1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright (C) 2002, 2003 David Dawes <dawes@tungstengraphics.com>
7  *
8  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
9  * the basic fbdev interfaces, is derived in part from the radeonfb and
10  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
11  * provides the code to program the hardware.  Most of it is derived from
12  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
13  * under a dual license (GPL and MIT/XFree86 license).
14  *
15  * Author: David Dawes
16  *
17  */
18 
19 /* $DHD: intelfb/intelfbhw.c,v 1.7 2003/02/06 00:53:11 dawes Exp $ */
20 /* $TG$ */
21 
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/console.h>
33 #include <linux/selection.h>
34 #include <linux/ioport.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/vmalloc.h>
38 #include <linux/kd.h>
39 #include <linux/vt_kern.h>
40 #include <linux/pagemap.h>
41 #include <linux/version.h>
42 
43 #include <asm/io.h>
44 
45 #include <video/fbcon.h>
46 #include <video/fbcon-cfb8.h>
47 #include <video/fbcon-cfb16.h>
48 #include <video/fbcon-cfb32.h>
49 
50 #include "intelfb.h"
51 #include "intelfbhw.h"
52 
53 int
intelfbhw_get_chipset(struct pci_dev * pdev,const char ** name,int * chipset,int * mobile)54 intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
55 		      int *mobile)
56 {
57 	u32 tmp;
58 
59 	if (!pdev || !name || !chipset || !mobile)
60 		return 1;
61 
62 	switch (pdev->device) {
63 	case PCI_DEVICE_ID_INTEL_830M:
64 		*name = "Intel(R) 830M";
65 		*chipset = INTEL_830M;
66 		*mobile = 1;
67 		return 0;
68 	case PCI_DEVICE_ID_INTEL_845G:
69 		*name = "Intel(R) 845G";
70 		*chipset = INTEL_845G;
71 		*mobile = 0;
72 		return 0;
73 	case PCI_DEVICE_ID_INTEL_85XGM:
74 		tmp = 0;
75 		*mobile = 1;
76 		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
77 		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
78 			INTEL_85X_VARIANT_MASK) {
79 		case INTEL_VAR_855GME:
80 			*name = "Intel(R) 855GME";
81 			*chipset = INTEL_855GME;
82 			return 0;
83 		case INTEL_VAR_855GM:
84 			*name = "Intel(R) 855GM";
85 			*chipset = INTEL_855GM;
86 			return 0;
87 		case INTEL_VAR_852GME:
88 			*name = "Intel(R) 852GME";
89 			*chipset = INTEL_852GME;
90 			return 0;
91 		case INTEL_VAR_852GM:
92 			*name = "Intel(R) 852GM";
93 			*chipset = INTEL_852GM;
94 			return 0;
95 		default:
96 			*name = "Intel(R) 852GM/855GM";
97 			*chipset = INTEL_85XGM;
98 			return 0;
99 		}
100 		break;
101 	case PCI_DEVICE_ID_INTEL_865G:
102 		*name = "Intel(R) 865G";
103 		*chipset = INTEL_865G;
104 		*mobile = 0;
105 		return 0;
106 	default:
107 		return 1;
108 	}
109 }
110 
111 int
intelfbhw_get_memory(struct pci_dev * pdev,int * aperture_size,int * stolen_size)112 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
113 		     int *stolen_size)
114 {
115 	struct pci_dev *bridge_dev;
116 	u16 tmp;
117 
118 	if (!pdev || !aperture_size || !stolen_size)
119 		return 1;
120 
121 	/* Find the bridge device.  It is always 0:0.0 */
122 	if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
123 		ERR_MSG("cannot find bridge device\n");
124 		return 1;
125 	}
126 
127 	/* Get the fb aperture size and "stolen" memory amount. */
128 	tmp = 0;
129 	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
130 	switch (pdev->device) {
131 	case PCI_DEVICE_ID_INTEL_830M:
132 	case PCI_DEVICE_ID_INTEL_845G:
133 		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
134 			*aperture_size = MB(64);
135 		else
136 			*aperture_size = MB(128);
137 		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
138 		case INTEL_830_GMCH_GMS_STOLEN_512:
139 			*stolen_size = KB(512) - KB(132);
140 			return 0;
141 		case INTEL_830_GMCH_GMS_STOLEN_1024:
142 			*stolen_size = MB(1) - KB(132);
143 			return 0;
144 		case INTEL_830_GMCH_GMS_STOLEN_8192:
145 			*stolen_size = MB(8) - KB(132);
146 			return 0;
147 		case INTEL_830_GMCH_GMS_LOCAL:
148 			ERR_MSG("only local memory found\n");
149 			return 1;
150 		case INTEL_830_GMCH_GMS_DISABLED:
151 			ERR_MSG("video memory is disabled\n");
152 			return 1;
153 		default:
154 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
155 				tmp & INTEL_830_GMCH_GMS_MASK);
156 			return 1;
157 		}
158 		break;
159 	default:
160 		*aperture_size = MB(128);
161 		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
162 		case INTEL_855_GMCH_GMS_STOLEN_1M:
163 			*stolen_size = MB(1) - KB(132);
164 			return 0;
165 		case INTEL_855_GMCH_GMS_STOLEN_4M:
166 			*stolen_size = MB(4) - KB(132);
167 			return 0;
168 		case INTEL_855_GMCH_GMS_STOLEN_8M:
169 			*stolen_size = MB(8) - KB(132);
170 			return 0;
171 		case INTEL_855_GMCH_GMS_STOLEN_16M:
172 			*stolen_size = MB(16) - KB(132);
173 			return 0;
174 		case INTEL_855_GMCH_GMS_STOLEN_32M:
175 			*stolen_size = MB(32) - KB(132);
176 			return 0;
177 		case INTEL_855_GMCH_GMS_DISABLED:
178 			ERR_MSG("video memory is disabled\n");
179 			return 0;
180 		default:
181 			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
182 				tmp & INTEL_855_GMCH_GMS_MASK);
183 			return 1;
184 		}
185 	}
186 }
187 
188 const char *
intelfbhw_check_non_crt(struct intelfb_info * dinfo)189 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
190 {
191 	if (INREG(LVDS) & PORT_ENABLE)
192 		return "LVDS port";
193 	else if (INREG(DVOA) & PORT_ENABLE)
194 		return "DVO port A";
195 	else if (INREG(DVOB) & PORT_ENABLE)
196 		return "DVO port B";
197 	else if (INREG(DVOC) & PORT_ENABLE)
198 		return "DVO port C";
199 	else
200 		return NULL;
201 }
202 
203 int
intelfbhw_validate_mode(struct intelfb_info * dinfo,int con,struct fb_var_screeninfo * var)204 intelfbhw_validate_mode(struct intelfb_info *dinfo, int con,
205 			struct fb_var_screeninfo *var)
206 {
207 	int bytes_per_pixel;
208 	int tmp;
209 
210 	DBG_MSG("intelfbhw_validate_mode\n");
211 
212 	bytes_per_pixel = var->bits_per_pixel / 8;
213 	if (bytes_per_pixel == 3)
214 		bytes_per_pixel = 4;
215 
216 	/* Check if enough video memory. */
217 	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
218 	if (tmp > dinfo->video_ram) {
219 		if (con >= 0)
220 			WRN_MSG("Not enough video ram for mode "
221 				"(%d KByte vs %d KByte).\n",
222 				BtoKB(tmp), BtoKB(dinfo->video_ram));
223 		return 1;
224 	}
225 
226 	/* Check if x/y limits are OK. */
227 	if (var->xres - 1 > HACTIVE_MASK) {
228 		if (con >= 0)
229 			WRN_MSG("X resolution too large (%d vs %d).\n",
230 				var->xres, HACTIVE_MASK + 1);
231 		return 1;
232 	}
233 	if (var->yres - 1 > VACTIVE_MASK) {
234 		if (con >= 0)
235 			WRN_MSG("Y resolution too large (%d vs %d).\n",
236 				var->yres, VACTIVE_MASK + 1);
237 		return 1;
238 	}
239 
240 	/* Check for interlaced/doublescan modes. */
241 	if (var->vmode & FB_VMODE_INTERLACED) {
242 		if (con >= 0)
243 			WRN_MSG("Mode is interlaced.\n");
244 		return 1;
245 	}
246 	if (var->vmode & FB_VMODE_DOUBLE) {
247 		if (con >= 0)
