1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21 
22 /*
23  * Inode locking rules:
24  *
25  * inode->i_lock protects:
26  *   inode->i_state, inode->i_hash, __iget()
27  * inode->i_sb->s_inode_lru_lock protects:
28  *   inode->i_sb->s_inode_lru, inode->i_lru
29  * inode_sb_list_lock protects:
30  *   sb->s_inodes, inode->i_sb_list
31  * bdi->wb.list_lock protects:
32  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33  * inode_hash_lock protects:
34  *   inode_hashtable, inode->i_hash
35  *
36  * Lock ordering:
37  *
38  * inode_sb_list_lock
39  *   inode->i_lock
40  *     inode->i_sb->s_inode_lru_lock
41  *
42  * bdi->wb.list_lock
43  *   inode->i_lock
44  *
45  * inode_hash_lock
46  *   inode_sb_list_lock
47  *   inode->i_lock
48  *
49  * iunique_lock
50  *   inode_hash_lock
51  */
52 
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57 
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
get_nr_inodes(void)78 static int get_nr_inodes(void)
79 {
80 	int i;
81 	int sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
get_nr_inodes_unused(void)87 static inline int get_nr_inodes_unused(void)
88 {
89 	int i;
90 	int sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
get_nr_dirty_inodes(void)96 int get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
proc_nr_inodes(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)107 int proc_nr_inodes(ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 /**
117  * inode_init_always - perform inode structure intialisation
118  * @sb: superblock inode belongs to
119  * @inode: inode to initialise
120  *
121  * These are initializations that need to be done on every inode
122  * allocation as the fields are not initialised by slab allocation.
123  */
inode_init_always(struct super_block * sb,struct inode * inode)124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 	static const struct inode_operations empty_iops;
127 	static const struct file_operations empty_fops;
128 	struct address_space *const mapping = &inode->i_data;
129 
130 	inode->i_sb = sb;
131 	inode->i_blkbits = sb->s_blocksize_bits;
132 	inode->i_flags = 0;
133 	atomic_set(&inode->i_count, 1);
134 	inode->i_op = &empty_iops;
135 	inode->i_fop = &empty_fops;
136 	inode->__i_nlink = 1;
137 	inode->i_opflags = 0;
138 	inode->i_uid = 0;
139 	inode->i_gid = 0;
140 	atomic_set(&inode->i_writecount, 0);
141 	inode->i_size = 0;
142 	inode->i_blocks = 0;
143 	inode->i_bytes = 0;
144 	inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 	inode->i_pipe = NULL;
149 	inode->i_bdev = NULL;
150 	inode->i_cdev = NULL;
151 	inode->i_rdev = 0;
152 	inode->dirtied_when = 0;
153 
154 	if (security_inode_alloc(inode))
155 		goto out;
156 	spin_lock_init(&inode->i_lock);
157 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158 
159 	mutex_init(&inode->i_mutex);
160 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161 
162 	atomic_set(&inode->i_dio_count, 0);
163 
164 	mapping->a_ops = &empty_aops;
165 	mapping->host = inode;
166 	mapping->flags = 0;
167 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 	mapping->assoc_mapping = NULL;
169 	mapping->backing_dev_info = &default_backing_dev_info;
170 	mapping->writeback_index = 0;
171 
172 	/*
173 	 * If the block_device provides a backing_dev_info for client
174 	 * inodes then use that.  Otherwise the inode share the bdev's
175 	 * backing_dev_info.
176 	 */
177 	if (sb->s_bdev) {
178 		struct backing_dev_info *bdi;
179 
180 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 		mapping->backing_dev_info = bdi;
182 	}
183 	inode->i_private = NULL;
184 	inode->i_mapping = mapping;
185 	INIT_LIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189 
190 #ifdef CONFIG_FSNOTIFY
191 	inode->i_fsnotify_mask = 0;
192 #endif
193 
194 	this_cpu_inc(nr_inodes);
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
alloc_inode(struct super_block * sb)202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
free_inode_nonrcu(struct inode * inode)225 void free_inode_nonrcu(struct inode *inode)
226 {
227 	kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230 
__destroy_inode(struct inode * inode)231 void __destroy_inode(struct inode *inode)
232 {
233 	BUG_ON(inode_has_buffers(inode));
234 	security_inode_free(inode);
235 	fsnotify_inode_delete(inode);
236 	if (!inode->i_nlink) {
237 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 		atomic_long_dec(&inode->i_sb->s_remove_count);
239 	}
240 
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 	this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250 
i_callback(struct rcu_head * head)251 static void i_callback(struct rcu_head *head)
252 {
253 	struct inode *inode = container_of(head, struct inode, i_rcu);
254 	kmem_cache_free(inode_cachep, inode);
255 }
256 
destroy_inode(struct inode * inode)257 static void destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(!list_empty(&inode->i_lru));
260 	__destroy_inode(inode);
261 	if (inode->i_sb->s_op->destroy_inode)
262 		inode->i_sb->s_op->destroy_inode(inode);
263 	else
264 		call_rcu(&inode->i_rcu, i_callback);
265 }
266 
267 /**
268  * drop_nlink - directly drop an inode's link count
269  * @inode: inode
270  *
271  * This is a low-level filesystem helper to replace any
272  * direct filesystem manipulation of i_nlink.  In cases
273  * where we are attempting to track writes to the
274  * filesystem, a decrement to zero means an imminent
275  * write when the file is truncated and actually unlinked
276  * on the filesystem.
277  */
drop_nlink(struct inode * inode)278 void drop_nlink(struct inode *inode)
279 {
280 	WARN_ON(inode->i_nlink == 0);
281 	inode->__i_nlink--;
282 	if (!inode->i_nlink)
283 		atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286 
287 /**
288  * clear_nlink - directly zero an inode's link count
289  * @inode: inode
290  *
291  * This is a low-level filesystem helper to replace any
292  * direct filesystem manipulation of i_nlink.  See
293  * drop_nlink() for why we care about i_nlink hitting zero.
294  */
clear_nlink(struct inode * inode)295 void clear_nlink(struct inode *inode)
296 {
297 	if (inode->i_nlink) {
298 		inode->__i_nlink = 0;
299 		atomic_long_inc(&inode->i_sb->s_remove_count);
300 	}
301 }
302 EXPORT_SYMBOL(clear_nlink);
303 
304 /**
305  * set_nlink - directly set an inode's link count
306  * @inode: inode
307  * @nlink: new nlink (should be non-zero)
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.
311  */
set_nlink(struct inode * inode,unsigned int nlink)312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 	if (!nlink) {
315 		clear_nlink(inode);
316 	} else {
317 		/* Yes, some filesystems do change nlink from zero to one */
318 		if (inode->i_nlink == 0)
319 			atomic_long_dec(&inode->i_sb->s_remove_count);
320 
321 		inode->__i_nlink = nlink;
322 	}
323 }
324 EXPORT_SYMBOL(set_nlink);
325 
326 /**
327  * inc_nlink - directly increment an inode's link count
328  * @inode: inode
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.  Currently,
332  * it is only here for parity with dec_nlink().
