1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #include "gt/intel_gt_regs.h"
42
43 #if defined(VERBOSE_DEBUG)
44 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45 #else
46 #define gvt_vdbg_mm(fmt, args...)
47 #endif
48
49 static bool enable_out_of_sync = false;
50 static int preallocated_oos_pages = 8192;
51
intel_gvt_is_valid_gfn(struct intel_vgpu * vgpu,unsigned long gfn)52 static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn)
53 {
54 struct kvm *kvm = vgpu->vfio_device.kvm;
55 int idx;
56 bool ret;
57
58 if (!vgpu->attached)
59 return false;
60
61 idx = srcu_read_lock(&kvm->srcu);
62 ret = kvm_is_visible_gfn(kvm, gfn);
63 srcu_read_unlock(&kvm->srcu, idx);
64
65 return ret;
66 }
67
68 /*
69 * validate a gm address and related range size,
70 * translate it to host gm address
71 */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)72 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
73 {
74 if (size == 0)
75 return vgpu_gmadr_is_valid(vgpu, addr);
76
77 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
78 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
79 return true;
80 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
81 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
82 return true;
83
84 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
85 addr, size);
86 return false;
87 }
88
89 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)90 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
91 {
92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
95 "invalid guest gmadr %llx\n", g_addr))
96 return -EACCES;
97
98 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
99 *h_addr = vgpu_aperture_gmadr_base(vgpu)
100 + (g_addr - vgpu_aperture_offset(vgpu));
101 else
102 *h_addr = vgpu_hidden_gmadr_base(vgpu)
103 + (g_addr - vgpu_hidden_offset(vgpu));
104 return 0;
105 }
106
107 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)108 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
109 {
110 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
111
112 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
113 "invalid host gmadr %llx\n", h_addr))
114 return -EACCES;
115
116 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
117 *g_addr = vgpu_aperture_gmadr_base(vgpu)
118 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
119 else
120 *g_addr = vgpu_hidden_gmadr_base(vgpu)
121 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
122 return 0;
123 }
124
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)125 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
126 unsigned long *h_index)
127 {
128 u64 h_addr;
129 int ret;
130
131 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
132 &h_addr);
133 if (ret)
134 return ret;
135
136 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
137 return 0;
138 }
139
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)140 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
141 unsigned long *g_index)
142 {
143 u64 g_addr;
144 int ret;
145
146 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
147 &g_addr);
148 if (ret)
149 return ret;
150
151 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
152 return 0;
153 }
154
155 #define gtt_type_is_entry(type) \
156 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
157 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
158 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
159
160 #define gtt_type_is_pt(type) \
161 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
162
163 #define gtt_type_is_pte_pt(type) \
164 (type == GTT_TYPE_PPGTT_PTE_PT)
165
166 #define gtt_type_is_root_pointer(type) \
167 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
168
169 #define gtt_init_entry(e, t, p, v) do { \
170 (e)->type = t; \
171 (e)->pdev = p; \
172 memcpy(&(e)->val64, &v, sizeof(v)); \
173 } while (0)
174
175 /*
176 * Mappings between GTT_TYPE* enumerations.
177 * Following information can be found according to the given type:
178 * - type of next level page table
179 * - type of entry inside this level page table
180 * - type of entry with PSE set
181 *
182 * If the given type doesn't have such a kind of information,
183 * e.g. give a l4 root entry type, then request to get its PSE type,
184 * give a PTE page table type, then request to get its next level page
185 * table type, as we know l4 root entry doesn't have a PSE bit,
186 * and a PTE page table doesn't have a next level page table type,
187 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
188 * page table.
189 */
190
191 struct gtt_type_table_entry {
192 int entry_type;
193 int pt_type;
194 int next_pt_type;
195 int pse_entry_type;
196 };
197
198 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
199 [type] = { \
200 .entry_type = e_type, \
201 .pt_type = cpt_type, \
202 .next_pt_type = npt_type, \
203 .pse_entry_type = pse_type, \
204 }
205
206 static const struct gtt_type_table_entry gtt_type_table[] = {
207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
208 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
209 GTT_TYPE_INVALID,
210 GTT_TYPE_PPGTT_PML4_PT,
211 GTT_TYPE_INVALID),
212 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
213 GTT_TYPE_PPGTT_PML4_ENTRY,
214 GTT_TYPE_PPGTT_PML4_PT,
215 GTT_TYPE_PPGTT_PDP_PT,
216 GTT_TYPE_INVALID),
217 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
218 GTT_TYPE_PPGTT_PML4_ENTRY,
219 GTT_TYPE_PPGTT_PML4_PT,
220 GTT_TYPE_PPGTT_PDP_PT,
221 GTT_TYPE_INVALID),
222 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
223 GTT_TYPE_PPGTT_PDP_ENTRY,
224 GTT_TYPE_PPGTT_PDP_PT,
225 GTT_TYPE_PPGTT_PDE_PT,
226 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
227 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
228 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
229 GTT_TYPE_INVALID,
230 GTT_TYPE_PPGTT_PDE_PT,
231 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
233 GTT_TYPE_PPGTT_PDP_ENTRY,
234 GTT_TYPE_PPGTT_PDP_PT,
235 GTT_TYPE_PPGTT_PDE_PT,
236 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
238 GTT_TYPE_PPGTT_PDE_ENTRY,
239 GTT_TYPE_PPGTT_PDE_PT,
240 GTT_TYPE_PPGTT_PTE_PT,
241 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
243 GTT_TYPE_PPGTT_PDE_ENTRY,
244 GTT_TYPE_PPGTT_PDE_PT,
245 GTT_TYPE_PPGTT_PTE_PT,
246 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
247 /* We take IPS bit as 'PSE' for PTE level. */
248 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
249 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
250 GTT_TYPE_PPGTT_PTE_PT,
251 GTT_TYPE_INVALID,
252 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
253 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
254 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
255 GTT_TYPE_PPGTT_PTE_PT,
256 GTT_TYPE_INVALID,
257 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
258 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
259 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
260 GTT_TYPE_PPGTT_PTE_PT,
261 GTT_TYPE_INVALID,
262 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
263 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
264 GTT_TYPE_PPGTT_PDE_ENTRY,
265 GTT_TYPE_PPGTT_PDE_PT,
266 GTT_TYPE_INVALID,
267 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
268 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
269 GTT_TYPE_PPGTT_PDP_ENTRY,
270 GTT_TYPE_PPGTT_PDP_PT,
271 GTT_TYPE_INVALID,
272 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
273 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
274 GTT_TYPE_GGTT_PTE,
275 GTT_TYPE_INVALID,
276 GTT_TYPE_INVALID,
277 GTT_TYPE_INVALID),
278 };
279
get_next_pt_type(int type)280 static inline int get_next_pt_type(int type)
281 {
282 return gtt_type_table[type].next_pt_type;
283 }
284
get_pt_type(int type)285 static inline int get_pt_type(int type)
286 {
287 return gtt_type_table[type].pt_type;
288 }
289
get_entry_type(int type)290 static inline int get_entry_type(int type)
291 {
292 return gtt_type_table[type].entry_type;
293 }
294
get_pse_type(int type)295 static inline int get_pse_type(int type)
296 {
297 return gtt_type_table[type].pse_entry_type;
298 }
299
read_pte64(struct i915_ggtt * ggtt,unsigned long index)300 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
301 {
302 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
303
304 return readq(addr);
305 }
306
ggtt_invalidate(struct intel_gt * gt)307 static void ggtt_invalidate(struct intel_gt *gt)
308 {
309 mmio_hw_access_pre(gt);
310 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
311 mmio_hw_access_post(gt);
312 }
313
write_pte64(struct i915_ggtt * ggtt,unsigned long index,u64 pte)314 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
315 {
316 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
317
318 writeq(pte, addr);
319 }
320
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)321 static inline int gtt_get_entry64(void *pt,
322 struct intel_gvt_gtt_entry *e,
323 unsigned long index, bool hypervisor_access, unsigned long gpa,
324 struct intel_vgpu *vgpu)
325 {
326 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
327 int ret;
328
329 if (WARN_ON(info->gtt_entry_size != 8))
330 return -EINVAL;
331
332 if (hypervisor_access) {
333 ret = intel_gvt_read_gpa(vgpu, gpa +
334 (index << info->gtt_entry_size_shift),
335 &e->val64, 8);
336 if (WARN_ON(ret))
337 return ret;
338 } else if (!pt) {
339 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
340 } else {
341 e->val64 = *((u64 *)pt + index);
342 }
343 return 0;
344 }
345
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)346 static inline int gtt_set_entry64(void *pt,
347 struct intel_gvt_gtt_entry *e,
348 unsigned long index, bool hypervisor_access, unsigned long gpa,
349 struct intel_vgpu *vgpu)
350 {
351 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
352 int ret;
353
354 if (WARN_ON(info->gtt_entry_size != 8))
355 return -EINVAL;
356
357 if (hypervisor_access) {
358 ret = intel_gvt_write_gpa(vgpu, gpa +
359 (index << info->gtt_entry_size_shift),
360 &e->val64, 8);
361 if (WARN_ON(ret))
362 return ret;
363 } else if (!pt) {
364 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
365 } else {
366 *((u64 *)pt + index) = e->val64;
367 }
368 return 0;
369 }
370
371 #define GTT_HAW 46
372
373 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
374 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
375 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
376 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
377
378 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
379 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
380
381 #define GTT_64K_PTE_STRIDE 16
382
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)383 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
384 {
385 unsigned long pfn;
386
387 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
388 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
389 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
390 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
391 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
392 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
393 else
394 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
395 return pfn;
396 }
397
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)398 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
399 {
400 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
401 e->val64 &= ~ADDR_1G_MASK;
402 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
403 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
404 e->val64 &= ~ADDR_2M_MASK;
405 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
406 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
407 e->val64 &= ~ADDR_64K_MASK;
408 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
409 } else {
410 e->val64 &= ~ADDR_4K_MASK;
411 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
412 }
413
414 e->val64 |= (pfn << PAGE_SHIFT);
415 }
416
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)417 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
418 {
419 return !!(e->val64 & _PAGE_PSE);
420 }
421
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)422 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
423 {
424 if (gen8_gtt_test_pse(e)) {
425 switch (e->type) {
426 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
427 e->val64 &= ~_PAGE_PSE;
428 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
429 break;
430 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
431 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
432 e->val64 &= ~_PAGE_PSE;
433 break;
434 default:
435 WARN_ON(1);
436 }
437 }
438 }
439
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)440 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
441 {
442 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
443 return false;
444
445 return !!(e->val64 & GEN8_PDE_IPS_64K);
446 }
447
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)448 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
449 {
450 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
451 return;
452
453 e->val64 &= ~GEN8_PDE_IPS_64K;
454 }
455
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)456 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
457 {
458 /*
459 * i915 writes PDP root pointer registers without present bit,
460 * it also works, so we need to treat root pointer entry
461 * specifically.
