1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/i915_drm.h>
9
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_gt.h"
14 #include "intel_gt_clock_utils.h"
15 #include "intel_gt_irq.h"
16 #include "intel_gt_pm_irq.h"
17 #include "intel_gt_regs.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pcode.h"
20 #include "intel_rps.h"
21 #include "vlv_sideband.h"
22 #include "../../../platform/x86/intel_ips.h"
23
24 #define BUSY_MAX_EI 20u /* ms */
25
26 /*
27 * Lock protecting IPS related data structures
28 */
29 static DEFINE_SPINLOCK(mchdev_lock);
30
rps_to_gt(struct intel_rps * rps)31 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
32 {
33 return container_of(rps, struct intel_gt, rps);
34 }
35
rps_to_i915(struct intel_rps * rps)36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
37 {
38 return rps_to_gt(rps)->i915;
39 }
40
rps_to_uncore(struct intel_rps * rps)41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
42 {
43 return rps_to_gt(rps)->uncore;
44 }
45
rps_to_slpc(struct intel_rps * rps)46 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
47 {
48 struct intel_gt *gt = rps_to_gt(rps);
49
50 return >->uc.guc.slpc;
51 }
52
rps_uses_slpc(struct intel_rps * rps)53 static bool rps_uses_slpc(struct intel_rps *rps)
54 {
55 struct intel_gt *gt = rps_to_gt(rps);
56
57 return intel_uc_uses_guc_slpc(>->uc);
58 }
59
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)60 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
61 {
62 return mask & ~rps->pm_intrmsk_mbz;
63 }
64
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)65 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
66 {
67 intel_uncore_write_fw(uncore, reg, val);
68 }
69
rps_timer(struct timer_list * t)70 static void rps_timer(struct timer_list *t)
71 {
72 struct intel_rps *rps = from_timer(rps, t, timer);
73 struct intel_engine_cs *engine;
74 ktime_t dt, last, timestamp;
75 enum intel_engine_id id;
76 s64 max_busy[3] = {};
77
78 timestamp = 0;
79 for_each_engine(engine, rps_to_gt(rps), id) {
80 s64 busy;
81 int i;
82
83 dt = intel_engine_get_busy_time(engine, ×tamp);
84 last = engine->stats.rps;
85 engine->stats.rps = dt;
86
87 busy = ktime_to_ns(ktime_sub(dt, last));
88 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
89 if (busy > max_busy[i])
90 swap(busy, max_busy[i]);
91 }
92 }
93 last = rps->pm_timestamp;
94 rps->pm_timestamp = timestamp;
95
96 if (intel_rps_is_active(rps)) {
97 s64 busy;
98 int i;
99
100 dt = ktime_sub(timestamp, last);
101
102 /*
103 * Our goal is to evaluate each engine independently, so we run
104 * at the lowest clocks required to sustain the heaviest
105 * workload. However, a task may be split into sequential
106 * dependent operations across a set of engines, such that
107 * the independent contributions do not account for high load,
108 * but overall the task is GPU bound. For example, consider
109 * video decode on vcs followed by colour post-processing
110 * on vecs, followed by general post-processing on rcs.
111 * Since multi-engines being active does imply a single
112 * continuous workload across all engines, we hedge our
113 * bets by only contributing a factor of the distributed
114 * load into our busyness calculation.
115 */
116 busy = max_busy[0];
117 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
118 if (!max_busy[i])
119 break;
120
121 busy += div_u64(max_busy[i], 1 << i);
122 }
123 GT_TRACE(rps_to_gt(rps),
124 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
125 busy, (int)div64_u64(100 * busy, dt),
126 max_busy[0], max_busy[1], max_busy[2],
127 rps->pm_interval);
128
129 if (100 * busy > rps->power.up_threshold * dt &&
130 rps->cur_freq < rps->max_freq_softlimit) {
131 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
132 rps->pm_interval = 1;
133 schedule_work(&rps->work);
134 } else if (100 * busy < rps->power.down_threshold * dt &&
135 rps->cur_freq > rps->min_freq_softlimit) {
136 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
137 rps->pm_interval = 1;
138 schedule_work(&rps->work);
139 } else {
140 rps->last_adj = 0;
141 }
142
143 mod_timer(&rps->timer,
144 jiffies + msecs_to_jiffies(rps->pm_interval));
145 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
146 }
147 }
148
rps_start_timer(struct intel_rps * rps)149 static void rps_start_timer(struct intel_rps *rps)
150 {
151 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
152 rps->pm_interval = 1;
153 mod_timer(&rps->timer, jiffies + 1);
154 }
155
rps_stop_timer(struct intel_rps * rps)156 static void rps_stop_timer(struct intel_rps *rps)
157 {
158 del_timer_sync(&rps->timer);
159 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160 cancel_work_sync(&rps->work);
161 }
162
rps_pm_mask(struct intel_rps * rps,u8 val)163 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
164 {
165 u32 mask = 0;
166
167 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
168 if (val > rps->min_freq_softlimit)
169 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
170 GEN6_PM_RP_DOWN_THRESHOLD |
171 GEN6_PM_RP_DOWN_TIMEOUT);
172
173 if (val < rps->max_freq_softlimit)
174 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
175
176 mask &= rps->pm_events;
177
178 return rps_pm_sanitize_mask(rps, ~mask);
179 }
180
rps_reset_ei(struct intel_rps * rps)181 static void rps_reset_ei(struct intel_rps *rps)
182 {
183 memset(&rps->ei, 0, sizeof(rps->ei));
184 }
185
rps_enable_interrupts(struct intel_rps * rps)186 static void rps_enable_interrupts(struct intel_rps *rps)
187 {
188 struct intel_gt *gt = rps_to_gt(rps);
189
190 GEM_BUG_ON(rps_uses_slpc(rps));
191
192 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
193 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
194
195 rps_reset_ei(rps);
196
197 spin_lock_irq(>->irq_lock);
198 gen6_gt_pm_enable_irq(gt, rps->pm_events);
199 spin_unlock_irq(>->irq_lock);
200
201 intel_uncore_write(gt->uncore,
202 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
203 }
204
gen6_rps_reset_interrupts(struct intel_rps * rps)205 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
208 }
209
gen11_rps_reset_interrupts(struct intel_rps * rps)210 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
211 {
212 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
213 ;
214 }
215
rps_reset_interrupts(struct intel_rps * rps)216 static void rps_reset_interrupts(struct intel_rps *rps)
217 {
218 struct intel_gt *gt = rps_to_gt(rps);
219
220 spin_lock_irq(>->irq_lock);
221 if (GRAPHICS_VER(gt->i915) >= 11)
222 gen11_rps_reset_interrupts(rps);
223 else
224 gen6_rps_reset_interrupts(rps);
225
226 rps->pm_iir = 0;
227 spin_unlock_irq(>->irq_lock);
228 }
229
rps_disable_interrupts(struct intel_rps * rps)230 static void rps_disable_interrupts(struct intel_rps *rps)
231 {
232 struct intel_gt *gt = rps_to_gt(rps);
233
234 intel_uncore_write(gt->uncore,
235 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
236
237 spin_lock_irq(>->irq_lock);
238 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
239 spin_unlock_irq(>->irq_lock);
240
241 intel_synchronize_irq(gt->i915);
242
243 /*
244 * Now that we will not be generating any more work, flush any
245 * outstanding tasks. As we are called on the RPS idle path,
246 * we will reset the GPU to minimum frequencies, so the current
247 * state of the worker can be discarded.
248 */
249 cancel_work_sync(&rps->work);
250
251 rps_reset_interrupts(rps);
252 GT_TRACE(gt, "interrupts:off\n");
253 }
254
255 static const struct cparams {
256 u16 i;
257 u16 t;
258 u16 m;
259 u16 c;
260 } cparams[] = {
261 { 1, 1333, 301, 28664 },
262 { 1, 1066, 294, 24460 },
263 { 1, 800, 294, 25192 },
264 { 0, 1333, 276, 27605 },
265 { 0, 1066, 276, 27605 },
266 { 0, 800, 231, 23784 },
267 };
268
gen5_rps_init(struct intel_rps * rps)269 static void gen5_rps_init(struct intel_rps *rps)
270 {
271 struct drm_i915_private *i915 = rps_to_i915(rps);
272 struct intel_uncore *uncore = rps_to_uncore(rps);
273 u8 fmax, fmin, fstart;
274 u32 rgvmodectl;
275 int c_m, i;
276
277 if (i915->fsb_freq <= 3200)
278 c_m = 0;
279 else if (i915->fsb_freq <= 4800)
280 c_m = 1;
281 else
282 c_m = 2;
283
284 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
285 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
286 rps->ips.m = cparams[i].m;
287 rps->ips.c = cparams[i].c;
288 break;
289 }
290 }
291
292 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
293
294 /* Set up min, max, and cur for interrupt handling */
295 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
296 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
297 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
298 MEMMODE_FSTART_SHIFT;
299 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
300 fmax, fmin, fstart);
301
302 rps->min_freq = fmax;
303 rps->efficient_freq = fstart;
304 rps->max_freq = fmin;
305 }
306
307 static unsigned long
__ips_chipset_val(struct intel_ips * ips)308 __ips_chipset_val(struct intel_ips *ips)
309 {
310 struct intel_uncore *uncore =
311 rps_to_uncore(container_of(ips, struct intel_rps, ips));
312 unsigned long now = jiffies_to_msecs(jiffies), dt;
313 unsigned long result;
314 u64 total, delta;
315
316 lockdep_assert_held(&mchdev_lock);
317
318 /*
319 * Prevent division-by-zero if we are asking too fast.