248 			WRN_MSG("Mode is double-scan.\n");
249 		return 1;
250 	}
251 
252 	/* Check if clock is OK. */
253 	tmp = 1000000000 / var->pixclock;
254 	if (tmp < MIN_CLOCK) {
255 		if (con >= 0)
256 			WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
257 				(tmp + 500) / 1000, MIN_CLOCK / 1000);
258 		return 1;
259 	}
260 	if (tmp > MAX_CLOCK) {
261 		if (con >= 0)
262 			WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
263 				(tmp + 500) / 1000, MAX_CLOCK / 1000);
264 		return 1;
265 	}
266 
267 	return 0;
268 }
269 
270 int
intelfbhw_pan_display(struct fb_var_screeninfo * var,int con,struct fb_info * info)271 intelfbhw_pan_display(struct fb_var_screeninfo *var, int con,
272 		      struct fb_info *info)
273 {
274 	struct intelfb_info *dinfo = GET_DINFO(info);
275 	u32 offset, xoffset, yoffset;
276 
277 	DBG_MSG("intelfbhw_pan_display\n");
278 
279 	if (con != dinfo->currcon)
280 		return 0;
281 
282 	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
283 	yoffset = var->yoffset;
284 
285 	if ((xoffset + var->xres > var->xres_virtual) ||
286 	    (yoffset + var->yres > var->yres_virtual))
287 		return EINVAL;
288 
289 	offset = (yoffset * dinfo->pitch) +
290 		 (xoffset * var->bits_per_pixel) / 8;
291 
292 	OUTREG(DSPABASE, offset);
293 
294 	return 0;
295 }
296 
297 /* Blank the screen. */
298 void
intelfbhw_do_blank(int blank,struct fb_info * info)299 intelfbhw_do_blank(int blank, struct fb_info *info)
300 {
301 	struct intelfb_info *dinfo = GET_DINFO(info);
302 	u32 tmp;
303 
304 	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
305 
306 	/* Turn plane A on or off */
307 	tmp = INREG(DSPACNTR);
308 	if (blank)
309 		tmp &= ~DISPPLANE_PLANE_ENABLE;
310 	else
311 		tmp |= DISPPLANE_PLANE_ENABLE;
312 	OUTREG(DSPACNTR, tmp);
313 	/* Flush */
314 	tmp = INREG(DSPABASE);
315 	OUTREG(DSPABASE, tmp);
316 
317 	/* Turn off/on the HW cursor */
318 #if VERBOSE > 0
319 	DBG_MSG("cursor.enabled is %d\n", dinfo->cursor.enabled);
320 #endif
321 	if (dinfo->cursor.enabled) {
322 		if (blank) {
323 			intelfbhw_cursor_hide(dinfo);
324 		} else {
325 			intelfbhw_cursor_show(dinfo);
326 		}
327 		dinfo->cursor.enabled = 1;
328 	}
329 	dinfo->cursor.blanked = blank;
330 
331 	/* Set DPMS level */
332 	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
333 	switch (blank) {
334 	case 0:
335 	case 1:
336 		tmp |= ADPA_DPMS_D0;
337 		break;
338 	case 2:
339 		tmp |= ADPA_DPMS_D1;
340 		break;
341 	case 3:
342 		tmp |= ADPA_DPMS_D2;
343 		break;
344 	case 4:
345 		tmp |= ADPA_DPMS_D3;
346 		break;
347 	}
348 	OUTREG(ADPA, tmp);
349 
350 	return;
351 }
352 
353 
354 void
intelfbhw_setcolreg(struct intelfb_info * dinfo,unsigned regno,unsigned red,unsigned green,unsigned blue,unsigned transp)355 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
356 		    unsigned red, unsigned green, unsigned blue,
357 		    unsigned transp)
358 {
359 #if VERBOSE > 1
360 	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
361 		regno, red, green, blue);
362 #endif
363 
364 	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
365 			  PALETTE_A : PALETTE_B;
366 
367 	OUTREG(palette_reg + (regno << 2),
368 	       (red << PALETTE_8_RED_SHIFT) |
369 	       (green << PALETTE_8_GREEN_SHIFT) |
370 	       (blue << PALETTE_8_BLUE_SHIFT));
371 }
372 
373 
374 int
intelfbhw_read_hw_state(struct intelfb_info * dinfo,struct intelfb_hwstate * hw,int flag)375 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
376 			int flag)
377 {
378 	int i;
379 
380 	DBG_MSG("intelfbhw_read_hw_state\n");
381 
382 	if (!hw || !dinfo)
383 		return -1;
384 
385 	/* Read in as much of the HW state as possible. */
386 	hw->vga0_divisor = INREG(VGA0_DIVISOR);
387 	hw->vga1_divisor = INREG(VGA1_DIVISOR);
388 	hw->vga_pd = INREG(VGAPD);
389 	hw->dpll_a = INREG(DPLL_A);
390 	hw->dpll_b = INREG(DPLL_B);
391 	hw->fpa0 = INREG(FPA0);
392 	hw->fpa1 = INREG(FPA1);
393 	hw->fpb0 = INREG(FPB0);
394 	hw->fpb1 = INREG(FPB1);
395 
396 	if (flag == 1)
397 		return flag;
398 
399 #if 0
400 	/* This seems to be a problem with the 852GM/855GM */
401 	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
402 		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
403 		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
404 	}
405 #endif
406 
407 	if (flag == 2)
408 		return flag;
409 
410 	hw->htotal_a = INREG(HTOTAL_A);
411 	hw->hblank_a = INREG(HBLANK_A);
412 	hw->hsync_a = INREG(HSYNC_A);
413 	hw->vtotal_a = INREG(VTOTAL_A);
414 	hw->vblank_a = INREG(VBLANK_A);
415 	hw->vsync_a = INREG(VSYNC_A);
416 	hw->src_size_a = INREG(SRC_SIZE_A);
417 	hw->bclrpat_a = INREG(BCLRPAT_A);
418 	hw->htotal_b = INREG(HTOTAL_B);
419 	hw->hblank_b = INREG(HBLANK_B);
420 	hw->hsync_b = INREG(HSYNC_B);
421 	hw->vtotal_b = INREG(VTOTAL_B);
422 	hw->vblank_b = INREG(VBLANK_B);
423 	hw->vsync_b = INREG(VSYNC_B);
424 	hw->src_size_b = INREG(SRC_SIZE_B);
425 	hw->bclrpat_b = INREG(BCLRPAT_B);
426 
427 	if (flag == 3)
428 		return flag;
429 
430 	hw->adpa = INREG(ADPA);
431 	hw->dvoa = INREG(DVOA);
432 	hw->dvob = INREG(DVOB);
433 	hw->dvoc = INREG(DVOC);
434 	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
435 	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
436 	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
437 	hw->lvds = INREG(LVDS);
438 
439 	if (flag == 4)
440 		return flag;
441 
442 	hw->pipe_a_conf = INREG(PIPEACONF);
443 	hw->pipe_b_conf = INREG(PIPEBCONF);
444 	hw->disp_arb = INREG(DISPARB);
445 
446 	if (flag == 5)
447 		return flag;
448 
449 	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
450 	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
451 	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
452 	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
453 
454 	if (flag == 6)
455 		return flag;
456 
457 	for (i = 0; i < 4; i++) {
458 		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
459 		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
460 	}
461 
462 	if (flag == 7)
463 		return flag;
464 
465 	hw->cursor_size = INREG(CURSOR_SIZE);
466 
467 	if (flag == 8)
468 		return flag;
469 
470 	hw->disp_a_ctrl = INREG(DSPACNTR);
471 	hw->disp_b_ctrl = INREG(DSPBCNTR);
472 	hw->disp_a_base = INREG(DSPABASE);
473 	hw->disp_b_base = INREG(DSPBBASE);
474 	hw->disp_a_stride = INREG(DSPASTRIDE);
475 	hw->disp_b_stride = INREG(DSPBSTRIDE);
476 
477 	if (flag == 9)
478 		return flag;
479 
480 	hw->vgacntrl = INREG(VGACNTRL);
481 
482 	if (flag == 10)
483 		return flag;
484 
485 	hw->add_id = INREG(ADD_ID);
486 
487 	if (flag == 11)
488 		return flag;
489 
490 	for (i = 0; i < 7; i++) {
491 		hw->swf0x[i] = INREG(SWF00 + (i << 2));
492 		hw->swf1x[i] = INREG(SWF10 + (i << 2));
493 		if (i < 3)
494 			hw->swf3x[i] = INREG(SWF30 + (i << 2));
495 	}
496 
497 	for (i = 0; i < 8; i++)
498 		hw->fence[i] = INREG(FENCE + (i << 2));
499 
500 	hw->instpm = INREG(INSTPM);
501 	hw->mem_mode = INREG(MEM_MODE);