462 */
463 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
464 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
465 return (e->val64 != 0);
466 else
467 return (e->val64 & GEN8_PAGE_PRESENT);
468 }
469
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)470 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
471 {
472 e->val64 &= ~GEN8_PAGE_PRESENT;
473 }
474
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)475 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
476 {
477 e->val64 |= GEN8_PAGE_PRESENT;
478 }
479
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)480 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
481 {
482 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
483 }
484
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)485 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
486 {
487 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
488 }
489
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)490 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
491 {
492 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
493 }
494
495 /*
496 * Per-platform GMA routines.
497 */
gma_to_ggtt_pte_index(unsigned long gma)498 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
499 {
500 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
501
502 trace_gma_index(__func__, gma, x);
503 return x;
504 }
505
506 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
507 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
508 { \
509 unsigned long x = (exp); \
510 trace_gma_index(__func__, gma, x); \
511 return x; \
512 }
513
514 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
515 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
516 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
517 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
518 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
519
520 static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
521 .get_entry = gtt_get_entry64,
522 .set_entry = gtt_set_entry64,
523 .clear_present = gtt_entry_clear_present,
524 .set_present = gtt_entry_set_present,
525 .test_present = gen8_gtt_test_present,
526 .test_pse = gen8_gtt_test_pse,
527 .clear_pse = gen8_gtt_clear_pse,
528 .clear_ips = gen8_gtt_clear_ips,
529 .test_ips = gen8_gtt_test_ips,
530 .clear_64k_splited = gen8_gtt_clear_64k_splited,
531 .set_64k_splited = gen8_gtt_set_64k_splited,
532 .test_64k_splited = gen8_gtt_test_64k_splited,
533 .get_pfn = gen8_gtt_get_pfn,
534 .set_pfn = gen8_gtt_set_pfn,
535 };
536
537 static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
538 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
539 .gma_to_pte_index = gen8_gma_to_pte_index,
540 .gma_to_pde_index = gen8_gma_to_pde_index,
541 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
542 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
543 .gma_to_pml4_index = gen8_gma_to_pml4_index,
544 };
545
546 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)547 static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
548 struct intel_gvt_gtt_entry *entry, bool ips)
549 {
550 switch (entry->type) {
551 case GTT_TYPE_PPGTT_PDE_ENTRY:
552 case GTT_TYPE_PPGTT_PDP_ENTRY:
553 if (pte_ops->test_pse(entry))
554 entry->type = get_pse_type(entry->type);
555 break;
556 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
557 if (ips)
558 entry->type = get_pse_type(entry->type);
559 break;
560 default:
561 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
562 }
563
564 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
565 }
566
567 /*
568 * MM helpers.
569 */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)570 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index,
572 bool guest)
573 {
574 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575
576 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
577
578 entry->type = mm->ppgtt_mm.root_entry_type;
579 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
580 mm->ppgtt_mm.shadow_pdps,
581 entry, index, false, 0, mm->vgpu);
582 update_entry_type_for_real(pte_ops, entry, false);
583 }
584
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)585 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
586 struct intel_gvt_gtt_entry *entry, unsigned long index)
587 {
588 _ppgtt_get_root_entry(mm, entry, index, true);
589 }
590
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)591 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
592 struct intel_gvt_gtt_entry *entry, unsigned long index)
593 {
594 _ppgtt_get_root_entry(mm, entry, index, false);
595 }
596
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)597 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
598 struct intel_gvt_gtt_entry *entry, unsigned long index,
599 bool guest)
600 {
601 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
602
603 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
604 mm->ppgtt_mm.shadow_pdps,
605 entry, index, false, 0, mm->vgpu);
606 }
607
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)608 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
609 struct intel_gvt_gtt_entry *entry, unsigned long index)
610 {
611 _ppgtt_set_root_entry(mm, entry, index, false);
612 }
613
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)614 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
615 struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618
619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620
621 entry->type = GTT_TYPE_GGTT_PTE;
622 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
623 false, 0, mm->vgpu);
624 }
625
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)626 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
627 struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630
631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632
633 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
634 false, 0, mm->vgpu);
635 }
636
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)637 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
638 struct intel_gvt_gtt_entry *entry, unsigned long index)
639 {
640 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
641
642 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
643
644 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
645 }
646
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)647 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
648 struct intel_gvt_gtt_entry *entry, unsigned long index)
649 {
650 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
651 unsigned long offset = index;
652
653 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
654
655 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
656 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
657 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
658 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
659 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
660 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
661 }
662
663 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
664 }
665
666 /*
667 * PPGTT shadow page table helpers.
668 */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)669 static inline int ppgtt_spt_get_entry(
670 struct intel_vgpu_ppgtt_spt *spt,
671 void *page_table, int type,
672 struct intel_gvt_gtt_entry *e, unsigned long index,
673 bool guest)
674 {
675 struct intel_gvt *gvt = spt->vgpu->gvt;
676 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
677 int ret;
678
679 e->type = get_entry_type(type);
680
681 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
682 return -EINVAL;
683
684 ret = ops->get_entry(page_table, e, index, guest,
685 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
686 spt->vgpu);
687 if (ret)
688 return ret;
689
690 update_entry_type_for_real(ops, e, guest ?
691 spt->guest_page.pde_ips : false);
692
693 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
694 type, e->type, index, e->val64);
695 return 0;
696 }
697
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)698 static inline int ppgtt_spt_set_entry(
699 struct intel_vgpu_ppgtt_spt *spt,
700 void *page_table, int type,
701 struct intel_gvt_gtt_entry *e, unsigned long index,
702 bool guest)
703 {
704 struct intel_gvt *gvt = spt->vgpu->gvt;
705 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
706
707 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
708 return -EINVAL;
709
710 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
711 type, e->type, index, e->val64);
712
713 return ops->set_entry(page_table, e, index, guest,
714 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
715 spt->vgpu);
716 }
717
718 #define ppgtt_get_guest_entry(spt, e, index) \
719 ppgtt_spt_get_entry(spt, NULL, \
720 spt->guest_page.type, e, index, true)
721
722 #define ppgtt_set_guest_entry(spt, e, index) \
723 ppgtt_spt_set_entry(spt, NULL, \
724 spt->guest_page.type, e, index, true)
725
726 #define ppgtt_get_shadow_entry(spt, e, index) \
727 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
728 spt->shadow_page.type, e, index, false)
729
730 #define ppgtt_set_shadow_entry(spt, e, index) \
731 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
732 spt->shadow_page.type, e, index, false)
733
alloc_spt(gfp_t gfp_mask)734 static void *alloc_spt(gfp_t gfp_mask)
735 {
736 struct intel_vgpu_ppgtt_spt *spt;
737
738 spt = kzalloc(sizeof(*spt), gfp_mask);
739 if (!spt)
740 return NULL;
741
742 spt->shadow_page.page = alloc_page(gfp_mask);
743 if (!spt->shadow_page.page) {
744 kfree(spt);
745 return NULL;
746 }
747 return spt;
748 }
749
free_spt(struct intel_vgpu_ppgtt_spt * spt)750 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
751 {
752 __free_page(spt->shadow_page.page);
753 kfree(spt);
754 }
755
756 static int detach_oos_page(struct intel_vgpu *vgpu,
757 struct intel_vgpu_oos_page *oos_page);
758
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)759 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
760 {
761 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
762
763 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
764
765 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
766 DMA_BIDIRECTIONAL);
767
768 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
769
770 if (spt->guest_page.gfn) {
771 if (spt->guest_page.oos_page)
772 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
773
774 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
775 }
776
777 list_del_init(&spt->post_shadow_list);
778 free_spt(spt);
779 }
780
ppgtt_free_all_spt(struct intel_vgpu * vgpu)781 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
782 {
783 struct intel_vgpu_ppgtt_spt *spt, *spn;
784 struct radix_tree_iter iter;
785 LIST_HEAD(all_spt);
786 void __rcu **slot;
787
788 rcu_read_lock();
789 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
790 spt = radix_tree_deref_slot(slot);
791 list_move(&spt->post_shadow_list, &all_spt);
792 }
793 rcu_read_unlock();
794
795 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
796 ppgtt_free_spt(spt);
797 }
798
799 static int ppgtt_handle_guest_write_page_table_bytes(
800 struct intel_vgpu_ppgtt_spt *spt,
801 u64 pa, void *p_data, int bytes);
802
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)803 static int ppgtt_write_protection_handler(
804 struct intel_vgpu_page_track *page_track,
805 u64 gpa, void *data, int bytes)
806 {
807 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
808
809 int ret;
810
811 if (bytes != 4 && bytes != 8)
812 return -EINVAL;
813
814 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
815 if (ret)
816 return ret;
817 return ret;
818 }
819
820 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)821 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
822 struct intel_vgpu *vgpu, unsigned long gfn)
823 {
824 struct intel_vgpu_page_track *track;
825
826 track = intel_vgpu_find_page_track(vgpu, gfn);
827 if (track && track->handler == ppgtt_write_protection_handler)
828 return track->priv_data;
829
830 return NULL;
831 }
832
833 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)834 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
835 struct intel_vgpu *vgpu, unsigned long mfn)
836 {
837 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
838 }
839
840 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
841
842 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)843 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
844 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
845 {
846 struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
847 struct intel_vgpu_ppgtt_spt *spt = NULL;
848 dma_addr_t daddr;
849 int ret;
850
851 retry:
852 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
853 if (!spt) {
854 if (reclaim_one_ppgtt_mm(vgpu->gvt))
855 goto retry;
856
857 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
858 return ERR_PTR(-ENOMEM);
859 }
860
861 spt->vgpu = vgpu;
862 atomic_set(&spt->refcount, 1);
863 INIT_LIST_HEAD(&spt->post_shadow_list);
864
865 /*
866 * Init shadow_page.
