655 * If a submit got punted to a workqueue, we can have the
1656 * application entering polling for a command before it gets
1657 * issued. That app will hold the uring_lock for the duration
1658 * of the poll right here, so we need to take a breather every
1659 * now and then to ensure that the issue has a chance to add
1660 * the poll to the issued list. Otherwise we can spin here
1661 * forever, while the workqueue is stuck trying to acquire the
1662 * very same mutex.
1663 */
1664 if (wq_list_empty(&ctx->iopoll_list) ||
1665 io_task_work_pending(ctx)) {
1666 u32 tail = ctx->cached_cq_tail;
1667
1668 (void) io_run_local_work_locked(ctx);
1669
1670 if (task_work_pending(current) ||
1671 wq_list_empty(&ctx->iopoll_list)) {
1672 mutex_unlock(&ctx->uring_lock);
1673 io_run_task_work();
1674 mutex_lock(&ctx->uring_lock);
1675 }
1676 /* some requests don't go through iopoll_list */
1677 if (tail != ctx->cached_cq_tail ||
1678 wq_list_empty(&ctx->iopoll_list))
1679 break;
1680 }
1681 ret = io_do_iopoll(ctx, !min);
1682 if (unlikely(ret < 0))
1683 return ret;
1684
1685 if (task_sigpending(current))
1686 return -EINTR;
1687 if (need_resched())
1688 break;
1689
1690 nr_events += ret;
1691 } while (nr_events < min);
1692
1693 return 0;
1694 }
1695
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1696 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1697 {
1698 if (ts->locked)
1699 io_req_complete_defer(req);
1700 else
1701 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1702 }
1703
1704 /*
1705 * After the iocb has been issued, it's safe to be found on the poll list.
1706 * Adding the kiocb to the list AFTER submission ensures that we don't
1707 * find it from a io_do_iopoll() thread before the issuer is done
1708 * accessing the kiocb cookie.
1709 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1710 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1711 {
1712 struct io_ring_ctx *ctx = req->ctx;
1713 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1714
1715 /* workqueue context doesn't hold uring_lock, grab it now */
1716 if (unlikely(needs_lock))
1717 mutex_lock(&ctx->uring_lock);
1718
1719 /*
1720 * Track whether we have multiple files in our lists. This will impact
1721 * how we do polling eventually, not spinning if we're on potentially
1722 * different devices.
1723 */
1724 if (wq_list_empty(&ctx->iopoll_list)) {
1725 ctx->poll_multi_queue = false;
1726 } else if (!ctx->poll_multi_queue) {
1727 struct io_kiocb *list_req;
1728
1729 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1730 comp_list);
1731 if (list_req->file != req->file)
1732 ctx->poll_multi_queue = true;
1733 }
1734
1735 /*
1736 * For fast devices, IO may have already completed. If it has, add
1737 * it to the front so we find it first.
1738 */
1739 if (READ_ONCE(req->iopoll_completed))
1740 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1741 else
1742 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1743
1744 if (unlikely(needs_lock)) {
1745 /*
1746 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1747 * in sq thread task context or in io worker task context. If
1748 * current task context is sq thread, we don't need to check
1749 * whether should wake up sq thread.
1750 */
1751 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1752 wq_has_sleeper(&ctx->sq_data->wait))
1753 wake_up(&ctx->sq_data->wait);
1754
1755 mutex_unlock(&ctx->uring_lock);
1756 }
1757 }
1758
io_file_get_flags(struct file * file)1759 unsigned int io_file_get_flags(struct file *file)
1760 {
1761 unsigned int res = 0;
1762
1763 if (S_ISREG(file_inode(file)->i_mode))
1764 res |= REQ_F_ISREG;
1765 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1766 res |= REQ_F_SUPPORT_NOWAIT;
1767 return res;
1768 }
1769
io_alloc_async_data(struct io_kiocb * req)1770 bool io_alloc_async_data(struct io_kiocb *req)
1771 {
1772 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1773 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1774 if (req->async_data) {
1775 req->flags |= REQ_F_ASYNC_DATA;
1776 return false;
1777 }
1778 return true;
1779 }
1780
io_req_prep_async(struct io_kiocb * req)1781 int io_req_prep_async(struct io_kiocb *req)
1782 {
1783 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1784 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1785
1786 /* assign early for deferred execution for non-fixed file */
1787 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1788 req->file = io_file_get_normal(req, req->cqe.fd);
1789 if (!cdef->prep_async)
1790 return 0;
1791 if (WARN_ON_ONCE(req_has_async_data(req)))
1792 return -EFAULT;
1793 if (!def->manual_alloc) {
1794 if (io_alloc_async_data(req))
1795 return -EAGAIN;
1796 }
1797 return cdef->prep_async(req);
1798 }
1799
io_get_sequence(struct io_kiocb * req)1800 static u32 io_get_sequence(struct io_kiocb *req)
1801 {
1802 u32 seq = req->ctx->cached_sq_head;
1803 struct io_kiocb *cur;
1804
1805 /* need original cached_sq_head, but it was increased for each req */
1806 io_for_each_link(cur, req)
1807 seq--;
1808 return seq;
1809 }
1810
io_drain_req(struct io_kiocb * req)1811 static __cold void io_drain_req(struct io_kiocb *req)
1812 __must_hold(&ctx->uring_lock)
1813 {
1814 struct io_ring_ctx *ctx = req->ctx;
1815 struct io_defer_entry *de;
1816 int ret;
1817 u32 seq = io_get_sequence(req);
1818
1819 /* Still need defer if there is pending req in defer list. */
1820 spin_lock(&ctx->completion_lock);
1821 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1822 spin_unlock(&ctx->completion_lock);
1823 queue:
1824 ctx->drain_active = false;
1825 io_req_task_queue(req);
1826 return;
1827 }
1828 spin_unlock(&ctx->completion_lock);
1829
1830 io_prep_async_link(req);
1831 de = kmalloc(sizeof(*de), GFP_KERNEL);
1832 if (!de) {
1833 ret = -ENOMEM;
1834 io_req_defer_failed(req, ret);
1835 return;
1836 }
1837
1838 spin_lock(&ctx->completion_lock);
1839 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1840 spin_unlock(&ctx->completion_lock);
1841 kfree(de);
1842 goto queue;
1843 }
1844
1845 trace_io_uring_defer(req);
1846 de->req = req;
1847 de->seq = seq;
1848 list_add_tail(&de->list, &ctx->defer_list);
1849 spin_unlock(&ctx->completion_lock);
1850 }
1851
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1852 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1853 unsigned int issue_flags)
1854 {
1855 if (req->file || !def->needs_file)
1856 return true;
1857
1858 if (req->flags & REQ_F_FIXED_FILE)
1859 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1860 else
1861 req->file = io_file_get_normal(req, req->cqe.fd);
1862
1863 return !!req->file;
1864 }
1865
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1866 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1867 {
1868 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1869 const struct cred *creds = NULL;
1870 int ret;
1871
1872 if (unlikely(!io_assign_file(req, def, issue_flags)))
1873 return -EBADF;
1874
1875 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1876 creds = override_creds(req->creds);
1877
1878 if (!def->audit_skip)
1879 audit_uring_entry(req->opcode);
1880
1881 ret = def->issue(req, issue_flags);
1882
1883 if (!def->audit_skip)
1884 audit_uring_exit(!ret, ret);
1885
1886 if (creds)
1887 revert_creds(creds);
1888
1889 if (ret == IOU_OK) {
1890 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1891 io_req_complete_defer(req);
1892 else
1893 io_req_complete_post(req, issue_flags);
1894
1895 return 0;
1896 }
1897
1898 if (ret != IOU_ISSUE_SKIP_COMPLETE)
1899 return ret;
1900
1901 /* If the op doesn't have a file, we're not polling for it */
1902 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1903 io_iopoll_req_issued(req, issue_flags);
1904
1905 return 0;
1906 }
1907
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1908 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1909 {
1910 io_tw_lock(req->ctx, ts);
1911 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1912 IO_URING_F_COMPLETE_DEFER);
1913 }
1914
io_wq_free_work(struct io_wq_work * work)1915 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1916 {
1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918 struct io_kiocb *nxt = NULL;
1919
1920 if (req_ref_put_and_test(req)) {
1921 if (req->flags & IO_REQ_LINK_FLAGS)
1922 nxt = io_req_find_next(req);
1923 io_free_req(req);
1924 }
1925 return nxt ? &nxt->work : NULL;
1926 }
1927
io_wq_submit_work(struct io_wq_work * work)1928 void io_wq_submit_work(struct io_wq_work *work)
1929 {
1930 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1932 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1933 bool needs_poll = false;
1934 int ret = 0, err = -ECANCELED;
1935
1936 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1937 if (!(req->flags & REQ_F_REFCOUNT))
1938 __io_req_set_refcount(req, 2);
1939 else
1940 req_ref_get(req);
1941
1942 io_arm_ltimeout(req);
1943
1944 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1945 if (work->flags & IO_WQ_WORK_CANCEL) {
1946 fail:
1947 io_req_task_queue_fail(req, err);
1948 return;
1949 }
1950 if (!io_assign_file(req, def, issue_flags)) {
1951 err = -EBADF;
1952 work->flags |= IO_WQ_WORK_CANCEL;
1953 goto fail;
1954 }
1955
1956 if (req->flags & REQ_F_FORCE_ASYNC) {
1957 bool opcode_poll = def->pollin || def->pollout;
1958
1959 if (opcode_poll && file_can_poll(req->file)) {
1960 needs_poll = true;
1961 issue_flags |= IO_URING_F_NONBLOCK;
1962 }
1963 }
1964
1965 do {
1966 ret = io_issue_sqe(req, issue_flags);
1967 if (ret != -EAGAIN)
1968 break;
1969
1970 /*
1971 * If REQ_F_NOWAIT is set, then don't wait or retry with
1972 * poll. -EAGAIN is final for that case.
1973 */
1974 if (req->flags & REQ_F_NOWAIT)
1975 break;
1976
1977 /*
1978 * We can get EAGAIN for iopolled IO even though we're
1979 * forcing a sync submission from here, since we can't
1980 * wait for request slots on the block side.