333  */
inc_nlink(struct inode * inode)334 void inc_nlink(struct inode *inode)
335 {
336 	if (WARN_ON(inode->i_nlink == 0))
337 		atomic_long_dec(&inode->i_sb->s_remove_count);
338 
339 	inode->__i_nlink++;
340 }
341 EXPORT_SYMBOL(inc_nlink);
342 
address_space_init_once(struct address_space * mapping)343 void address_space_init_once(struct address_space *mapping)
344 {
345 	memset(mapping, 0, sizeof(*mapping));
346 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 	spin_lock_init(&mapping->tree_lock);
348 	mutex_init(&mapping->i_mmap_mutex);
349 	INIT_LIST_HEAD(&mapping->private_list);
350 	spin_lock_init(&mapping->private_lock);
351 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
352 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355 
356 /*
357  * These are initializations that only need to be done
358  * once, because the fields are idempotent across use
359  * of the inode, so let the slab aware of that.
360  */
inode_init_once(struct inode * inode)361 void inode_init_once(struct inode *inode)
362 {
363 	memset(inode, 0, sizeof(*inode));
364 	INIT_HLIST_NODE(&inode->i_hash);
365 	INIT_LIST_HEAD(&inode->i_devices);
366 	INIT_LIST_HEAD(&inode->i_wb_list);
367 	INIT_LIST_HEAD(&inode->i_lru);
368 	address_space_init_once(&inode->i_data);
369 	i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375 
init_once(void * foo)376 static void init_once(void *foo)
377 {
378 	struct inode *inode = (struct inode *) foo;
379 
380 	inode_init_once(inode);
381 }
382 
383 /*
384  * inode->i_lock must be held
385  */
__iget(struct inode * inode)386 void __iget(struct inode *inode)
387 {
388 	atomic_inc(&inode->i_count);
389 }
390 
391 /*
392  * get additional reference to inode; caller must already hold one.
393  */
ihold(struct inode * inode)394 void ihold(struct inode *inode)
395 {
396 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399 
inode_lru_list_add(struct inode * inode)400 static void inode_lru_list_add(struct inode *inode)
401 {
402 	spin_lock(&inode->i_sb->s_inode_lru_lock);
403 	if (list_empty(&inode->i_lru)) {
404 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 		inode->i_sb->s_nr_inodes_unused++;
406 		this_cpu_inc(nr_unused);
407 	}
408 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
409 }
410 
inode_lru_list_del(struct inode * inode)411 static void inode_lru_list_del(struct inode *inode)
412 {
413 	spin_lock(&inode->i_sb->s_inode_lru_lock);
414 	if (!list_empty(&inode->i_lru)) {
415 		list_del_init(&inode->i_lru);
416 		inode->i_sb->s_nr_inodes_unused--;
417 		this_cpu_dec(nr_unused);
418 	}
419 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
420 }
421 
422 /**
423  * inode_sb_list_add - add inode to the superblock list of inodes
424  * @inode: inode to add
425  */
inode_sb_list_add(struct inode * inode)426 void inode_sb_list_add(struct inode *inode)
427 {
428 	spin_lock(&inode_sb_list_lock);
429 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 	spin_unlock(&inode_sb_list_lock);
431 }
432 EXPORT_SYMBOL_GPL(inode_sb_list_add);
433 
inode_sb_list_del(struct inode * inode)434 static inline void inode_sb_list_del(struct inode *inode)
435 {
436 	if (!list_empty(&inode->i_sb_list)) {
437 		spin_lock(&inode_sb_list_lock);
438 		list_del_init(&inode->i_sb_list);
439 		spin_unlock(&inode_sb_list_lock);
440 	}
441 }
442 
hash(struct super_block * sb,unsigned long hashval)443 static unsigned long hash(struct super_block *sb, unsigned long hashval)
444 {
445 	unsigned long tmp;
446 
447 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
448 			L1_CACHE_BYTES;
449 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 	return tmp & i_hash_mask;
451 }
452 
453 /**
454  *	__insert_inode_hash - hash an inode
455  *	@inode: unhashed inode
456  *	@hashval: unsigned long value used to locate this object in the
457  *		inode_hashtable.
458  *
459  *	Add an inode to the inode hash for this superblock.
460  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)461 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
462 {
463 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
464 
465 	spin_lock(&inode_hash_lock);
466 	spin_lock(&inode->i_lock);
467 	hlist_add_head(&inode->i_hash, b);
468 	spin_unlock(&inode->i_lock);
469 	spin_unlock(&inode_hash_lock);
470 }
471 EXPORT_SYMBOL(__insert_inode_hash);
472 
473 /**
474  *	__remove_inode_hash - remove an inode from the hash
475  *	@inode: inode to unhash
476  *
477  *	Remove an inode from the superblock.
478  */
__remove_inode_hash(struct inode * inode)479 void __remove_inode_hash(struct inode *inode)
480 {
481 	spin_lock(&inode_hash_lock);
482 	spin_lock(&inode->i_lock);
483 	hlist_del_init(&inode->i_hash);
484 	spin_unlock(&inode->i_lock);
485 	spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__remove_inode_hash);
488 
end_writeback(struct inode * inode)489 void end_writeback(struct inode *inode)
490 {
491 	might_sleep();
492 	/*
493 	 * We have to cycle tree_lock here because reclaim can be still in the
494 	 * process of removing the last page (in __delete_from_page_cache())
495 	 * and we must not free mapping under it.
496 	 */
497 	spin_lock_irq(&inode->i_data.tree_lock);
498 	BUG_ON(inode->i_data.nrpages);
499 	spin_unlock_irq(&inode->i_data.tree_lock);
500 	BUG_ON(!list_empty(&inode->i_data.private_list));
501 	BUG_ON(!(inode->i_state & I_FREEING));
502 	BUG_ON(inode->i_state & I_CLEAR);
503 	inode_sync_wait(inode);
504 	/* don't need i_lock here, no concurrent mods to i_state */
505 	inode->i_state = I_FREEING | I_CLEAR;
506 }
507 EXPORT_SYMBOL(end_writeback);
508 
509 /*
510  * Free the inode passed in, removing it from the lists it is still connected
511  * to. We remove any pages still attached to the inode and wait for any IO that
512  * is still in progress before finally destroying the inode.
513  *
514  * An inode must already be marked I_FREEING so that we avoid the inode being
515  * moved back onto lists if we race with other code that manipulates the lists
516  * (e.g. writeback_single_inode). The caller is responsible for setting this.
517  *
518  * An inode must already be removed from the LRU list before being evicted from
519  * the cache. This should occur atomically with setting the I_FREEING state
520  * flag, so no inodes here should ever be on the LRU when being evicted.