502 	hw->fw_blc_0 = INREG(FW_BLC_0);
503 	hw->fw_blc_1 = INREG(FW_BLC_1);
504 
505 	return 0;
506 }
507 
508 
509 void
intelfbhw_print_hw_state(struct intelfb_info * dinfo,struct intelfb_hwstate * hw)510 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
511 {
512 #if REGDUMP
513 	int i, m1, m2, n, p1, p2;
514 
515 	DBG_MSG("intelfbhw_print_hw_state\n");
516 
517 	if (!hw || !dinfo)
518 		return;
519 	/* Read in as much of the HW state as possible. */
520 	printk("hw state dump start\n");
521 	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
522 	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
523 	printk("	VGAPD: 			0x%08x\n", hw->vga_pd);
524 	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
525 	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
526 	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
527 	if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
528 		p1 = 0;
529 	else
530 		p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
531 	p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
532 	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
533 		m1, m2, n, p1, p2);
534 	printk("	VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
535 
536 	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
537 	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
538 	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
539 	if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
540 		p1 = 0;
541 	else
542 		p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
543 	p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
544 	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
545 		m1, m2, n, p1, p2);
546 	printk("	VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
547 
548 	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
549 	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
550 	printk("	FPA0:			0x%08x\n", hw->fpa0);
551 	printk("	FPA1:			0x%08x\n", hw->fpa1);
552 	printk("	FPB0:			0x%08x\n", hw->fpb0);
553 	printk("	FPB1:			0x%08x\n", hw->fpb1);
554 
555 	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
556 	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
557 	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
558 	if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
559 		p1 = 0;
560 	else
561 		p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
562 	p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
563 	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
564 		m1, m2, n, p1, p2);
565 	printk("	PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
566 
567 	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
568 	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
569 	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
570 	if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
571 		p1 = 0;
572 	else
573 		p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
574 	p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
575 	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
576 		m1, m2, n, p1, p2);
577 	printk("	PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
578 
579 #if 0
580 	printk("	PALETTE_A:\n");
581 	for (i = 0; i < PALETTE_8_ENTRIES)
582 		printk("	%3d:	0x%08x\n", i, hw->palette_a[i];
583 	printk("	PALETTE_B:\n");
584 	for (i = 0; i < PALETTE_8_ENTRIES)
585 		printk("	%3d:	0x%08x\n", i, hw->palette_b[i];
586 #endif
587 
588 	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
589 	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
590 	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
591 	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
592 	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
593 	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
594 	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
595 	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
596 	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
597 	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
598 	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
599 	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
600 	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
601 	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
602 	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
603 	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
604 
605 	printk("	ADPA:			0x%08x\n", hw->adpa);
606 	printk("	DVOA:			0x%08x\n", hw->dvoa);
607 	printk("	DVOB:			0x%08x\n", hw->dvob);
608 	printk("	DVOC:			0x%08x\n", hw->dvoc);
609 	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
610 	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
611 	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
612 	printk("	LVDS:			0x%08x\n", hw->lvds);
613 
614 	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
615 	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
616 	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
617 
618 	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
619 	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
620 	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
621 	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
622 
623 	printk("	CURSOR_A_PALETTE:	");
624 	for (i = 0; i < 4; i++) {
625 		printk("0x%08x", hw->cursor_a_palette[i]);
626 		if (i < 3)
627 			printk(", ");
628 	}
629 	printk("\n");
630 	printk("	CURSOR_B_PALETTE:	");
631 	for (i = 0; i < 4; i++) {
632 		printk("0x%08x", hw->cursor_b_palette[i]);
633 		if (i < 3)
634 			printk(", ");
635 	}
636 	printk("\n");
637 
638 	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
639 
640 	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
641 	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
642 	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
643 	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
644 	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
645 	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
646 
647 	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
648 	printk("	ADD_ID:			0x%08x\n", hw->add_id);
649 
650 	for (i = 0; i < 7; i++) {
651 		printk("	SWF0%d			0x%08x\n", i,
652 			hw->swf0x[i]);
653 	}
654 	for (i = 0; i < 7; i++) {
655 		printk("	SWF1%d			0x%08x\n", i,
656 			hw->swf1x[i]);
657 	}
658 	for (i = 0; i < 3; i++) {
659 		printk("	SWF3%d			0x%08x\n", i,
660 			hw->swf3x[i]);
661 	}
662 	for (i = 0; i < 8; i++)
663 		printk("	FENCE%d			0x%08x\n", i,
664 			hw->fence[i]);
665 
666 	printk("	INSTPM			0x%08x\n", hw->instpm);
667 	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
668 	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
669 	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
670 
671 	printk("hw state dump end\n");
672 #endif
673 }
674 
675 /* Split the M parameter into M1 and M2. */
676 static int
splitm(unsigned int m,unsigned int * retm1,unsigned int * retm2)677 splitm(unsigned int m, unsigned int *retm1, unsigned int *retm2)