320 * Also, we don't get interesting results if we are polling
321 * faster than once in 10ms, so just return the saved value
322 * in such cases.
323 */
324 dt = now - ips->last_time1;
325 if (dt <= 10)
326 return ips->chipset_power;
327
328 /* FIXME: handle per-counter overflow */
329 total = intel_uncore_read(uncore, DMIEC);
330 total += intel_uncore_read(uncore, DDREC);
331 total += intel_uncore_read(uncore, CSIEC);
332
333 delta = total - ips->last_count1;
334
335 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
336
337 ips->last_count1 = total;
338 ips->last_time1 = now;
339
340 ips->chipset_power = result;
341
342 return result;
343 }
344
ips_mch_val(struct intel_uncore * uncore)345 static unsigned long ips_mch_val(struct intel_uncore *uncore)
346 {
347 unsigned int m, x, b;
348 u32 tsfs;
349
350 tsfs = intel_uncore_read(uncore, TSFS);
351 x = intel_uncore_read8(uncore, TR1);
352
353 b = tsfs & TSFS_INTR_MASK;
354 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
355
356 return m * x / 127 - b;
357 }
358
_pxvid_to_vd(u8 pxvid)359 static int _pxvid_to_vd(u8 pxvid)
360 {
361 if (pxvid == 0)
362 return 0;
363
364 if (pxvid >= 8 && pxvid < 31)
365 pxvid = 31;
366
367 return (pxvid + 2) * 125;
368 }
369
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)370 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
371 {
372 const int vd = _pxvid_to_vd(pxvid);
373
374 if (INTEL_INFO(i915)->is_mobile)
375 return max(vd - 1125, 0);
376
377 return vd;
378 }
379
__gen5_ips_update(struct intel_ips * ips)380 static void __gen5_ips_update(struct intel_ips *ips)
381 {
382 struct intel_uncore *uncore =
383 rps_to_uncore(container_of(ips, struct intel_rps, ips));
384 u64 now, delta, dt;
385 u32 count;
386
387 lockdep_assert_held(&mchdev_lock);
388
389 now = ktime_get_raw_ns();
390 dt = now - ips->last_time2;
391 do_div(dt, NSEC_PER_MSEC);
392
393 /* Don't divide by 0 */
394 if (dt <= 10)
395 return;
396
397 count = intel_uncore_read(uncore, GFXEC);
398 delta = count - ips->last_count2;
399
400 ips->last_count2 = count;
401 ips->last_time2 = now;
402
403 /* More magic constants... */
404 ips->gfx_power = div_u64(delta * 1181, dt * 10);
405 }
406
gen5_rps_update(struct intel_rps * rps)407 static void gen5_rps_update(struct intel_rps *rps)
408 {
409 spin_lock_irq(&mchdev_lock);
410 __gen5_ips_update(&rps->ips);
411 spin_unlock_irq(&mchdev_lock);
412 }
413
gen5_invert_freq(struct intel_rps * rps,unsigned int val)414 static unsigned int gen5_invert_freq(struct intel_rps *rps,
415 unsigned int val)
416 {
417 /* Invert the frequency bin into an ips delay */
418 val = rps->max_freq - val;
419 val = rps->min_freq + val;
420
421 return val;
422 }
423
__gen5_rps_set(struct intel_rps * rps,u8 val)424 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
425 {
426 struct intel_uncore *uncore = rps_to_uncore(rps);
427 u16 rgvswctl;
428
429 lockdep_assert_held(&mchdev_lock);
430
431 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
432 if (rgvswctl & MEMCTL_CMD_STS) {
433 DRM_DEBUG("gpu busy, RCS change rejected\n");
434 return -EBUSY; /* still busy with another command */
435 }
436
437 /* Invert the frequency bin into an ips delay */
438 val = gen5_invert_freq(rps, val);
439
440 rgvswctl =
441 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
442 (val << MEMCTL_FREQ_SHIFT) |
443 MEMCTL_SFCAVM;
444 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
445 intel_uncore_posting_read16(uncore, MEMSWCTL);
446
447 rgvswctl |= MEMCTL_CMD_STS;
448 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
449
450 return 0;
451 }
452
gen5_rps_set(struct intel_rps * rps,u8 val)453 static int gen5_rps_set(struct intel_rps *rps, u8 val)
454 {
455 int err;
456
457 spin_lock_irq(&mchdev_lock);
458 err = __gen5_rps_set(rps, val);
459 spin_unlock_irq(&mchdev_lock);
460
461 return err;
462 }
463
intel_pxfreq(u32 vidfreq)464 static unsigned long intel_pxfreq(u32 vidfreq)
465 {
466 int div = (vidfreq & 0x3f0000) >> 16;
467 int post = (vidfreq & 0x3000) >> 12;
468 int pre = (vidfreq & 0x7);
469
470 if (!pre)
471 return 0;
472
473 return div * 133333 / (pre << post);
474 }
475
init_emon(struct intel_uncore * uncore)476 static unsigned int init_emon(struct intel_uncore *uncore)
477 {
478 u8 pxw[16];
479 int i;
480
481 /* Disable to program */
482 intel_uncore_write(uncore, ECR, 0);
483 intel_uncore_posting_read(uncore, ECR);
484
485 /* Program energy weights for various events */
486 intel_uncore_write(uncore, SDEW, 0x15040d00);
487 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
488 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
489 intel_uncore_write(uncore, CSIEW2, 0x04000004);
490
491 for (i = 0; i < 5; i++)
492 intel_uncore_write(uncore, PEW(i), 0);
493 for (i = 0; i < 3; i++)
494 intel_uncore_write(uncore, DEW(i), 0);
495
496 /* Program P-state weights to account for frequency power adjustment */
497 for (i = 0; i < 16; i++) {
498 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
499 unsigned int freq = intel_pxfreq(pxvidfreq);
500 unsigned int vid =
501 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
502 unsigned int val;
503
504 val = vid * vid * freq / 1000 * 255;
505 val /= 127 * 127 * 900;
506
507 pxw[i] = val;
508 }
509 /* Render standby states get 0 weight */
510 pxw[14] = 0;
511 pxw[15] = 0;
512
513 for (i = 0; i < 4; i++) {
514 intel_uncore_write(uncore, PXW(i),
515 pxw[i * 4 + 0] << 24 |
516 pxw[i * 4 + 1] << 16 |
517 pxw[i * 4 + 2] << 8 |
518 pxw[i * 4 + 3] << 0);
519 }
520
521 /* Adjust magic regs to magic values (more experimental results) */
522 intel_uncore_write(uncore, OGW0, 0);
523 intel_uncore_write(uncore, OGW1, 0);
524 intel_uncore_write(uncore, EG0, 0x00007f00);
525 intel_uncore_write(uncore, EG1, 0x0000000e);
526 intel_uncore_write(uncore, EG2, 0x000e0000);
527 intel_uncore_write(uncore, EG3, 0x68000300);
528 intel_uncore_write(uncore, EG4, 0x42000000);
529 intel_uncore_write(uncore, EG5, 0x00140031);
530 intel_uncore_write(uncore, EG6, 0);
531 intel_uncore_write(uncore, EG7, 0);
532
533 for (i = 0; i < 8; i++)
534 intel_uncore_write(uncore, PXWL(i), 0);
535
536 /* Enable PMON + select events */
537 intel_uncore_write(uncore, ECR, 0x80000019);
538
539 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
540 }
541
gen5_rps_enable(struct intel_rps * rps)542 static bool gen5_rps_enable(struct intel_rps *rps)
543 {
544 struct drm_i915_private *i915 = rps_to_i915(rps);
545 struct intel_uncore *uncore = rps_to_uncore(rps);
546 u8 fstart, vstart;
547 u32 rgvmodectl;
548
549 spin_lock_irq(&mchdev_lock);
550
551 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
552
553 /* Enable temp reporting */
554 intel_uncore_write16(uncore, PMMISC,
555 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
556 intel_uncore_write16(uncore, TSC1,
557 intel_uncore_read16(uncore, TSC1) | TSE);
558
559 /* 100ms RC evaluation intervals */
560 intel_uncore_write(uncore, RCUPEI, 100000);
561 intel_uncore_write(uncore, RCDNEI, 100000);
562
563 /* Set max/min thresholds to 90ms and 80ms respectively */
564 intel_uncore_write(uncore, RCBMAXAVG, 90000);
565 intel_uncore_write(uncore, RCBMINAVG, 80000);
566
567 intel_uncore_write(uncore, MEMIHYST, 1);
568
569 /* Set up min, max, and cur for interrupt handling */
570 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
571 MEMMODE_FSTART_SHIFT;
572
573 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
574 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
575
576 intel_uncore_write(uncore,
577 MEMINTREN,
578 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
579
580 intel_uncore_write(uncore, VIDSTART, vstart);
581 intel_uncore_posting_read(uncore, VIDSTART);
582
583 rgvmodectl |= MEMMODE_SWMODE_EN;
584 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
585
586 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
587 MEMCTL_CMD_STS) == 0, 10))
588 drm_err(&uncore->i915->drm,
589 "stuck trying to change perf mode\n");
590 mdelay(1);
591
592 __gen5_rps_set(rps, rps->cur_freq);
593
594 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
595 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
596 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
597 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
598
599 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
600 rps->ips.last_time2 = ktime_get_raw_ns();
601
602 spin_lock(&i915->irq_lock);
603 ilk_enable_display_irq(i915, DE_PCU_EVENT);
604 spin_unlock(&i915->irq_lock);
605
606 spin_unlock_irq(&mchdev_lock);
607
608 rps->ips.corr = init_emon(uncore);
609
610 return true;
611 }
612
gen5_rps_disable(struct intel_rps * rps)613 static void gen5_rps_disable(struct intel_rps *rps)
614 {
615 struct drm_i915_private *i915 = rps_to_i915(rps);
616 struct intel_uncore *uncore = rps_to_uncore(rps);
617 u16 rgvswctl;
618
619 spin_lock_irq(&mchdev_lock);
620
621 spin_lock(&i915->irq_lock);
622 ilk_disable_display_irq(i915, DE_PCU_EVENT);
623 spin_unlock(&i915->irq_lock);
624
625 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
626
627 /* Ack interrupts, disable EFC interrupt */
628 intel_uncore_write(uncore, MEMINTREN,
629 intel_uncore_read(uncore, MEMINTREN) &
630 ~MEMINT_EVAL_CHG_EN);
631 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632
633 /* Go back to the starting frequency */
634 __gen5_rps_set(rps, rps->idle_freq);
635 mdelay(1);
636 rgvswctl |= MEMCTL_CMD_STS;
637 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638 mdelay(1);
639
640 spin_unlock_irq(&mchdev_lock);
641 }
642
rps_limits(struct intel_rps * rps,u8 val)643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645 u32 limits;
646
647 /*
648 * Only set the down limit when we've reached the lowest level to avoid
649 * getting more interrupts, otherwise leave this clear. This prevents a
650 * race in the hw when coming out of rc6: There's a tiny window where
651 * the hw runs at the minimal clock before selecting the desired
652 * frequency, if the down threshold expires in that window we will not
653 * receive a down interrupt.