1981 */
1982 if (!needs_poll) {
1983 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1984 break;
1985 if (io_wq_worker_stopped())
1986 break;
1987 cond_resched();
1988 continue;
1989 }
1990
1991 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992 return;
1993 /* aborted or ready, in either case retry blocking */
1994 needs_poll = false;
1995 issue_flags &= ~IO_URING_F_NONBLOCK;
1996 } while (1);
1997
1998 /* avoid locking problems by failing it from a clean context */
1999 if (ret < 0)
2000 io_req_task_queue_fail(req, ret);
2001 }
2002
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004 unsigned int issue_flags)
2005 {
2006 struct io_ring_ctx *ctx = req->ctx;
2007 struct io_fixed_file *slot;
2008 struct file *file = NULL;
2009
2010 io_ring_submit_lock(ctx, issue_flags);
2011
2012 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013 goto out;
2014 fd = array_index_nospec(fd, ctx->nr_user_files);
2015 slot = io_fixed_file_slot(&ctx->file_table, fd);
2016 file = io_slot_file(slot);
2017 req->flags |= io_slot_flags(slot);
2018 io_req_set_rsrc_node(req, ctx, 0);
2019 out:
2020 io_ring_submit_unlock(ctx, issue_flags);
2021 return file;
2022 }
2023
io_file_get_normal(struct io_kiocb * req,int fd)2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025 {
2026 struct file *file = fget(fd);
2027
2028 trace_io_uring_file_get(req, fd);
2029
2030 /* we don't allow fixed io_uring files */
2031 if (file && io_is_uring_fops(file))
2032 io_req_track_inflight(req);
2033 return file;
2034 }
2035
io_queue_async(struct io_kiocb * req,int ret)2036 static void io_queue_async(struct io_kiocb *req, int ret)
2037 __must_hold(&req->ctx->uring_lock)
2038 {
2039 struct io_kiocb *linked_timeout;
2040
2041 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042 io_req_defer_failed(req, ret);
2043 return;
2044 }
2045
2046 linked_timeout = io_prep_linked_timeout(req);
2047
2048 switch (io_arm_poll_handler(req, 0)) {
2049 case IO_APOLL_READY:
2050 io_kbuf_recycle(req, 0);
2051 io_req_task_queue(req);
2052 break;
2053 case IO_APOLL_ABORTED:
2054 io_kbuf_recycle(req, 0);
2055 io_queue_iowq(req, NULL);
2056 break;
2057 case IO_APOLL_OK:
2058 break;
2059 }
2060
2061 if (linked_timeout)
2062 io_queue_linked_timeout(linked_timeout);
2063 }
2064
io_queue_sqe(struct io_kiocb * req)2065 static inline void io_queue_sqe(struct io_kiocb *req)
2066 __must_hold(&req->ctx->uring_lock)
2067 {
2068 int ret;
2069
2070 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071
2072 /*
2073 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074 * doesn't support non-blocking read/write attempts
2075 */
2076 if (likely(!ret))
2077 io_arm_ltimeout(req);
2078 else
2079 io_queue_async(req, ret);
2080 }
2081
io_queue_sqe_fallback(struct io_kiocb * req)2082 static void io_queue_sqe_fallback(struct io_kiocb *req)
2083 __must_hold(&req->ctx->uring_lock)
2084 {
2085 if (unlikely(req->flags & REQ_F_FAIL)) {
2086 /*
2087 * We don't submit, fail them all, for that replace hardlinks
2088 * with normal links. Extra REQ_F_LINK is tolerated.
2089 */
2090 req->flags &= ~REQ_F_HARDLINK;
2091 req->flags |= REQ_F_LINK;
2092 io_req_defer_failed(req, req->cqe.res);
2093 } else {
2094 int ret = io_req_prep_async(req);
2095
2096 if (unlikely(ret)) {
2097 io_req_defer_failed(req, ret);
2098 return;
2099 }
2100
2101 if (unlikely(req->ctx->drain_active))
2102 io_drain_req(req);
2103 else
2104 io_queue_iowq(req, NULL);
2105 }
2106 }
2107
2108 /*
2109 * Check SQE restrictions (opcode and flags).
2110 *
2111 * Returns 'true' if SQE is allowed, 'false' otherwise.
2112 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114 struct io_kiocb *req,
2115 unsigned int sqe_flags)
2116 {
2117 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118 return false;
2119
2120 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121 ctx->restrictions.sqe_flags_required)
2122 return false;
2123
2124 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125 ctx->restrictions.sqe_flags_required))
2126 return false;
2127
2128 return true;
2129 }
2130
io_init_req_drain(struct io_kiocb * req)2131 static void io_init_req_drain(struct io_kiocb *req)
2132 {
2133 struct io_ring_ctx *ctx = req->ctx;
2134 struct io_kiocb *head = ctx->submit_state.link.head;
2135
2136 ctx->drain_active = true;
2137 if (head) {
2138 /*
2139 * If we need to drain a request in the middle of a link, drain
2140 * the head request and the next request/link after the current
2141 * link. Considering sequential execution of links,
2142 * REQ_F_IO_DRAIN will be maintained for every request of our
2143 * link.
2144 */
2145 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146 ctx->drain_next = true;
2147 }
2148 }
2149
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2150 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2151 const struct io_uring_sqe *sqe)
2152 __must_hold(&ctx->uring_lock)
2153 {
2154 const struct io_issue_def *def;
2155 unsigned int sqe_flags;
2156 int personality;
2157 u8 opcode;
2158
2159 /* req is partially pre-initialised, see io_preinit_req() */
2160 req->opcode = opcode = READ_ONCE(sqe->opcode);
2161 /* same numerical values with corresponding REQ_F_*, safe to copy */
2162 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2163 req->cqe.user_data = READ_ONCE(sqe->user_data);
2164 req->file = NULL;
2165 req->rsrc_node = NULL;
2166 req->task = current;
2167
2168 if (unlikely(opcode >= IORING_OP_LAST)) {
2169 req->opcode = 0;
2170 return -EINVAL;
2171 }
2172 def = &io_issue_defs[opcode];
2173 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2174 /* enforce forwards compatibility on users */
2175 if (sqe_flags & ~SQE_VALID_FLAGS)
2176 return -EINVAL;
2177 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2178 if (!def->buffer_select)
2179 return -EOPNOTSUPP;
2180 req->buf_index = READ_ONCE(sqe->buf_group);
2181 }
2182 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2183 ctx->drain_disabled = true;
2184 if (sqe_flags & IOSQE_IO_DRAIN) {
2185 if (ctx->drain_disabled)
2186 return -EOPNOTSUPP;
2187 io_init_req_drain(req);
2188 }
2189 }
2190 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2191 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2192 return -EACCES;
2193 /* knock it to the slow queue path, will be drained there */
2194 if (ctx->drain_active)
2195 req->flags |= REQ_F_FORCE_ASYNC;
2196 /* if there is no link, we're at "next" request and need to drain */
2197 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2198 ctx->drain_next = false;
2199 ctx->drain_active = true;
2200 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2201 }
2202 }
2203
2204 if (!def->ioprio && sqe->ioprio)
2205 return -EINVAL;
2206 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2207 return -EINVAL;
2208
2209 if (def->needs_file) {
2210 struct io_submit_state *state = &ctx->submit_state;
2211
2212 req->cqe.fd = READ_ONCE(sqe->fd);
2213
2214 /*
2215 * Plug now if we have more than 2 IO left after this, and the
2216 * target is potentially a read/write to block based storage.
2217 */
2218 if (state->need_plug && def->plug) {
2219 state->plug_started = true;
2220 state->need_plug = false;
2221 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2222 }
2223 }
2224
2225 personality = READ_ONCE(sqe->personality);
2226 if (personality) {
2227 int ret;
2228
2229 req->creds = xa_load(&ctx->personalities, personality);
2230 if (!req->creds)
2231 return -EINVAL;
2232 get_cred(req->creds);
2233 ret = security_uring_override_creds(req->creds);
2234 if (ret) {
2235 put_cred(req->creds);
2236 return ret;
2237 }
2238 req->flags |= REQ_F_CREDS;
2239 }
2240
2241 return def->prep(req, sqe);
2242 }
2243
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2244 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2245 struct io_kiocb *req, int ret)
2246 {
2247 struct io_ring_ctx *ctx = req->ctx;
2248 struct io_submit_link *link = &ctx->submit_state.link;
2249 struct io_kiocb *head = link->head;
2250
2251 trace_io_uring_req_failed(sqe, req, ret);
2252
2253 /*
2254 * Avoid breaking links in the middle as it renders links with SQPOLL
2255 * unusable. Instead of failing eagerly, continue assembling the link if
2256 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2257 * should find the flag and handle the rest.
2258 */
2259 req_fail_link_node(req, ret);
2260 if (head && !(head->flags & REQ_F_FAIL))
2261 req_fail_link_node(head, -ECANCELED);
2262
2263 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2264 if (head) {
2265 link->last->link = req;
2266 link->head = NULL;
2267 req = head;
2268 }
2269 io_queue_sqe_fallback(req);
2270 return ret;
2271 }
2272
2273 if (head)
2274 link->last->link = req;
2275 else
2276 link->head = req;
2277 link->last = req;
2278 return 0;
2279 }
2280
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2281 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2282 const struct io_uring_sqe *sqe)
2283 __must_hold(&ctx->uring_lock)
2284 {
2285 struct io_submit_link *link = &ctx->submit_state.link;
2286 int ret;
2287
2288 ret = io_init_req(ctx, req, sqe);
2289 if (unlikely(ret))
2290 return io_submit_fail_init(sqe, req, ret);
2291
2292 trace_io_uring_submit_req(req);
2293
2294 /*
2295 * If we already have a head request, queue this one for async
2296 * submittal once the head completes. If we don't have a head but
2297 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2298 * submitted sync once the chain is complete. If none of those
2299 * conditions are true (normal request), then just queue it.
2300 */
2301 if (unlikely(link->head)) {
2302 ret = io_req_prep_async(req);
2303 if (unlikely(ret))
2304 return io_submit_fail_init(sqe, req, ret);
2305
2306 trace_io_uring_link(req, link->head);
2307 link->last->link = req;
2308 link->last = req;
2309
2310 if (req->flags & IO_REQ_LINK_FLAGS)
2311 return 0;
2312 /* last request of the link, flush it */
2313 req = link->head;
2314 link->head = NULL;
2315 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2316 goto fallback;
2317
2318 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2319 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2320 if (req->flags & IO_REQ_LINK_FLAGS) {
2321 link->head = req;
2322 link->last = req;
2323 } else {
2324 fallback:
2325 io_queue_sqe_fallback(req);
2326 }
2327 return 0;
2328 }
2329
2330 io_queue_sqe(req);
2331 return 0;
2332 }
2333
2334 /*
2335 * Batched submission is done, ensure local IO is flushed out.
2336 */
io_submit_state_end(struct io_ring_ctx * ctx)2337 static void io_submit_state_end(struct io_ring_ctx *ctx)
2338 {
2339 struct io_submit_state *state = &ctx->submit_state;
2340
2341 if (unlikely(state->link.head))
2342 io_queue_sqe_fallback(state->link.head);
2343 /* flush only after queuing links as they can generate completions */
2344 io_submit_flush_completions(ctx);
2345 if (state->plug_started)
2346 blk_finish_plug(&state->plug);
2347 }
2348
2349 /*
2350 * Start submission side cache.
2351 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2352 static void io_submit_state_start(struct io_submit_state *state,
2353 unsigned int max_ios)
2354 {
2355 state->plug_started = false;
2356 state->need_plug = max_ios > 2;
2357 state->submit_nr = max_ios;
2358 /* set only head, no need to init link_last in advance */
2359 state->link.head = NULL;
2360 }
2361
io_commit_sqring(struct io_ring_ctx * ctx)2362 static void io_commit_sqring(struct io_ring_ctx *ctx)
2363 {
2364 struct io_rings *rings = ctx->rings;
2365
2366 /*
2367 * Ensure any loads from the SQEs are done at this point,
2368 * since once we write the new head, the application could
2369 * write new data to them.
2370 */
2371 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2372 }
2373
2374 /*
2375 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2376 * that is mapped by userspace. This means that care needs to be taken to
2377 * ensure that reads are stable, as we cannot rely on userspace always
2378 * being a good citizen. If members of the sqe are validated and then later
2379 * used, it's important that those reads are done through READ_ONCE() to
2380 * prevent a re-load down the line.