867 */
868 spt->shadow_page.type = type;
869 daddr = dma_map_page(kdev, spt->shadow_page.page,
870 0, 4096, DMA_BIDIRECTIONAL);
871 if (dma_mapping_error(kdev, daddr)) {
872 gvt_vgpu_err("fail to map dma addr\n");
873 ret = -EINVAL;
874 goto err_free_spt;
875 }
876 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
877 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
878
879 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
880 if (ret)
881 goto err_unmap_dma;
882
883 return spt;
884
885 err_unmap_dma:
886 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
887 err_free_spt:
888 free_spt(spt);
889 return ERR_PTR(ret);
890 }
891
892 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)893 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
894 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
895 unsigned long gfn, bool guest_pde_ips)
896 {
897 struct intel_vgpu_ppgtt_spt *spt;
898 int ret;
899
900 spt = ppgtt_alloc_spt(vgpu, type);
901 if (IS_ERR(spt))
902 return spt;
903
904 /*
905 * Init guest_page.
906 */
907 ret = intel_vgpu_register_page_track(vgpu, gfn,
908 ppgtt_write_protection_handler, spt);
909 if (ret) {
910 ppgtt_free_spt(spt);
911 return ERR_PTR(ret);
912 }
913
914 spt->guest_page.type = type;
915 spt->guest_page.gfn = gfn;
916 spt->guest_page.pde_ips = guest_pde_ips;
917
918 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
919
920 return spt;
921 }
922
923 #define pt_entry_size_shift(spt) \
924 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
925
926 #define pt_entries(spt) \
927 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
928
929 #define for_each_present_guest_entry(spt, e, i) \
930 for (i = 0; i < pt_entries(spt); \
931 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
932 if (!ppgtt_get_guest_entry(spt, e, i) && \
933 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
934
935 #define for_each_present_shadow_entry(spt, e, i) \
936 for (i = 0; i < pt_entries(spt); \
937 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
938 if (!ppgtt_get_shadow_entry(spt, e, i) && \
939 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
940
941 #define for_each_shadow_entry(spt, e, i) \
942 for (i = 0; i < pt_entries(spt); \
943 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
944 if (!ppgtt_get_shadow_entry(spt, e, i))
945
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)946 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
947 {
948 int v = atomic_read(&spt->refcount);
949
950 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
951 atomic_inc(&spt->refcount);
952 }
953
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)954 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
955 {
956 int v = atomic_read(&spt->refcount);
957
958 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
959 return atomic_dec_return(&spt->refcount);
960 }
961
962 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
963
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)964 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
965 struct intel_gvt_gtt_entry *e)
966 {
967 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
968 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
969 struct intel_vgpu_ppgtt_spt *s;
970 enum intel_gvt_gtt_type cur_pt_type;
971
972 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
973
974 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
975 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
976 cur_pt_type = get_next_pt_type(e->type);
977
978 if (!gtt_type_is_pt(cur_pt_type) ||
979 !gtt_type_is_pt(cur_pt_type + 1)) {
980 drm_WARN(&i915->drm, 1,
981 "Invalid page table type, cur_pt_type is: %d\n",
982 cur_pt_type);
983 return -EINVAL;
984 }
985
986 cur_pt_type += 1;
987
988 if (ops->get_pfn(e) ==
989 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
990 return 0;
991 }
992 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
993 if (!s) {
994 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
995 ops->get_pfn(e));
996 return -ENXIO;
997 }
998 return ppgtt_invalidate_spt(s);
999 }
1000
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)1001 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
1002 struct intel_gvt_gtt_entry *entry)
1003 {
1004 struct intel_vgpu *vgpu = spt->vgpu;
1005 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1006 unsigned long pfn;
1007 int type;
1008
1009 pfn = ops->get_pfn(entry);
1010 type = spt->shadow_page.type;
1011
1012 /* Uninitialized spte or unshadowed spte. */
1013 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1014 return;
1015
1016 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1017 }
1018
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)1019 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1020 {
1021 struct intel_vgpu *vgpu = spt->vgpu;
1022 struct intel_gvt_gtt_entry e;
1023 unsigned long index;
1024 int ret;
1025
1026 trace_spt_change(spt->vgpu->id, "die", spt,
1027 spt->guest_page.gfn, spt->shadow_page.type);
1028
1029 if (ppgtt_put_spt(spt) > 0)
1030 return 0;
1031
1032 for_each_present_shadow_entry(spt, &e, index) {
1033 switch (e.type) {
1034 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1035 gvt_vdbg_mm("invalidate 4K entry\n");
1036 ppgtt_invalidate_pte(spt, &e);
1037 break;
1038 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1039 /* We don't setup 64K shadow entry so far. */
1040 WARN(1, "suspicious 64K gtt entry\n");
1041 continue;
1042 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1043 gvt_vdbg_mm("invalidate 2M entry\n");
1044 continue;
1045 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1046 WARN(1, "GVT doesn't support 1GB page\n");
1047 continue;
1048 case GTT_TYPE_PPGTT_PML4_ENTRY:
1049 case GTT_TYPE_PPGTT_PDP_ENTRY:
1050 case GTT_TYPE_PPGTT_PDE_ENTRY:
1051 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1052 ret = ppgtt_invalidate_spt_by_shadow_entry(
1053 spt->vgpu, &e);
1054 if (ret)
1055 goto fail;
1056 break;
1057 default:
1058 GEM_BUG_ON(1);
1059 }
1060 }
1061
1062 trace_spt_change(spt->vgpu->id, "release", spt,
1063 spt->guest_page.gfn, spt->shadow_page.type);
1064 ppgtt_free_spt(spt);
1065 return 0;
1066 fail:
1067 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1068 spt, e.val64, e.type);
1069 return ret;
1070 }
1071
vgpu_ips_enabled(struct intel_vgpu * vgpu)1072 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1073 {
1074 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1075
1076 if (GRAPHICS_VER(dev_priv) == 9) {
1077 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1078 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1079
1080 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1081 } else if (GRAPHICS_VER(dev_priv) >= 11) {
1082 /* 64K paging only controlled by IPS bit in PTE now. */
1083 return true;
1084 } else
1085 return false;
1086 }
1087
1088 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1089
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1090 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1091 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1092 {
1093 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1094 struct intel_vgpu_ppgtt_spt *spt = NULL;
1095 bool ips = false;
1096 int ret;
1097
1098 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1099
1100 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1101 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1102
1103 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1104 if (spt) {
1105 ppgtt_get_spt(spt);
1106
1107 if (ips != spt->guest_page.pde_ips) {
1108 spt->guest_page.pde_ips = ips;
1109
1110 gvt_dbg_mm("reshadow PDE since ips changed\n");
1111 clear_page(spt->shadow_page.vaddr);
1112 ret = ppgtt_populate_spt(spt);
1113 if (ret) {
1114 ppgtt_put_spt(spt);
1115 goto err;
1116 }
1117 }
1118 } else {
1119 int type = get_next_pt_type(we->type);
1120
1121 if (!gtt_type_is_pt(type)) {
1122 ret = -EINVAL;
1123 goto err;
1124 }
1125
1126 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1127 if (IS_ERR(spt)) {
1128 ret = PTR_ERR(spt);
1129 goto err;
1130 }
1131
1132 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1133 if (ret)
1134 goto err_free_spt;
1135
1136 ret = ppgtt_populate_spt(spt);
1137 if (ret)
1138 goto err_free_spt;
1139
1140 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1141 spt->shadow_page.type);
1142 }
1143 return spt;
1144
1145 err_free_spt:
1146 ppgtt_free_spt(spt);
1147 spt = NULL;
1148 err:
1149 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1150 spt, we->val64, we->type);
1151 return ERR_PTR(ret);
1152 }
1153
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1154 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1155 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1156 {
1157 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1158
1159 se->type = ge->type;
1160 se->val64 = ge->val64;
1161
1162 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1163 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1164 ops->clear_ips(se);
1165
1166 ops->set_pfn(se, s->shadow_page.mfn);
1167 }
1168
1169 /*
1170 * Check if can do 2M page
1171 * @vgpu: target vgpu
1172 * @entry: target pfn's gtt entry
1173 *
1174 * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
1175 * negative if found err.