654 */
655 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656 limits = rps->max_freq_softlimit << 23;
657 if (val <= rps->min_freq_softlimit)
658 limits |= rps->min_freq_softlimit << 14;
659 } else {
660 limits = rps->max_freq_softlimit << 24;
661 if (val <= rps->min_freq_softlimit)
662 limits |= rps->min_freq_softlimit << 16;
663 }
664
665 return limits;
666 }
667
rps_set_power(struct intel_rps * rps,int new_power)668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670 struct intel_gt *gt = rps_to_gt(rps);
671 struct intel_uncore *uncore = gt->uncore;
672 u32 threshold_up = 0, threshold_down = 0; /* in % */
673 u32 ei_up = 0, ei_down = 0;
674
675 lockdep_assert_held(&rps->power.mutex);
676
677 if (new_power == rps->power.mode)
678 return;
679
680 threshold_up = 95;
681 threshold_down = 85;
682
683 /* Note the units here are not exactly 1us, but 1280ns. */
684 switch (new_power) {
685 case LOW_POWER:
686 ei_up = 16000;
687 ei_down = 32000;
688 break;
689
690 case BETWEEN:
691 ei_up = 13000;
692 ei_down = 32000;
693 break;
694
695 case HIGH_POWER:
696 ei_up = 10000;
697 ei_down = 32000;
698 break;
699 }
700
701 /* When byt can survive without system hang with dynamic
702 * sw freq adjustments, this restriction can be lifted.
703 */
704 if (IS_VALLEYVIEW(gt->i915))
705 goto skip_hw_write;
706
707 GT_TRACE(gt,
708 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 new_power, threshold_up, ei_up, threshold_down, ei_down);
710
711 set(uncore, GEN6_RP_UP_EI,
712 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713 set(uncore, GEN6_RP_UP_THRESHOLD,
714 intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715
716 set(uncore, GEN6_RP_DOWN_EI,
717 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718 set(uncore, GEN6_RP_DOWN_THRESHOLD,
719 intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720
721 set(uncore, GEN6_RP_CONTROL,
722 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723 GEN6_RP_MEDIA_HW_NORMAL_MODE |
724 GEN6_RP_MEDIA_IS_GFX |
725 GEN6_RP_ENABLE |
726 GEN6_RP_UP_BUSY_AVG |
727 GEN6_RP_DOWN_IDLE_AVG);
728
729 skip_hw_write:
730 rps->power.mode = new_power;
731 rps->power.up_threshold = threshold_up;
732 rps->power.down_threshold = threshold_down;
733 }
734
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737 int new_power;
738
739 new_power = rps->power.mode;
740 switch (rps->power.mode) {
741 case LOW_POWER:
742 if (val > rps->efficient_freq + 1 &&
743 val > rps->cur_freq)
744 new_power = BETWEEN;
745 break;
746
747 case BETWEEN:
748 if (val <= rps->efficient_freq &&
749 val < rps->cur_freq)
750 new_power = LOW_POWER;
751 else if (val >= rps->rp0_freq &&
752 val > rps->cur_freq)
753 new_power = HIGH_POWER;
754 break;
755
756 case HIGH_POWER:
757 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758 val < rps->cur_freq)
759 new_power = BETWEEN;
760 break;
761 }
762 /* Max/min bins are special */
763 if (val <= rps->min_freq_softlimit)
764 new_power = LOW_POWER;
765 if (val >= rps->max_freq_softlimit)
766 new_power = HIGH_POWER;
767
768 mutex_lock(&rps->power.mutex);
769 if (rps->power.interactive)
770 new_power = HIGH_POWER;
771 rps_set_power(rps, new_power);
772 mutex_unlock(&rps->power.mutex);
773 }
774
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778 str_yes_no(interactive));
779
780 mutex_lock(&rps->power.mutex);
781 if (interactive) {
782 if (!rps->power.interactive++ && intel_rps_is_active(rps))
783 rps_set_power(rps, HIGH_POWER);
784 } else {
785 GEM_BUG_ON(!rps->power.interactive);
786 rps->power.interactive--;
787 }
788 mutex_unlock(&rps->power.mutex);
789 }
790
gen6_rps_set(struct intel_rps * rps,u8 val)791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793 struct intel_uncore *uncore = rps_to_uncore(rps);
794 struct drm_i915_private *i915 = rps_to_i915(rps);
795 u32 swreq;
796
797 GEM_BUG_ON(rps_uses_slpc(rps));
798
799 if (GRAPHICS_VER(i915) >= 9)
800 swreq = GEN9_FREQUENCY(val);
801 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802 swreq = HSW_FREQUENCY(val);
803 else
804 swreq = (GEN6_FREQUENCY(val) |
805 GEN6_OFFSET(0) |
806 GEN6_AGGRESSIVE_TURBO);
807 set(uncore, GEN6_RPNSWREQ, swreq);
808
809 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810 val, intel_gpu_freq(rps, val), swreq);
811
812 return 0;
813 }
814
vlv_rps_set(struct intel_rps * rps,u8 val)815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817 struct drm_i915_private *i915 = rps_to_i915(rps);
818 int err;
819
820 vlv_punit_get(i915);
821 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822 vlv_punit_put(i915);
823
824 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825 val, intel_gpu_freq(rps, val));
826
827 return err;
828 }
829
rps_set(struct intel_rps * rps,u8 val,bool update)830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832 struct drm_i915_private *i915 = rps_to_i915(rps);
833 int err;
834
835 if (val == rps->last_freq)
836 return 0;
837
838 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839 err = vlv_rps_set(rps, val);
840 else if (GRAPHICS_VER(i915) >= 6)
841 err = gen6_rps_set(rps, val);
842 else
843 err = gen5_rps_set(rps, val);
844 if (err)
845 return err;
846
847 if (update && GRAPHICS_VER(i915) >= 6)
848 gen6_rps_set_thresholds(rps, val);
849 rps->last_freq = val;
850
851 return 0;
852 }
853
intel_rps_unpark(struct intel_rps * rps)854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856 if (!intel_rps_is_enabled(rps))
857 return;
858
859 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860
861 /*
862 * Use the user's desired frequency as a guide, but for better
863 * performance, jump directly to RPe as our starting frequency.