678 {
679 	int m1, m2;
680 
681 	m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;
682 	if (m1 < MIN_M1)
683 		m1 = MIN_M1;
684 	if (m1 > MAX_M1)
685 		m1 = MAX_M1;
686 	m2 = m - 5 * (m1 + 2) - 2;
687 	if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {
688 		return 1;
689 	} else {
690 		*retm1 = (unsigned int)m1;
691 		*retm2 = (unsigned int)m2;
692 		return 0;
693 	}
694 }
695 
696 /* Split the P parameter into P1 and P2. */
697 static int
splitp(unsigned int p,unsigned int * retp1,unsigned int * retp2)698 splitp(unsigned int p, unsigned int *retp1, unsigned int *retp2)
699 {
700 	int p1, p2;
701 
702 	if (p % 4 == 0)
703 		p2 = 1;
704 	else
705 		p2 = 0;
706 	p1 = (p / (1 << (p2 + 1))) - 2;
707 	if (p % 4 == 0 && p1 < MIN_P1) {
708 		p2 = 0;
709 		p1 = (p / (1 << (p2 + 1))) - 2;
710 	}
711 	if (p1  < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
712 		return 1;
713 	} else {
714 		*retp1 = (unsigned int)p1;
715 		*retp2 = (unsigned int)p2;
716 		return 0;
717 	}
718 }
719 
720 static int
calc_pll_params(int clock,u32 * retm1,u32 * retm2,u32 * retn,u32 * retp1,u32 * retp2,u32 * retclock)721 calc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
722 		u32 *retp2, u32 *retclock)
723 {
724 	u32 m1, m2, n, p1, p2, n1;
725 	u32 f_vco, p, p_best = 0, m, f_out;
726 	u32 err_max, err_target, err_best = 10000000;
727 	u32 n_best = 0, m_best = 0, f_best, f_err;
728 	u32 p_min, p_max, p_inc, div_min, div_max;
729 
730 	/* Accept 0.5% difference, but aim for 0.1% */
731 	err_max = 5 * clock / 1000;
732 	err_target = clock / 1000;
733 
734 	DBG_MSG("Clock is %d\n", clock);
735 
736 	div_max = MAX_VCO_FREQ / clock;
737 	div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;
738 
739 	if (clock <= P_TRANSITION_CLOCK)
740 		p_inc = 4;
741 	else
742 		p_inc = 2;
743 	p_min = ROUND_UP_TO(div_min, p_inc);
744 	p_max = ROUND_DOWN_TO(div_max, p_inc);
745 	if (p_min < MIN_P)
746 		p_min = 4;
747 	if (p_max > MAX_P)
748 		p_max = 128;
749 
750 	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
751 
752 	p = p_min;
753 	do {
754 		if (splitp(p, &p1, &p2)) {
755 			WRN_MSG("cannot split p = %d\n", p);
756 			p += p_inc;
757 			continue;
758 		}
759 		n = MIN_N;
760 		f_vco = clock * p;
761 
762 		do {
763 			m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
764 			if (m < MIN_M)
765 				m = MIN_M;
766 			if (m > MAX_M)
767 				m = MAX_M;
768 			f_out = CALC_VCLOCK3(m, n, p);
769 			if (splitm(m, &m1, &m2)) {
770 				WRN_MSG("cannot split m = %d\n", m);
771 				n++;
772 				continue;
773 			}
774 			if (clock > f_out)
775 				f_err = clock - f_out;
776 			else
777 				f_err = f_out - clock;
778 
779 			if (f_err < err_best) {
780 				m_best = m;
781 				n_best = n;
782 				p_best = p;
783 				f_best = f_out;
784 				err_best = f_err;
785 			}
786 			n++;
787 		} while ((n <= MAX_N) && (f_out >= clock));
788 		p += p_inc;
789 	} while ((p <= p_max));
790 
791 	if (!m_best) {
792 		WRN_MSG("cannot find parameters for clock %d\n", clock);
793 		return 1;
794 	}
795 	m = m_best;
796 	n = n_best;
797 	p = p_best;
798 	splitm(m, &m1, &m2);
799 	splitp(p, &p1, &p2);
800 	n1 = n - 2;
801 
802 	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
803 		"f: %d (%d), VCO: %d\n",
804 		m, m1, m2, n, n1, p, p1, p2,
805 		CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
806 		CALC_VCLOCK3(m, n, p) * p);
807 	*retm1 = m1;
808 	*retm2 = m2;
809 	*retn = n1;
810 	*retp1 = p1;
811 	*retp2 = p2;
812 	*retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);
813 
814 	return 0;
815 }
816 
817 static __inline__ int
check_overflow(u32 value,u32 limit,const char * description)818 check_overflow(u32 value, u32 limit, const char *description)
819 {
820 	if (value > limit) {
821 		WRN_MSG("%s value %d exceeds limit %d\n",
822 			description, value, limit);
823 		return 1;
824 	}
825 	return 0;
826 }
827 
828 /* It is assumed that hw is filled in with the initial state information. */
829 int
intelfbhw_mode_to_hw(struct intelfb_info * dinfo,struct intelfb_hwstate * hw,struct fb_var_screeninfo * var)830 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
831 		     struct fb_var_screeninfo *var)
832 {
833 	int pipe = PIPE_A;
834 	u32 *dpll, *fp0, *fp1;
835 	u32 m1, m2, n, p1, p2, clock_target, clock;
836 	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
837 	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
838 	u32 vsync_pol, hsync_pol;
839 	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
840 	struct display *disp;
841 
842 	DBG_MSG("intelfbhw_mode_to_hw\n");
843 
844 	disp = GET_DISP(&dinfo->info, dinfo->currcon);
845 
846 	/* Disable VGA */
847 	hw->vgacntrl |= VGA_DISABLE;
848 
849 	/* Check whether pipe A or pipe B is enabled. */
850 	if (hw->pipe_a_conf & PIPECONF_ENABLE)
851 		pipe = PIPE_A;
852 	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
853 		pipe = PIPE_B;
854 
855 	/* Set which pipe's registers will be set. */
856 	if (pipe == PIPE_B) {
857 		dpll = &hw->dpll_b;
858 		fp0 = &hw->fpb0;
859 		fp1 = &hw->fpb1;
860 		hs = &hw->hsync_b;
861 		hb = &hw->hblank_b;
862 		ht = &hw->htotal_b;
863 		vs = &hw->vsync_b;
864 		vb = &hw->vblank_b;
865 		vt = &hw->vtotal_b;
866 		ss = &hw->src_size_b;
867 		pipe_conf = &hw->pipe_b_conf;
868 	} else {
869 		dpll = &hw->dpll_a;
870 		fp0 = &hw->fpa0;
871 		fp1 = &hw->fpa1;
872 		hs = &hw->hsync_a;
873 		hb = &hw->hblank_a;
874 		ht = &hw->htotal_a;
875 		vs = &hw->vsync_a;
876 		vb = &hw->vblank_a;
877 		vt = &hw->vtotal_a;
878 		ss = &hw->src_size_a;
879 		pipe_conf = &hw->pipe_a_conf;
880 	}
881 
882 	/* Use ADPA register for sync control. */
883 	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
884 
885 	/* sync polarity */
886 	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
887 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
888 	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
889 			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
890 	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
891 		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
892 	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
893 		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
894 
895 	/* Connect correct pipe to the analog port DAC */
896 	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
897 	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
898 
899 	/* Set DPMS state to D0 (on) */
900 	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
901 	hw->adpa |= ADPA_DPMS_D0;
902 
903 	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
904 	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
905 	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
906 
907 	/* Desired clock in kHz */
908 	clock_target = 1000000000 / var->pixclock;
909 	if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
910 		WRN_MSG("calc_pll_params failed\n");