2381 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2382 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2383 {
2384 unsigned mask = ctx->sq_entries - 1;
2385 unsigned head = ctx->cached_sq_head++ & mask;
2386
2387 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2388 head = READ_ONCE(ctx->sq_array[head]);
2389 if (unlikely(head >= ctx->sq_entries)) {
2390 /* drop invalid entries */
2391 spin_lock(&ctx->completion_lock);
2392 ctx->cq_extra--;
2393 spin_unlock(&ctx->completion_lock);
2394 WRITE_ONCE(ctx->rings->sq_dropped,
2395 READ_ONCE(ctx->rings->sq_dropped) + 1);
2396 return false;
2397 }
2398 }
2399
2400 /*
2401 * The cached sq head (or cq tail) serves two purposes:
2402 *
2403 * 1) allows us to batch the cost of updating the user visible
2404 * head updates.
2405 * 2) allows the kernel side to track the head on its own, even
2406 * though the application is the one updating it.
2407 */
2408
2409 /* double index for 128-byte SQEs, twice as long */
2410 if (ctx->flags & IORING_SETUP_SQE128)
2411 head <<= 1;
2412 *sqe = &ctx->sq_sqes[head];
2413 return true;
2414 }
2415
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2416 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2417 __must_hold(&ctx->uring_lock)
2418 {
2419 unsigned int entries = io_sqring_entries(ctx);
2420 unsigned int left;
2421 int ret;
2422
2423 if (unlikely(!entries))
2424 return 0;
2425 /* make sure SQ entry isn't read before tail */
2426 ret = left = min(nr, entries);
2427 io_get_task_refs(left);
2428 io_submit_state_start(&ctx->submit_state, left);
2429
2430 do {
2431 const struct io_uring_sqe *sqe;
2432 struct io_kiocb *req;
2433
2434 if (unlikely(!io_alloc_req(ctx, &req)))
2435 break;
2436 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2437 io_req_add_to_cache(req, ctx);
2438 break;
2439 }
2440
2441 /*
2442 * Continue submitting even for sqe failure if the
2443 * ring was setup with IORING_SETUP_SUBMIT_ALL
2444 */
2445 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2446 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2447 left--;
2448 break;
2449 }
2450 } while (--left);
2451
2452 if (unlikely(left)) {
2453 ret -= left;
2454 /* try again if it submitted nothing and can't allocate a req */
2455 if (!ret && io_req_cache_empty(ctx))
2456 ret = -EAGAIN;
2457 current->io_uring->cached_refs += left;
2458 }
2459
2460 io_submit_state_end(ctx);
2461 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2462 io_commit_sqring(ctx);
2463 return ret;
2464 }
2465
2466 struct io_wait_queue {
2467 struct wait_queue_entry wq;
2468 struct io_ring_ctx *ctx;
2469 unsigned cq_tail;
2470 unsigned nr_timeouts;
2471 ktime_t timeout;
2472 };
2473
io_has_work(struct io_ring_ctx * ctx)2474 static inline bool io_has_work(struct io_ring_ctx *ctx)
2475 {
2476 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2477 !llist_empty(&ctx->work_llist);
2478 }
2479
io_should_wake(struct io_wait_queue * iowq)2480 static inline bool io_should_wake(struct io_wait_queue *iowq)
2481 {
2482 struct io_ring_ctx *ctx = iowq->ctx;
2483 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2484
2485 /*
2486 * Wake up if we have enough events, or if a timeout occurred since we
2487 * started waiting. For timeouts, we always want to return to userspace,
2488 * regardless of event count.
2489 */
2490 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2491 }
2492
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2493 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2494 int wake_flags, void *key)
2495 {
2496 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2497
2498 /*
2499 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2500 * the task, and the next invocation will do it.
2501 */
2502 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2503 return autoremove_wake_function(curr, mode, wake_flags, key);
2504 return -1;
2505 }
2506
io_run_task_work_sig(struct io_ring_ctx * ctx)2507 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2508 {
2509 if (!llist_empty(&ctx->work_llist)) {
2510 __set_current_state(TASK_RUNNING);
2511 if (io_run_local_work(ctx) > 0)
2512 return 0;
2513 }
2514 if (io_run_task_work() > 0)
2515 return 0;
2516 if (task_sigpending(current))
2517 return -EINTR;
2518 return 0;
2519 }
2520
current_pending_io(void)2521 static bool current_pending_io(void)
2522 {
2523 struct io_uring_task *tctx = current->io_uring;
2524
2525 if (!tctx)
2526 return false;
2527 return percpu_counter_read_positive(&tctx->inflight);
2528 }
2529
2530 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2531 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2532 struct io_wait_queue *iowq)
2533 {
2534 int io_wait, ret;
2535
2536 if (unlikely(READ_ONCE(ctx->check_cq)))
2537 return 1;
2538 if (unlikely(!llist_empty(&ctx->work_llist)))
2539 return 1;
2540 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2541 return 1;
2542 if (unlikely(task_sigpending(current)))
2543 return -EINTR;
2544 if (unlikely(io_should_wake(iowq)))
2545 return 0;
2546
2547 /*
2548 * Mark us as being in io_wait if we have pending requests, so cpufreq
2549 * can take into account that the task is waiting for IO - turns out
2550 * to be important for low QD IO.
2551 */
2552 io_wait = current->in_iowait;
2553 if (current_pending_io())
2554 current->in_iowait = 1;
2555 ret = 0;
2556 if (iowq->timeout == KTIME_MAX)
2557 schedule();
2558 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2559 ret = -ETIME;
2560 current->in_iowait = io_wait;
2561 return ret;
2562 }
2563
2564 /*
2565 * Wait until events become available, if we don't already have some. The
2566 * application must reap them itself, as they reside on the shared cq ring.
2567 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2568 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2569 const sigset_t __user *sig, size_t sigsz,
2570 struct __kernel_timespec __user *uts)
2571 {
2572 struct io_wait_queue iowq;
2573 struct io_rings *rings = ctx->rings;
2574 int ret;
2575
2576 if (!io_allowed_run_tw(ctx))
2577 return -EEXIST;
2578 if (!llist_empty(&ctx->work_llist))
2579 io_run_local_work(ctx);
2580 io_run_task_work();
2581 io_cqring_overflow_flush(ctx);
2582 /* if user messes with these they will just get an early return */
2583 if (__io_cqring_events_user(ctx) >= min_events)
2584 return 0;
2585
2586 if (sig) {
2587 #ifdef CONFIG_COMPAT
2588 if (in_compat_syscall())
2589 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2590 sigsz);
2591 else
2592 #endif
2593 ret = set_user_sigmask(sig, sigsz);
2594
2595 if (ret)
2596 return ret;
2597 }
2598
2599 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2600 iowq.wq.private = current;
2601 INIT_LIST_HEAD(&iowq.wq.entry);
2602 iowq.ctx = ctx;
2603 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2604 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2605 iowq.timeout = KTIME_MAX;
2606
2607 if (uts) {
2608 struct timespec64 ts;
2609
2610 if (get_timespec64(&ts, uts))
2611 return -EFAULT;
2612 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2613 }
2614
2615 trace_io_uring_cqring_wait(ctx, min_events);
2616 do {
2617 unsigned long check_cq;
2618
2619 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2620 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2621
2622 atomic_set(&ctx->cq_wait_nr, nr_wait);
2623 set_current_state(TASK_INTERRUPTIBLE);
2624 } else {
2625 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2626 TASK_INTERRUPTIBLE);
2627 }
2628
2629 ret = io_cqring_wait_schedule(ctx, &iowq);
2630 __set_current_state(TASK_RUNNING);
2631 atomic_set(&ctx->cq_wait_nr, 0);
2632
2633 /*
2634 * Run task_work after scheduling and before io_should_wake().
2635 * If we got woken because of task_work being processed, run it
2636 * now rather than let the caller do another wait loop.
2637 */
2638 io_run_task_work();
2639 if (!llist_empty(&ctx->work_llist))
2640 io_run_local_work(ctx);
2641
2642 /*
2643 * Non-local task_work will be run on exit to userspace, but
2644 * if we're using DEFER_TASKRUN, then we could have waited
2645 * with a timeout for a number of requests. If the timeout
2646 * hits, we could have some requests ready to process. Ensure
2647 * this break is _after_ we have run task_work, to avoid
2648 * deferring running potentially pending requests until the
2649 * next time we wait for events.
2650 */
2651 if (ret < 0)
2652 break;
2653
2654 check_cq = READ_ONCE(ctx->check_cq);
2655 if (unlikely(check_cq)) {
2656 /* let the caller flush overflows, retry */
2657 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2658 io_cqring_do_overflow_flush(ctx);
2659 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2660 ret = -EBADR;
2661 break;
2662 }
2663 }
2664
2665 if (io_should_wake(&iowq)) {
2666 ret = 0;
2667 break;
2668 }
2669 cond_resched();
2670 } while (1);
2671
2672 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2673 finish_wait(&ctx->cq_wait, &iowq.wq);
2674 restore_saved_sigmask_unless(ret == -EINTR);
2675
2676 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2677 }
2678
io_mem_free(void * ptr)2679 void io_mem_free(void *ptr)
2680 {
2681 if (!ptr)
2682 return;
2683
2684 folio_put(virt_to_folio(ptr));
2685 }
2686
io_pages_free(struct page *** pages,int npages)2687 static void io_pages_free(struct page ***pages, int npages)
2688 {
2689 struct page **page_array;
2690 int i;
2691
2692 if (!pages)
2693 return;
2694
2695 page_array = *pages;
2696 if (!page_array)
2697 return;
2698
2699 for (i = 0; i < npages; i++)
2700 unpin_user_page(page_array[i]);
2701 kvfree(page_array);
2702 *pages = NULL;
2703 }
2704
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2705 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2706 unsigned long uaddr, size_t size)
2707 {
2708 struct page **page_array;
2709 unsigned int nr_pages;
2710 void *page_addr;
2711 int ret, i;
2712
2713 *npages = 0;
2714
2715 if (uaddr & (PAGE_SIZE - 1) || !size)
2716 return ERR_PTR(-EINVAL);
2717
2718 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719 if (nr_pages > USHRT_MAX)
2720 return ERR_PTR(-EINVAL);
2721 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2722 if (!page_array)
2723 return ERR_PTR(-ENOMEM);
2724
2725 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2726 page_array);
2727 if (ret != nr_pages) {
2728 err:
2729 io_pages_free(&page_array, ret > 0 ? ret : 0);
2730 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2731 }
2732
2733 page_addr = page_address(page_array[0]);
2734 for (i = 0; i < nr_pages; i++) {
2735 ret = -EINVAL;
2736
2737 /*
2738 * Can't support mapping user allocated ring memory on 32-bit
2739 * archs where it could potentially reside in highmem. Just
2740 * fail those with -EINVAL, just like we did on kernels that
2741 * didn't support this feature.
2742 */
2743 if (PageHighMem(page_array[i]))
2744 goto err;
2745
2746 /*
2747 * No support for discontig pages for now, should either be a
2748 * single normal page, or a huge page. Later on we can add
2749 * support for remapping discontig pages, for now we will
2750 * just fail them with EINVAL.