864 */
865 mutex_lock(&rps->lock);
866
867 intel_rps_set_active(rps);
868 intel_rps_set(rps,
869 clamp(rps->cur_freq,
870 rps->min_freq_softlimit,
871 rps->max_freq_softlimit));
872
873 mutex_unlock(&rps->lock);
874
875 rps->pm_iir = 0;
876 if (intel_rps_has_interrupts(rps))
877 rps_enable_interrupts(rps);
878 if (intel_rps_uses_timer(rps))
879 rps_start_timer(rps);
880
881 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882 gen5_rps_update(rps);
883 }
884
intel_rps_park(struct intel_rps * rps)885 void intel_rps_park(struct intel_rps *rps)
886 {
887 int adj;
888
889 if (!intel_rps_is_enabled(rps))
890 return;
891
892 if (!intel_rps_clear_active(rps))
893 return;
894
895 if (intel_rps_uses_timer(rps))
896 rps_stop_timer(rps);
897 if (intel_rps_has_interrupts(rps))
898 rps_disable_interrupts(rps);
899
900 if (rps->last_freq <= rps->idle_freq)
901 return;
902
903 /*
904 * The punit delays the write of the frequency and voltage until it
905 * determines the GPU is awake. During normal usage we don't want to
906 * waste power changing the frequency if the GPU is sleeping (rc6).
907 * However, the GPU and driver is now idle and we do not want to delay
908 * switching to minimum voltage (reducing power whilst idle) as we do
909 * not expect to be woken in the near future and so must flush the
910 * change by waking the device.
911 *
912 * We choose to take the media powerwell (either would do to trick the
913 * punit into committing the voltage change) as that takes a lot less
914 * power than the render powerwell.
915 */
916 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917 rps_set(rps, rps->idle_freq, false);
918 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919
920 /*
921 * Since we will try and restart from the previously requested
922 * frequency on unparking, treat this idle point as a downclock
923 * interrupt and reduce the frequency for resume. If we park/unpark
924 * more frequently than the rps worker can run, we will not respond
925 * to any EI and never see a change in frequency.
926 *
927 * (Note we accommodate Cherryview's limitation of only using an
928 * even bin by applying it to all.)
929 */
930 adj = rps->last_adj;
931 if (adj < 0)
932 adj *= 2;
933 else /* CHV needs even encode values */
934 adj = -2;
935 rps->last_adj = adj;
936 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937 if (rps->cur_freq < rps->efficient_freq) {
938 rps->cur_freq = rps->efficient_freq;
939 rps->last_adj = 0;
940 }
941
942 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944
intel_rps_get_boost_frequency(struct intel_rps * rps)945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947 struct intel_guc_slpc *slpc;
948
949 if (rps_uses_slpc(rps)) {
950 slpc = rps_to_slpc(rps);
951
952 return slpc->boost_freq;
953 } else {
954 return intel_gpu_freq(rps, rps->boost_freq);
955 }
956 }
957
rps_set_boost_freq(struct intel_rps * rps,u32 val)958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960 bool boost = false;
961
962 /* Validate against (static) hardware limits */
963 val = intel_freq_opcode(rps, val);
964 if (val < rps->min_freq || val > rps->max_freq)
965 return -EINVAL;
966
967 mutex_lock(&rps->lock);
968 if (val != rps->boost_freq) {
969 rps->boost_freq = val;
970 boost = atomic_read(&rps->num_waiters);
971 }
972 mutex_unlock(&rps->lock);
973 if (boost)
974 schedule_work(&rps->work);
975
976 return 0;
977 }
978
intel_rps_set_boost_frequency(struct intel_rps * rps,u32 freq)979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981 struct intel_guc_slpc *slpc;
982
983 if (rps_uses_slpc(rps)) {
984 slpc = rps_to_slpc(rps);
985
986 return intel_guc_slpc_set_boost_freq(slpc, freq);
987 } else {
988 return rps_set_boost_freq(rps, freq);
989 }
990 }
991
intel_rps_dec_waiters(struct intel_rps * rps)992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994 struct intel_guc_slpc *slpc;
995
996 if (rps_uses_slpc(rps)) {
997 slpc = rps_to_slpc(rps);
998
999 intel_guc_slpc_dec_waiters(slpc);
1000 } else {
1001 atomic_dec(&rps->num_waiters);
1002 }
1003 }
1004
intel_rps_boost(struct i915_request * rq)1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007 struct intel_guc_slpc *slpc;
1008
1009 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010 return;
1011
1012 /* Serializes with i915_request_retire() */
1013 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015
1016 if (rps_uses_slpc(rps)) {
1017 slpc = rps_to_slpc(rps);
1018
1019 /* Return if old value is non zero */
1020 if (!atomic_fetch_inc(&slpc->num_waiters))
1021 schedule_work(&slpc->boost_work);
1022
1023 return;
1024 }
1025
1026 if (atomic_fetch_inc(&rps->num_waiters))
1027 return;
1028
1029 if (!intel_rps_is_active(rps))
1030 return;
1031
1032 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1033 rq->fence.context, rq->fence.seqno);
1034
1035 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1036 schedule_work(&rps->work);
1037
1038 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1039 }
1040 }
1041
intel_rps_set(struct intel_rps * rps,u8 val)1042 int intel_rps_set(struct intel_rps *rps, u8 val)
1043 {
1044 int err;
1045
1046 lockdep_assert_held(&rps->lock);
1047 GEM_BUG_ON(val > rps->max_freq);
1048 GEM_BUG_ON(val < rps->min_freq);
1049
1050 if (intel_rps_is_active(rps)) {
1051 err = rps_set(rps, val, true);
1052 if (err)
1053 return err;
1054
1055 /*
1056 * Make sure we continue to get interrupts
1057 * until we hit the minimum or maximum frequencies.
1058 */
1059 if (intel_rps_has_interrupts(rps)) {
1060 struct intel_uncore *uncore = rps_to_uncore(rps);
1061
1062 set(uncore,
1063 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1064
1065 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1066 }
1067 }
1068
1069 rps->cur_freq = val;
1070 return 0;
1071 }
1072
intel_rps_read_state_cap(struct intel_rps * rps)1073 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1074 {
1075 struct drm_i915_private *i915 = rps_to_i915(rps);
1076 struct intel_uncore *uncore = rps_to_uncore(rps);
1077
1078 if (IS_XEHPSDV(i915))
1079 return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1080 else if (IS_GEN9_LP(i915))
1081 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1082 else
1083 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1084 }
1085
1086 /**
1087 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1088 * @rps: the intel_rps structure
1089 * @caps: returned freq caps
1090 *
1091 * Returned "caps" frequencies should be converted to MHz using
1092 * intel_gpu_freq()
1093 */
gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1094 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1095 {
1096 struct drm_i915_private *i915 = rps_to_i915(rps);
1097 u32 rp_state_cap;
1098
1099 rp_state_cap = intel_rps_read_state_cap(rps);
1100
1101 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1102 if (IS_GEN9_LP(i915)) {
1103 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1104 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1105 caps->min_freq = (rp_state_cap >> 0) & 0xff;
1106 } else {
1107 caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1108 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1109 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1110 }
1111
1112 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1113 /*
1114 * In this case rp_state_cap register reports frequencies in
1115 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1116 * units of 16.67 MHz
1117 */
1118 caps->rp0_freq *= GEN9_FREQ_SCALER;
1119 caps->rp1_freq *= GEN9_FREQ_SCALER;
1120 caps->min_freq *= GEN9_FREQ_SCALER;
1121 }
1122 }
1123
gen6_rps_init(struct intel_rps * rps)1124 static void gen6_rps_init(struct intel_rps *rps)
1125 {
1126 struct drm_i915_private *i915 = rps_to_i915(rps);
1127 struct intel_rps_freq_caps caps;
1128
1129 gen6_rps_get_freq_caps(rps, &caps);
1130 rps->rp0_freq = caps.rp0_freq;
1131 rps->rp1_freq = caps.rp1_freq;
1132 rps->min_freq = caps.min_freq;
1133
1134 /* hw_max = RP0 until we check for overclocking */
1135 rps->max_freq = rps->rp0_freq;
1136
1137 rps->efficient_freq = rps->rp1_freq;
1138 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1139 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1140 u32 ddcc_status = 0;
1141 u32 mult = 1;
1142
1143 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1144 mult = GEN9_FREQ_SCALER;
1145 if (snb_pcode_read(i915, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1146 &ddcc_status, NULL) == 0)
1147 rps->efficient_freq =
1148 clamp_t(u32,
1149 ((ddcc_status >> 8) & 0xff) * mult,
1150 rps->min_freq,
1151 rps->max_freq);
1152 }
1153 }
1154
rps_reset(struct intel_rps * rps)1155 static bool rps_reset(struct intel_rps *rps)
1156 {
1157 struct drm_i915_private *i915 = rps_to_i915(rps);
1158
1159 /* force a reset */
1160 rps->power.mode = -1;
1161 rps->last_freq = -1;
1162
1163 if (rps_set(rps, rps->min_freq, true)) {
1164 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1165 return false;
1166 }
1167
1168 rps->cur_freq = rps->min_freq;
1169 return true;
1170 }
1171
1172 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1173 static bool gen9_rps_enable(struct intel_rps *rps)
1174 {
1175 struct intel_gt *gt = rps_to_gt(rps);
1176 struct intel_uncore *uncore = gt->uncore;
1177