911 		return 1;
912 	}
913 
914 	/* Check for overflow. */
915 	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
916 		return 1;
917 	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
918 		return 1;
919 	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
920 		return 1;
921 	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
922 		return 1;
923 	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
924 		return 1;
925 
926 	*dpll &= ~DPLL_P1_FORCE_DIV2;
927 	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
928 		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
929 	*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
930 	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
931 	       (m1 << FP_M1_DIVISOR_SHIFT) |
932 	       (m2 << FP_M2_DIVISOR_SHIFT);
933 	*fp1 = *fp0;
934 
935 	/* Make sure DVOB and DVOC are disabled for now. */
936 	hw->dvob &= ~PORT_ENABLE;
937 	hw->dvoc &= ~PORT_ENABLE;
938 
939 	/* Use display plane A. */
940 	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
941 	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
942 	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
943 	switch (intelfb_var_to_depth(var)) {
944 	case 8:
945 		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
946 		break;
947 	case 15:
948 		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
949 		break;
950 	case 16:
951 		hw->disp_a_ctrl |= DISPPLANE_16BPP;
952 		break;
953 	case 24:
954 		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
955 		break;
956 	}
957 	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
958 	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
959 
960 	/* Set CRTC registers. */
961 	hactive = var->xres;
962 	hsync_start = hactive + var->right_margin;
963 	hsync_end = hsync_start + var->hsync_len;
964 	htotal = hsync_end + var->left_margin;
965 	hblank_start = hactive;
966 	hblank_end = htotal;
967 
968 	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
969 		hactive, hsync_start, hsync_end, htotal, hblank_start,
970 		hblank_end);
971 
972 	vactive = var->yres;
973 	vsync_start = vactive + var->lower_margin;
974 	vsync_end = vsync_start + var->vsync_len;
975 	vtotal = vsync_end + var->upper_margin;
976 	vblank_start = vactive;
977 	vblank_end = vtotal;
978 	vblank_end = vsync_end + 1;
979 
980 	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
981 		vactive, vsync_start, vsync_end, vtotal, vblank_start,
982 		vblank_end);
983 
984 	/* Adjust for register values, and check for overflow. */
985 	hactive--;
986 	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
987 		return 1;
988 	hsync_start--;
989 	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
990 		return 1;
991 	hsync_end--;
992 	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
993 		return 1;
994 	htotal--;
995 	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
996 		return 1;
997 	hblank_start--;
998 	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
999 		return 1;
1000 	hblank_end--;
1001 	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1002 		return 1;
1003 
1004 	vactive--;
1005 	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1006 		return 1;
1007 	vsync_start--;
1008 	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1009 		return 1;
1010 	vsync_end--;
1011 	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1012 		return 1;
1013 	vtotal--;
1014 	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1015 		return 1;
1016 	vblank_start--;
1017 	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1018 		return 1;
1019 	vblank_end--;
1020 	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1021 		return 1;
1022 
1023 	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1024 	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1025 	      (hblank_end << HSYNCEND_SHIFT);
1026 	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1027 
1028 	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1029 	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1030 	      (vblank_end << VSYNCEND_SHIFT);
1031 	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1032 	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1033 	      (vactive << SRC_SIZE_VERT_SHIFT);
1034 
1035 	/* Start address and stride. */
1036 	if (dinfo->pitch)
1037 		hw->disp_a_stride = dinfo->pitch;
1038 	else
1039 		hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1040 	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1041 
1042 	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1043 			  var->xoffset * var->bits_per_pixel / 8;
1044 
1045 	/* Check stride alignment. */
1046 	if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1047 		WRN_MSG("display stride %d has bad alignment %d\n",
1048 			hw->disp_a_stride, STRIDE_ALIGNMENT);
1049 		return 1;
1050 	}
1051 
1052 	/* Set the palette to 8-bit mode. */
1053 	*pipe_conf &= ~PIPECONF_GAMMA;
1054 	return 0;
1055 }
1056 
1057 /* Program a (non-VGA) video mode. */
1058 int
intelfbhw_program_mode(struct intelfb_info * dinfo,const struct intelfb_hwstate * hw,int blank)1059 intelfbhw_program_mode(struct intelfb_info *dinfo,
1060 		     const struct intelfb_hwstate *hw, int blank)
1061 {
1062 	int pipe = PIPE_A;
1063 	u32 tmp;
1064 	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1065 	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1066 	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1067 	u32 hsync_reg, htotal_reg, hblank_reg;
1068 	u32 vsync_reg, vtotal_reg, vblank_reg;
1069 	u32 src_size_reg;
1070 
1071 	/* Assume single pipe, display plane A, analog CRT. */
1072 
1073 	DBG_MSG("intelfbhw_program_mode\n");
1074 
1075 	/* Disable VGA */
1076 	tmp = INREG(VGACNTRL);
1077 	tmp |= VGA_DISABLE;
1078 	OUTREG(VGACNTRL, tmp);
1079 
1080 	/* Check whether pipe A or pipe B is enabled. */
1081 	if (hw->pipe_a_conf & PIPECONF_ENABLE)
1082 		pipe = PIPE_A;
1083 	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1084 		pipe = PIPE_B;
1085 
1086 	dinfo->pipe = pipe;
1087 
1088 	if (pipe == PIPE_B) {
1089 		dpll = &hw->dpll_b;
1090 		fp0 = &hw->fpb0;
1091 		fp1 = &hw->fpb1;
1092 		pipe_conf = &hw->pipe_b_conf;
1093 		hs = &hw->hsync_b;
1094 		hb = &hw->hblank_b;
1095 		ht = &hw->htotal_b;
1096 		vs = &hw->vsync_b;
1097 		vb = &hw->vblank_b;
1098 		vt = &hw->vtotal_b;
1099 		ss = &hw->src_size_b;
1100 		dpll_reg = DPLL_B;
1101 		fp0_reg = FPB0;
1102 		fp1_reg = FPB1;
1103 		pipe_conf_reg = PIPEBCONF;
1104 		hsync_reg = HSYNC_B;
1105 		htotal_reg = HTOTAL_B;
1106 		hblank_reg = HBLANK_B;
1107 		vsync_reg = VSYNC_B;
1108 		vtotal_reg = VTOTAL_B;
1109 		vblank_reg = VBLANK_B;
1110 		src_size_reg = SRC_SIZE_B;
1111 	} else {
1112 		dpll = &hw->dpll_a;
1113 		fp0 = &hw->fpa0;
1114 		fp1 = &hw->fpa1;
1115 		pipe_conf = &hw->pipe_a_conf;
1116 		hs = &hw->hsync_a;
1117 		hb = &hw->hblank_a;
1118 		ht = &hw->htotal_a;
1119 		vs = &hw->vsync_a;
1120 		vb = &hw->vblank_a;