1176 */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1177 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1178 struct intel_gvt_gtt_entry *entry)
1179 {
1180 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1181 kvm_pfn_t pfn;
1182
1183 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1184 return 0;
1185
1186 if (!vgpu->attached)
1187 return -EINVAL;
1188 pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry));
1189 if (is_error_noslot_pfn(pfn))
1190 return -EINVAL;
1191 return PageTransHuge(pfn_to_page(pfn));
1192 }
1193
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1194 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1195 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1196 struct intel_gvt_gtt_entry *se)
1197 {
1198 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1199 struct intel_vgpu_ppgtt_spt *sub_spt;
1200 struct intel_gvt_gtt_entry sub_se;
1201 unsigned long start_gfn;
1202 dma_addr_t dma_addr;
1203 unsigned long sub_index;
1204 int ret;
1205
1206 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1207
1208 start_gfn = ops->get_pfn(se);
1209
1210 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1211 if (IS_ERR(sub_spt))
1212 return PTR_ERR(sub_spt);
1213
1214 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1215 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
1216 PAGE_SIZE, &dma_addr);
1217 if (ret) {
1218 ppgtt_invalidate_spt(spt);
1219 return ret;
1220 }
1221 sub_se.val64 = se->val64;
1222
1223 /* Copy the PAT field from PDE. */
1224 sub_se.val64 &= ~_PAGE_PAT;
1225 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1226
1227 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1228 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1229 }
1230
1231 /* Clear dirty field. */
1232 se->val64 &= ~_PAGE_DIRTY;
1233
1234 ops->clear_pse(se);
1235 ops->clear_ips(se);
1236 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1237 ppgtt_set_shadow_entry(spt, se, index);
1238 return 0;
1239 }
1240
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1241 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1242 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1243 struct intel_gvt_gtt_entry *se)
1244 {
1245 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1246 struct intel_gvt_gtt_entry entry = *se;
1247 unsigned long start_gfn;
1248 dma_addr_t dma_addr;
1249 int i, ret;
1250
1251 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1252
1253 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1254
1255 start_gfn = ops->get_pfn(se);
1256
1257 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1258 ops->set_64k_splited(&entry);
1259
1260 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1261 ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
1262 PAGE_SIZE, &dma_addr);
1263 if (ret)
1264 return ret;
1265
1266 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1267 ppgtt_set_shadow_entry(spt, &entry, index + i);
1268 }
1269 return 0;
1270 }
1271
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1272 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1273 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1274 struct intel_gvt_gtt_entry *ge)
1275 {
1276 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1277 struct intel_gvt_gtt_entry se = *ge;
1278 unsigned long gfn, page_size = PAGE_SIZE;
1279 dma_addr_t dma_addr;
1280 int ret;
1281
1282 if (!pte_ops->test_present(ge))
1283 return 0;
1284
1285 gfn = pte_ops->get_pfn(ge);
1286
1287 switch (ge->type) {
1288 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1289 gvt_vdbg_mm("shadow 4K gtt entry\n");
1290 break;
1291 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1292 gvt_vdbg_mm("shadow 64K gtt entry\n");
1293 /*
1294 * The layout of 64K page is special, the page size is
1295 * controlled by uper PDE. To be simple, we always split
1296 * 64K page to smaller 4K pages in shadow PT.
1297 */
1298 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1299 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1300 gvt_vdbg_mm("shadow 2M gtt entry\n");
1301 ret = is_2MB_gtt_possible(vgpu, ge);
1302 if (ret == 0)
1303 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1304 else if (ret < 0)
1305 return ret;
1306 page_size = I915_GTT_PAGE_SIZE_2M;
1307 break;
1308 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1309 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1310 return -EINVAL;
1311 default:
1312 GEM_BUG_ON(1);
1313 }
1314
1315 /* direct shadow */
1316 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr);
1317 if (ret)
1318 return -ENXIO;
1319
1320 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1321 ppgtt_set_shadow_entry(spt, &se, index);
1322 return 0;
1323 }
1324
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1325 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1326 {
1327 struct intel_vgpu *vgpu = spt->vgpu;
1328 struct intel_gvt *gvt = vgpu->gvt;
1329 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1330 struct intel_vgpu_ppgtt_spt *s;
1331 struct intel_gvt_gtt_entry se, ge;
1332 unsigned long gfn, i;
1333 int ret;
1334
1335 trace_spt_change(spt->vgpu->id, "born", spt,
1336 spt->guest_page.gfn, spt->shadow_page.type);
1337
1338 for_each_present_guest_entry(spt, &ge, i) {
1339 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1340 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1341 if (IS_ERR(s)) {
1342 ret = PTR_ERR(s);
1343 goto fail;
1344 }
1345 ppgtt_get_shadow_entry(spt, &se, i);
1346 ppgtt_generate_shadow_entry(&se, s, &ge);
1347 ppgtt_set_shadow_entry(spt, &se, i);
1348 } else {
1349 gfn = ops->get_pfn(&ge);
1350 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
1351 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1352 ppgtt_set_shadow_entry(spt, &se, i);
1353 continue;
1354 }
1355
1356 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1357 if (ret)
1358 goto fail;
1359 }
1360 }
1361 return 0;
1362 fail:
1363 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1364 spt, ge.val64, ge.type);
1365 return ret;
1366 }
1367
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1368 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1369 struct intel_gvt_gtt_entry *se, unsigned long index)
1370 {
1371 struct intel_vgpu *vgpu = spt->vgpu;
1372 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1373 int ret;
1374
1375 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1376 spt->shadow_page.type, se->val64, index);
1377
1378 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1379 se->type, index, se->val64);
1380
1381 if (!ops->test_present(se))
1382 return 0;
1383
1384 if (ops->get_pfn(se) ==
1385 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1386 return 0;
1387
1388 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1389 struct intel_vgpu_ppgtt_spt *s =
1390 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1391 if (!s) {
1392 gvt_vgpu_err("fail to find guest page\n");
1393 ret = -ENXIO;
1394 goto fail;
1395 }
1396 ret = ppgtt_invalidate_spt(s);
1397 if (ret)
1398 goto fail;
1399 } else {
1400 /* We don't setup 64K shadow entry so far. */
1401 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1402 "suspicious 64K entry\n");
1403 ppgtt_invalidate_pte(spt, se);
1404 }
1405
1406 return 0;
1407 fail:
1408 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1409 spt, se->val64, se->type);
1410 return ret;
1411 }
1412
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1413 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1414 struct intel_gvt_gtt_entry *we, unsigned long index)
1415 {
1416 struct intel_vgpu *vgpu = spt->vgpu;
1417 struct intel_gvt_gtt_entry m;
1418 struct intel_vgpu_ppgtt_spt *s;
1419 int ret;
1420
1421 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1422 we->val64, index);
1423
1424 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1425 we->type, index, we->val64);
1426
1427 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1428 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1429 if (IS_ERR(s)) {
1430 ret = PTR_ERR(s);
1431 goto fail;
1432 }
1433 ppgtt_get_shadow_entry(spt, &m, index);
1434 ppgtt_generate_shadow_entry(&m, s, we);
1435 ppgtt_set_shadow_entry(spt, &m, index);
1436 } else {
1437 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1438 if (ret)
1439 goto fail;
1440 }
1441 return 0;
1442 fail:
1443 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1444 spt, we->val64, we->type);
1445 return ret;
1446 }
1447
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1448 static int sync_oos_page(struct intel_vgpu *vgpu,
1449 struct intel_vgpu_oos_page *oos_page)
1450 {
1451 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1452 struct intel_gvt *gvt = vgpu->gvt;
1453 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1454 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1455 struct intel_gvt_gtt_entry old, new;
1456 int index;
1457 int ret;
1458
1459 trace_oos_change(vgpu->id, "sync", oos_page->id,
1460 spt, spt->guest_page.type);
1461
1462 old.type = new.type = get_entry_type(spt->guest_page.type);
1463 old.val64 = new.val64 = 0;
1464
1465 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1466 info->gtt_entry_size_shift); index++) {
1467 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1468 ops->get_entry(NULL, &new, index, true,
1469 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1470
1471 if (old.val64 == new.val64
1472 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1473 continue;
1474
1475 trace_oos_sync(vgpu->id, oos_page->id,
1476 spt, spt->guest_page.type,
1477 new.val64, index);
1478
1479 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1480 if (ret)
1481 return ret;
1482
1483 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1484 }
1485
1486 spt->guest_page.write_cnt = 0;
1487 list_del_init(&spt->post_shadow_list);
1488 return 0;
1489 }
1490
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1491 static int detach_oos_page(struct intel_vgpu *vgpu,
1492 struct intel_vgpu_oos_page *oos_page)
1493 {
1494 struct intel_gvt *gvt = vgpu->gvt;
1495 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1496
1497 trace_oos_change(vgpu->id, "detach", oos_page->id,
1498 spt, spt->guest_page.type);
1499
1500 spt->guest_page.write_cnt = 0;
1501 spt->guest_page.oos_page = NULL;
1502 oos_page->spt = NULL;
1503
1504 list_del_init(&oos_page->vm_list);
1505 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1506
1507 return 0;
1508 }
1509
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1510 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1511 struct intel_vgpu_ppgtt_spt *spt)
1512 {
1513 struct intel_gvt *gvt = spt->vgpu->gvt;
1514 int ret;
1515
1516 ret = intel_gvt_read_gpa(spt->vgpu,
1517 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1518 oos_page->mem, I915_GTT_PAGE_SIZE);
1519 if (ret)
1520 return ret;
1521
1522 oos_page->spt = spt;
1523 spt->guest_page.oos_page = oos_page;
1524
1525 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1526
1527 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1528 spt, spt->guest_page.type);
1529 return 0;
1530 }
1531
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1532 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1533 {
1534 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1535 int ret;
1536
1537 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1538 if (ret)
1539 return ret;
1540
1541 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1542 spt, spt->guest_page.type);
1543
1544 list_del_init(&oos_page->vm_list);
1545 return sync_oos_page(spt->vgpu, oos_page);
1546 }
1547
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1548 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1549 {
1550 struct intel_gvt *gvt = spt->vgpu->gvt;
1551 struct intel_gvt_gtt *gtt = &gvt->gtt;
1552 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1553 int ret;
1554
1555 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1556
1557 if (list_empty(>t->oos_page_free_list_head)) {
1558 oos_page = container_of(gtt->oos_page_use_list_head.next,
1559 struct intel_vgpu_oos_page, list);
1560 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1561 if (ret)
1562 return ret;
1563 ret = detach_oos_page(spt->vgpu, oos_page);
1564 if (ret)
1565 return ret;
1566 } else
1567 oos_page = container_of(gtt->oos_page_free_list_head.next,
1568 struct intel_vgpu_oos_page, list);
1569 return attach_oos_page(oos_page, spt);
1570 }
1571
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1572 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1573 {
1574 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1575
1576 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1577 return -EINVAL;
1578
1579 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1580 spt, spt->guest_page.type);
1581
1582 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1583 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1584 }
1585
1586 /**
1587 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1588 * @vgpu: a vGPU
1589 *
1590 * This function is called before submitting a guest workload to host,
1591 * to sync all the out-of-synced shadow for vGPU
1592 *
1593 * Returns:
1594 * Zero on success, negative error code if failed.