1178 /* Program defaults and thresholds for RPS */
1179 if (GRAPHICS_VER(gt->i915) == 9)
1180 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1181 GEN9_FREQUENCY(rps->rp1_freq));
1182
1183 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1184
1185 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1186
1187 return rps_reset(rps);
1188 }
1189
gen8_rps_enable(struct intel_rps * rps)1190 static bool gen8_rps_enable(struct intel_rps *rps)
1191 {
1192 struct intel_uncore *uncore = rps_to_uncore(rps);
1193
1194 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1195 HSW_FREQUENCY(rps->rp1_freq));
1196
1197 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1198
1199 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1200
1201 return rps_reset(rps);
1202 }
1203
gen6_rps_enable(struct intel_rps * rps)1204 static bool gen6_rps_enable(struct intel_rps *rps)
1205 {
1206 struct intel_uncore *uncore = rps_to_uncore(rps);
1207
1208 /* Power down if completely idle for over 50ms */
1209 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1210 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1211
1212 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1213 GEN6_PM_RP_DOWN_THRESHOLD |
1214 GEN6_PM_RP_DOWN_TIMEOUT);
1215
1216 return rps_reset(rps);
1217 }
1218
chv_rps_max_freq(struct intel_rps * rps)1219 static int chv_rps_max_freq(struct intel_rps *rps)
1220 {
1221 struct drm_i915_private *i915 = rps_to_i915(rps);
1222 struct intel_gt *gt = rps_to_gt(rps);
1223 u32 val;
1224
1225 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1226
1227 switch (gt->info.sseu.eu_total) {
1228 case 8:
1229 /* (2 * 4) config */
1230 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1231 break;
1232 case 12:
1233 /* (2 * 6) config */
1234 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1235 break;
1236 case 16:
1237 /* (2 * 8) config */
1238 default:
1239 /* Setting (2 * 8) Min RP0 for any other combination */
1240 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1241 break;
1242 }
1243
1244 return val & FB_GFX_FREQ_FUSE_MASK;
1245 }
1246
chv_rps_rpe_freq(struct intel_rps * rps)1247 static int chv_rps_rpe_freq(struct intel_rps *rps)
1248 {
1249 struct drm_i915_private *i915 = rps_to_i915(rps);
1250 u32 val;
1251
1252 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1253 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1254
1255 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1256 }
1257
chv_rps_guar_freq(struct intel_rps * rps)1258 static int chv_rps_guar_freq(struct intel_rps *rps)
1259 {
1260 struct drm_i915_private *i915 = rps_to_i915(rps);
1261 u32 val;
1262
1263 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1264
1265 return val & FB_GFX_FREQ_FUSE_MASK;
1266 }
1267
chv_rps_min_freq(struct intel_rps * rps)1268 static u32 chv_rps_min_freq(struct intel_rps *rps)
1269 {
1270 struct drm_i915_private *i915 = rps_to_i915(rps);
1271 u32 val;
1272
1273 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1274 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1275
1276 return val & FB_GFX_FREQ_FUSE_MASK;
1277 }
1278
chv_rps_enable(struct intel_rps * rps)1279 static bool chv_rps_enable(struct intel_rps *rps)
1280 {
1281 struct intel_uncore *uncore = rps_to_uncore(rps);
1282 struct drm_i915_private *i915 = rps_to_i915(rps);
1283 u32 val;
1284
1285 /* 1: Program defaults and thresholds for RPS*/
1286 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1287 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1288 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1289 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1290 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1291
1292 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1293
1294 /* 2: Enable RPS */
1295 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1296 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1297 GEN6_RP_MEDIA_IS_GFX |
1298 GEN6_RP_ENABLE |
1299 GEN6_RP_UP_BUSY_AVG |
1300 GEN6_RP_DOWN_IDLE_AVG);
1301
1302 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1303 GEN6_PM_RP_DOWN_THRESHOLD |
1304 GEN6_PM_RP_DOWN_TIMEOUT);
1305
1306 /* Setting Fixed Bias */
1307 vlv_punit_get(i915);
1308
1309 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1310 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1311
1312 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1313
1314 vlv_punit_put(i915);
1315
1316 /* RPS code assumes GPLL is used */
1317 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1318 "GPLL not enabled\n");
1319
1320 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1321 str_yes_no(val & GPLLENABLE));
1322 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1323
1324 return rps_reset(rps);
1325 }
1326
vlv_rps_guar_freq(struct intel_rps * rps)1327 static int vlv_rps_guar_freq(struct intel_rps *rps)
1328 {
1329 struct drm_i915_private *i915 = rps_to_i915(rps);
1330 u32 val, rp1;
1331
1332 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1333
1334 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1335 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1336
1337 return rp1;
1338 }
1339
vlv_rps_max_freq(struct intel_rps * rps)1340 static int vlv_rps_max_freq(struct intel_rps *rps)
1341 {
1342 struct drm_i915_private *i915 = rps_to_i915(rps);
1343 u32 val, rp0;
1344
1345 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1346
1347 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1348 /* Clamp to max */
1349 rp0 = min_t(u32, rp0, 0xea);
1350
1351 return rp0;
1352 }
1353
vlv_rps_rpe_freq(struct intel_rps * rps)1354 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1355 {
1356 struct drm_i915_private *i915 = rps_to_i915(rps);
1357 u32 val, rpe;
1358
1359 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1360 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1361 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1362 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1363
1364 return rpe;
1365 }
1366
vlv_rps_min_freq(struct intel_rps * rps)1367 static int vlv_rps_min_freq(struct intel_rps *rps)
1368 {
1369 struct drm_i915_private *i915 = rps_to_i915(rps);
1370 u32 val;
1371
1372 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1373 /*
1374 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1375 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1376 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1377 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1378 * to make sure it matches what Punit accepts.
1379 */
1380 return max_t(u32, val, 0xc0);
1381 }
1382
vlv_rps_enable(struct intel_rps * rps)1383 static bool vlv_rps_enable(struct intel_rps *rps)
1384 {
1385 struct intel_uncore *uncore = rps_to_uncore(rps);
1386 struct drm_i915_private *i915 = rps_to_i915(rps);
1387 u32 val;
1388
1389 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1390 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1391 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1392 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1393 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1394
1395 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1396
1397 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1398 GEN6_RP_MEDIA_TURBO |
1399 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1400 GEN6_RP_MEDIA_IS_GFX |
1401 GEN6_RP_ENABLE |
1402 GEN6_RP_UP_BUSY_AVG |
1403 GEN6_RP_DOWN_IDLE_CONT);
1404
1405 /* WaGsvRC0ResidencyMethod:vlv */
1406 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1407
1408 vlv_punit_get(i915);
1409
1410 /* Setting Fixed Bias */
1411 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1412 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1413
1414 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1415
1416 vlv_punit_put(i915);
1417
1418 /* RPS code assumes GPLL is used */
1419 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1420 "GPLL not enabled\n");
1421
1422 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1423 str_yes_no(val & GPLLENABLE));
1424 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1425
1426 return rps_reset(rps);
1427 }
1428
__ips_gfx_val(struct intel_ips * ips)1429 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1430 {
1431 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1432 struct intel_uncore *uncore = rps_to_uncore(rps);
1433 unsigned int t, state1, state2;
1434 u32 pxvid, ext_v;
1435 u64 corr, corr2;
1436
1437 lockdep_assert_held(&mchdev_lock);
1438
1439 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1440 pxvid = (pxvid >> 24) & 0x7f;
1441 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1442
1443 state1 = ext_v;
1444
1445 /* Revel in the empirically derived constants */
1446
1447 /* Correction factor in 1/100000 units */
1448 t = ips_mch_val(uncore);
1449 if (t > 80)
1450 corr = t * 2349 + 135940;
1451 else if (t >= 50)
1452 corr = t * 964 + 29317;
1453 else /* < 50 */
1454 corr = t * 301 + 1004;
1455
1456 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1457 corr2 = div_u64(corr, 100000) * ips->corr;
1458
1459 state2 = div_u64(corr2 * state1, 10000);
1460 state2 /= 100; /* convert to mW */
1461
1462 __gen5_ips_update(ips);
1463
1464 return ips->gfx_power + state2;
1465 }
1466
has_busy_stats(struct intel_rps * rps)1467 static bool has_busy_stats(struct intel_rps *rps)