2751 */
2752 if (page_address(page_array[i]) != page_addr)
2753 goto err;
2754 page_addr += PAGE_SIZE;
2755 }
2756
2757 *pages = page_array;
2758 *npages = nr_pages;
2759 return page_to_virt(page_array[0]);
2760 }
2761
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2762 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2763 size_t size)
2764 {
2765 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2766 size);
2767 }
2768
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2769 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2770 size_t size)
2771 {
2772 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2773 size);
2774 }
2775
io_rings_free(struct io_ring_ctx * ctx)2776 static void io_rings_free(struct io_ring_ctx *ctx)
2777 {
2778 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2779 io_mem_free(ctx->rings);
2780 io_mem_free(ctx->sq_sqes);
2781 ctx->rings = NULL;
2782 ctx->sq_sqes = NULL;
2783 } else {
2784 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2785 ctx->n_ring_pages = 0;
2786 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2787 ctx->n_sqe_pages = 0;
2788 }
2789 }
2790
io_mem_alloc(size_t size)2791 void *io_mem_alloc(size_t size)
2792 {
2793 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2794 void *ret;
2795
2796 ret = (void *) __get_free_pages(gfp, get_order(size));
2797 if (ret)
2798 return ret;
2799 return ERR_PTR(-ENOMEM);
2800 }
2801
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2802 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2803 unsigned int cq_entries, size_t *sq_offset)
2804 {
2805 struct io_rings *rings;
2806 size_t off, sq_array_size;
2807
2808 off = struct_size(rings, cqes, cq_entries);
2809 if (off == SIZE_MAX)
2810 return SIZE_MAX;
2811 if (ctx->flags & IORING_SETUP_CQE32) {
2812 if (check_shl_overflow(off, 1, &off))
2813 return SIZE_MAX;
2814 }
2815
2816 #ifdef CONFIG_SMP
2817 off = ALIGN(off, SMP_CACHE_BYTES);
2818 if (off == 0)
2819 return SIZE_MAX;
2820 #endif
2821
2822 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2823 if (sq_offset)
2824 *sq_offset = SIZE_MAX;
2825 return off;
2826 }
2827
2828 if (sq_offset)
2829 *sq_offset = off;
2830
2831 sq_array_size = array_size(sizeof(u32), sq_entries);
2832 if (sq_array_size == SIZE_MAX)
2833 return SIZE_MAX;
2834
2835 if (check_add_overflow(off, sq_array_size, &off))
2836 return SIZE_MAX;
2837
2838 return off;
2839 }
2840
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2841 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2842 unsigned int eventfd_async)
2843 {
2844 struct io_ev_fd *ev_fd;
2845 __s32 __user *fds = arg;
2846 int fd;
2847
2848 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2849 lockdep_is_held(&ctx->uring_lock));
2850 if (ev_fd)
2851 return -EBUSY;
2852
2853 if (copy_from_user(&fd, fds, sizeof(*fds)))
2854 return -EFAULT;
2855
2856 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2857 if (!ev_fd)
2858 return -ENOMEM;
2859
2860 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2861 if (IS_ERR(ev_fd->cq_ev_fd)) {
2862 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2863 kfree(ev_fd);
2864 return ret;
2865 }
2866
2867 spin_lock(&ctx->completion_lock);
2868 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2869 spin_unlock(&ctx->completion_lock);
2870
2871 ev_fd->eventfd_async = eventfd_async;
2872 ctx->has_evfd = true;
2873 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2874 atomic_set(&ev_fd->refs, 1);
2875 atomic_set(&ev_fd->ops, 0);
2876 return 0;
2877 }
2878
io_eventfd_unregister(struct io_ring_ctx * ctx)2879 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2880 {
2881 struct io_ev_fd *ev_fd;
2882
2883 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2884 lockdep_is_held(&ctx->uring_lock));
2885 if (ev_fd) {
2886 ctx->has_evfd = false;
2887 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2888 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2889 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2890 return 0;
2891 }
2892
2893 return -ENXIO;
2894 }
2895
io_req_caches_free(struct io_ring_ctx * ctx)2896 static void io_req_caches_free(struct io_ring_ctx *ctx)
2897 {
2898 struct io_kiocb *req;
2899 int nr = 0;
2900
2901 mutex_lock(&ctx->uring_lock);
2902 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2903
2904 while (!io_req_cache_empty(ctx)) {
2905 req = io_extract_req(ctx);
2906 kmem_cache_free(req_cachep, req);
2907 nr++;
2908 }
2909 if (nr)
2910 percpu_ref_put_many(&ctx->refs, nr);
2911 mutex_unlock(&ctx->uring_lock);
2912 }
2913
io_rsrc_node_cache_free(struct io_cache_entry * entry)2914 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2915 {
2916 kfree(container_of(entry, struct io_rsrc_node, cache));
2917 }
2918
io_ring_ctx_free(struct io_ring_ctx * ctx)2919 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2920 {
2921 io_sq_thread_finish(ctx);
2922 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2923 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2924 return;
2925
2926 mutex_lock(&ctx->uring_lock);
2927 if (ctx->buf_data)
2928 __io_sqe_buffers_unregister(ctx);
2929 if (ctx->file_data)
2930 __io_sqe_files_unregister(ctx);
2931 io_cqring_overflow_kill(ctx);
2932 io_eventfd_unregister(ctx);
2933 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2934 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2935 io_destroy_buffers(ctx);
2936 mutex_unlock(&ctx->uring_lock);
2937 if (ctx->sq_creds)
2938 put_cred(ctx->sq_creds);
2939 if (ctx->submitter_task)
2940 put_task_struct(ctx->submitter_task);
2941
2942 /* there are no registered resources left, nobody uses it */
2943 if (ctx->rsrc_node)
2944 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2945
2946 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2947
2948 #if defined(CONFIG_UNIX)
2949 if (ctx->ring_sock) {
2950 ctx->ring_sock->file = NULL; /* so that iput() is called */
2951 sock_release(ctx->ring_sock);
2952 }
2953 #endif
2954 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2955
2956 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2957 if (ctx->mm_account) {
2958 mmdrop(ctx->mm_account);
2959 ctx->mm_account = NULL;
2960 }
2961 io_rings_free(ctx);
2962 io_kbuf_mmap_list_free(ctx);
2963
2964 percpu_ref_exit(&ctx->refs);
2965 free_uid(ctx->user);
2966 io_req_caches_free(ctx);
2967 if (ctx->hash_map)
2968 io_wq_put_hash(ctx->hash_map);
2969 kfree(ctx->cancel_table.hbs);
2970 kfree(ctx->cancel_table_locked.hbs);
2971 kfree(ctx->io_bl);
2972 xa_destroy(&ctx->io_bl_xa);
2973 kfree(ctx);
2974 }
2975
io_activate_pollwq_cb(struct callback_head * cb)2976 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2977 {
2978 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2979 poll_wq_task_work);
2980
2981 mutex_lock(&ctx->uring_lock);
2982 ctx->poll_activated = true;
2983 mutex_unlock(&ctx->uring_lock);
2984
2985 /*
2986 * Wake ups for some events between start of polling and activation
2987 * might've been lost due to loose synchronisation.
2988 */
2989 wake_up_all(&ctx->poll_wq);
2990 percpu_ref_put(&ctx->refs);
2991 }
2992
io_activate_pollwq(struct io_ring_ctx * ctx)2993 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2994 {
2995 spin_lock(&ctx->completion_lock);
2996 /* already activated or in progress */
2997 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2998 goto out;
2999 if (WARN_ON_ONCE(!ctx->task_complete))
3000 goto out;
3001 if (!ctx->submitter_task)
3002 goto out;
3003 /*
3004 * with ->submitter_task only the submitter task completes requests, we
3005 * only need to sync with it, which is done by injecting a tw
3006 */
3007 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3008 percpu_ref_get(&ctx->refs);
3009 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3010 percpu_ref_put(&ctx->refs);
3011 out:
3012 spin_unlock(&ctx->completion_lock);
3013 }
3014
io_uring_poll(struct file * file,poll_table * wait)3015 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3016 {
3017 struct io_ring_ctx *ctx = file->private_data;
3018 __poll_t mask = 0;
3019
3020 if (unlikely(!ctx->poll_activated))
3021 io_activate_pollwq(ctx);
3022
3023 poll_wait(file, &ctx->poll_wq, wait);
3024 /*
3025 * synchronizes with barrier from wq_has_sleeper call in
3026 * io_commit_cqring
3027 */
3028 smp_rmb();
3029 if (!io_sqring_full(ctx))
3030 mask |= EPOLLOUT | EPOLLWRNORM;
3031
3032 /*
3033 * Don't flush cqring overflow list here, just do a simple check.
3034 * Otherwise there could possible be ABBA deadlock:
3035 * CPU0 CPU1
3036 * ---- ----
3037 * lock(&ctx->uring_lock);
3038 * lock(&ep->mtx);
3039 * lock(&ctx->uring_lock);
3040 * lock(&ep->mtx);
3041 *
3042 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3043 * pushes them to do the flush.
3044 */
3045
3046 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3047 mask |= EPOLLIN | EPOLLRDNORM;
3048
3049 return mask;
3050 }
3051
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3052 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3053 {
3054 const struct cred *creds;
3055
3056 creds = xa_erase(&ctx->personalities, id);
3057 if (creds) {
3058 put_cred(creds);
3059 return 0;
3060 }
3061
3062 return -EINVAL;
3063 }
3064
3065 struct io_tctx_exit {
3066 struct callback_head task_work;
3067 struct completion completion;
3068 struct io_ring_ctx *ctx;
3069 };
3070
io_tctx_exit_cb(struct callback_head * cb)3071 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3072 {
3073 struct io_uring_task *tctx = current->io_uring;
3074 struct io_tctx_exit *work;
3075
3076 work = container_of(cb, struct io_tctx_exit, task_work);
3077 /*
3078 * When @in_cancel, we're in cancellation and it's racy to remove the
3079 * node. It'll be removed by the end of cancellation, just ignore it.
3080 * tctx can be NULL if the queueing of this task_work raced with
3081 * work cancelation off the exec path.
3082 */
3083 if (tctx && !atomic_read(&tctx->in_cancel))
3084 io_uring_del_tctx_node((unsigned long)work->ctx);
3085 complete(&work->completion);
3086 }
3087
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3088 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3089 {
3090 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3091
3092 return req->ctx == data;
3093 }
3094
io_ring_exit_work(struct work_struct * work)3095 static __cold void io_ring_exit_work(struct work_struct *work)
3096 {
3097 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3098 unsigned long timeout = jiffies + HZ * 60 * 5;
3099 unsigned long interval = HZ / 20;
3100 struct io_tctx_exit exit;
3101 struct io_tctx_node *node;
3102 int ret;
3103
3104 /*
3105 * If we're doing polled IO and end up having requests being
3106 * submitted async (out-of-line), then completions can come in while
3107 * we're waiting for refs to drop. We need to reap these manually,
3108 * as nobody else will be looking for them.
3109 */
3110 do {
3111 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3112 mutex_lock(&ctx->uring_lock);
3113 io_cqring_overflow_kill(ctx);
3114 mutex_unlock(&ctx->uring_lock);
3115 }
3116
3117 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3118 io_move_task_work_from_local(ctx);
3119
3120 while (io_uring_try_cancel_requests(ctx, NULL, true))
3121 cond_resched();
3122
3123 if (ctx->sq_data) {
3124 struct io_sq_data *sqd = ctx->sq_data;
3125 struct task_struct *tsk;
3126
3127 io_sq_thread_park(sqd);
3128 tsk = sqd->thread;
3129 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3130 io_wq_cancel_cb(tsk->io_uring->io_wq,
3131 io_cancel_ctx_cb, ctx, true);
3132 io_sq_thread_unpark(sqd);
3133 }
3134
3135 io_req_caches_free(ctx);
3136
3137 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3138 /* there is little hope left, don't run it too often */
3139 interval = HZ * 60;
3140 }
3141 /*
3142 * This is really an uninterruptible wait, as it has to be
3143 * complete. But it's also run from a kworker, which doesn't
3144 * take signals, so it's fine to make it interruptible. This
3145 * avoids scenarios where we knowingly can wait much longer
3146 * on completions, for example if someone does a SIGSTOP on
3147 * a task that needs to finish task_work to make this loop
3148 * complete. That's a synthetic situation that should not
3149 * cause a stuck task backtrace, and hence a potential panic
3150 * on stuck tasks if that is enabled.