1595 */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1596 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1597 {
1598 struct list_head *pos, *n;
1599 struct intel_vgpu_oos_page *oos_page;
1600 int ret;
1601
1602 if (!enable_out_of_sync)
1603 return 0;
1604
1605 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1606 oos_page = container_of(pos,
1607 struct intel_vgpu_oos_page, vm_list);
1608 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1609 if (ret)
1610 return ret;
1611 }
1612 return 0;
1613 }
1614
1615 /*
1616 * The heart of PPGTT shadow page table.
1617 */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1618 static int ppgtt_handle_guest_write_page_table(
1619 struct intel_vgpu_ppgtt_spt *spt,
1620 struct intel_gvt_gtt_entry *we, unsigned long index)
1621 {
1622 struct intel_vgpu *vgpu = spt->vgpu;
1623 int type = spt->shadow_page.type;
1624 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1625 struct intel_gvt_gtt_entry old_se;
1626 int new_present;
1627 int i, ret;
1628
1629 new_present = ops->test_present(we);
1630
1631 /*
1632 * Adding the new entry first and then removing the old one, that can
1633 * guarantee the ppgtt table is validated during the window between
1634 * adding and removal.
1635 */
1636 ppgtt_get_shadow_entry(spt, &old_se, index);
1637
1638 if (new_present) {
1639 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1640 if (ret)
1641 goto fail;
1642 }
1643
1644 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1645 if (ret)
1646 goto fail;
1647
1648 if (!new_present) {
1649 /* For 64KB splited entries, we need clear them all. */
1650 if (ops->test_64k_splited(&old_se) &&
1651 !(index % GTT_64K_PTE_STRIDE)) {
1652 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1653 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1654 ops->clear_64k_splited(&old_se);
1655 ops->set_pfn(&old_se,
1656 vgpu->gtt.scratch_pt[type].page_mfn);
1657 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1658 }
1659 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1660 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1661 ops->clear_pse(&old_se);
1662 ops->set_pfn(&old_se,
1663 vgpu->gtt.scratch_pt[type].page_mfn);
1664 ppgtt_set_shadow_entry(spt, &old_se, index);
1665 } else {
1666 ops->set_pfn(&old_se,
1667 vgpu->gtt.scratch_pt[type].page_mfn);
1668 ppgtt_set_shadow_entry(spt, &old_se, index);
1669 }
1670 }
1671
1672 return 0;
1673 fail:
1674 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1675 spt, we->val64, we->type);
1676 return ret;
1677 }
1678
1679
1680
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1681 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1682 {
1683 return enable_out_of_sync
1684 && gtt_type_is_pte_pt(spt->guest_page.type)
1685 && spt->guest_page.write_cnt >= 2;
1686 }
1687
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1688 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1689 unsigned long index)
1690 {
1691 set_bit(index, spt->post_shadow_bitmap);
1692 if (!list_empty(&spt->post_shadow_list))
1693 return;
1694
1695 list_add_tail(&spt->post_shadow_list,
1696 &spt->vgpu->gtt.post_shadow_list_head);
1697 }
1698
1699 /**
1700 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1701 * @vgpu: a vGPU
1702 *
1703 * This function is called before submitting a guest workload to host,
1704 * to flush all the post shadows for a vGPU.
1705 *
1706 * Returns:
1707 * Zero on success, negative error code if failed.
1708 */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1709 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1710 {
1711 struct list_head *pos, *n;
1712 struct intel_vgpu_ppgtt_spt *spt;
1713 struct intel_gvt_gtt_entry ge;
1714 unsigned long index;
1715 int ret;
1716
1717 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1718 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1719 post_shadow_list);
1720
1721 for_each_set_bit(index, spt->post_shadow_bitmap,
1722 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1723 ppgtt_get_guest_entry(spt, &ge, index);
1724
1725 ret = ppgtt_handle_guest_write_page_table(spt,
1726 &ge, index);
1727 if (ret)
1728 return ret;
1729 clear_bit(index, spt->post_shadow_bitmap);
1730 }
1731 list_del_init(&spt->post_shadow_list);
1732 }
1733 return 0;
1734 }
1735
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1736 static int ppgtt_handle_guest_write_page_table_bytes(
1737 struct intel_vgpu_ppgtt_spt *spt,
1738 u64 pa, void *p_data, int bytes)
1739 {
1740 struct intel_vgpu *vgpu = spt->vgpu;
1741 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1742 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1743 struct intel_gvt_gtt_entry we, se;
1744 unsigned long index;
1745 int ret;
1746
1747 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1748
1749 ppgtt_get_guest_entry(spt, &we, index);
1750
1751 /*
1752 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1753 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1754 * ignored.
1755 */
1756 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1757 (index % GTT_64K_PTE_STRIDE)) {
1758 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1759 index);
1760 return 0;
1761 }
1762
1763 if (bytes == info->gtt_entry_size) {
1764 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1765 if (ret)
1766 return ret;
1767 } else {
1768 if (!test_bit(index, spt->post_shadow_bitmap)) {
1769 int type = spt->shadow_page.type;
1770
1771 ppgtt_get_shadow_entry(spt, &se, index);
1772 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1773 if (ret)
1774 return ret;
1775 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1776 ppgtt_set_shadow_entry(spt, &se, index);
1777 }
1778 ppgtt_set_post_shadow(spt, index);
1779 }
1780
1781 if (!enable_out_of_sync)
1782 return 0;
1783
1784 spt->guest_page.write_cnt++;
1785
1786 if (spt->guest_page.oos_page)
1787 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1788 false, 0, vgpu);
1789
1790 if (can_do_out_of_sync(spt)) {
1791 if (!spt->guest_page.oos_page)
1792 ppgtt_allocate_oos_page(spt);
1793
1794 ret = ppgtt_set_guest_page_oos(spt);
1795 if (ret < 0)
1796 return ret;
1797 }
1798 return 0;
1799 }
1800
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1801 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1802 {
1803 struct intel_vgpu *vgpu = mm->vgpu;
1804 struct intel_gvt *gvt = vgpu->gvt;
1805 struct intel_gvt_gtt *gtt = &gvt->gtt;
1806 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1807 struct intel_gvt_gtt_entry se;
1808 int index;
1809
1810 if (!mm->ppgtt_mm.shadowed)
1811 return;
1812
1813 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1814 ppgtt_get_shadow_root_entry(mm, &se, index);
1815
1816 if (!ops->test_present(&se))
1817 continue;
1818
1819 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1820 se.val64 = 0;
1821 ppgtt_set_shadow_root_entry(mm, &se, index);
1822
1823 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1824 NULL, se.type, se.val64, index);
1825 }
1826
1827 mm->ppgtt_mm.shadowed = false;
1828 }
1829
1830
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1831 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1832 {
1833 struct intel_vgpu *vgpu = mm->vgpu;
1834 struct intel_gvt *gvt = vgpu->gvt;
1835 struct intel_gvt_gtt *gtt = &gvt->gtt;
1836 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1837 struct intel_vgpu_ppgtt_spt *spt;
1838 struct intel_gvt_gtt_entry ge, se;
1839 int index, ret;
1840
1841 if (mm->ppgtt_mm.shadowed)
1842 return 0;
1843
1844 mm->ppgtt_mm.shadowed = true;
1845
1846 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1847 ppgtt_get_guest_root_entry(mm, &ge, index);
1848
1849 if (!ops->test_present(&ge))
1850 continue;
1851
1852 trace_spt_guest_change(vgpu->id, __func__, NULL,
1853 ge.type, ge.val64, index);
1854
1855 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1856 if (IS_ERR(spt)) {
1857 gvt_vgpu_err("fail to populate guest root pointer\n");
1858 ret = PTR_ERR(spt);
1859 goto fail;
1860 }
1861 ppgtt_generate_shadow_entry(&se, spt, &ge);
1862 ppgtt_set_shadow_root_entry(mm, &se, index);
1863
1864 trace_spt_guest_change(vgpu->id, "populate root pointer",
1865 NULL, se.type, se.val64, index);
1866 }
1867
1868 return 0;
1869 fail:
1870 invalidate_ppgtt_mm(mm);
1871 return ret;
1872 }
1873
vgpu_alloc_mm(struct intel_vgpu * vgpu)1874 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1875 {
1876 struct intel_vgpu_mm *mm;
1877
1878 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1879 if (!mm)
1880 return NULL;
1881
1882 mm->vgpu = vgpu;
1883 kref_init(&mm->ref);
1884 atomic_set(&mm->pincount, 0);
1885
1886 return mm;
1887 }
1888
vgpu_free_mm(struct intel_vgpu_mm * mm)1889 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1890 {
1891 kfree(mm);
1892 }
1893
1894 /**
1895 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1896 * @vgpu: a vGPU
1897 * @root_entry_type: ppgtt root entry type
1898 * @pdps: guest pdps.