521  */
evict(struct inode * inode)522 static void evict(struct inode *inode)
523 {
524 	const struct super_operations *op = inode->i_sb->s_op;
525 
526 	BUG_ON(!(inode->i_state & I_FREEING));
527 	BUG_ON(!list_empty(&inode->i_lru));
528 
529 	if (!list_empty(&inode->i_wb_list))
530 		inode_wb_list_del(inode);
531 
532 	inode_sb_list_del(inode);
533 
534 	if (op->evict_inode) {
535 		op->evict_inode(inode);
536 	} else {
537 		if (inode->i_data.nrpages)
538 			truncate_inode_pages(&inode->i_data, 0);
539 		end_writeback(inode);
540 	}
541 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
542 		bd_forget(inode);
543 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
544 		cd_forget(inode);
545 
546 	remove_inode_hash(inode);
547 
548 	spin_lock(&inode->i_lock);
549 	wake_up_bit(&inode->i_state, __I_NEW);
550 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
551 	spin_unlock(&inode->i_lock);
552 
553 	destroy_inode(inode);
554 }
555 
556 /*
557  * dispose_list - dispose of the contents of a local list
558  * @head: the head of the list to free
559  *
560  * Dispose-list gets a local list with local inodes in it, so it doesn't
561  * need to worry about list corruption and SMP locks.
562  */
dispose_list(struct list_head * head)563 static void dispose_list(struct list_head *head)
564 {
565 	while (!list_empty(head)) {
566 		struct inode *inode;
567 
568 		inode = list_first_entry(head, struct inode, i_lru);
569 		list_del_init(&inode->i_lru);
570 
571 		evict(inode);
572 	}
573 }
574 
575 /**
576  * evict_inodes	- evict all evictable inodes for a superblock
577  * @sb:		superblock to operate on
578  *
579  * Make sure that no inodes with zero refcount are retained.  This is
580  * called by superblock shutdown after having MS_ACTIVE flag removed,
581  * so any inode reaching zero refcount during or after that call will
582  * be immediately evicted.
583  */
evict_inodes(struct super_block * sb)584 void evict_inodes(struct super_block *sb)
585 {
586 	struct inode *inode, *next;
587 	LIST_HEAD(dispose);
588 
589 	spin_lock(&inode_sb_list_lock);
590 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
591 		if (atomic_read(&inode->i_count))
592 			continue;
593 
594 		spin_lock(&inode->i_lock);
595 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
596 			spin_unlock(&inode->i_lock);
597 			continue;
598 		}
599 
600 		inode->i_state |= I_FREEING;
601 		inode_lru_list_del(inode);
602 		spin_unlock(&inode->i_lock);
603 		list_add(&inode->i_lru, &dispose);
604 	}
605 	spin_unlock(&inode_sb_list_lock);
606 
607 	dispose_list(&dispose);
608 }
609 
610 /**
611  * invalidate_inodes	- attempt to free all inodes on a superblock
612  * @sb:		superblock to operate on
613  * @kill_dirty: flag to guide handling of dirty inodes
614  *
615  * Attempts to free all inodes for a given superblock.  If there were any
616  * busy inodes return a non-zero value, else zero.
617  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
618  * them as busy.
619  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)620 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
621 {
622 	int busy = 0;
623 	struct inode *inode, *next;
624 	LIST_HEAD(dispose);
625 
626 	spin_lock(&inode_sb_list_lock);
627 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
628 		spin_lock(&inode->i_lock);
629 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
630 			spin_unlock(&inode->i_lock);
631 			continue;
632 		}
633 		if (inode->i_state & I_DIRTY && !kill_dirty) {
634 			spin_unlock(&inode->i_lock);
635 			busy = 1;
636 			continue;
637 		}
638 		if (atomic_read(&inode->i_count)) {
639 			spin_unlock(&inode->i_lock);
640 			busy = 1;
641 			continue;
642 		}
643 
644 		inode->i_state |= I_FREEING;
645 		inode_lru_list_del(inode);
646 		spin_unlock(&inode->i_lock);
647 		list_add(&inode->i_lru, &dispose);
648 	}
649 	spin_unlock(&inode_sb_list_lock);
650 
651 	dispose_list(&dispose);
652 
653 	return busy;
654 }
655 
can_unuse(struct inode * inode)656 static int can_unuse(struct inode *inode)
657 {
658 	if (inode->i_state & ~I_REFERENCED)
659 		return 0;
660 	if (inode_has_buffers(inode))
661 		return 0;
662 	if (atomic_read(&inode->i_count))
663 		return 0;
664 	if (inode->i_data.nrpages)
665 		return 0;
666 	return 1;
667 }
668 
669 /*
670  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
671  * This is called from the superblock shrinker function with a number of inodes
672  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
673  * then are freed outside inode_lock by dispose_list().
674  *
675  * Any inodes which are pinned purely because of attached pagecache have their
676  * pagecache removed.  If the inode has metadata buffers attached to
677  * mapping->private_list then try to remove them.
678  *
679  * If the inode has the I_REFERENCED flag set, then it means that it has been
680  * used recently - the flag is set in iput_final(). When we encounter such an
681  * inode, clear the flag and move it to the back of the LRU so it gets another
682  * pass through the LRU before it gets reclaimed. This is necessary because of
683  * the fact we are doing lazy LRU updates to minimise lock contention so the
684  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
685  * with this flag set because they are the inodes that are out of order.
686  */
prune_icache_sb(struct super_block * sb,int nr_to_scan)687 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
688 {
689 	LIST_HEAD(freeable);
690 	int nr_scanned;
691 	unsigned long reap = 0;
692 
693 	spin_lock(&sb->s_inode_lru_lock);
694 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
695 		struct inode *inode;
696 
697 		if (list_empty(&sb->s_inode_lru))
698 			break;
699 
700 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
701 
702 		/*
703 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
704 		 * so use a trylock. If we fail to get the lock, just move the
705 		 * inode to the back of the list so we don't spin on it.
706 		 */
707 		if (!spin_trylock(&inode->i_lock)) {
708 			list_move(&inode->i_lru, &sb->s_inode_lru);
709 			continue;
710 		}
711 
712 		/*
713 		 * Referenced or dirty inodes are still in use. Give them
714 		 * another pass through the LRU as we canot reclaim them now.