1121 		vt = &hw->vtotal_a;
1122 		ss = &hw->src_size_a;
1123 		dpll_reg = DPLL_A;
1124 		fp0_reg = FPA0;
1125 		fp1_reg = FPA1;
1126 		pipe_conf_reg = PIPEACONF;
1127 		hsync_reg = HSYNC_A;
1128 		htotal_reg = HTOTAL_A;
1129 		hblank_reg = HBLANK_A;
1130 		vsync_reg = VSYNC_A;
1131 		vtotal_reg = VTOTAL_A;
1132 		vblank_reg = VBLANK_A;
1133 		src_size_reg = SRC_SIZE_A;
1134 	}
1135 
1136 	/* Disable planes A and B. */
1137 	tmp = INREG(DSPACNTR);
1138 	tmp &= ~DISPPLANE_PLANE_ENABLE;
1139 	OUTREG(DSPACNTR, tmp);
1140 	tmp = INREG(DSPBCNTR);
1141 	tmp &= ~DISPPLANE_PLANE_ENABLE;
1142 	OUTREG(DSPBCNTR, tmp);
1143 
1144 	/* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1145 	mdelay(20);
1146 
1147 	/* Disable Sync */
1148 	tmp = INREG(ADPA);
1149 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1150 	tmp |= ADPA_DPMS_D3;
1151 	OUTREG(ADPA, tmp);
1152 
1153 	/* turn off pipe */
1154 	tmp = INREG(pipe_conf_reg);
1155 	tmp &= ~PIPECONF_ENABLE;
1156 	OUTREG(pipe_conf_reg, tmp);
1157 
1158 	/* turn off PLL */
1159 	tmp = INREG(dpll_reg);
1160 	dpll_reg &= ~DPLL_VCO_ENABLE;
1161 	OUTREG(dpll_reg, tmp);
1162 
1163 	/* Set PLL parameters */
1164 	OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1165 	OUTREG(fp0_reg, *fp0);
1166 	OUTREG(fp1_reg, *fp1);
1167 
1168 	/* Set pipe parameters */
1169 	OUTREG(hsync_reg, *hs);
1170 	OUTREG(hblank_reg, *hb);
1171 	OUTREG(htotal_reg, *ht);
1172 	OUTREG(vsync_reg, *vs);
1173 	OUTREG(vblank_reg, *vb);
1174 	OUTREG(vtotal_reg, *vt);
1175 	OUTREG(src_size_reg, *ss);
1176 
1177 	/* Set ADPA */
1178 	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1179 
1180 	/* Enable PLL */
1181 	tmp = INREG(dpll_reg);
1182 	tmp |= DPLL_VCO_ENABLE;
1183 	OUTREG(dpll_reg, tmp);
1184 
1185 	/* Enable pipe */
1186 	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1187 
1188 	/* Enable sync */
1189 	tmp = INREG(ADPA);
1190 	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1191 	tmp |= ADPA_DPMS_D0;
1192 	OUTREG(ADPA, tmp);
1193 
1194 	/* setup display plane */
1195 	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1196 	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1197 	OUTREG(DSPABASE, hw->disp_a_base);
1198 
1199 	/* Enable plane */
1200 	if (!blank) {
1201 		tmp = INREG(DSPACNTR);
1202 		tmp |= DISPPLANE_PLANE_ENABLE;
1203 		OUTREG(DSPACNTR, tmp);
1204 		OUTREG(DSPABASE, hw->disp_a_base);
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int
wait_ring(struct intelfb_info * dinfo,int n)1211 wait_ring(struct intelfb_info *dinfo, int n)
1212 {
1213 	int i = 0;
1214 	unsigned long end;
1215 	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1216 
1217 #if 0
1218 	DBG_MSG("wait_ring: %d\n", n);
1219 #endif
1220 
1221 	end = jiffies + (HZ * 3);
1222 	while (dinfo->ring_space < n) {
1223 		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1224 		dinfo->ring_space = dinfo->ring_head -
1225 				    (dinfo->ring_tail + RING_MIN_FREE);
1226 		if (dinfo->ring_space < 0)
1227 			dinfo->ring_space += dinfo->ring_size;
1228 		if (dinfo->ring_head != last_head) {
1229 			end = jiffies + (HZ * 3);
1230 			last_head = dinfo->ring_head;
1231 		}
1232 		i++;
1233 		if (time_before(end, jiffies)) {
1234 			WRN_MSG("space: %d wanted %d\n", dinfo->ring_space, n);
1235 			WRN_MSG("lockup\n");
1236 			break;
1237 		}
1238 		udelay(1);
1239 	}
1240 	return i;
1241 }
1242 
1243 void
intelfbhw_do_sync(struct intelfb_info * dinfo)1244 intelfbhw_do_sync(struct intelfb_info *dinfo)
1245 {
1246 #if USE_SYNC_PAGE
1247 	u32 newval;
1248 #endif
1249 	u32 tmp;
1250 	int i = 0;
1251 
1252 #if VERBOSE > 0
1253 	DBG_MSG("intelfbhw_do_sync\n");
1254 #endif
1255 
1256 #if USE_SYNC_PAGE
1257 	/*
1258 	 * Although doing MI_STORE_DWORD_IMM after the MI_FLUSH is supposed
1259 	 * to make sure everything is synchronised, there is still some
1260 	 * mis-ordering of operations when mixing 2D with direct CPU
1261 	 * writes to the framebuffer.
1262 	 */
1263 	newval = readl(dinfo->syncpage_virt);
1264 	newval++;
1265 #if VERBOSE > 0
1266 	DBG_MSG("intelfbhw_do_sync: %d\n", newval);
1267 #endif
1268 	START_RING(6);
1269 	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE);
1270 	OUT_RING(MI_NOOP);
1271 	OUT_RING(MI_STORE_DWORD_IMM);
1272 	OUT_RING(dinfo->syncpage_phys);
1273 	OUT_RING(newval);
1274 	OUT_RING(MI_NOOP);
1275 	ADVANCE_RING();
1276 	while ((tmp = readl(dinfo->syncpage_virt)) != newval && i < 10000) {
1277 		i++;
1278 		udelay(10);
1279 	}
1280 	if (tmp != newval) {
1281 		DBG_MSG("intelfbhw_do_sync: STORE_DWORD_IMM returns %d "
1282 			"instead of %d\n", tmp, newval);
1283 	} else {
1284 #if VERBOSE > 1
1285 		DBG_MSG("intelfbhw_do_sync: done in %d iterations\n", i);
1286 #endif
1287 	}
1288 #else
1289 	/*
1290 	 * Send a flush, then wait until the ring is empty.  This is what
1291 	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1292 	 * than the recommended method (both have problems).
1293 	 */
1294 	START_RING(2);
1295 	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE);
1296 	OUT_RING(MI_NOOP);
1297 	ADVANCE_RING();
1298 	wait_ring(dinfo, dinfo->ring_size - RING_MIN_FREE);
1299 	dinfo->ring_space = dinfo->ring_size - RING_MIN_FREE;
1300 #endif
1301 }
1302 
1303 static void
refresh_ring(struct intelfb_info * dinfo)1304 refresh_ring(struct intelfb_info *dinfo)
1305 {
1306 	DBG_MSG("refresh_ring\n");
1307 
1308 	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1309 	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1310 	dinfo->ring_space = dinfo->ring_head -
1311 			    (dinfo->ring_tail + RING_MIN_FREE);
1312 	if (dinfo->ring_space < 0)
1313 		dinfo->ring_space += dinfo->ring_size;
1314 }
1315 
1316 static void
reset_state(struct intelfb_info * dinfo)1317 reset_state(struct intelfb_info *dinfo)
1318 {
1319 	int i;
1320 	u32 tmp;
1321 
1322 	DBG_MSG("reset_state\n");
1323 
1324 	for (i = 0; i < FENCE_NUM; i++)
1325 		OUTREG(FENCE + (i << 2), 0);
1326 
1327 	/* Flush the ring buffer if it's enabled. */
1328 	tmp = INREG(PRI_RING_LENGTH);
1329 	if (tmp & RING_ENABLE) {
1330 		DBG_MSG("reset_state: ring was enabled\n");
1331 		refresh_ring(dinfo);
1332 		intelfbhw_do_sync(dinfo);
1333 		DO_RING_IDLE();
1334 	}
1335 
1336 	OUTREG(PRI_RING_LENGTH, 0);
1337 	OUTREG(PRI_RING_HEAD, 0);
1338 	OUTREG(PRI_RING_TAIL, 0);
1339 	OUTREG(PRI_RING_START, 0);
1340 }
1341 
1342 /* Stop the 2D engine, and turn off the ring buffer. */
1343 void
intelfbhw_2d_stop(struct intelfb_info * dinfo)1344 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1345 {
1346 	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1347 		dinfo->ring_active);
1348 
1349 	if (!dinfo->accel)
1350 		return;
1351 
1352 	dinfo->ring_active = 0;
1353 	reset_state(dinfo);
1354 }
1355 
1356 /*
1357  * Enable the ring buffer, and initialise the 2D engine.
1358  * It is assumed that the graphics engine has been stopped by previously
1359  * calling intelfb_2d_stop().