1468 {
1469 struct intel_engine_cs *engine;
1470 enum intel_engine_id id;
1471
1472 for_each_engine(engine, rps_to_gt(rps), id) {
1473 if (!intel_engine_supports_stats(engine))
1474 return false;
1475 }
1476
1477 return true;
1478 }
1479
intel_rps_enable(struct intel_rps * rps)1480 void intel_rps_enable(struct intel_rps *rps)
1481 {
1482 struct drm_i915_private *i915 = rps_to_i915(rps);
1483 struct intel_uncore *uncore = rps_to_uncore(rps);
1484 bool enabled = false;
1485
1486 if (!HAS_RPS(i915))
1487 return;
1488
1489 if (rps_uses_slpc(rps))
1490 return;
1491
1492 intel_gt_check_clock_frequency(rps_to_gt(rps));
1493
1494 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1495 if (rps->max_freq <= rps->min_freq)
1496 /* leave disabled, no room for dynamic reclocking */;
1497 else if (IS_CHERRYVIEW(i915))
1498 enabled = chv_rps_enable(rps);
1499 else if (IS_VALLEYVIEW(i915))
1500 enabled = vlv_rps_enable(rps);
1501 else if (GRAPHICS_VER(i915) >= 9)
1502 enabled = gen9_rps_enable(rps);
1503 else if (GRAPHICS_VER(i915) >= 8)
1504 enabled = gen8_rps_enable(rps);
1505 else if (GRAPHICS_VER(i915) >= 6)
1506 enabled = gen6_rps_enable(rps);
1507 else if (IS_IRONLAKE_M(i915))
1508 enabled = gen5_rps_enable(rps);
1509 else
1510 MISSING_CASE(GRAPHICS_VER(i915));
1511 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1512 if (!enabled)
1513 return;
1514
1515 GT_TRACE(rps_to_gt(rps),
1516 "min:%x, max:%x, freq:[%d, %d]\n",
1517 rps->min_freq, rps->max_freq,
1518 intel_gpu_freq(rps, rps->min_freq),
1519 intel_gpu_freq(rps, rps->max_freq));
1520
1521 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1522 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1523
1524 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1525 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1526
1527 if (has_busy_stats(rps))
1528 intel_rps_set_timer(rps);
1529 else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1530 intel_rps_set_interrupts(rps);
1531 else
1532 /* Ironlake currently uses intel_ips.ko */ {}
1533
1534 intel_rps_set_enabled(rps);
1535 }
1536
gen6_rps_disable(struct intel_rps * rps)1537 static void gen6_rps_disable(struct intel_rps *rps)
1538 {
1539 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1540 }
1541
intel_rps_disable(struct intel_rps * rps)1542 void intel_rps_disable(struct intel_rps *rps)
1543 {
1544 struct drm_i915_private *i915 = rps_to_i915(rps);
1545
1546 intel_rps_clear_enabled(rps);
1547 intel_rps_clear_interrupts(rps);
1548 intel_rps_clear_timer(rps);
1549
1550 if (GRAPHICS_VER(i915) >= 6)
1551 gen6_rps_disable(rps);
1552 else if (IS_IRONLAKE_M(i915))
1553 gen5_rps_disable(rps);
1554 }
1555
byt_gpu_freq(struct intel_rps * rps,int val)1556 static int byt_gpu_freq(struct intel_rps *rps, int val)
1557 {
1558 /*
1559 * N = val - 0xb7
1560 * Slow = Fast = GPLL ref * N
1561 */
1562 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1563 }
1564
byt_freq_opcode(struct intel_rps * rps,int val)1565 static int byt_freq_opcode(struct intel_rps *rps, int val)
1566 {
1567 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1568 }
1569
chv_gpu_freq(struct intel_rps * rps,int val)1570 static int chv_gpu_freq(struct intel_rps *rps, int val)
1571 {
1572 /*
1573 * N = val / 2
1574 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1575 */
1576 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1577 }
1578
chv_freq_opcode(struct intel_rps * rps,int val)1579 static int chv_freq_opcode(struct intel_rps *rps, int val)
1580 {
1581 /* CHV needs even values */
1582 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1583 }
1584
intel_gpu_freq(struct intel_rps * rps,int val)1585 int intel_gpu_freq(struct intel_rps *rps, int val)
1586 {
1587 struct drm_i915_private *i915 = rps_to_i915(rps);
1588
1589 if (GRAPHICS_VER(i915) >= 9)
1590 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1591 GEN9_FREQ_SCALER);
1592 else if (IS_CHERRYVIEW(i915))
1593 return chv_gpu_freq(rps, val);
1594 else if (IS_VALLEYVIEW(i915))
1595 return byt_gpu_freq(rps, val);
1596 else if (GRAPHICS_VER(i915) >= 6)
1597 return val * GT_FREQUENCY_MULTIPLIER;
1598 else
1599 return val;
1600 }
1601
intel_freq_opcode(struct intel_rps * rps,int val)1602 int intel_freq_opcode(struct intel_rps *rps, int val)
1603 {
1604 struct drm_i915_private *i915 = rps_to_i915(rps);
1605
1606 if (GRAPHICS_VER(i915) >= 9)
1607 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1608 GT_FREQUENCY_MULTIPLIER);
1609 else if (IS_CHERRYVIEW(i915))
1610 return chv_freq_opcode(rps, val);
1611 else if (IS_VALLEYVIEW(i915))
1612 return byt_freq_opcode(rps, val);
1613 else if (GRAPHICS_VER(i915) >= 6)
1614 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1615 else
1616 return val;
1617 }
1618
vlv_init_gpll_ref_freq(struct intel_rps * rps)1619 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1620 {
1621 struct drm_i915_private *i915 = rps_to_i915(rps);
1622
1623 rps->gpll_ref_freq =
1624 vlv_get_cck_clock(i915, "GPLL ref",
1625 CCK_GPLL_CLOCK_CONTROL,
1626 i915->czclk_freq);
1627
1628 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1629 rps->gpll_ref_freq);
1630 }
1631
vlv_rps_init(struct intel_rps * rps)1632 static void vlv_rps_init(struct intel_rps *rps)
1633 {
1634 struct drm_i915_private *i915 = rps_to_i915(rps);
1635 u32 val;
1636
1637 vlv_iosf_sb_get(i915,
1638 BIT(VLV_IOSF_SB_PUNIT) |
1639 BIT(VLV_IOSF_SB_NC) |
1640 BIT(VLV_IOSF_SB_CCK));
1641
1642 vlv_init_gpll_ref_freq(rps);
1643
1644 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1645 switch ((val >> 6) & 3) {
1646 case 0:
1647 case 1:
1648 i915->mem_freq = 800;
1649 break;
1650 case 2:
1651 i915->mem_freq = 1066;
1652 break;
1653 case 3:
1654 i915->mem_freq = 1333;
1655 break;
1656 }
1657 drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1658
1659 rps->max_freq = vlv_rps_max_freq(rps);
1660 rps->rp0_freq = rps->max_freq;
1661 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1662 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1663
1664 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1665 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1666 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1667
1668 rps->rp1_freq = vlv_rps_guar_freq(rps);
1669 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1670 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1671
1672 rps->min_freq = vlv_rps_min_freq(rps);
1673 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1674 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1675
1676 vlv_iosf_sb_put(i915,
1677 BIT(VLV_IOSF_SB_PUNIT) |
1678 BIT(VLV_IOSF_SB_NC) |
1679 BIT(VLV_IOSF_SB_CCK));
1680 }
1681
chv_rps_init(struct intel_rps * rps)1682 static void chv_rps_init(struct intel_rps *rps)
1683 {
1684 struct drm_i915_private *i915 = rps_to_i915(rps);
1685 u32 val;
1686
1687 vlv_iosf_sb_get(i915,
1688 BIT(VLV_IOSF_SB_PUNIT) |
1689 BIT(VLV_IOSF_SB_NC) |
1690 BIT(VLV_IOSF_SB_CCK));
1691
1692 vlv_init_gpll_ref_freq(rps);
1693
1694 val = vlv_cck_read(i915, CCK_FUSE_REG);
1695
1696 switch ((val >> 2) & 0x7) {
1697 case 3:
1698 i915->mem_freq = 2000;
1699 break;
1700 default:
1701 i915->mem_freq = 1600;
1702 break;
1703 }
1704 drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1705
1706 rps->max_freq = chv_rps_max_freq(rps);
1707 rps->rp0_freq = rps->max_freq;
1708 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1709 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1710
1711 rps->efficient_freq = chv_rps_rpe_freq(rps);
1712 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1713 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1714
1715 rps->rp1_freq = chv_rps_guar_freq(rps);
1716 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1717 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1718
1719 rps->min_freq = chv_rps_min_freq(rps);
1720 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1721 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1722
1723 vlv_iosf_sb_put(i915,
1724 BIT(VLV_IOSF_SB_PUNIT) |
1725 BIT(VLV_IOSF_SB_NC) |
1726 BIT(VLV_IOSF_SB_CCK));
1727
1728 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1729 rps->rp1_freq | rps->min_freq) & 1,
1730 "Odd GPU freq values\n");
1731 }
1732
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1733 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1734 {
1735 ei->ktime = ktime_get_raw();
1736 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1737 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1738 }
1739
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1740 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1741 {
1742 struct intel_uncore *uncore = rps_to_uncore(rps);
1743 const struct intel_rps_ei *prev = &rps->ei;
1744 struct intel_rps_ei now;
1745 u32 events = 0;
1746
1747 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1748 return 0;
1749
1750 vlv_c0_read(uncore, &now);
1751
1752 if (prev->ktime) {
1753 u64 time, c0;
1754 u32 render, media;
1755
1756 time = ktime_us_delta(now.ktime, prev->ktime);
1757
1758 time *= rps_to_i915(rps)->czclk_freq;
1759
1760 /* Workload can be split between render + media,
1761 * e.g. SwapBuffers being blitted in X after being rendered in
1762 * mesa. To account for this we need to combine both engines
1763 * into our activity counter.