1899 *
1900 * This function is used to create a ppgtt mm object for a vGPU.
1901 *
1902 * Returns:
1903 * Zero on success, negative error code in pointer if failed.
1904 */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1905 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1906 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1907 {
1908 struct intel_gvt *gvt = vgpu->gvt;
1909 struct intel_vgpu_mm *mm;
1910 int ret;
1911
1912 mm = vgpu_alloc_mm(vgpu);
1913 if (!mm)
1914 return ERR_PTR(-ENOMEM);
1915
1916 mm->type = INTEL_GVT_MM_PPGTT;
1917
1918 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1919 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1920 mm->ppgtt_mm.root_entry_type = root_entry_type;
1921
1922 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1923 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1924 INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1925
1926 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1927 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1928 else
1929 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1930 sizeof(mm->ppgtt_mm.guest_pdps));
1931
1932 ret = shadow_ppgtt_mm(mm);
1933 if (ret) {
1934 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1935 vgpu_free_mm(mm);
1936 return ERR_PTR(ret);
1937 }
1938
1939 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1940
1941 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1942 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1943 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1944
1945 return mm;
1946 }
1947
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1948 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1949 {
1950 struct intel_vgpu_mm *mm;
1951 unsigned long nr_entries;
1952
1953 mm = vgpu_alloc_mm(vgpu);
1954 if (!mm)
1955 return ERR_PTR(-ENOMEM);
1956
1957 mm->type = INTEL_GVT_MM_GGTT;
1958
1959 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1960 mm->ggtt_mm.virtual_ggtt =
1961 vzalloc(array_size(nr_entries,
1962 vgpu->gvt->device_info.gtt_entry_size));
1963 if (!mm->ggtt_mm.virtual_ggtt) {
1964 vgpu_free_mm(mm);
1965 return ERR_PTR(-ENOMEM);
1966 }
1967
1968 mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1969 if (!mm->ggtt_mm.host_ggtt_aperture) {
1970 vfree(mm->ggtt_mm.virtual_ggtt);
1971 vgpu_free_mm(mm);
1972 return ERR_PTR(-ENOMEM);
1973 }
1974
1975 mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1976 if (!mm->ggtt_mm.host_ggtt_hidden) {
1977 vfree(mm->ggtt_mm.host_ggtt_aperture);
1978 vfree(mm->ggtt_mm.virtual_ggtt);
1979 vgpu_free_mm(mm);
1980 return ERR_PTR(-ENOMEM);
1981 }
1982
1983 return mm;
1984 }
1985
1986 /**
1987 * _intel_vgpu_mm_release - destroy a mm object
1988 * @mm_ref: a kref object
1989 *
1990 * This function is used to destroy a mm object for vGPU
1991 *
1992 */
_intel_vgpu_mm_release(struct kref * mm_ref)1993 void _intel_vgpu_mm_release(struct kref *mm_ref)
1994 {
1995 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1996
1997 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1998 gvt_err("vgpu mm pin count bug detected\n");
1999
2000 if (mm->type == INTEL_GVT_MM_PPGTT) {
2001 list_del(&mm->ppgtt_mm.list);
2002
2003 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2004 list_del(&mm->ppgtt_mm.lru_list);
2005 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2006
2007 invalidate_ppgtt_mm(mm);
2008 } else {
2009 vfree(mm->ggtt_mm.virtual_ggtt);
2010 vfree(mm->ggtt_mm.host_ggtt_aperture);
2011 vfree(mm->ggtt_mm.host_ggtt_hidden);
2012 }
2013
2014 vgpu_free_mm(mm);
2015 }
2016
2017 /**
2018 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2019 * @mm: a vGPU mm object
2020 *
2021 * This function is called when user doesn't want to use a vGPU mm object
2022 */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)2023 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2024 {
2025 atomic_dec_if_positive(&mm->pincount);
2026 }
2027
2028 /**
2029 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2030 * @mm: target vgpu mm
2031 *
2032 * This function is called when user wants to use a vGPU mm object. If this
2033 * mm object hasn't been shadowed yet, the shadow will be populated at this
2034 * time.
2035 *
2036 * Returns:
2037 * Zero on success, negative error code if failed.
2038 */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)2039 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2040 {
2041 int ret;
2042
2043 atomic_inc(&mm->pincount);
2044
2045 if (mm->type == INTEL_GVT_MM_PPGTT) {
2046 ret = shadow_ppgtt_mm(mm);
2047 if (ret)
2048 return ret;
2049
2050 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2051 list_move_tail(&mm->ppgtt_mm.lru_list,
2052 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2053 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2054 }
2055
2056 return 0;
2057 }
2058
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2059 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2060 {
2061 struct intel_vgpu_mm *mm;
2062 struct list_head *pos, *n;
2063
2064 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2065
2066 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2067 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2068
2069 if (atomic_read(&mm->pincount))
2070 continue;
2071
2072 list_del_init(&mm->ppgtt_mm.lru_list);
2073 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2074 invalidate_ppgtt_mm(mm);
2075 return 1;
2076 }
2077 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2078 return 0;
2079 }
2080
2081 /*
2082 * GMA translation APIs.
2083 */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2084 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2085 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2086 {
2087 struct intel_vgpu *vgpu = mm->vgpu;
2088 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2089 struct intel_vgpu_ppgtt_spt *s;
2090
2091 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2092 if (!s)
2093 return -ENXIO;
2094
2095 if (!guest)
2096 ppgtt_get_shadow_entry(s, e, index);
2097 else
2098 ppgtt_get_guest_entry(s, e, index);
2099 return 0;
2100 }
2101
2102 /**
2103 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2104 * @mm: mm object. could be a PPGTT or GGTT mm object
2105 * @gma: graphics memory address in this mm object
2106 *
2107 * This function is used to translate a graphics memory address in specific
2108 * graphics memory space to guest physical address.
2109 *
2110 * Returns:
2111 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2112 */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2113 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2114 {
2115 struct intel_vgpu *vgpu = mm->vgpu;
2116 struct intel_gvt *gvt = vgpu->gvt;
2117 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2118 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2119 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2120 unsigned long gma_index[4];
2121 struct intel_gvt_gtt_entry e;
2122 int i, levels = 0;
2123 int ret;
2124
2125 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2126 mm->type != INTEL_GVT_MM_PPGTT);
2127
2128 if (mm->type == INTEL_GVT_MM_GGTT) {
2129 if (!vgpu_gmadr_is_valid(vgpu, gma))
2130 goto err;
2131
2132 ggtt_get_guest_entry(mm, &e,
2133 gma_ops->gma_to_ggtt_pte_index(gma));
2134
2135 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2136 + (gma & ~I915_GTT_PAGE_MASK);
2137
2138 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2139 } else {
2140 switch (mm->ppgtt_mm.root_entry_type) {
2141 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2142 ppgtt_get_shadow_root_entry(mm, &e, 0);
2143
2144 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2145 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2146 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2147 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2148 levels = 4;
2149 break;
2150 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2151 ppgtt_get_shadow_root_entry(mm, &e,
2152 gma_ops->gma_to_l3_pdp_index(gma));
2153
2154 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2155 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2156 levels = 2;
2157 break;
2158 default:
2159 GEM_BUG_ON(1);
2160 }
2161
2162 /* walk the shadow page table and get gpa from guest entry */
2163 for (i = 0; i < levels; i++) {
2164 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2165 (i == levels - 1));
2166 if (ret)
2167 goto err;
2168
2169 if (!pte_ops->test_present(&e)) {
2170 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2171 goto err;
2172 }
2173 }
2174
2175 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2176 (gma & ~I915_GTT_PAGE_MASK);
2177 trace_gma_translate(vgpu->id, "ppgtt", 0,
2178 mm->ppgtt_mm.root_entry_type, gma, gpa);
2179 }
2180
2181 return gpa;
2182 err:
2183 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2184 return INTEL_GVT_INVALID_ADDR;
2185 }
2186
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2187 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2188 unsigned int off, void *p_data, unsigned int bytes)
2189 {
2190 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2191 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2192 unsigned long index = off >> info->gtt_entry_size_shift;
2193 unsigned long gma;
2194 struct intel_gvt_gtt_entry e;
2195
2196 if (bytes != 4 && bytes != 8)
2197 return -EINVAL;
2198
2199 gma = index << I915_GTT_PAGE_SHIFT;
2200 if (!intel_gvt_ggtt_validate_range(vgpu,
2201 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2202 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2203 memset(p_data, 0, bytes);
2204 return 0;
2205 }
2206
2207 ggtt_get_guest_entry(ggtt_mm, &e, index);
2208 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2209 bytes);
2210 return 0;
2211 }
2212
2213 /**
2214 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2215 * @vgpu: a vGPU
2216 * @off: register offset
2217 * @p_data: data will be returned to guest
2218 * @bytes: data length
2219 *
2220 * This function is used to emulate the GTT MMIO register read
2221 *
2222 * Returns:
2223 * Zero on success, error code if failed.