715 		 */
716 		if (atomic_read(&inode->i_count) ||
717 		    (inode->i_state & ~I_REFERENCED)) {
718 			list_del_init(&inode->i_lru);
719 			spin_unlock(&inode->i_lock);
720 			sb->s_nr_inodes_unused--;
721 			this_cpu_dec(nr_unused);
722 			continue;
723 		}
724 
725 		/* recently referenced inodes get one more pass */
726 		if (inode->i_state & I_REFERENCED) {
727 			inode->i_state &= ~I_REFERENCED;
728 			list_move(&inode->i_lru, &sb->s_inode_lru);
729 			spin_unlock(&inode->i_lock);
730 			continue;
731 		}
732 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
733 			__iget(inode);
734 			spin_unlock(&inode->i_lock);
735 			spin_unlock(&sb->s_inode_lru_lock);
736 			if (remove_inode_buffers(inode))
737 				reap += invalidate_mapping_pages(&inode->i_data,
738 								0, -1);
739 			iput(inode);
740 			spin_lock(&sb->s_inode_lru_lock);
741 
742 			if (inode != list_entry(sb->s_inode_lru.next,
743 						struct inode, i_lru))
744 				continue;	/* wrong inode or list_empty */
745 			/* avoid lock inversions with trylock */
746 			if (!spin_trylock(&inode->i_lock))
747 				continue;
748 			if (!can_unuse(inode)) {
749 				spin_unlock(&inode->i_lock);
750 				continue;
751 			}
752 		}
753 		WARN_ON(inode->i_state & I_NEW);
754 		inode->i_state |= I_FREEING;
755 		spin_unlock(&inode->i_lock);
756 
757 		list_move(&inode->i_lru, &freeable);
758 		sb->s_nr_inodes_unused--;
759 		this_cpu_dec(nr_unused);
760 	}
761 	if (current_is_kswapd())
762 		__count_vm_events(KSWAPD_INODESTEAL, reap);
763 	else
764 		__count_vm_events(PGINODESTEAL, reap);
765 	spin_unlock(&sb->s_inode_lru_lock);
766 	if (current->reclaim_state)
767 		current->reclaim_state->reclaimed_slab += reap;
768 
769 	dispose_list(&freeable);
770 }
771 
772 static void __wait_on_freeing_inode(struct inode *inode);
773 /*
774  * Called with the inode lock held.
775  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)776 static struct inode *find_inode(struct super_block *sb,
777 				struct hlist_head *head,
778 				int (*test)(struct inode *, void *),
779 				void *data)
780 {
781 	struct hlist_node *node;
782 	struct inode *inode = NULL;
783 
784 repeat:
785 	hlist_for_each_entry(inode, node, head, i_hash) {
786 		spin_lock(&inode->i_lock);
787 		if (inode->i_sb != sb) {
788 			spin_unlock(&inode->i_lock);
789 			continue;
790 		}
791 		if (!test(inode, data)) {
792 			spin_unlock(&inode->i_lock);
793 			continue;
794 		}
795 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
796 			__wait_on_freeing_inode(inode);
797 			goto repeat;
798 		}
799 		__iget(inode);
800 		spin_unlock(&inode->i_lock);
801 		return inode;
802 	}
803 	return NULL;
804 }
805 
806 /*
807  * find_inode_fast is the fast path version of find_inode, see the comment at
808  * iget_locked for details.
809  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)810 static struct inode *find_inode_fast(struct super_block *sb,
811 				struct hlist_head *head, unsigned long ino)
812 {
813 	struct hlist_node *node;
814 	struct inode *inode = NULL;
815 
816 repeat:
817 	hlist_for_each_entry(inode, node, head, i_hash) {
818 		spin_lock(&inode->i_lock);
819 		if (inode->i_ino != ino) {
820 			spin_unlock(&inode->i_lock);
821 			continue;
822 		}
823 		if (inode->i_sb != sb) {
824 			spin_unlock(&inode->i_lock);
825 			continue;
826 		}
827 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 			__wait_on_freeing_inode(inode);
829 			goto repeat;
830 		}
831 		__iget(inode);
832 		spin_unlock(&inode->i_lock);
833 		return inode;
834 	}
835 	return NULL;
836 }
837 
838 /*
839  * Each cpu owns a range of LAST_INO_BATCH numbers.
840  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
841  * to renew the exhausted range.
842  *
843  * This does not significantly increase overflow rate because every CPU can
844  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
845  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
846  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
847  * overflow rate by 2x, which does not seem too significant.
848  *
849  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
850  * error if st_ino won't fit in target struct field. Use 32bit counter
851  * here to attempt to avoid that.
852  */
853 #define LAST_INO_BATCH 1024
854 static DEFINE_PER_CPU(unsigned int, last_ino);
855 
get_next_ino(void)856 unsigned int get_next_ino(void)
857 {
858 	unsigned int *p = &get_cpu_var(last_ino);
859 	unsigned int res = *p;
860 
861 #ifdef CONFIG_SMP
862 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
863 		static atomic_t shared_last_ino;
864 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
865 
866 		res = next - LAST_INO_BATCH;
867 	}
868 #endif
869 
870 	*p = ++res;
871 	put_cpu_var(last_ino);
872 	return res;
873 }
874 EXPORT_SYMBOL(get_next_ino);
875 
876 /**
877  *	new_inode_pseudo 	- obtain an inode
878  *	@sb: superblock
879  *
880  *	Allocates a new inode for given superblock.
881  *	Inode wont be chained in superblock s_inodes list
882  *	This means :
883  *	- fs can't be unmount
884  *	- quotas, fsnotify, writeback can't work
885  */
new_inode_pseudo(struct super_block * sb)886 struct inode *new_inode_pseudo(struct super_block *sb)
887 {
888 	struct inode *inode = alloc_inode(sb);
889 
890 	if (inode) {
891 		spin_lock(&inode->i_lock);
892 		inode->i_state = 0;
893 		spin_unlock(&inode->i_lock);
894 		INIT_LIST_HEAD(&inode->i_sb_list);
895 	}
896 	return inode;
897 }
898 
899 /**
900  *	new_inode 	- obtain an inode
901  *	@sb: superblock
902  *
903  *	Allocates a new inode for given superblock. The default gfp_mask
904  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
905  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
906  *	for the page cache are not reclaimable or migratable,
907  *	mapping_set_gfp_mask() must be called with suitable flags on the
908  *	newly created inode's mapping
909  *
910  */
new_inode(struct super_block * sb)911 struct inode *new_inode(struct super_block *sb)
912 {
913 	struct inode *inode;
914 
915 	spin_lock_prefetch(&inode_sb_list_lock);
916 
917 	inode = new_inode_pseudo(sb);
918 	if (inode)
919 		inode_sb_list_add(inode);
920 	return inode;
921 }
922 EXPORT_SYMBOL(new_inode);
923 
924 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)925 void lockdep_annotate_inode_mutex_key(struct inode *inode)
926 {
927 	if (S_ISDIR(inode->i_mode)) {
928 		struct file_system_type *type = inode->i_sb->s_type;
929 
930 		/* Set new key only if filesystem hasn't already changed it */
931 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
932 			/*
933 			 * ensure nobody is actually holding i_mutex
934 			 */
935 			mutex_destroy(&inode->i_mutex);
936 			mutex_init(&inode->i_mutex);
937 			lockdep_set_class(&inode->i_mutex,
938 					  &type->i_mutex_dir_key);
939 		}
940 	}
941 }
942 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
943 #endif
944 
945 /**
946  * unlock_new_inode - clear the I_NEW state and wake up any waiters
947  * @inode:	new inode to unlock
948  *
949  * Called when the inode is fully initialised to clear the new state of the
950  * inode and wake up anyone waiting for the inode to finish initialisation.