1764 */
1765 render = now.render_c0 - prev->render_c0;
1766 media = now.media_c0 - prev->media_c0;
1767 c0 = max(render, media);
1768 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1769
1770 if (c0 > time * rps->power.up_threshold)
1771 events = GEN6_PM_RP_UP_THRESHOLD;
1772 else if (c0 < time * rps->power.down_threshold)
1773 events = GEN6_PM_RP_DOWN_THRESHOLD;
1774 }
1775
1776 rps->ei = now;
1777 return events;
1778 }
1779
rps_work(struct work_struct * work)1780 static void rps_work(struct work_struct *work)
1781 {
1782 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1783 struct intel_gt *gt = rps_to_gt(rps);
1784 struct drm_i915_private *i915 = rps_to_i915(rps);
1785 bool client_boost = false;
1786 int new_freq, adj, min, max;
1787 u32 pm_iir = 0;
1788
1789 spin_lock_irq(>->irq_lock);
1790 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1791 client_boost = atomic_read(&rps->num_waiters);
1792 spin_unlock_irq(>->irq_lock);
1793
1794 /* Make sure we didn't queue anything we're not going to process. */
1795 if (!pm_iir && !client_boost)
1796 goto out;
1797
1798 mutex_lock(&rps->lock);
1799 if (!intel_rps_is_active(rps)) {
1800 mutex_unlock(&rps->lock);
1801 return;
1802 }
1803
1804 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1805
1806 adj = rps->last_adj;
1807 new_freq = rps->cur_freq;
1808 min = rps->min_freq_softlimit;
1809 max = rps->max_freq_softlimit;
1810 if (client_boost)
1811 max = rps->max_freq;
1812
1813 GT_TRACE(gt,
1814 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1815 pm_iir, str_yes_no(client_boost),
1816 adj, new_freq, min, max);
1817
1818 if (client_boost && new_freq < rps->boost_freq) {
1819 new_freq = rps->boost_freq;
1820 adj = 0;
1821 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1822 if (adj > 0)
1823 adj *= 2;
1824 else /* CHV needs even encode values */
1825 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1826
1827 if (new_freq >= rps->max_freq_softlimit)
1828 adj = 0;
1829 } else if (client_boost) {
1830 adj = 0;
1831 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1832 if (rps->cur_freq > rps->efficient_freq)
1833 new_freq = rps->efficient_freq;
1834 else if (rps->cur_freq > rps->min_freq_softlimit)
1835 new_freq = rps->min_freq_softlimit;
1836 adj = 0;
1837 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1838 if (adj < 0)
1839 adj *= 2;
1840 else /* CHV needs even encode values */
1841 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1842
1843 if (new_freq <= rps->min_freq_softlimit)
1844 adj = 0;
1845 } else { /* unknown event */
1846 adj = 0;
1847 }
1848
1849 /*
1850 * sysfs frequency limits may have snuck in while
1851 * servicing the interrupt
1852 */
1853 new_freq += adj;
1854 new_freq = clamp_t(int, new_freq, min, max);
1855
1856 if (intel_rps_set(rps, new_freq)) {
1857 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1858 adj = 0;
1859 }
1860 rps->last_adj = adj;
1861
1862 mutex_unlock(&rps->lock);
1863
1864 out:
1865 spin_lock_irq(>->irq_lock);
1866 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1867 spin_unlock_irq(>->irq_lock);
1868 }
1869
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1870 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1871 {
1872 struct intel_gt *gt = rps_to_gt(rps);
1873 const u32 events = rps->pm_events & pm_iir;
1874
1875 lockdep_assert_held(>->irq_lock);
1876
1877 if (unlikely(!events))
1878 return;
1879
1880 GT_TRACE(gt, "irq events:%x\n", events);
1881
1882 gen6_gt_pm_mask_irq(gt, events);
1883
1884 rps->pm_iir |= events;
1885 schedule_work(&rps->work);
1886 }
1887
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1888 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1889 {
1890 struct intel_gt *gt = rps_to_gt(rps);
1891 u32 events;
1892
1893 events = pm_iir & rps->pm_events;
1894 if (events) {
1895 spin_lock(>->irq_lock);
1896
1897 GT_TRACE(gt, "irq events:%x\n", events);
1898
1899 gen6_gt_pm_mask_irq(gt, events);
1900 rps->pm_iir |= events;
1901
1902 schedule_work(&rps->work);
1903 spin_unlock(>->irq_lock);
1904 }
1905
1906 if (GRAPHICS_VER(gt->i915) >= 8)
1907 return;
1908
1909 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1910 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1911
1912 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1913 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1914 }
1915
gen5_rps_irq_handler(struct intel_rps * rps)1916 void gen5_rps_irq_handler(struct intel_rps *rps)
1917 {
1918 struct intel_uncore *uncore = rps_to_uncore(rps);
1919 u32 busy_up, busy_down, max_avg, min_avg;
1920 u8 new_freq;
1921
1922 spin_lock(&mchdev_lock);
1923
1924 intel_uncore_write16(uncore,
1925 MEMINTRSTS,
1926 intel_uncore_read(uncore, MEMINTRSTS));
1927
1928 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1929 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1930 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1931 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1932 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1933
1934 /* Handle RCS change request from hw */
1935 new_freq = rps->cur_freq;
1936 if (busy_up > max_avg)
1937 new_freq++;
1938 else if (busy_down < min_avg)
1939 new_freq--;
1940 new_freq = clamp(new_freq,
1941 rps->min_freq_softlimit,
1942 rps->max_freq_softlimit);
1943
1944 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1945 rps->cur_freq = new_freq;
1946
1947 spin_unlock(&mchdev_lock);
1948 }
1949
intel_rps_init_early(struct intel_rps * rps)1950 void intel_rps_init_early(struct intel_rps *rps)
1951 {
1952 mutex_init(&rps->lock);
1953 mutex_init(&rps->power.mutex);
1954
1955 INIT_WORK(&rps->work, rps_work);
1956 timer_setup(&rps->timer, rps_timer, 0);
1957
1958 atomic_set(&rps->num_waiters, 0);
1959 }
1960
intel_rps_init(struct intel_rps * rps)1961 void intel_rps_init(struct intel_rps *rps)
1962 {
1963 struct drm_i915_private *i915 = rps_to_i915(rps);
1964
1965 if (rps_uses_slpc(rps))
1966 return;
1967
1968 if (IS_CHERRYVIEW(i915))
1969 chv_rps_init(rps);
1970 else if (IS_VALLEYVIEW(i915))
1971 vlv_rps_init(rps);
1972 else if (GRAPHICS_VER(i915) >= 6)
1973 gen6_rps_init(rps);
1974 else if (IS_IRONLAKE_M(i915))
1975 gen5_rps_init(rps);
1976
1977 /* Derive initial user preferences/limits from the hardware limits */
1978 rps->max_freq_softlimit = rps->max_freq;
1979 rps->min_freq_softlimit = rps->min_freq;
1980
1981 /* After setting max-softlimit, find the overclock max freq */
1982 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1983 u32 params = 0;
1984
1985 snb_pcode_read(i915, GEN6_READ_OC_PARAMS, ¶ms, NULL);
1986 if (params & BIT(31)) { /* OC supported */
1987 drm_dbg(&i915->drm,
1988 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1989 (rps->max_freq & 0xff) * 50,
1990 (params & 0xff) * 50);
1991 rps->max_freq = params & 0xff;
1992 }
1993 }
1994
1995 /* Finally allow us to boost to max by default */
1996 rps->boost_freq = rps->max_freq;
1997 rps->idle_freq = rps->min_freq;
1998
1999 /* Start in the middle, from here we will autotune based on workload */
2000 rps->cur_freq = rps->efficient_freq;
2001
2002 rps->pm_intrmsk_mbz = 0;
2003
2004 /*
2005 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2006 * if GEN6_PM_UP_EI_EXPIRED is masked.
2007 *
2008 * TODO: verify if this can be reproduced on VLV,CHV.