2224 */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2225 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2226 void *p_data, unsigned int bytes)
2227 {
2228 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2229 int ret;
2230
2231 if (bytes != 4 && bytes != 8)
2232 return -EINVAL;
2233
2234 off -= info->gtt_start_offset;
2235 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2236 return ret;
2237 }
2238
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2239 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2240 struct intel_gvt_gtt_entry *entry)
2241 {
2242 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2243 unsigned long pfn;
2244
2245 pfn = pte_ops->get_pfn(entry);
2246 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2247 intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
2248 }
2249
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2250 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2251 void *p_data, unsigned int bytes)
2252 {
2253 struct intel_gvt *gvt = vgpu->gvt;
2254 const struct intel_gvt_device_info *info = &gvt->device_info;
2255 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2256 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2257 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2258 unsigned long gma, gfn;
2259 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2260 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2261 dma_addr_t dma_addr;
2262 int ret;
2263 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2264 bool partial_update = false;
2265
2266 if (bytes != 4 && bytes != 8)
2267 return -EINVAL;
2268
2269 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2270
2271 /* the VM may configure the whole GM space when ballooning is used */
2272 if (!vgpu_gmadr_is_valid(vgpu, gma))
2273 return 0;
2274
2275 e.type = GTT_TYPE_GGTT_PTE;
2276 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2277 bytes);
2278
2279 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2280 * write, save the first 4 bytes in a list and update virtual
2281 * PTE. Only update shadow PTE when the second 4 bytes comes.
2282 */
2283 if (bytes < info->gtt_entry_size) {
2284 bool found = false;
2285
2286 list_for_each_entry_safe(pos, n,
2287 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2288 if (g_gtt_index == pos->offset >>
2289 info->gtt_entry_size_shift) {
2290 if (off != pos->offset) {
2291 /* the second partial part*/
2292 int last_off = pos->offset &
2293 (info->gtt_entry_size - 1);
2294
2295 memcpy((void *)&e.val64 + last_off,
2296 (void *)&pos->data + last_off,
2297 bytes);
2298
2299 list_del(&pos->list);
2300 kfree(pos);
2301 found = true;
2302 break;
2303 }
2304
2305 /* update of the first partial part */
2306 pos->data = e.val64;
2307 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2308 return 0;
2309 }
2310 }
2311
2312 if (!found) {
2313 /* the first partial part */
2314 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2315 if (!partial_pte)
2316 return -ENOMEM;
2317 partial_pte->offset = off;
2318 partial_pte->data = e.val64;
2319 list_add_tail(&partial_pte->list,
2320 &ggtt_mm->ggtt_mm.partial_pte_list);
2321 partial_update = true;
2322 }
2323 }
2324
2325 if (!partial_update && (ops->test_present(&e))) {
2326 gfn = ops->get_pfn(&e);
2327 m.val64 = e.val64;
2328 m.type = e.type;
2329
2330 /* one PTE update may be issued in multiple writes and the
2331 * first write may not construct a valid gfn
2332 */
2333 if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
2334 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2335 goto out;
2336 }
2337
2338 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2339 &dma_addr);
2340 if (ret) {
2341 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2342 /* guest driver may read/write the entry when partial
2343 * update the entry in this situation p2m will fail
2344 * settting the shadow entry to point to a scratch page
2345 */
2346 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2347 } else
2348 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2349 } else {
2350 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2351 ops->clear_present(&m);
2352 }
2353
2354 out:
2355 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2356
2357 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2358 ggtt_invalidate_pte(vgpu, &e);
2359
2360 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2361 ggtt_invalidate(gvt->gt);
2362 return 0;
2363 }
2364
2365 /*
2366 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2367 * @vgpu: a vGPU
2368 * @off: register offset
2369 * @p_data: data from guest write
2370 * @bytes: data length
2371 *
2372 * This function is used to emulate the GTT MMIO register write
2373 *
2374 * Returns:
2375 * Zero on success, error code if failed.
2376 */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2377 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2378 unsigned int off, void *p_data, unsigned int bytes)
2379 {
2380 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2381 int ret;
2382 struct intel_vgpu_submission *s = &vgpu->submission;
2383 struct intel_engine_cs *engine;
2384 int i;
2385
2386 if (bytes != 4 && bytes != 8)
2387 return -EINVAL;
2388
2389 off -= info->gtt_start_offset;
2390 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2391
2392 /* if ggtt of last submitted context is written,
2393 * that context is probably got unpinned.
2394 * Set last shadowed ctx to invalid.
2395 */
2396 for_each_engine(engine, vgpu->gvt->gt, i) {
2397 if (!s->last_ctx[i].valid)
2398 continue;
2399
2400 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2401 s->last_ctx[i].valid = false;
2402 }
2403 return ret;
2404 }
2405
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2406 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2407 enum intel_gvt_gtt_type type)
2408 {
2409 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2410 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2411 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2412 int page_entry_num = I915_GTT_PAGE_SIZE >>
2413 vgpu->gvt->device_info.gtt_entry_size_shift;
2414 void *scratch_pt;
2415 int i;
2416 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2417 dma_addr_t daddr;
2418
2419 if (drm_WARN_ON(&i915->drm,
2420 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2421 return -EINVAL;
2422
2423 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2424 if (!scratch_pt) {
2425 gvt_vgpu_err("fail to allocate scratch page\n");
2426 return -ENOMEM;
2427 }
2428
2429 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2430 if (dma_mapping_error(dev, daddr)) {
2431 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2432 __free_page(virt_to_page(scratch_pt));
2433 return -ENOMEM;
2434 }
2435 gtt->scratch_pt[type].page_mfn =
2436 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2437 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2438 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2439 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2440
2441 /* Build the tree by full filled the scratch pt with the entries which
2442 * point to the next level scratch pt or scratch page. The
2443 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2444 * 'type' pt.
2445 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2446 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2447 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2448 */
2449 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2450 struct intel_gvt_gtt_entry se;
2451
2452 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2453 se.type = get_entry_type(type - 1);
2454 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2455
2456 /* The entry parameters like present/writeable/cache type
2457 * set to the same as i915's scratch page tree.
2458 */
2459 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2460 if (type == GTT_TYPE_PPGTT_PDE_PT)
2461 se.val64 |= PPAT_CACHED;
2462
2463 for (i = 0; i < page_entry_num; i++)
2464 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2465 }
2466
2467 return 0;
2468 }
2469
release_scratch_page_tree(struct intel_vgpu * vgpu)2470 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2471 {
2472 int i;
2473 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2474 dma_addr_t daddr;
2475
2476 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2477 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2478 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2479 I915_GTT_PAGE_SHIFT);
2480 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2481 __free_page(vgpu->gtt.scratch_pt[i].page);
2482 vgpu->gtt.scratch_pt[i].page = NULL;
2483 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2484 }
2485 }
2486
2487 return 0;
2488 }
2489
create_scratch_page_tree(struct intel_vgpu * vgpu)2490 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2491 {
2492 int i, ret;
2493
2494 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2495 ret = alloc_scratch_pages(vgpu, i);
2496 if (ret)
2497 goto err;
2498 }
2499
2500 return 0;
2501
2502 err:
2503 release_scratch_page_tree(vgpu);
2504 return ret;
2505 }
2506
2507 /**
2508 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2509 * @vgpu: a vGPU
2510 *
2511 * This function is used to initialize per-vGPU graphics memory virtualization
2512 * components.
2513 *
2514 * Returns:
2515 * Zero on success, error code if failed.
2516 */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2517 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2518 {
2519 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2520
2521 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2522
2523 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2524 INIT_LIST_HEAD(>t->oos_page_list_head);
2525 INIT_LIST_HEAD(>t->post_shadow_list_head);
2526
2527 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2528 if (IS_ERR(gtt->ggtt_mm)) {
2529 gvt_vgpu_err("fail to create mm for ggtt.\n");
2530 return PTR_ERR(gtt->ggtt_mm);
2531 }
2532
2533 intel_vgpu_reset_ggtt(vgpu, false);
2534
2535 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2536
2537 return create_scratch_page_tree(vgpu);
2538 }
2539
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2540 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2541 {
2542 struct list_head *pos, *n;
2543 struct intel_vgpu_mm *mm;
2544
2545 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2546 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2547 intel_vgpu_destroy_mm(mm);
2548 }
2549
2550 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2551 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2552
2553 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2554 gvt_err("Why we still has spt not freed?\n");
2555 ppgtt_free_all_spt(vgpu);
2556 }
2557 }
2558
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2559 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2560 {
2561 struct intel_gvt_partial_pte *pos, *next;
2562
2563 list_for_each_entry_safe(pos, next,
2564 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2565 list) {
2566 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2567 pos->offset, pos->data);
2568 kfree(pos);
2569 }
2570 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2571 vgpu->gtt.ggtt_mm = NULL;
2572 }
2573
2574 /**
2575 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2576 * @vgpu: a vGPU
2577 *
2578 * This function is used to clean up per-vGPU graphics memory virtualization
2579 * components.