951  */
unlock_new_inode(struct inode * inode)952 void unlock_new_inode(struct inode *inode)
953 {
954 	lockdep_annotate_inode_mutex_key(inode);
955 	spin_lock(&inode->i_lock);
956 	WARN_ON(!(inode->i_state & I_NEW));
957 	inode->i_state &= ~I_NEW;
958 	smp_mb();
959 	wake_up_bit(&inode->i_state, __I_NEW);
960 	spin_unlock(&inode->i_lock);
961 }
962 EXPORT_SYMBOL(unlock_new_inode);
963 
964 /**
965  * iget5_locked - obtain an inode from a mounted file system
966  * @sb:		super block of file system
967  * @hashval:	hash value (usually inode number) to get
968  * @test:	callback used for comparisons between inodes
969  * @set:	callback used to initialize a new struct inode
970  * @data:	opaque data pointer to pass to @test and @set
971  *
972  * Search for the inode specified by @hashval and @data in the inode cache,
973  * and if present it is return it with an increased reference count. This is
974  * a generalized version of iget_locked() for file systems where the inode
975  * number is not sufficient for unique identification of an inode.
976  *
977  * If the inode is not in cache, allocate a new inode and return it locked,
978  * hashed, and with the I_NEW flag set. The file system gets to fill it in
979  * before unlocking it via unlock_new_inode().
980  *
981  * Note both @test and @set are called with the inode_hash_lock held, so can't
982  * sleep.
983  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)984 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
985 		int (*test)(struct inode *, void *),
986 		int (*set)(struct inode *, void *), void *data)
987 {
988 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
989 	struct inode *inode;
990 
991 	spin_lock(&inode_hash_lock);
992 	inode = find_inode(sb, head, test, data);
993 	spin_unlock(&inode_hash_lock);
994 
995 	if (inode) {
996 		wait_on_inode(inode);
997 		return inode;
998 	}
999 
1000 	inode = alloc_inode(sb);
1001 	if (inode) {
1002 		struct inode *old;
1003 
1004 		spin_lock(&inode_hash_lock);
1005 		/* We released the lock, so.. */
1006 		old = find_inode(sb, head, test, data);
1007 		if (!old) {
1008 			if (set(inode, data))
1009 				goto set_failed;
1010 
1011 			spin_lock(&inode->i_lock);
1012 			inode->i_state = I_NEW;
1013 			hlist_add_head(&inode->i_hash, head);
1014 			spin_unlock(&inode->i_lock);
1015 			inode_sb_list_add(inode);
1016 			spin_unlock(&inode_hash_lock);
1017 
1018 			/* Return the locked inode with I_NEW set, the
1019 			 * caller is responsible for filling in the contents
1020 			 */
1021 			return inode;
1022 		}
1023 
1024 		/*
1025 		 * Uhhuh, somebody else created the same inode under
1026 		 * us. Use the old inode instead of the one we just
1027 		 * allocated.
1028 		 */
1029 		spin_unlock(&inode_hash_lock);
1030 		destroy_inode(inode);
1031 		inode = old;
1032 		wait_on_inode(inode);
1033 	}
1034 	return inode;
1035 
1036 set_failed:
1037 	spin_unlock(&inode_hash_lock);
1038 	destroy_inode(inode);
1039 	return NULL;
1040 }
1041 EXPORT_SYMBOL(iget5_locked);
1042 
1043 /**
1044  * iget_locked - obtain an inode from a mounted file system
1045  * @sb:		super block of file system
1046  * @ino:	inode number to get
1047  *
1048  * Search for the inode specified by @ino in the inode cache and if present
1049  * return it with an increased reference count. This is for file systems
1050  * where the inode number is sufficient for unique identification of an inode.
1051  *
1052  * If the inode is not in cache, allocate a new inode and return it locked,
1053  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1054  * before unlocking it via unlock_new_inode().
1055  */
iget_locked(struct super_block * sb,unsigned long ino)1056 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1057 {
1058 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1059 	struct inode *inode;
1060 
1061 	spin_lock(&inode_hash_lock);
1062 	inode = find_inode_fast(sb, head, ino);
1063 	spin_unlock(&inode_hash_lock);
1064 	if (inode) {
1065 		wait_on_inode(inode);
1066 		return inode;
1067 	}
1068 
1069 	inode = alloc_inode(sb);
1070 	if (inode) {
1071 		struct inode *old;
1072 
1073 		spin_lock(&inode_hash_lock);
1074 		/* We released the lock, so.. */
1075 		old = find_inode_fast(sb, head, ino);
1076 		if (!old) {
1077 			inode->i_ino = ino;
1078 			spin_lock(&inode->i_lock);
1079 			inode->i_state = I_NEW;
1080 			hlist_add_head(&inode->i_hash, head);
1081 			spin_unlock(&inode->i_lock);
1082 			inode_sb_list_add(inode);
1083 			spin_unlock(&inode_hash_lock);
1084 
1085 			/* Return the locked inode with I_NEW set, the
1086 			 * caller is responsible for filling in the contents
1087 			 */
1088 			return inode;
1089 		}
1090 
1091 		/*
1092 		 * Uhhuh, somebody else created the same inode under
1093 		 * us. Use the old inode instead of the one we just
1094 		 * allocated.
1095 		 */
1096 		spin_unlock(&inode_hash_lock);
1097 		destroy_inode(inode);
1098 		inode = old;
1099 		wait_on_inode(inode);
1100 	}
1101 	return inode;
1102 }
1103 EXPORT_SYMBOL(iget_locked);
1104 
1105 /*
1106  * search the inode cache for a matching inode number.
1107  * If we find one, then the inode number we are trying to
1108  * allocate is not unique and so we should not use it.
1109  *
1110  * Returns 1 if the inode number is unique, 0 if it is not.
1111  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1112 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1113 {
1114 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1115 	struct hlist_node *node;
1116 	struct inode *inode;
1117 
1118 	spin_lock(&inode_hash_lock);
1119 	hlist_for_each_entry(inode, node, b, i_hash) {
1120 		if (inode->i_ino == ino && inode->i_sb == sb) {
1121 			spin_unlock(&inode_hash_lock);
1122 			return 0;
1123 		}
1124 	}
1125 	spin_unlock(&inode_hash_lock);
1126 
1127 	return 1;
1128 }
1129 
1130 /**
1131  *	iunique - get a unique inode number
1132  *	@sb: superblock
1133  *	@max_reserved: highest reserved inode number
1134  *
1135  *	Obtain an inode number that is unique on the system for a given
1136  *	superblock. This is used by file systems that have no natural
1137  *	permanent inode numbering system. An inode number is returned that
1138  *	is higher than the reserved limit but unique.