3151 */
3152 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3153
3154 init_completion(&exit.completion);
3155 init_task_work(&exit.task_work, io_tctx_exit_cb);
3156 exit.ctx = ctx;
3157
3158 mutex_lock(&ctx->uring_lock);
3159 while (!list_empty(&ctx->tctx_list)) {
3160 WARN_ON_ONCE(time_after(jiffies, timeout));
3161
3162 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3163 ctx_node);
3164 /* don't spin on a single task if cancellation failed */
3165 list_rotate_left(&ctx->tctx_list);
3166 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3167 if (WARN_ON_ONCE(ret))
3168 continue;
3169
3170 mutex_unlock(&ctx->uring_lock);
3171 /*
3172 * See comment above for
3173 * wait_for_completion_interruptible_timeout() on why this
3174 * wait is marked as interruptible.
3175 */
3176 wait_for_completion_interruptible(&exit.completion);
3177 mutex_lock(&ctx->uring_lock);
3178 }
3179 mutex_unlock(&ctx->uring_lock);
3180 spin_lock(&ctx->completion_lock);
3181 spin_unlock(&ctx->completion_lock);
3182
3183 /* pairs with RCU read section in io_req_local_work_add() */
3184 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3185 synchronize_rcu();
3186
3187 io_ring_ctx_free(ctx);
3188 }
3189
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3190 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3191 {
3192 unsigned long index;
3193 struct creds *creds;
3194
3195 mutex_lock(&ctx->uring_lock);
3196 percpu_ref_kill(&ctx->refs);
3197 xa_for_each(&ctx->personalities, index, creds)
3198 io_unregister_personality(ctx, index);
3199 if (ctx->rings)
3200 io_poll_remove_all(ctx, NULL, true);
3201 mutex_unlock(&ctx->uring_lock);
3202
3203 /*
3204 * If we failed setting up the ctx, we might not have any rings
3205 * and therefore did not submit any requests
3206 */
3207 if (ctx->rings)
3208 io_kill_timeouts(ctx, NULL, true);
3209
3210 flush_delayed_work(&ctx->fallback_work);
3211
3212 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3213 /*
3214 * Use system_unbound_wq to avoid spawning tons of event kworkers
3215 * if we're exiting a ton of rings at the same time. It just adds
3216 * noise and overhead, there's no discernable change in runtime
3217 * over using system_wq.
3218 */
3219 queue_work(system_unbound_wq, &ctx->exit_work);
3220 }
3221
io_uring_release(struct inode * inode,struct file * file)3222 static int io_uring_release(struct inode *inode, struct file *file)
3223 {
3224 struct io_ring_ctx *ctx = file->private_data;
3225
3226 file->private_data = NULL;
3227 io_ring_ctx_wait_and_kill(ctx);
3228 return 0;
3229 }
3230
3231 struct io_task_cancel {
3232 struct task_struct *task;
3233 bool all;
3234 };
3235
io_cancel_task_cb(struct io_wq_work * work,void * data)3236 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3237 {
3238 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3239 struct io_task_cancel *cancel = data;
3240
3241 return io_match_task_safe(req, cancel->task, cancel->all);
3242 }
3243
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3244 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3245 struct task_struct *task,
3246 bool cancel_all)
3247 {
3248 struct io_defer_entry *de;
3249 LIST_HEAD(list);
3250
3251 spin_lock(&ctx->completion_lock);
3252 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3253 if (io_match_task_safe(de->req, task, cancel_all)) {
3254 list_cut_position(&list, &ctx->defer_list, &de->list);
3255 break;
3256 }
3257 }
3258 spin_unlock(&ctx->completion_lock);
3259 if (list_empty(&list))
3260 return false;
3261
3262 while (!list_empty(&list)) {
3263 de = list_first_entry(&list, struct io_defer_entry, list);
3264 list_del_init(&de->list);
3265 io_req_task_queue_fail(de->req, -ECANCELED);
3266 kfree(de);
3267 }
3268 return true;
3269 }
3270
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3271 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3272 {
3273 struct io_tctx_node *node;
3274 enum io_wq_cancel cret;
3275 bool ret = false;
3276
3277 mutex_lock(&ctx->uring_lock);
3278 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3279 struct io_uring_task *tctx = node->task->io_uring;
3280
3281 /*
3282 * io_wq will stay alive while we hold uring_lock, because it's
3283 * killed after ctx nodes, which requires to take the lock.
3284 */
3285 if (!tctx || !tctx->io_wq)
3286 continue;
3287 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3288 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3289 }
3290 mutex_unlock(&ctx->uring_lock);
3291
3292 return ret;
3293 }
3294
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3295 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3296 struct task_struct *task,
3297 bool cancel_all)
3298 {
3299 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3300 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3301 enum io_wq_cancel cret;
3302 bool ret = false;
3303
3304 /* set it so io_req_local_work_add() would wake us up */
3305 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3306 atomic_set(&ctx->cq_wait_nr, 1);
3307 smp_mb();
3308 }
3309
3310 /* failed during ring init, it couldn't have issued any requests */
3311 if (!ctx->rings)
3312 return false;
3313
3314 if (!task) {
3315 ret |= io_uring_try_cancel_iowq(ctx);
3316 } else if (tctx && tctx->io_wq) {
3317 /*
3318 * Cancels requests of all rings, not only @ctx, but
3319 * it's fine as the task is in exit/exec.
3320 */
3321 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3322 &cancel, true);
3323 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3324 }
3325
3326 /* SQPOLL thread does its own polling */
3327 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3328 (ctx->sq_data && ctx->sq_data->thread == current)) {
3329 while (!wq_list_empty(&ctx->iopoll_list)) {
3330 io_iopoll_try_reap_events(ctx);
3331 ret = true;
3332 cond_resched();
3333 }
3334 }
3335
3336 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3337 io_allowed_defer_tw_run(ctx))
3338 ret |= io_run_local_work(ctx) > 0;
3339 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3340 mutex_lock(&ctx->uring_lock);
3341 ret |= io_poll_remove_all(ctx, task, cancel_all);
3342 mutex_unlock(&ctx->uring_lock);
3343 ret |= io_kill_timeouts(ctx, task, cancel_all);
3344 if (task)
3345 ret |= io_run_task_work() > 0;
3346 return ret;
3347 }
3348
tctx_inflight(struct io_uring_task * tctx,bool tracked)3349 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3350 {
3351 if (tracked)
3352 return atomic_read(&tctx->inflight_tracked);
3353 return percpu_counter_sum(&tctx->inflight);
3354 }
3355
3356 /*
3357 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3358 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3359 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3360 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3361 {
3362 struct io_uring_task *tctx = current->io_uring;
3363 struct io_ring_ctx *ctx;
3364 struct io_tctx_node *node;
3365 unsigned long index;
3366 s64 inflight;
3367 DEFINE_WAIT(wait);
3368
3369 WARN_ON_ONCE(sqd && sqd->thread != current);
3370
3371 if (!current->io_uring)
3372 return;
3373 if (tctx->io_wq)
3374 io_wq_exit_start(tctx->io_wq);
3375
3376 atomic_inc(&tctx->in_cancel);
3377 do {
3378 bool loop = false;
3379
3380 io_uring_drop_tctx_refs(current);
3381 /* read completions before cancelations */
3382 inflight = tctx_inflight(tctx, !cancel_all);
3383 if (!inflight)
3384 break;
3385
3386 if (!sqd) {
3387 xa_for_each(&tctx->xa, index, node) {
3388 /* sqpoll task will cancel all its requests */
3389 if (node->ctx->sq_data)
3390 continue;
3391 loop |= io_uring_try_cancel_requests(node->ctx,
3392 current, cancel_all);
3393 }
3394 } else {
3395 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3396 loop |= io_uring_try_cancel_requests(ctx,
3397 current,
3398 cancel_all);
3399 }
3400
3401 if (loop) {
3402 cond_resched();
3403 continue;
3404 }
3405
3406 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3407 io_run_task_work();
3408 io_uring_drop_tctx_refs(current);
3409 xa_for_each(&tctx->xa, index, node) {
3410 if (!llist_empty(&node->ctx->work_llist)) {
3411 WARN_ON_ONCE(node->ctx->submitter_task &&
3412 node->ctx->submitter_task != current);
3413 goto end_wait;
3414 }
3415 }
3416 /*
3417 * If we've seen completions, retry without waiting. This
3418 * avoids a race where a completion comes in before we did
3419 * prepare_to_wait().
3420 */
3421 if (inflight == tctx_inflight(tctx, !cancel_all))
3422 schedule();
3423 end_wait:
3424 finish_wait(&tctx->wait, &wait);
3425 } while (1);
3426
3427 io_uring_clean_tctx(tctx);
3428 if (cancel_all) {
3429 /*
3430 * We shouldn't run task_works after cancel, so just leave
3431 * ->in_cancel set for normal exit.
3432 */
3433 atomic_dec(&tctx->in_cancel);
3434 /* for exec all current's requests should be gone, kill tctx */
3435 __io_uring_free(current);
3436 }
3437 }
3438
__io_uring_cancel(bool cancel_all)3439 void __io_uring_cancel(bool cancel_all)
3440 {
3441 io_uring_cancel_generic(cancel_all, NULL);
3442 }
3443
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3444 static void *io_uring_validate_mmap_request(struct file *file,
3445 loff_t pgoff, size_t sz)
3446 {
3447 struct io_ring_ctx *ctx = file->private_data;
3448 loff_t offset = pgoff << PAGE_SHIFT;
3449 struct page *page;
3450 void *ptr;
3451
3452 switch (offset & IORING_OFF_MMAP_MASK) {
3453 case IORING_OFF_SQ_RING:
3454 case IORING_OFF_CQ_RING:
3455 /* Don't allow mmap if the ring was setup without it */
3456 if (ctx->flags & IORING_SETUP_NO_MMAP)
3457 return ERR_PTR(-EINVAL);
3458 ptr = ctx->rings;
3459 break;
3460 case IORING_OFF_SQES:
3461 /* Don't allow mmap if the ring was setup without it */
3462 if (ctx->flags & IORING_SETUP_NO_MMAP)
3463 return ERR_PTR(-EINVAL);
3464 ptr = ctx->sq_sqes;
3465 break;
3466 case IORING_OFF_PBUF_RING: {
3467 unsigned int bgid;
3468
3469 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3470 rcu_read_lock();
3471 ptr = io_pbuf_get_address(ctx, bgid);
3472 rcu_read_unlock();
3473 if (!ptr)
3474 return ERR_PTR(-EINVAL);
3475 break;
3476 }
3477 default:
3478 return ERR_PTR(-EINVAL);
3479 }
3480
3481 page = virt_to_head_page(ptr);
3482 if (sz > page_size(page))
3483 return ERR_PTR(-EINVAL);
3484
3485 return ptr;
3486 }
3487
3488 #ifdef CONFIG_MMU
3489
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3490 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3491 {
3492 size_t sz = vma->vm_end - vma->vm_start;
3493 unsigned long pfn;
3494 void *ptr;
3495
3496 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3497 if (IS_ERR(ptr))
3498 return PTR_ERR(ptr);
3499
3500 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3501 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3502 }
3503
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3504 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3505 unsigned long addr, unsigned long len,
3506 unsigned long pgoff, unsigned long flags)
3507 {
3508 void *ptr;
3509
3510 /*
3511 * Do not allow to map to user-provided address to avoid breaking the
3512 * aliasing rules. Userspace is not able to guess the offset address of
3513 * kernel kmalloc()ed memory area.