1360  */
1361 void
intelfbhw_2d_start(struct intelfb_info * dinfo)1362 intelfbhw_2d_start(struct intelfb_info *dinfo)
1363 {
1364 	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1365 		dinfo->accel, dinfo->ring_active);
1366 
1367 	if (!dinfo->accel)
1368 		return;
1369 
1370 	/* Initialise the primary ring buffer. */
1371 	OUTREG(PRI_RING_LENGTH, 0);
1372 	OUTREG(PRI_RING_TAIL, 0);
1373 	OUTREG(PRI_RING_HEAD, 0);
1374 
1375 	OUTREG(PRI_RING_START, dinfo->ring_base_phys & RING_START_MASK);
1376 	OUTREG(PRI_RING_LENGTH,
1377 		((dinfo->ring_size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1378 		RING_NO_REPORT | RING_ENABLE);
1379 	refresh_ring(dinfo);
1380 	dinfo->ring_active = 1;
1381 
1382 	DBG_MSG("INSTPM was 0x%08x, setting to 0x%08x\n", INREG(INSTPM),
1383 		0x1f << 16);
1384 	OUTREG(INSTPM, 0x1f << 16);
1385 	OUTREG(INSTPM, 0x1f << 16);
1386 }
1387 
1388 /* 2D fillrect (solid fill or invert) */
1389 void
intelfbhw_do_fillrect(struct intelfb_info * dinfo,u32 x,u32 y,u32 w,u32 h,u32 color,u32 pitch,u32 bpp,u32 rop)1390 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1391 		      u32 color, u32 pitch, u32 bpp, u32 rop)
1392 {
1393 	u32 br00, br09, br13, br14, br16;
1394 
1395 #if VERBOSE > 1
1396 	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1397 		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1398 #endif
1399 
1400 	br00 = COLOR_BLT_CMD;
1401 	br09 = dinfo->fb_offset + (y * pitch + x * (bpp / 8));
1402 	br13 = (rop << ROP_SHIFT) | pitch;
1403 	br14 = (h << HEIGHT_SHIFT) | ((w * bpp / 8) << WIDTH_SHIFT);
1404 	br16 = color;
1405 
1406 	switch (bpp) {
1407 	case 8:
1408 		br13 |= COLOR_DEPTH_8;
1409 		break;
1410 	case 16:
1411 		br13 |= COLOR_DEPTH_16;
1412 		break;
1413 	case 32:
1414 		br13 |= COLOR_DEPTH_32;
1415 		br00 |= WRITE_ALPHA | WRITE_RGB;
1416 		break;
1417 	}
1418 
1419 	START_RING(6);
1420 	OUT_RING(br00);
1421 	OUT_RING(br13);
1422 	OUT_RING(br14);
1423 	OUT_RING(br09);
1424 	OUT_RING(br16);
1425 	OUT_RING(MI_NOOP);
1426 	ADVANCE_RING();
1427 }
1428 
1429 void
intelfbhw_do_bitblt(struct intelfb_info * dinfo,u32 curx,u32 cury,u32 dstx,u32 dsty,u32 w,u32 h,u32 pitch,u32 bpp)1430 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1431 		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1432 {
1433 	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1434 
1435 #if VERBOSE > 0
1436 	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1437 		curx, cury, dstx, dsty, w, h, pitch, bpp);
1438 #endif
1439 
1440 	br00 = XY_SRC_COPY_BLT_CMD;
1441 	br09 = dinfo->fb_offset;
1442 	br11 = (pitch << PITCH_SHIFT);
1443 	br12 = dinfo->fb_offset;
1444 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1445 	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1446 	br23 = ((dstx + w) << WIDTH_SHIFT) |
1447 	       ((dsty + h) << HEIGHT_SHIFT);
1448 	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1449 
1450 	switch (bpp) {
1451 	case 8:
1452 		br13 |= COLOR_DEPTH_8;
1453 		break;
1454 	case 16:
1455 		br13 |= COLOR_DEPTH_16;
1456 		break;
1457 	case 32:
1458 		br13 |= COLOR_DEPTH_32;
1459 		br00 |= WRITE_ALPHA | WRITE_RGB;
1460 		break;
1461 	}
1462 
1463 	START_RING(8);
1464 	OUT_RING(br00);
1465 	OUT_RING(br13);
1466 	OUT_RING(br22);
1467 	OUT_RING(br23);
1468 	OUT_RING(br09);
1469 	OUT_RING(br26);
1470 	OUT_RING(br11);
1471 	OUT_RING(br12);
1472 	ADVANCE_RING();
1473 }
1474 
1475 int
intelfbhw_do_drawglyph(struct intelfb_info * dinfo,u32 fg,u32 bg,u32 w,u32 h,u8 * cdat,u32 x,u32 y,u32 pitch,u32 bpp)1476 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w, u32 h,
1477 		       u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1478 {
1479 	int i, n = 0, fw_bytes, bytes_per_src_line;
1480 	int nbytes, ndwords, pad, tmp;
1481 	u16 *wcdat;
1482 	u32 *dwcdat;
1483 	u32 br00, br09, br13, br18, br19, br22, br23;
1484 
1485 #if 0
1486 	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1487 #endif
1488 
1489 	/* Support fonts up to 32 pixels wide. */
1490 	if (w > 32)
1491 		return 0;
1492 
1493 	/* Number of bytes required for each cdat scanline. */
1494 	fw_bytes = ROUND_UP_TO(w, 8) / 8;
1495 
1496 	/* Src scanlines are word (16-bit) padded. */
1497 	bytes_per_src_line = ROUND_UP_TO(fw_bytes, 2);
1498 
1499 	/* Total bytes of padded scanline data to write out. */
1500 	nbytes = h * bytes_per_src_line;
1501 
1502 	/*
1503 	 * Check if the glyph data exceeds the immediate mode limit.
1504 	 * It would take a large font (1K pixels) to hit this limit.