1139  *
1140  *	BUGS:
1141  *	With a large number of inodes live on the file system this function
1142  *	currently becomes quite slow.
1143  */
iunique(struct super_block * sb,ino_t max_reserved)1144 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1145 {
1146 	/*
1147 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1148 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1149 	 * here to attempt to avoid that.
1150 	 */
1151 	static DEFINE_SPINLOCK(iunique_lock);
1152 	static unsigned int counter;
1153 	ino_t res;
1154 
1155 	spin_lock(&iunique_lock);
1156 	do {
1157 		if (counter <= max_reserved)
1158 			counter = max_reserved + 1;
1159 		res = counter++;
1160 	} while (!test_inode_iunique(sb, res));
1161 	spin_unlock(&iunique_lock);
1162 
1163 	return res;
1164 }
1165 EXPORT_SYMBOL(iunique);
1166 
igrab(struct inode * inode)1167 struct inode *igrab(struct inode *inode)
1168 {
1169 	spin_lock(&inode->i_lock);
1170 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1171 		__iget(inode);
1172 		spin_unlock(&inode->i_lock);
1173 	} else {
1174 		spin_unlock(&inode->i_lock);
1175 		/*
1176 		 * Handle the case where s_op->clear_inode is not been
1177 		 * called yet, and somebody is calling igrab
1178 		 * while the inode is getting freed.
1179 		 */
1180 		inode = NULL;
1181 	}
1182 	return inode;
1183 }
1184 EXPORT_SYMBOL(igrab);
1185 
1186 /**
1187  * ilookup5_nowait - search for an inode in the inode cache
1188  * @sb:		super block of file system to search
1189  * @hashval:	hash value (usually inode number) to search for
1190  * @test:	callback used for comparisons between inodes
1191  * @data:	opaque data pointer to pass to @test
1192  *
1193  * Search for the inode specified by @hashval and @data in the inode cache.
1194  * If the inode is in the cache, the inode is returned with an incremented
1195  * reference count.
1196  *
1197  * Note: I_NEW is not waited upon so you have to be very careful what you do
1198  * with the returned inode.  You probably should be using ilookup5() instead.
1199  *
1200  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1201  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1202 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1203 		int (*test)(struct inode *, void *), void *data)
1204 {
1205 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1206 	struct inode *inode;
1207 
1208 	spin_lock(&inode_hash_lock);
1209 	inode = find_inode(sb, head, test, data);
1210 	spin_unlock(&inode_hash_lock);
1211 
1212 	return inode;
1213 }
1214 EXPORT_SYMBOL(ilookup5_nowait);
1215 
1216 /**
1217  * ilookup5 - search for an inode in the inode cache
1218  * @sb:		super block of file system to search
1219  * @hashval:	hash value (usually inode number) to search for
1220  * @test:	callback used for comparisons between inodes
1221  * @data:	opaque data pointer to pass to @test
1222  *
1223  * Search for the inode specified by @hashval and @data in the inode cache,
1224  * and if the inode is in the cache, return the inode with an incremented
1225  * reference count.  Waits on I_NEW before returning the inode.
1226  * returned with an incremented reference count.
1227  *
1228  * This is a generalized version of ilookup() for file systems where the
1229  * inode number is not sufficient for unique identification of an inode.
1230  *
1231  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1232  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1233 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1234 		int (*test)(struct inode *, void *), void *data)
1235 {
1236 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1237 
1238 	if (inode)
1239 		wait_on_inode(inode);
1240 	return inode;
1241 }
1242 EXPORT_SYMBOL(ilookup5);
1243 
1244 /**
1245  * ilookup - search for an inode in the inode cache
1246  * @sb:		super block of file system to search
1247  * @ino:	inode number to search for
1248  *
1249  * Search for the inode @ino in the inode cache, and if the inode is in the
1250  * cache, the inode is returned with an incremented reference count.
1251  */
ilookup(struct super_block * sb,unsigned long ino)1252 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1253 {
1254 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1255 	struct inode *inode;
1256 
1257 	spin_lock(&inode_hash_lock);
1258 	inode = find_inode_fast(sb, head, ino);
1259 	spin_unlock(&inode_hash_lock);
1260 
1261 	if (inode)
1262 		wait_on_inode(inode);
1263 	return inode;
1264 }
1265 EXPORT_SYMBOL(ilookup);
1266 
insert_inode_locked(struct inode * inode)1267 int insert_inode_locked(struct inode *inode)
1268 {
1269 	struct super_block *sb = inode->i_sb;
1270 	ino_t ino = inode->i_ino;
1271 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1272 
1273 	while (1) {
1274 		struct hlist_node *node;
1275 		struct inode *old = NULL;
1276 		spin_lock(&inode_hash_lock);
1277 		hlist_for_each_entry(old, node, head, i_hash) {
1278 			if (old->i_ino != ino)
1279 				continue;
1280 			if (old->i_sb != sb)
1281 				continue;
1282 			spin_lock(&old->i_lock);
1283 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1284 				spin_unlock(&old->i_lock);
1285 				continue;
1286 			}
1287 			break;
1288 		}
1289 		if (likely(!node)) {
1290 			spin_lock(&inode->i_lock);
1291 			inode->i_state |= I_NEW;
1292 			hlist_add_head(&inode->i_hash, head);
1293 			spin_unlock(&inode->i_lock);
1294 			spin_unlock(&inode_hash_lock);
1295 			return 0;
1296 		}
1297 		__iget(old);
1298 		spin_unlock(&old->i_lock);
1299 		spin_unlock(&inode_hash_lock);
1300 		wait_on_inode(old);
1301 		if (unlikely(!inode_unhashed(old))) {
1302 			iput(old);
1303 			return -EBUSY;
1304 		}
1305 		iput(old);
1306 	}
1307 }
1308 EXPORT_SYMBOL(insert_inode_locked);
1309 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1310 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1311 		int (*test)(struct inode *, void *), void *data)
1312 {
1313 	struct super_block *sb = inode->i_sb;
1314 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1315 
1316 	while (1) {
1317 		struct hlist_node *node;
1318 		struct inode *old = NULL;
1319 
1320 		spin_lock(&inode_hash_lock);
1321 		hlist_for_each_entry(old, node, head, i_hash) {
1322 			if (old->i_sb != sb)
1323 				continue;
1324 			if (!test(old, data))
1325 				continue;
1326 			spin_lock(&old->i_lock);
1327 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1328 				spin_unlock(&old->i_lock);
1329 				continue;
1330 			}
1331 			break;
1332 		}
1333 		if (likely(!node)) {
1334 			spin_lock(&inode->i_lock);
1335 			inode->i_state |= I_NEW;
1336 			hlist_add_head(&inode->i_hash, head);
1337 			spin_unlock(&inode->i_lock);
1338 			spin_unlock(&inode_hash_lock);
1339 			return 0;
1340 		}
1341 		__iget(old);
1342 		spin_unlock(&old->i_lock);
1343 		spin_unlock(&inode_hash_lock);
1344 		wait_on_inode(old);
1345 		if (unlikely(!inode_unhashed(old))) {
1346 			iput(old);
1347 			return -EBUSY;
1348 		}
1349 		iput(old);
1350 	}
1351 }
1352 EXPORT_SYMBOL(insert_inode_locked4);
1353 
1354 
generic_delete_inode(struct inode * inode)1355 int generic_delete_inode(struct inode *inode)
1356 {
1357 	return 1;
1358 }
1359 EXPORT_SYMBOL(generic_delete_inode);
1360 
1361 /*
1362  * Called when we're dropping the last reference
1363  * to an inode.