2580 *
2581 * Returns:
2582 * Zero on success, error code if failed.
2583 */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2584 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2585 {
2586 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2587 intel_vgpu_destroy_ggtt_mm(vgpu);
2588 release_scratch_page_tree(vgpu);
2589 }
2590
clean_spt_oos(struct intel_gvt * gvt)2591 static void clean_spt_oos(struct intel_gvt *gvt)
2592 {
2593 struct intel_gvt_gtt *gtt = &gvt->gtt;
2594 struct list_head *pos, *n;
2595 struct intel_vgpu_oos_page *oos_page;
2596
2597 WARN(!list_empty(>t->oos_page_use_list_head),
2598 "someone is still using oos page\n");
2599
2600 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2601 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2602 list_del(&oos_page->list);
2603 free_page((unsigned long)oos_page->mem);
2604 kfree(oos_page);
2605 }
2606 }
2607
setup_spt_oos(struct intel_gvt * gvt)2608 static int setup_spt_oos(struct intel_gvt *gvt)
2609 {
2610 struct intel_gvt_gtt *gtt = &gvt->gtt;
2611 struct intel_vgpu_oos_page *oos_page;
2612 int i;
2613 int ret;
2614
2615 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2616 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2617
2618 for (i = 0; i < preallocated_oos_pages; i++) {
2619 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2620 if (!oos_page) {
2621 ret = -ENOMEM;
2622 goto fail;
2623 }
2624 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2625 if (!oos_page->mem) {
2626 ret = -ENOMEM;
2627 kfree(oos_page);
2628 goto fail;
2629 }
2630
2631 INIT_LIST_HEAD(&oos_page->list);
2632 INIT_LIST_HEAD(&oos_page->vm_list);
2633 oos_page->id = i;
2634 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2635 }
2636
2637 gvt_dbg_mm("%d oos pages preallocated\n", i);
2638
2639 return 0;
2640 fail:
2641 clean_spt_oos(gvt);
2642 return ret;
2643 }
2644
2645 /**
2646 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2647 * @vgpu: a vGPU
2648 * @pdps: pdp root array
2649 *
2650 * This function is used to find a PPGTT mm object from mm object pool
2651 *
2652 * Returns:
2653 * pointer to mm object on success, NULL if failed.
2654 */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2655 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2656 u64 pdps[])
2657 {
2658 struct intel_vgpu_mm *mm;
2659 struct list_head *pos;
2660
2661 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2662 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2663
2664 switch (mm->ppgtt_mm.root_entry_type) {
2665 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2666 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2667 return mm;
2668 break;
2669 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2670 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2671 sizeof(mm->ppgtt_mm.guest_pdps)))
2672 return mm;
2673 break;
2674 default:
2675 GEM_BUG_ON(1);
2676 }
2677 }
2678 return NULL;
2679 }
2680
2681 /**
2682 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2683 * @vgpu: a vGPU
2684 * @root_entry_type: ppgtt root entry type
2685 * @pdps: guest pdps
2686 *
2687 * This function is used to find or create a PPGTT mm object from a guest.
2688 *
2689 * Returns:
2690 * Zero on success, negative error code if failed.
2691 */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2692 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2693 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2694 {
2695 struct intel_vgpu_mm *mm;
2696
2697 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2698 if (mm) {
2699 intel_vgpu_mm_get(mm);
2700 } else {
2701 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2702 if (IS_ERR(mm))
2703 gvt_vgpu_err("fail to create mm\n");
2704 }
2705 return mm;
2706 }
2707
2708 /**
2709 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2710 * @vgpu: a vGPU
2711 * @pdps: guest pdps
2712 *
2713 * This function is used to find a PPGTT mm object from a guest and destroy it.
2714 *
2715 * Returns:
2716 * Zero on success, negative error code if failed.
2717 */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2718 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2719 {
2720 struct intel_vgpu_mm *mm;
2721
2722 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2723 if (!mm) {
2724 gvt_vgpu_err("fail to find ppgtt instance.\n");
2725 return -EINVAL;
2726 }
2727 intel_vgpu_mm_put(mm);
2728 return 0;
2729 }
2730
2731 /**
2732 * intel_gvt_init_gtt - initialize mm components of a GVT device
2733 * @gvt: GVT device
2734 *
2735 * This function is called at the initialization stage, to initialize
2736 * the mm components of a GVT device.
2737 *
2738 * Returns:
2739 * zero on success, negative error code if failed.
2740 */
intel_gvt_init_gtt(struct intel_gvt * gvt)2741 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2742 {
2743 int ret;
2744 void *page;
2745 struct device *dev = gvt->gt->i915->drm.dev;
2746 dma_addr_t daddr;
2747
2748 gvt_dbg_core("init gtt\n");
2749
2750 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2751 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2752
2753 page = (void *)get_zeroed_page(GFP_KERNEL);
2754 if (!page) {
2755 gvt_err("fail to allocate scratch ggtt page\n");
2756 return -ENOMEM;
2757 }
2758
2759 daddr = dma_map_page(dev, virt_to_page(page), 0,
2760 4096, DMA_BIDIRECTIONAL);
2761 if (dma_mapping_error(dev, daddr)) {
2762 gvt_err("fail to dmamap scratch ggtt page\n");
2763 __free_page(virt_to_page(page));
2764 return -ENOMEM;
2765 }
2766
2767 gvt->gtt.scratch_page = virt_to_page(page);
2768 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2769
2770 if (enable_out_of_sync) {
2771 ret = setup_spt_oos(gvt);
2772 if (ret) {
2773 gvt_err("fail to initialize SPT oos\n");
2774 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2775 __free_page(gvt->gtt.scratch_page);
2776 return ret;
2777 }
2778 }
2779 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2780 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2781 return 0;
2782 }
2783
2784 /**
2785 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2786 * @gvt: GVT device
2787 *
2788 * This function is called at the driver unloading stage, to clean up the
2789 * the mm components of a GVT device.
2790 *
2791 */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2792 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2793 {
2794 struct device *dev = gvt->gt->i915->drm.dev;
2795 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2796 I915_GTT_PAGE_SHIFT);
2797
2798 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2799
2800 __free_page(gvt->gtt.scratch_page);
2801
2802 if (enable_out_of_sync)
2803 clean_spt_oos(gvt);
2804 }
2805
2806 /**
2807 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2808 * @vgpu: a vGPU
2809 *
2810 * This function is called when invalidate all PPGTT instances of a vGPU.
2811 *
2812 */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2813 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2814 {
2815 struct list_head *pos, *n;
2816 struct intel_vgpu_mm *mm;
2817
2818 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2819 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2820 if (mm->type == INTEL_GVT_MM_PPGTT) {
2821 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2822 list_del_init(&mm->ppgtt_mm.lru_list);
2823 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2824 if (mm->ppgtt_mm.shadowed)
2825 invalidate_ppgtt_mm(mm);
2826 }
2827 }
2828 }
2829
2830 /**
2831 * intel_vgpu_reset_ggtt - reset the GGTT entry
2832 * @vgpu: a vGPU
2833 * @invalidate_old: invalidate old entries
2834 *
2835 * This function is called at the vGPU create stage
2836 * to reset all the GGTT entries.
2837 *
2838 */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2839 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2840 {
2841 struct intel_gvt *gvt = vgpu->gvt;
2842 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2843 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2844 struct intel_gvt_gtt_entry old_entry;
2845 u32 index;
2846 u32 num_entries;
2847
2848 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2849 pte_ops->set_present(&entry);
2850
2851 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2852 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2853 while (num_entries--) {
2854 if (invalidate_old) {
2855 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2856 ggtt_invalidate_pte(vgpu, &old_entry);
2857 }
2858 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2859 }
2860
2861 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2862 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2863 while (num_entries--) {
2864 if (invalidate_old) {
2865 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2866 ggtt_invalidate_pte(vgpu, &old_entry);
2867 }
2868 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2869 }
2870
2871 ggtt_invalidate(gvt->gt);
2872 }
2873
2874 /**
2875 * intel_vgpu_reset_gtt - reset the all GTT related status
2876 * @vgpu: a vGPU
2877 *
2878 * This function is called from vfio core to reset reset all
2879 * GTT related status, including GGTT, PPGTT, scratch page.
2880 *
2881 */
intel_vgpu_reset_gtt(struct intel_vgpu * vgpu)2882 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2883 {
2884 /* Shadow pages are only created when there is no page
2885 * table tracking data, so remove page tracking data after
2886 * removing the shadow pages.
2887 */
2888 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2889 intel_vgpu_reset_ggtt(vgpu, true);
2890 }
2891
2892 /**
2893 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2894 * @gvt: intel gvt device
2895 *
2896 * This function is called at driver resume stage to restore
2897 * GGTT entries of every vGPU.
2898 *
2899 */
intel_gvt_restore_ggtt(struct intel_gvt * gvt)2900 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2901 {
2902 struct intel_vgpu *vgpu;
2903 struct intel_vgpu_mm *mm;
2904 int id;
2905 gen8_pte_t pte;
2906 u32 idx, num_low, num_hi, offset;
2907
2908 /* Restore dirty host ggtt for all vGPUs */
2909 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2910 mm = vgpu->gtt.ggtt_mm;
2911
2912 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2913 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2914 for (idx = 0; idx < num_low; idx++) {
2915 pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2916 if (pte & GEN8_PAGE_PRESENT)
2917 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2918 }
2919
2920 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2921 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2922 for (idx = 0; idx < num_hi; idx++) {
2923 pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2924 if (pte & GEN8_PAGE_PRESENT)
2925 write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2926 }
2927 }
2928 }
2929