1505 	 */
1506 	if (nbytes > MAX_MONO_IMM_SIZE)
1507 		return 0;
1508 
1509 	/* Src data is packaged a dword (32-bit) at a time. */
1510 	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1511 
1512 	/* Ring has to be padded to a quad word. */
1513 	pad = ndwords % 2;
1514 
1515 	/* For easy reference of the glyph data in different sized chunks. */
1516 	wcdat = (u16 *)cdat;
1517 	dwcdat = (u32 *)cdat;
1518 
1519 	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1520 	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1521 	br09 = dinfo->fb_offset;
1522 	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1523 	br18 = bg;
1524 	br19 = fg;
1525 	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1526 	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1527 
1528 	switch (bpp) {
1529 	case 8:
1530 		br13 |= COLOR_DEPTH_8;
1531 		break;
1532 	case 16:
1533 		br13 |= COLOR_DEPTH_16;
1534 		break;
1535 	case 32:
1536 		br13 |= COLOR_DEPTH_32;
1537 		br00 |= WRITE_ALPHA | WRITE_RGB;
1538 		break;
1539 	}
1540 
1541 #if 0
1542 	DBG_MSG("ndwords + pad is %d, pad is %d\n", ndwords + pad, pad);
1543 #endif
1544 	START_RING(ndwords + pad);
1545 	OUT_RING(br00);
1546 	OUT_RING(br13);
1547 	OUT_RING(br22);
1548 	OUT_RING(br23);
1549 	OUT_RING(br09);
1550 	OUT_RING(br18);
1551 	OUT_RING(br19);
1552 	i = h;
1553 	switch (fw_bytes) {
1554 	case 1:
1555 		while (i >= 2) {
1556 			OUT_RING(cdat[0] | cdat[1] << 16);
1557 			cdat +=2;
1558 			i -= 2;
1559 			n++;
1560 		}
1561 		if (i) {
1562 			OUT_RING(cdat[0]);
1563 			n++;
1564 		}
1565 		break;
1566 	case 2:
1567 		while (i >= 2) {
1568 			OUT_RING(wcdat[0] | wcdat[1] << 16);
1569 			wcdat += 2;
1570 			i -= 2;
1571 			n++;
1572 		}
1573 		if (i) {
1574 			OUT_RING(wcdat[0]);
1575 			n++;
1576 		}
1577 		break;
1578 	case 3:
1579 		while (i) {
1580 			OUT_RING(wcdat[0] | cdat[3] << 16);
1581 			wcdat += 2;
1582 			cdat += 4;
1583 			i--;
1584 			n++;
1585 		}
1586 		break;
1587 	case 4:
1588 		while(i) {
1589 			OUT_RING(dwcdat[0]);
1590 			i--;
1591 			n++;
1592 		}
1593 	}
1594 	if (pad) {
1595 		OUT_RING(MI_NOOP);
1596 		n++;
1597 	}
1598 #if 0
1599 	DBG_MSG("%d immediate bytes + pad\n", n);
1600 #endif
1601 	ADVANCE_RING();
1602 	return 1;
1603 }
1604 
1605 /* HW cursor functions. */
1606 void
intelfbhw_cursor_init(struct intelfb_info * dinfo)1607 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1608 {
1609 	u32 tmp;
1610 
1611 	DBG_MSG("intelfbhw_cursor_init\n");
1612 
1613 	if (!dinfo->cursor_base)
1614 		return;
1615 
1616 	if (dinfo->mobile) {
1617 		if (!dinfo->cursor_base_real)
1618 			return;
1619 		tmp = INREG(CURSOR_A_CONTROL);
1620 		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1621 			 CURSOR_MEM_TYPE_LOCAL |
1622 			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1623 		tmp |= CURSOR_MODE_DISABLE;
1624 		OUTREG(CURSOR_A_CONTROL, tmp);
1625 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor_base_real);
1626 	} else {
1627 #if 0
1628 		tmp = INREG(CURSOR_CONTROL);
1629 		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1630 			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1631 #endif
1632 		tmp = CURSOR_FORMAT_3C;
1633 		OUTREG(CURSOR_CONTROL, tmp);
1634 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor_offset);
1635 		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1636 		      (64 << CURSOR_SIZE_V_SHIFT);
1637 		OUTREG(CURSOR_SIZE, tmp);
1638 	}
1639 }
1640 
1641 void
intelfbhw_cursor_hide(struct intelfb_info * dinfo)1642 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1643 {
1644 	u32 tmp;
1645 
1646 #if VERBOSE > 1
1647 	DBG_MSG("intelfbhw_cursor_hide\n");
1648 #endif
1649 
1650 	if (!dinfo->cursor_base)
1651 		return;
1652 
1653 	dinfo->cursor.enabled = 0;
1654 	dinfo->cursor.on = 0;
1655 	if (dinfo->mobile) {
1656 		if (!dinfo->cursor_base_real)
1657 			return;
1658 		tmp = INREG(CURSOR_A_CONTROL);
1659 		tmp &= ~CURSOR_MODE_MASK;
1660 		tmp |= CURSOR_MODE_DISABLE;
1661 		OUTREG(CURSOR_A_CONTROL, tmp);
1662 		/* Flush changes */
1663 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor_base_real);
1664 	} else {
1665 		tmp = INREG(CURSOR_CONTROL);
1666 		tmp &= ~CURSOR_ENABLE;
1667 		OUTREG(CURSOR_CONTROL, tmp);
1668 	}
1669 }
1670 
1671 void
intelfbhw_cursor_show(struct intelfb_info * dinfo)1672 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1673 {
1674 	u32 tmp;
1675 
1676 #if VERBOSE > 1
1677 	DBG_MSG("intelfbhw_cursor_show\n");
1678 #endif
1679 
1680 	if (!dinfo->cursor_base)
1681 		return;
1682 
1683 	dinfo->cursor.on = 1;
1684 	dinfo->cursor.enabled = 1;
1685 
1686 	if (dinfo->cursor.blanked)
1687 		return;
1688 
1689 	if (dinfo->mobile) {
1690 		if (!dinfo->cursor_base_real)
1691 			return;
1692 		tmp = INREG(CURSOR_A_CONTROL);
1693 		tmp &= ~CURSOR_MODE_MASK;
1694 		tmp |= CURSOR_MODE_64_4C_AX;
1695 		OUTREG(CURSOR_A_CONTROL, tmp);
1696 		/* Flush changes */
1697 		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor_base_real);
1698 	} else {
1699 		tmp = INREG(CURSOR_CONTROL);
1700 		tmp |= CURSOR_ENABLE;
1701 		OUTREG(CURSOR_CONTROL, tmp);
1702 	}
1703 }
1704 
1705 void
intelfbhw_cursor_setpos(struct intelfb_info * dinfo,int x,int y)1706 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1707 {
1708 	u32 tmp;
1709 
1710 #if VERBOSE > 1
1711 	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1712 #endif
1713 
1714 	/*
1715 	 * Sets the position.  The coordinates are assumed to already
1716 	 * have any offset adjusted.  Assume that the cursor is never
1717 	 * completely off-screen, and that x, y are always >= 0.
1718 	 */
1719 
1720 	if (!dinfo->cursor_base)
1721 		return;
1722 
1723 	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1724 	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1725 	OUTREG(CURSOR_A_POSITION, tmp);
1726 }
1727 
1728 void
intelfbhw_cursor_setcolor(struct intelfb_info * dinfo,u32 bg,u32 fg)1729 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1730 {
1731 #if VERBOSE > 1
1732 	DBG_MSG("intelfbhw_cursor_setcolor\n");
1733 #endif
1734 
1735 	if (!dinfo->cursor_base)
1736 		return;
1737 
1738 	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1739 	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1740 	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1741 	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1742 }
1743 
1744 void
intelfbhw_cursor_load(struct intelfb_info * dinfo,struct display * disp)1745 intelfbhw_cursor_load(struct intelfb_info *dinfo, struct display *disp)
1746 {
1747 	u32 xline, mline;
1748 	int i;
1749 
1750 	DBG_MSG("intelfbhw_cursor_load\n");
1751 
1752 	if (!dinfo->cursor_base)
1753 		return;
1754 
1755 	intelfb_create_cursor_shape(dinfo, disp);
1756 	xline = (1 << dinfo->cursor.w) - 1;
1757 	mline = ~xline;
1758 	for (i = 0; i < dinfo->cursor.u; i++) {
1759 		writel(~0, dinfo->cursor_base + i * 16);
1760 		writel(~0, dinfo->cursor_base + i * 16 + 4);
1761 		writel(0, dinfo->cursor_base + i * 16 + 8);
1762 		writel(0, dinfo->cursor_base + i * 16 + 12);
1763 	}
1764 	for (; i < dinfo->cursor.d; i++) {
1765 		writel(mline, dinfo->cursor_base + i * 16);
1766 		writel(~0, dinfo->cursor_base + i * 16 + 4);
1767 		writel(xline, dinfo->cursor_base + i * 16 + 8);
1768 		writel(0, dinfo->cursor_base + i * 16 + 12);
1769 	}
1770 	for (; i < 64; i++) {
1771 		writel(~0, dinfo->cursor_base + i * 16);
1772 		writel(~0, dinfo->cursor_base + i * 16 + 4);
1773 		writel(0, dinfo->cursor_base + i * 16 + 8);
1774 		writel(0, dinfo->cursor_base + i * 16 + 12);
1775 	}
1776 }
1777 
1778 
1779