3514 */
3515 if (addr)
3516 return -EINVAL;
3517
3518 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3519 if (IS_ERR(ptr))
3520 return -ENOMEM;
3521
3522 /*
3523 * Some architectures have strong cache aliasing requirements.
3524 * For such architectures we need a coherent mapping which aliases
3525 * kernel memory *and* userspace memory. To achieve that:
3526 * - use a NULL file pointer to reference physical memory, and
3527 * - use the kernel virtual address of the shared io_uring context
3528 * (instead of the userspace-provided address, which has to be 0UL
3529 * anyway).
3530 * - use the same pgoff which the get_unmapped_area() uses to
3531 * calculate the page colouring.
3532 * For architectures without such aliasing requirements, the
3533 * architecture will return any suitable mapping because addr is 0.
3534 */
3535 filp = NULL;
3536 flags |= MAP_SHARED;
3537 pgoff = 0; /* has been translated to ptr above */
3538 #ifdef SHM_COLOUR
3539 addr = (uintptr_t) ptr;
3540 pgoff = addr >> PAGE_SHIFT;
3541 #else
3542 addr = 0UL;
3543 #endif
3544 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3545 }
3546
3547 #else /* !CONFIG_MMU */
3548
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3549 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3550 {
3551 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3552 }
3553
io_uring_nommu_mmap_capabilities(struct file * file)3554 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3555 {
3556 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3557 }
3558
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3559 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3560 unsigned long addr, unsigned long len,
3561 unsigned long pgoff, unsigned long flags)
3562 {
3563 void *ptr;
3564
3565 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3566 if (IS_ERR(ptr))
3567 return PTR_ERR(ptr);
3568
3569 return (unsigned long) ptr;
3570 }
3571
3572 #endif /* !CONFIG_MMU */
3573
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3574 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3575 {
3576 if (flags & IORING_ENTER_EXT_ARG) {
3577 struct io_uring_getevents_arg arg;
3578
3579 if (argsz != sizeof(arg))
3580 return -EINVAL;
3581 if (copy_from_user(&arg, argp, sizeof(arg)))
3582 return -EFAULT;
3583 }
3584 return 0;
3585 }
3586
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3587 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3588 struct __kernel_timespec __user **ts,
3589 const sigset_t __user **sig)
3590 {
3591 struct io_uring_getevents_arg arg;
3592
3593 /*
3594 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3595 * is just a pointer to the sigset_t.
3596 */
3597 if (!(flags & IORING_ENTER_EXT_ARG)) {
3598 *sig = (const sigset_t __user *) argp;
3599 *ts = NULL;
3600 return 0;
3601 }
3602
3603 /*
3604 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3605 * timespec and sigset_t pointers if good.
3606 */
3607 if (*argsz != sizeof(arg))
3608 return -EINVAL;
3609 if (copy_from_user(&arg, argp, sizeof(arg)))
3610 return -EFAULT;
3611 if (arg.pad)
3612 return -EINVAL;
3613 *sig = u64_to_user_ptr(arg.sigmask);
3614 *argsz = arg.sigmask_sz;
3615 *ts = u64_to_user_ptr(arg.ts);
3616 return 0;
3617 }
3618
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3619 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3620 u32, min_complete, u32, flags, const void __user *, argp,
3621 size_t, argsz)
3622 {
3623 struct io_ring_ctx *ctx;
3624 struct file *file;
3625 long ret;
3626
3627 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3628 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3629 IORING_ENTER_REGISTERED_RING)))
3630 return -EINVAL;
3631
3632 /*
3633 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3634 * need only dereference our task private array to find it.
3635 */
3636 if (flags & IORING_ENTER_REGISTERED_RING) {
3637 struct io_uring_task *tctx = current->io_uring;
3638
3639 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3640 return -EINVAL;
3641 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3642 file = tctx->registered_rings[fd];
3643 if (unlikely(!file))
3644 return -EBADF;
3645 } else {
3646 file = fget(fd);
3647 if (unlikely(!file))
3648 return -EBADF;
3649 ret = -EOPNOTSUPP;
3650 if (unlikely(!io_is_uring_fops(file)))
3651 goto out;
3652 }
3653
3654 ctx = file->private_data;
3655 ret = -EBADFD;
3656 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3657 goto out;
3658
3659 /*
3660 * For SQ polling, the thread will do all submissions and completions.
3661 * Just return the requested submit count, and wake the thread if
3662 * we were asked to.
3663 */
3664 ret = 0;
3665 if (ctx->flags & IORING_SETUP_SQPOLL) {
3666 io_cqring_overflow_flush(ctx);
3667
3668 if (unlikely(ctx->sq_data->thread == NULL)) {
3669 ret = -EOWNERDEAD;
3670 goto out;
3671 }
3672 if (flags & IORING_ENTER_SQ_WAKEUP)
3673 wake_up(&ctx->sq_data->wait);
3674 if (flags & IORING_ENTER_SQ_WAIT)
3675 io_sqpoll_wait_sq(ctx);
3676
3677 ret = to_submit;
3678 } else if (to_submit) {
3679 ret = io_uring_add_tctx_node(ctx);
3680 if (unlikely(ret))
3681 goto out;
3682
3683 mutex_lock(&ctx->uring_lock);
3684 ret = io_submit_sqes(ctx, to_submit);
3685 if (ret != to_submit) {
3686 mutex_unlock(&ctx->uring_lock);
3687 goto out;
3688 }
3689 if (flags & IORING_ENTER_GETEVENTS) {
3690 if (ctx->syscall_iopoll)
3691 goto iopoll_locked;
3692 /*
3693 * Ignore errors, we'll soon call io_cqring_wait() and
3694 * it should handle ownership problems if any.
3695 */
3696 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3697 (void)io_run_local_work_locked(ctx);
3698 }
3699 mutex_unlock(&ctx->uring_lock);
3700 }
3701
3702 if (flags & IORING_ENTER_GETEVENTS) {
3703 int ret2;
3704
3705 if (ctx->syscall_iopoll) {
3706 /*
3707 * We disallow the app entering submit/complete with
3708 * polling, but we still need to lock the ring to
3709 * prevent racing with polled issue that got punted to
3710 * a workqueue.
3711 */
3712 mutex_lock(&ctx->uring_lock);
3713 iopoll_locked:
3714 ret2 = io_validate_ext_arg(flags, argp, argsz);
3715 if (likely(!ret2)) {
3716 min_complete = min(min_complete,
3717 ctx->cq_entries);
3718 ret2 = io_iopoll_check(ctx, min_complete);
3719 }
3720 mutex_unlock(&ctx->uring_lock);
3721 } else {
3722 const sigset_t __user *sig;
3723 struct __kernel_timespec __user *ts;
3724
3725 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3726 if (likely(!ret2)) {
3727 min_complete = min(min_complete,
3728 ctx->cq_entries);
3729 ret2 = io_cqring_wait(ctx, min_complete, sig,
3730 argsz, ts);
3731 }
3732 }
3733
3734 if (!ret) {
3735 ret = ret2;
3736
3737 /*
3738 * EBADR indicates that one or more CQE were dropped.
3739 * Once the user has been informed we can clear the bit
3740 * as they are obviously ok with those drops.
3741 */
3742 if (unlikely(ret2 == -EBADR))
3743 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3744 &ctx->check_cq);
3745 }
3746 }
3747 out:
3748 if (!(flags & IORING_ENTER_REGISTERED_RING))
3749 fput(file);
3750 return ret;
3751 }
3752
3753 static const struct file_operations io_uring_fops = {
3754 .release = io_uring_release,
3755 .mmap = io_uring_mmap,
3756 #ifndef CONFIG_MMU
3757 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3758 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3759 #else
3760 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3761 #endif
3762 .poll = io_uring_poll,
3763 #ifdef CONFIG_PROC_FS
3764 .show_fdinfo = io_uring_show_fdinfo,
3765 #endif
3766 };
3767
io_is_uring_fops(struct file * file)3768 bool io_is_uring_fops(struct file *file)
3769 {
3770 return file->f_op == &io_uring_fops;
3771 }
3772
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3773 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3774 struct io_uring_params *p)
3775 {
3776 struct io_rings *rings;
3777 size_t size, sq_array_offset;
3778 void *ptr;
3779
3780 /* make sure these are sane, as we already accounted them */
3781 ctx->sq_entries = p->sq_entries;
3782 ctx->cq_entries = p->cq_entries;
3783
3784 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3785 if (size == SIZE_MAX)
3786 return -EOVERFLOW;
3787
3788 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3789 rings = io_mem_alloc(size);
3790 else
3791 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3792
3793 if (IS_ERR(rings))
3794 return PTR_ERR(rings);
3795
3796 ctx->rings = rings;
3797 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3798 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3799 rings->sq_ring_mask = p->sq_entries - 1;
3800 rings->cq_ring_mask = p->cq_entries - 1;
3801 rings->sq_ring_entries = p->sq_entries;
3802 rings->cq_ring_entries = p->cq_entries;
3803
3804 if (p->flags & IORING_SETUP_SQE128)
3805 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3806 else
3807 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3808 if (size == SIZE_MAX) {
3809 io_rings_free(ctx);
3810 return -EOVERFLOW;
3811 }
3812
3813 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3814 ptr = io_mem_alloc(size);
3815 else
3816 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3817
3818 if (IS_ERR(ptr)) {
3819 io_rings_free(ctx);
3820 return PTR_ERR(ptr);
3821 }
3822
3823 ctx->sq_sqes = ptr;
3824 return 0;
3825 }
3826
io_uring_install_fd(struct file * file)3827 static int io_uring_install_fd(struct file *file)
3828 {
3829 int fd;
3830
3831 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3832 if (fd < 0)
3833 return fd;
3834 fd_install(fd, file);
3835 return fd;
3836 }
3837
3838 /*
3839 * Allocate an anonymous fd, this is what constitutes the application
3840 * visible backing of an io_uring instance. The application mmaps this
3841 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3842 * we have to tie this fd to a socket for file garbage collection purposes.
3843 */
io_uring_get_file(struct io_ring_ctx * ctx)3844 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3845 {
3846 struct file *file;
3847 #if defined(CONFIG_UNIX)
3848 int ret;
3849
3850 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3851 &ctx->ring_sock);
3852 if (ret)
3853 return ERR_PTR(ret);
3854 #endif
3855
3856 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3857 O_RDWR | O_CLOEXEC, NULL);
3858 #if defined(CONFIG_UNIX)
3859 if (IS_ERR(file)) {
3860 sock_release(ctx->ring_sock);
3861 ctx->ring_sock = NULL;
3862 } else {
3863 ctx->ring_sock->file = file;
3864 }
3865 #endif
3866 return file;
3867 }
3868
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3869 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3870 struct io_uring_params __user *params)
3871 {
3872 struct io_ring_ctx *ctx;
3873 struct io_uring_task *tctx;
3874 struct file *file;
3875 int ret;
3876
3877 if (!entries)
3878 return -EINVAL;
3879 if (entries > IORING_MAX_ENTRIES) {
3880 if (!(p->flags & IORING_SETUP_CLAMP))
3881 return -EINVAL;
3882 entries = IORING_MAX_ENTRIES;
3883 }
3884
3885 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3886 && !(p->flags & IORING_SETUP_NO_MMAP))
3887 return -EINVAL;
3888
3889 /*
3890 * Use twice as many entries for the CQ ring. It's possible for the
3891 * application to drive a higher depth than the size of the SQ ring,
3892 * since the sqes are only used at submission time. This allows for
3893 * some flexibility in overcommitting a bit. If the application has
3894 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3895 * of CQ ring entries manually.