1364  *
1365  * Call the FS "drop_inode()" function, defaulting to
1366  * the legacy UNIX filesystem behaviour.  If it tells
1367  * us to evict inode, do so.  Otherwise, retain inode
1368  * in cache if fs is alive, sync and evict if fs is
1369  * shutting down.
1370  */
iput_final(struct inode * inode)1371 static void iput_final(struct inode *inode)
1372 {
1373 	struct super_block *sb = inode->i_sb;
1374 	const struct super_operations *op = inode->i_sb->s_op;
1375 	int drop;
1376 
1377 	WARN_ON(inode->i_state & I_NEW);
1378 
1379 	if (op->drop_inode)
1380 		drop = op->drop_inode(inode);
1381 	else
1382 		drop = generic_drop_inode(inode);
1383 
1384 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1385 		inode->i_state |= I_REFERENCED;
1386 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1387 			inode_lru_list_add(inode);
1388 		spin_unlock(&inode->i_lock);
1389 		return;
1390 	}
1391 
1392 	if (!drop) {
1393 		inode->i_state |= I_WILL_FREE;
1394 		spin_unlock(&inode->i_lock);
1395 		write_inode_now(inode, 1);
1396 		spin_lock(&inode->i_lock);
1397 		WARN_ON(inode->i_state & I_NEW);
1398 		inode->i_state &= ~I_WILL_FREE;
1399 	}
1400 
1401 	inode->i_state |= I_FREEING;
1402 	if (!list_empty(&inode->i_lru))
1403 		inode_lru_list_del(inode);
1404 	spin_unlock(&inode->i_lock);
1405 
1406 	evict(inode);
1407 }
1408 
1409 /**
1410  *	iput	- put an inode
1411  *	@inode: inode to put
1412  *
1413  *	Puts an inode, dropping its usage count. If the inode use count hits
1414  *	zero, the inode is then freed and may also be destroyed.
1415  *
1416  *	Consequently, iput() can sleep.
1417  */
iput(struct inode * inode)1418 void iput(struct inode *inode)
1419 {
1420 	if (inode) {
1421 		BUG_ON(inode->i_state & I_CLEAR);
1422 
1423 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1424 			iput_final(inode);
1425 	}
1426 }
1427 EXPORT_SYMBOL(iput);
1428 
1429 /**
1430  *	bmap	- find a block number in a file
1431  *	@inode: inode of file
1432  *	@block: block to find
1433  *
1434  *	Returns the block number on the device holding the inode that
1435  *	is the disk block number for the block of the file requested.
1436  *	That is, asked for block 4 of inode 1 the function will return the
1437  *	disk block relative to the disk start that holds that block of the
1438  *	file.
1439  */
bmap(struct inode * inode,sector_t block)1440 sector_t bmap(struct inode *inode, sector_t block)
1441 {
1442 	sector_t res = 0;
1443 	if (inode->i_mapping->a_ops->bmap)
1444 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1445 	return res;
1446 }
1447 EXPORT_SYMBOL(bmap);
1448 
1449 /*
1450  * With relative atime, only update atime if the previous atime is
1451  * earlier than either the ctime or mtime or if at least a day has
1452  * passed since the last atime update.
1453  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1454 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1455 			     struct timespec now)
1456 {
1457 
1458 	if (!(mnt->mnt_flags & MNT_RELATIME))
1459 		return 1;
1460 	/*
1461 	 * Is mtime younger than atime? If yes, update atime:
1462 	 */
1463 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1464 		return 1;
1465 	/*
1466 	 * Is ctime younger than atime? If yes, update atime:
1467 	 */
1468 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1469 		return 1;
1470 
1471 	/*
1472 	 * Is the previous atime value older than a day? If yes,
1473 	 * update atime:
1474 	 */
1475 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1476 		return 1;
1477 	/*
1478 	 * Good, we can skip the atime update:
1479 	 */
1480 	return 0;
1481 }
1482 
1483 /**
1484  *	touch_atime	-	update the access time
1485  *	@mnt: mount the inode is accessed on
1486  *	@dentry: dentry accessed
1487  *
1488  *	Update the accessed time on an inode and mark it for writeback.
1489  *	This function automatically handles read only file systems and media,
1490  *	as well as the "noatime" flag and inode specific "noatime" markers.
1491  */
touch_atime(struct path * path)1492 void touch_atime(struct path *path)
1493 {
1494 	struct vfsmount *mnt = path->mnt;
1495 	struct inode *inode = path->dentry->d_inode;
1496 	struct timespec now;
1497 
1498 	if (inode->i_flags & S_NOATIME)
1499 		return;
1500 	if (IS_NOATIME(inode))
1501 		return;
1502 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1503 		return;
1504 
1505 	if (mnt->mnt_flags & MNT_NOATIME)
1506 		return;
1507 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1508 		return;
1509 
1510 	now = current_fs_time(inode->i_sb);
1511 
1512 	if (!relatime_need_update(mnt, inode, now))
1513 		return;
1514 
1515 	if (timespec_equal(&inode->i_atime, &now))
1516 		return;
1517 
1518 	if (mnt_want_write(mnt))
1519 		return;
1520 
1521 	inode->i_atime = now;
1522 	mark_inode_dirty_sync(inode);
1523 	mnt_drop_write(mnt);
1524 }
1525 EXPORT_SYMBOL(touch_atime);
1526 
1527 /**
1528  *	file_update_time	-	update mtime and ctime time
1529  *	@file: file accessed
1530  *
1531  *	Update the mtime and ctime members of an inode and mark the inode
1532  *	for writeback.  Note that this function is meant exclusively for
1533  *	usage in the file write path of filesystems, and filesystems may
1534  *	choose to explicitly ignore update via this function with the
1535  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1536  *	timestamps are handled by the server.