3896 */
3897 p->sq_entries = roundup_pow_of_two(entries);
3898 if (p->flags & IORING_SETUP_CQSIZE) {
3899 /*
3900 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3901 * to a power-of-two, if it isn't already. We do NOT impose
3902 * any cq vs sq ring sizing.
3903 */
3904 if (!p->cq_entries)
3905 return -EINVAL;
3906 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3907 if (!(p->flags & IORING_SETUP_CLAMP))
3908 return -EINVAL;
3909 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3910 }
3911 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3912 if (p->cq_entries < p->sq_entries)
3913 return -EINVAL;
3914 } else {
3915 p->cq_entries = 2 * p->sq_entries;
3916 }
3917
3918 ctx = io_ring_ctx_alloc(p);
3919 if (!ctx)
3920 return -ENOMEM;
3921
3922 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3923 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3924 !(ctx->flags & IORING_SETUP_SQPOLL))
3925 ctx->task_complete = true;
3926
3927 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3928 ctx->lockless_cq = true;
3929
3930 /*
3931 * lazy poll_wq activation relies on ->task_complete for synchronisation
3932 * purposes, see io_activate_pollwq()
3933 */
3934 if (!ctx->task_complete)
3935 ctx->poll_activated = true;
3936
3937 /*
3938 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3939 * space applications don't need to do io completion events
3940 * polling again, they can rely on io_sq_thread to do polling
3941 * work, which can reduce cpu usage and uring_lock contention.
3942 */
3943 if (ctx->flags & IORING_SETUP_IOPOLL &&
3944 !(ctx->flags & IORING_SETUP_SQPOLL))
3945 ctx->syscall_iopoll = 1;
3946
3947 ctx->compat = in_compat_syscall();
3948 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3949 ctx->user = get_uid(current_user());
3950
3951 /*
3952 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3953 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3954 */
3955 ret = -EINVAL;
3956 if (ctx->flags & IORING_SETUP_SQPOLL) {
3957 /* IPI related flags don't make sense with SQPOLL */
3958 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3959 IORING_SETUP_TASKRUN_FLAG |
3960 IORING_SETUP_DEFER_TASKRUN))
3961 goto err;
3962 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3963 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3964 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3965 } else {
3966 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3967 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3968 goto err;
3969 ctx->notify_method = TWA_SIGNAL;
3970 }
3971
3972 /*
3973 * For DEFER_TASKRUN we require the completion task to be the same as the
3974 * submission task. This implies that there is only one submitter, so enforce
3975 * that.
3976 */
3977 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3978 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3979 goto err;
3980 }
3981
3982 /*
3983 * This is just grabbed for accounting purposes. When a process exits,
3984 * the mm is exited and dropped before the files, hence we need to hang
3985 * on to this mm purely for the purposes of being able to unaccount
3986 * memory (locked/pinned vm). It's not used for anything else.
3987 */
3988 mmgrab(current->mm);
3989 ctx->mm_account = current->mm;
3990
3991 ret = io_allocate_scq_urings(ctx, p);
3992 if (ret)
3993 goto err;
3994
3995 ret = io_sq_offload_create(ctx, p);
3996 if (ret)
3997 goto err;
3998
3999 ret = io_rsrc_init(ctx);
4000 if (ret)
4001 goto err;
4002
4003 p->sq_off.head = offsetof(struct io_rings, sq.head);
4004 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4005 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4006 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4007 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4008 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4009 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4010 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4011 p->sq_off.resv1 = 0;
4012 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4013 p->sq_off.user_addr = 0;
4014
4015 p->cq_off.head = offsetof(struct io_rings, cq.head);
4016 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4017 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4018 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4019 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4020 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4021 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4022 p->cq_off.resv1 = 0;
4023 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4024 p->cq_off.user_addr = 0;
4025
4026 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4027 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4028 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4029 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4030 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4031 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4032 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4033
4034 if (copy_to_user(params, p, sizeof(*p))) {
4035 ret = -EFAULT;
4036 goto err;
4037 }
4038
4039 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4040 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4041 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4042
4043 file = io_uring_get_file(ctx);
4044 if (IS_ERR(file)) {
4045 ret = PTR_ERR(file);
4046 goto err;
4047 }
4048
4049 ret = __io_uring_add_tctx_node(ctx);
4050 if (ret)
4051 goto err_fput;
4052 tctx = current->io_uring;
4053
4054 /*
4055 * Install ring fd as the very last thing, so we don't risk someone
4056 * having closed it before we finish setup
4057 */
4058 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4059 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4060 else
4061 ret = io_uring_install_fd(file);
4062 if (ret < 0)
4063 goto err_fput;
4064
4065 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4066 return ret;
4067 err:
4068 io_ring_ctx_wait_and_kill(ctx);
4069 return ret;
4070 err_fput:
4071 fput(file);
4072 return ret;
4073 }
4074
4075 /*
4076 * Sets up an aio uring context, and returns the fd. Applications asks for a
4077 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4078 * params structure passed in.
4079 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4080 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4081 {
4082 struct io_uring_params p;
4083 int i;
4084
4085 if (copy_from_user(&p, params, sizeof(p)))
4086 return -EFAULT;
4087 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4088 if (p.resv[i])
4089 return -EINVAL;
4090 }
4091
4092 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4093 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4094 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4095 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4096 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4097 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4098 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4099 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4100 IORING_SETUP_NO_SQARRAY))
4101 return -EINVAL;
4102
4103 return io_uring_create(entries, &p, params);
4104 }
4105
io_uring_allowed(void)4106 static inline bool io_uring_allowed(void)
4107 {
4108 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4109 kgid_t io_uring_group;
4110
4111 if (disabled == 2)
4112 return false;
4113
4114 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4115 return true;
4116
4117 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4118 if (!gid_valid(io_uring_group))
4119 return false;
4120
4121 return in_group_p(io_uring_group);
4122 }
4123
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4124 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4125 struct io_uring_params __user *, params)
4126 {
4127 if (!io_uring_allowed())
4128 return -EPERM;
4129
4130 return io_uring_setup(entries, params);
4131 }
4132
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4133 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4134 unsigned nr_args)
4135 {
4136 struct io_uring_probe *p;
4137 size_t size;
4138 int i, ret;
4139
4140 size = struct_size(p, ops, nr_args);
4141 if (size == SIZE_MAX)
4142 return -EOVERFLOW;
4143 p = kzalloc(size, GFP_KERNEL);
4144 if (!p)
4145 return -ENOMEM;
4146
4147 ret = -EFAULT;
4148 if (copy_from_user(p, arg, size))
4149 goto out;
4150 ret = -EINVAL;
4151 if (memchr_inv(p, 0, size))
4152 goto out;
4153
4154 p->last_op = IORING_OP_LAST - 1;
4155 if (nr_args > IORING_OP_LAST)
4156 nr_args = IORING_OP_LAST;
4157
4158 for (i = 0; i < nr_args; i++) {
4159 p->ops[i].op = i;
4160 if (!io_issue_defs[i].not_supported)
4161 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4162 }
4163 p->ops_len = i;
4164
4165 ret = 0;
4166 if (copy_to_user(arg, p, size))
4167 ret = -EFAULT;
4168 out:
4169 kfree(p);
4170 return ret;
4171 }
4172
io_register_personality(struct io_ring_ctx * ctx)4173 static int io_register_personality(struct io_ring_ctx *ctx)
4174 {
4175 const struct cred *creds;
4176 u32 id;
4177 int ret;
4178
4179 creds = get_current_cred();
4180
4181 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4182 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4183 if (ret < 0) {
4184 put_cred(creds);
4185 return ret;
4186 }
4187 return id;
4188 }
4189
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4190 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4191 void __user *arg, unsigned int nr_args)
4192 {
4193 struct io_uring_restriction *res;
4194 size_t size;
4195 int i, ret;
4196
4197 /* Restrictions allowed only if rings started disabled */
4198 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4199 return -EBADFD;
4200
4201 /* We allow only a single restrictions registration */
4202 if (ctx->restrictions.registered)
4203 return -EBUSY;
4204
4205 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4206 return -EINVAL;
4207
4208 size = array_size(nr_args, sizeof(*res));
4209 if (size == SIZE_MAX)
4210 return -EOVERFLOW;
4211
4212 res = memdup_user(arg, size);
4213 if (IS_ERR(res))
4214 return PTR_ERR(res);
4215
4216 ret = 0;
4217
4218 for (i = 0; i < nr_args; i++) {
4219 switch (res[i].opcode) {
4220 case IORING_RESTRICTION_REGISTER_OP:
4221 if (res[i].register_op >= IORING_REGISTER_LAST) {
4222 ret = -EINVAL;
4223 goto out;
4224 }
4225
4226 __set_bit(res[i].register_op,
4227 ctx->restrictions.register_op);
4228 break;
4229 case IORING_RESTRICTION_SQE_OP:
4230 if (res[i].sqe_op >= IORING_OP_LAST) {
4231 ret = -EINVAL;
4232 goto out;
4233 }
4234
4235 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4236 break;
4237 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4238 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4239 break;
4240 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4241 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4242 break;
4243 default:
4244 ret = -EINVAL;
4245 goto out;
4246 }
4247 }
4248
4249 out:
4250 /* Reset all restrictions if an error happened */
4251 if (ret != 0)
4252 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4253 else
4254 ctx->restrictions.registered = true;
4255
4256 kfree(res);
4257 return ret;
4258 }
4259
io_register_enable_rings(struct io_ring_ctx * ctx)4260 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4261 {
4262 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4263 return -EBADFD;
4264
4265 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4266 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4267 /*
4268 * Lazy activation attempts would fail if it was polled before
4269 * submitter_task is set.
4270 */
4271 if (wq_has_sleeper(&ctx->poll_wq))
4272 io_activate_pollwq(ctx);
4273 }
4274
4275 if (ctx->restrictions.registered)
4276 ctx->restricted = 1;
4277
4278 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4279 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4280 wake_up(&ctx->sq_data->wait);
4281 return 0;
4282 }
4283
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4284 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4285 cpumask_var_t new_mask)
4286 {
4287 int ret;
4288
4289 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4290 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4291 } else {
4292 mutex_unlock(&ctx->uring_lock);
4293 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4294 mutex_lock(&ctx->uring_lock);
4295 }
4296
4297 return ret;
4298 }
4299
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4300 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4301 void __user *arg, unsigned len)
4302 {
4303 cpumask_var_t new_mask;
4304 int ret;
4305
4306 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4307 return -ENOMEM;
4308
4309 cpumask_clear(new_mask);
4310 if (len > cpumask_size())
4311 len = cpumask_size();
4312
4313 if (in_compat_syscall()) {
4314 ret = compat_get_bitmap(cpumask_bits(new_mask),
4315 (const compat_ulong_t __user *)arg,
4316 len * 8 /* CHAR_BIT */);
4317 } else {
4318 ret = copy_from_user(new_mask, arg, len);
4319 }
4320
4321 if (ret) {
4322 free_cpumask_var(new_mask);
4323 return -EFAULT;
4324 }
4325
4326 ret = __io_register_iowq_aff(ctx, new_mask);
4327 free_cpumask_var(new_mask);
4328 return ret;
4329 }
4330
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4331 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4332 {
4333 return __io_register_iowq_aff(ctx, NULL);
4334 }
4335
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4336 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4337 void __user *arg)
4338 __must_hold(&ctx->uring_lock)
4339 {
4340 struct io_tctx_node *node;
4341 struct io_uring_task *tctx = NULL;
4342 struct io_sq_data *sqd = NULL;
4343 __u32 new_count[2];
4344 int i, ret;
4345
4346 if (copy_from_user(new_count, arg, sizeof(new_count)))
4347 return -EFAULT;
4348 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4349 if (new_count[i] > INT_MAX)
4350 return -EINVAL;
4351
4352 if (ctx->flags & IORING_SETUP_SQPOLL) {
4353 sqd = ctx->sq_data;
4354 if (sqd) {
4355 /*
4356 * Observe the correct sqd->lock -> ctx->uring_lock
4357 * ordering. Fine to drop uring_lock here, we hold
4358 * a ref to the ctx.
4359 */
4360 refcount_inc(&sqd->refs);
4361 mutex_unlock(&ctx->uring_lock);
4362 mutex_lock(&sqd->lock);
4363 mutex_lock(&ctx->uring_lock);
4364 if (sqd->thread)
4365 tctx = sqd->thread->io_uring;
4366 }
4367 } else {
4368 tctx = current->io_uring;
4369 }
4370
4371 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4372
4373 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4374 if (new_count[i])
4375 ctx->iowq_limits[i] = new_count[i];
4376 ctx->iowq_limits_set = true;
4377
4378 if (tctx && tctx->io_wq) {
4379 ret = io_wq_max_workers(tctx->io_wq, new_count);
4380 if (ret)
4381 goto err;
4382 } else {
4383 memset(new_count, 0, sizeof(new_count));
4384 }
4385
4386 if (sqd) {
4387 mutex_unlock(&sqd->lock);
4388 io_put_sq_data(sqd);
4389 }
4390
4391 if (copy_to_user(arg, new_count, sizeof(new_count)))
4392 return -EFAULT;
4393
4394 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4395 if (sqd)
4396 return 0;
4397
4398 /* now propagate the restriction to all registered users */
4399 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4400 struct io_uring_task *tctx = node->task->io_uring;
4401
4402 if (WARN_ON_ONCE(!tctx->io_wq))
4403 continue;
4404
4405 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4406 new_count[i] = ctx->iowq_limits[i];
4407 /* ignore errors, it always returns zero anyway */
4408 (void)io_wq_max_workers(tctx->io_wq, new_count);
4409 }
4410 return 0;
4411 err:
4412 if (sqd) {
4413 mutex_unlock(&sqd->lock);
4414 io_put_sq_data(sqd);
4415 }
4416 return ret;
4417 }
4418
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4419 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4420 void __user *arg, unsigned nr_args)
4421 __releases(ctx->uring_lock)
4422 __acquires(ctx->uring_lock)
4423 {
4424 int ret;
4425
4426 /*
4427 * We don't quiesce the refs for register anymore and so it can't be
4428 * dying as we're holding a file ref here.
4429 */
4430 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4431 return -ENXIO;
4432
4433 if (ctx->submitter_task && ctx->submitter_task != current)
4434 return -EEXIST;
4435
4436 if (ctx->restricted) {
4437 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4438 if (!test_bit(opcode, ctx->restrictions.register_op))
4439 return -EACCES;
4440 }
4441
4442 switch (opcode) {
4443 case IORING_REGISTER_BUFFERS:
4444 ret = -EFAULT;
4445 if (!arg)
4446 break;
4447 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4448 break;
4449 case IORING_UNREGISTER_BUFFERS:
4450 ret = -EINVAL;
4451 if (arg || nr_args)
4452 break;
4453 ret = io_sqe_buffers_unregister(ctx);
4454 break;
4455 case IORING_REGISTER_FILES:
4456 ret = -EFAULT;
4457 if (!arg)
4458 break;
4459 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4460 break;
4461 case IORING_UNREGISTER_FILES:
4462 ret = -EINVAL;
4463 if (arg || nr_args)
4464 break;
4465 ret = io_sqe_files_unregister(ctx);
4466 break;
4467 case IORING_REGISTER_FILES_UPDATE:
4468 ret = io_register_files_update(ctx, arg, nr_args);
4469 break;
4470 case IORING_REGISTER_EVENTFD:
4471 ret = -EINVAL;
4472 if (nr_args != 1)
4473 break;
4474 ret = io_eventfd_register(ctx, arg, 0);
4475 break;
4476 case IORING_REGISTER_EVENTFD_ASYNC:
4477 ret = -EINVAL;
4478 if (nr_args != 1)
4479 break;
4480 ret = io_eventfd_register(ctx, arg, 1);
4481 break;
4482 case IORING_UNREGISTER_EVENTFD:
4483 ret = -EINVAL;
4484 if (arg || nr_args)
4485 break;
4486 ret = io_eventfd_unregister(ctx);
4487 break;
4488 case IORING_REGISTER_PROBE:
4489 ret = -EINVAL;
4490 if (!arg || nr_args > 256)
4491 break;
4492 ret = io_probe(ctx, arg, nr_args);
4493 break;
4494 case IORING_REGISTER_PERSONALITY:
4495 ret = -EINVAL;
4496 if (arg || nr_args)
4497 break;
4498 ret = io_register_personality(ctx);
4499 break;
4500 case IORING_UNREGISTER_PERSONALITY:
4501 ret = -EINVAL;
4502 if (arg)
4503 break;
4504 ret = io_unregister_personality(ctx, nr_args);
4505 break;
4506 case IORING_REGISTER_ENABLE_RINGS:
4507 ret = -EINVAL;
4508 if (arg || nr_args)
4509 break;
4510 ret = io_register_enable_rings(ctx);
4511 break;
4512 case IORING_REGISTER_RESTRICTIONS:
4513 ret = io_register_restrictions(ctx, arg, nr_args);
4514 break;
4515 case IORING_REGISTER_FILES2:
4516 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4517 break;
4518 case IORING_REGISTER_FILES_UPDATE2:
4519 ret = io_register_rsrc_update(ctx, arg, nr_args,
4520 IORING_RSRC_FILE);
4521 break;
4522 case IORING_REGISTER_BUFFERS2:
4523 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4524 break;
4525 case IORING_REGISTER_BUFFERS_UPDATE:
4526 ret = io_register_rsrc_update(ctx, arg, nr_args,
4527 IORING_RSRC_BUFFER);
4528 break;
4529 case IORING_REGISTER_IOWQ_AFF:
4530 ret = -EINVAL;
4531 if (!arg || !nr_args)
4532 break;
4533 ret = io_register_iowq_aff(ctx, arg, nr_args);
4534 break;
4535 case IORING_UNREGISTER_IOWQ_AFF:
4536 ret = -EINVAL;
4537 if (arg || nr_args)
4538 break;
4539 ret = io_unregister_iowq_aff(ctx);
4540 break;
4541 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4542 ret = -EINVAL;
4543 if (!arg || nr_args != 2)
4544 break;
4545 ret = io_register_iowq_max_workers(ctx, arg);
4546 break;
4547 case IORING_REGISTER_RING_FDS:
4548 ret = io_ringfd_register(ctx, arg, nr_args);
4549 break;
4550 case IORING_UNREGISTER_RING_FDS:
4551 ret = io_ringfd_unregister(ctx, arg, nr_args);
4552 break;
4553 case IORING_REGISTER_PBUF_RING:
4554 ret = -EINVAL;
4555 if (!arg || nr_args != 1)
4556 break;
4557 ret = io_register_pbuf_ring(ctx, arg);
4558 break;
4559 case IORING_UNREGISTER_PBUF_RING:
4560 ret = -EINVAL;
4561 if (!arg || nr_args != 1)
4562 break;
4563 ret = io_unregister_pbuf_ring(ctx, arg);
4564 break;
4565 case IORING_REGISTER_SYNC_CANCEL:
4566 ret = -EINVAL;
4567 if (!arg || nr_args != 1)
4568 break;
4569 ret = io_sync_cancel(ctx, arg);
4570 break;
4571 case IORING_REGISTER_FILE_ALLOC_RANGE:
4572 ret = -EINVAL;
4573 if (!arg || nr_args)
4574 break;
4575 ret = io_register_file_alloc_range(ctx, arg);
4576 break;
4577 default:
4578 ret = -EINVAL;
4579 break;
4580 }
4581
4582 return ret;
4583 }
4584
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4585 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4586 void __user *, arg, unsigned int, nr_args)
4587 {
4588 struct io_ring_ctx *ctx;
4589 long ret = -EBADF;
4590 struct file *file;
4591 bool use_registered_ring;
4592
4593 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4594 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4595
4596 if (opcode >= IORING_REGISTER_LAST)
4597 return -EINVAL;
4598
4599 if (use_registered_ring) {
4600 /*
4601 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4602 * need only dereference our task private array to find it.
4603 */
4604 struct io_uring_task *tctx = current->io_uring;
4605
4606 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4607 return -EINVAL;
4608 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4609 file = tctx->registered_rings[fd];
4610 if (unlikely(!file))
4611 return -EBADF;
4612 } else {
4613 file = fget(fd);
4614 if (unlikely(!file))
4615 return -EBADF;
4616 ret = -EOPNOTSUPP;
4617 if (!io_is_uring_fops(file))
4618 goto out_fput;
4619 }
4620
4621 ctx = file->private_data;
4622
4623 mutex_lock(&ctx->uring_lock);
4624 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4625 mutex_unlock(&ctx->uring_lock);
4626 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4627 out_fput:
4628 if (!use_registered_ring)
4629 fput(file);
4630 return ret;
4631 }
4632
io_uring_init(void)4633 static int __init io_uring_init(void)
4634 {
4635 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4636 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4637 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4638 } while (0)
4639
4640 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4641 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4642 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4643 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4644 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4645 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4646 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4647 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4648 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4649 BUILD_BUG_SQE_ELEM(8, __u64, off);
4650 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4651 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4652 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4653 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4654 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4655 BUILD_BUG_SQE_ELEM(24, __u32, len);
4656 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4657 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4658 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4659 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4660 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4661 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4662 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4663 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4664 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4665 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4666 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4667 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4668 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4669 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4670 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4671 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4672 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4673 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4674 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4675 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4676 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4677 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4678 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4679 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4680 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4681 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4682 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4683 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4684 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4685 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4686 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4687
4688 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4689 sizeof(struct io_uring_rsrc_update));
4690 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4691 sizeof(struct io_uring_rsrc_update2));
4692
4693 /* ->buf_index is u16 */
4694 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4695 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4696 offsetof(struct io_uring_buf_ring, tail));
4697
4698 /* should fit into one byte */
4699 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4700 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4701 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4702
4703 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4704
4705 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4706
4707 io_uring_optable_init();
4708
4709 /*
4710 * Allow user copy in the per-command field, which starts after the
4711 * file in io_kiocb and until the opcode field. The openat2 handling
4712 * requires copying in user memory into the io_kiocb object in that
4713 * range, and HARDENED_USERCOPY will complain if we haven't
4714 * correctly annotated this range.
4715 */
4716 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4717 sizeof(struct io_kiocb), 0,
4718 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4719 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4720 offsetof(struct io_kiocb, cmd.data),
4721 sizeof_field(struct io_kiocb, cmd.data), NULL);
4722
4723 #ifdef CONFIG_SYSCTL
4724 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4725 #endif
4726
4727 return 0;
4728 };
4729 __initcall(io_uring_init);
4730