1537  */
1538 
file_update_time(struct file * file)1539 void file_update_time(struct file *file)
1540 {
1541 	struct inode *inode = file->f_path.dentry->d_inode;
1542 	struct timespec now;
1543 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1544 
1545 	/* First try to exhaust all avenues to not sync */
1546 	if (IS_NOCMTIME(inode))
1547 		return;
1548 
1549 	now = current_fs_time(inode->i_sb);
1550 	if (!timespec_equal(&inode->i_mtime, &now))
1551 		sync_it = S_MTIME;
1552 
1553 	if (!timespec_equal(&inode->i_ctime, &now))
1554 		sync_it |= S_CTIME;
1555 
1556 	if (IS_I_VERSION(inode))
1557 		sync_it |= S_VERSION;
1558 
1559 	if (!sync_it)
1560 		return;
1561 
1562 	/* Finally allowed to write? Takes lock. */
1563 	if (mnt_want_write_file(file))
1564 		return;
1565 
1566 	/* Only change inode inside the lock region */
1567 	if (sync_it & S_VERSION)
1568 		inode_inc_iversion(inode);
1569 	if (sync_it & S_CTIME)
1570 		inode->i_ctime = now;
1571 	if (sync_it & S_MTIME)
1572 		inode->i_mtime = now;
1573 	mark_inode_dirty_sync(inode);
1574 	mnt_drop_write_file(file);
1575 }
1576 EXPORT_SYMBOL(file_update_time);
1577 
inode_needs_sync(struct inode * inode)1578 int inode_needs_sync(struct inode *inode)
1579 {
1580 	if (IS_SYNC(inode))
1581 		return 1;
1582 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1583 		return 1;
1584 	return 0;
1585 }
1586 EXPORT_SYMBOL(inode_needs_sync);
1587 
inode_wait(void * word)1588 int inode_wait(void *word)
1589 {
1590 	schedule();
1591 	return 0;
1592 }
1593 EXPORT_SYMBOL(inode_wait);
1594 
1595 /*
1596  * If we try to find an inode in the inode hash while it is being
1597  * deleted, we have to wait until the filesystem completes its
1598  * deletion before reporting that it isn't found.  This function waits
1599  * until the deletion _might_ have completed.  Callers are responsible
1600  * to recheck inode state.
1601  *
1602  * It doesn't matter if I_NEW is not set initially, a call to
1603  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1604  * will DTRT.
1605  */
__wait_on_freeing_inode(struct inode * inode)1606 static void __wait_on_freeing_inode(struct inode *inode)
1607 {
1608 	wait_queue_head_t *wq;
1609 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1610 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1611 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1612 	spin_unlock(&inode->i_lock);
1613 	spin_unlock(&inode_hash_lock);
1614 	schedule();
1615 	finish_wait(wq, &wait.wait);
1616 	spin_lock(&inode_hash_lock);
1617 }
1618 
1619 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1620 static int __init set_ihash_entries(char *str)
1621 {
1622 	if (!str)
1623 		return 0;
1624 	ihash_entries = simple_strtoul(str, &str, 0);
1625 	return 1;
1626 }
1627 __setup("ihash_entries=", set_ihash_entries);
1628 
1629 /*
1630  * Initialize the waitqueues and inode hash table.
1631  */
inode_init_early(void)1632 void __init inode_init_early(void)
1633 {
1634 	unsigned int loop;
1635 
1636 	/* If hashes are distributed across NUMA nodes, defer
1637 	 * hash allocation until vmalloc space is available.
1638 	 */
1639 	if (hashdist)
1640 		return;
1641 
1642 	inode_hashtable =
1643 		alloc_large_system_hash("Inode-cache",
1644 					sizeof(struct hlist_head),
1645 					ihash_entries,
1646 					14,
1647 					HASH_EARLY,
1648 					&i_hash_shift,
1649 					&i_hash_mask,
1650 					0);
1651 
1652 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1653 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1654 }
1655 
inode_init(void)1656 void __init inode_init(void)
1657 {
1658 	unsigned int loop;
1659 
1660 	/* inode slab cache */
1661 	inode_cachep = kmem_cache_create("inode_cache",
1662 					 sizeof(struct inode),
1663 					 0,
1664 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1665 					 SLAB_MEM_SPREAD),
1666 					 init_once);
1667 
1668 	/* Hash may have been set up in inode_init_early */
1669 	if (!hashdist)
1670 		return;
1671 
1672 	inode_hashtable =
1673 		alloc_large_system_hash("Inode-cache",
1674 					sizeof(struct hlist_head),
1675 					ihash_entries,
1676 					14,
1677 					0,
1678 					&i_hash_shift,
1679 					&i_hash_mask,
1680 					0);
1681 
1682 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1683 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1684 }
1685 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1686 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1687 {
1688 	inode->i_mode = mode;
1689 	if (S_ISCHR(mode)) {
1690 		inode->i_fop = &def_chr_fops;
1691 		inode->i_rdev = rdev;
1692 	} else if (S_ISBLK(mode)) {
1693 		inode->i_fop = &def_blk_fops;
1694 		inode->i_rdev = rdev;
1695 	} else if (S_ISFIFO(mode))
1696 		inode->i_fop = &def_fifo_fops;
1697 	else if (S_ISSOCK(mode))
1698 		inode->i_fop = &bad_sock_fops;
1699 	else
1700 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1701 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1702 				  inode->i_ino);
1703 }
1704 EXPORT_SYMBOL(init_special_inode);
1705 
1706 /**
1707  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1708  * @inode: New inode
1709  * @dir: Directory inode
1710  * @mode: mode of the new inode
1711  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)1712 void inode_init_owner(struct inode *inode, const struct inode *dir,
1713 			umode_t mode)
1714 {
1715 	inode->i_uid = current_fsuid();
1716 	if (dir && dir->i_mode & S_ISGID) {
1717 		inode->i_gid = dir->i_gid;
1718 		if (S_ISDIR(mode))
1719 			mode |= S_ISGID;
1720 	} else
1721 		inode->i_gid = current_fsgid();
1722 	inode->i_mode = mode;
1723 }
1724 EXPORT_SYMBOL(inode_init_owner);
1725 
1726 /**
1727  * inode_owner_or_capable - check current task permissions to inode
1728  * @inode: inode being checked
1729  *
1730  * Return true if current either has CAP_FOWNER to the inode, or
1731  * owns the file.
1732  */
inode_owner_or_capable(const struct inode * inode)1733 bool inode_owner_or_capable(const struct inode *inode)
1734 {
1735 	struct user_namespace *ns = inode_userns(inode);
1736 
1737 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1738 		return true;
1739 	if (ns_capable(ns, CAP_FOWNER))
1740 		return true;
1741 	return false;
1742 }
1743 EXPORT_SYMBOL(inode_owner_or_capable);
1744