2009 */
2010 if (GRAPHICS_VER(i915) <= 7)
2011 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2012
2013 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2014 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2015
2016 /* GuC needs ARAT expired interrupt unmasked */
2017 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2018 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2019 }
2020
intel_rps_sanitize(struct intel_rps * rps)2021 void intel_rps_sanitize(struct intel_rps *rps)
2022 {
2023 if (rps_uses_slpc(rps))
2024 return;
2025
2026 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2027 rps_disable_interrupts(rps);
2028 }
2029
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)2030 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2031 {
2032 struct drm_i915_private *i915 = rps_to_i915(rps);
2033 u32 cagf;
2034
2035 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2036 cagf = (rpstat >> 8) & 0xff;
2037 else if (GRAPHICS_VER(i915) >= 9)
2038 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
2039 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2040 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2041 else if (GRAPHICS_VER(i915) >= 6)
2042 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2043 else
2044 cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2045 MEMSTAT_PSTATE_SHIFT);
2046
2047 return cagf;
2048 }
2049
read_cagf(struct intel_rps * rps)2050 static u32 read_cagf(struct intel_rps *rps)
2051 {
2052 struct drm_i915_private *i915 = rps_to_i915(rps);
2053 struct intel_uncore *uncore = rps_to_uncore(rps);
2054 u32 freq;
2055
2056 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2057 vlv_punit_get(i915);
2058 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2059 vlv_punit_put(i915);
2060 } else if (GRAPHICS_VER(i915) >= 6) {
2061 freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2062 } else {
2063 freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2064 }
2065
2066 return intel_rps_get_cagf(rps, freq);
2067 }
2068
intel_rps_read_actual_frequency(struct intel_rps * rps)2069 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2070 {
2071 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2072 intel_wakeref_t wakeref;
2073 u32 freq = 0;
2074
2075 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2076 freq = intel_gpu_freq(rps, read_cagf(rps));
2077
2078 return freq;
2079 }
2080
intel_rps_read_punit_req(struct intel_rps * rps)2081 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2082 {
2083 struct intel_uncore *uncore = rps_to_uncore(rps);
2084 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2085 intel_wakeref_t wakeref;
2086 u32 freq = 0;
2087
2088 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2089 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2090
2091 return freq;
2092 }
2093
intel_rps_get_req(u32 pureq)2094 static u32 intel_rps_get_req(u32 pureq)
2095 {
2096 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2097
2098 return req;
2099 }
2100
intel_rps_read_punit_req_frequency(struct intel_rps * rps)2101 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2102 {
2103 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2104
2105 return intel_gpu_freq(rps, freq);
2106 }
2107
intel_rps_get_requested_frequency(struct intel_rps * rps)2108 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2109 {
2110 if (rps_uses_slpc(rps))
2111 return intel_rps_read_punit_req_frequency(rps);
2112 else
2113 return intel_gpu_freq(rps, rps->cur_freq);
2114 }
2115
intel_rps_get_max_frequency(struct intel_rps * rps)2116 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2117 {
2118 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2119
2120 if (rps_uses_slpc(rps))
2121 return slpc->max_freq_softlimit;
2122 else
2123 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2124 }
2125
2126 /**
2127 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2128 * @rps: the intel_rps structure
2129 *
2130 * Returns the max frequency in a raw format. In newer platforms raw is in
2131 * units of 50 MHz.
2132 */
intel_rps_get_max_raw_freq(struct intel_rps * rps)2133 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2134 {
2135 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2136 u32 freq;
2137
2138 if (rps_uses_slpc(rps)) {
2139 return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2140 GT_FREQUENCY_MULTIPLIER);
2141 } else {
2142 freq = rps->max_freq;
2143 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2144 /* Convert GT frequency to 50 MHz units */
2145 freq /= GEN9_FREQ_SCALER;
2146 }
2147 return freq;
2148 }
2149 }
2150
intel_rps_get_rp0_frequency(struct intel_rps * rps)2151 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2152 {
2153 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2154
2155 if (rps_uses_slpc(rps))
2156 return slpc->rp0_freq;
2157 else
2158 return intel_gpu_freq(rps, rps->rp0_freq);
2159 }
2160
intel_rps_get_rp1_frequency(struct intel_rps * rps)2161 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2162 {
2163 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2164
2165 if (rps_uses_slpc(rps))
2166 return slpc->rp1_freq;
2167 else
2168 return intel_gpu_freq(rps, rps->rp1_freq);
2169 }
2170
intel_rps_get_rpn_frequency(struct intel_rps * rps)2171 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2172 {
2173 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2174
2175 if (rps_uses_slpc(rps))
2176 return slpc->min_freq;
2177 else
2178 return intel_gpu_freq(rps, rps->min_freq);
2179 }
2180
set_max_freq(struct intel_rps * rps,u32 val)2181 static int set_max_freq(struct intel_rps *rps, u32 val)
2182 {
2183 struct drm_i915_private *i915 = rps_to_i915(rps);
2184 int ret = 0;
2185
2186 mutex_lock(&rps->lock);
2187
2188 val = intel_freq_opcode(rps, val);
2189 if (val < rps->min_freq ||
2190 val > rps->max_freq ||
2191 val < rps->min_freq_softlimit) {
2192 ret = -EINVAL;
2193 goto unlock;
2194 }
2195
2196 if (val > rps->rp0_freq)
2197 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2198 intel_gpu_freq(rps, val));
2199
2200 rps->max_freq_softlimit = val;
2201
2202 val = clamp_t(int, rps->cur_freq,
2203 rps->min_freq_softlimit,
2204 rps->max_freq_softlimit);
2205
2206 /*
2207 * We still need *_set_rps to process the new max_delay and
2208 * update the interrupt limits and PMINTRMSK even though
2209 * frequency request may be unchanged.
2210 */
2211 intel_rps_set(rps, val);
2212
2213 unlock:
2214 mutex_unlock(&rps->lock);
2215
2216 return ret;
2217 }
2218
intel_rps_set_max_frequency(struct intel_rps * rps,u32 val)2219 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2220 {
2221 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2222
2223 if (rps_uses_slpc(rps))
2224 return intel_guc_slpc_set_max_freq(slpc, val);
2225 else
2226 return set_max_freq(rps, val);
2227 }
2228
intel_rps_get_min_frequency(struct intel_rps * rps)2229 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2230 {
2231 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232
2233 if (rps_uses_slpc(rps))
2234 return slpc->min_freq_softlimit;
2235 else
2236 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2237 }
2238
2239 /**
2240 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2241 * @rps: the intel_rps structure
2242 *
2243 * Returns the min frequency in a raw format. In newer platforms raw is in
2244 * units of 50 MHz.
2245 */
intel_rps_get_min_raw_freq(struct intel_rps * rps)2246 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2247 {
2248 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2249 u32 freq;
2250
2251 if (rps_uses_slpc(rps)) {
2252 return DIV_ROUND_CLOSEST(slpc->min_freq,
2253 GT_FREQUENCY_MULTIPLIER);
2254 } else {
2255 freq = rps->min_freq;
2256 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2257 /* Convert GT frequency to 50 MHz units */
2258 freq /= GEN9_FREQ_SCALER;
2259 }
2260 return freq;
2261 }
2262 }
2263
set_min_freq(struct intel_rps * rps,u32 val)2264 static int set_min_freq(struct intel_rps *rps, u32 val)
2265 {
2266 int ret = 0;
2267
2268 mutex_lock(&rps->lock);
2269
2270 val = intel_freq_opcode(rps, val);
2271 if (val < rps->min_freq ||
2272 val > rps->max_freq ||
2273 val > rps->max_freq_softlimit) {
2274 ret = -EINVAL;
2275 goto unlock;
2276 }
2277
2278 rps->min_freq_softlimit = val;
2279
2280 val = clamp_t(int, rps->cur_freq,
2281 rps->min_freq_softlimit,
2282 rps->max_freq_softlimit);
2283
2284 /*
2285 * We still need *_set_rps to process the new min_delay and
2286 * update the interrupt limits and PMINTRMSK even though
2287 * frequency request may be unchanged.
2288 */
2289 intel_rps_set(rps, val);
2290
2291 unlock:
2292 mutex_unlock(&rps->lock);
2293
2294 return ret;
2295 }
2296
intel_rps_set_min_frequency(struct intel_rps * rps,u32 val)2297 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2298 {
2299 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2300
2301 if (rps_uses_slpc(rps))
2302 return intel_guc_slpc_set_min_freq(slpc, val);
2303 else
2304 return set_min_freq(rps, val);
2305 }
2306
intel_rps_set_manual(struct intel_rps * rps,bool enable)2307 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2308 {
2309 struct intel_uncore *uncore = rps_to_uncore(rps);
2310 u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2311
2312 /* Allow punit to process software requests */
2313 intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2314 }
2315
intel_rps_raise_unslice(struct intel_rps * rps)2316 void intel_rps_raise_unslice(struct intel_rps *rps)
2317 {
2318 struct intel_uncore *uncore = rps_to_uncore(rps);
2319
2320 mutex_lock(&rps->lock);
2321
2322 if (rps_uses_slpc(rps)) {
2323 /* RP limits have not been initialized yet for SLPC path */
2324 struct intel_rps_freq_caps caps;
2325
2326 gen6_rps_get_freq_caps(rps, &caps);
2327
2328 intel_rps_set_manual(rps, true);
2329 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2330 ((caps.rp0_freq <<
2331 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2332 GEN9_IGNORE_SLICE_RATIO));
2333 intel_rps_set_manual(rps, false);
2334 } else {
2335 intel_rps_set(rps, rps->rp0_freq);
2336 }
2337
2338 mutex_unlock(&rps->lock);
2339 }
2340
intel_rps_lower_unslice(struct intel_rps * rps)2341 void intel_rps_lower_unslice(struct intel_rps *rps)
2342 {
2343 struct intel_uncore *uncore = rps_to_uncore(rps);
2344
2345 mutex_lock(&rps->lock);
2346
2347 if (rps_uses_slpc(rps)) {
2348 /* RP limits have not been initialized yet for SLPC path */
2349 struct intel_rps_freq_caps caps;
2350
2351 gen6_rps_get_freq_caps(rps, &caps);
2352
2353 intel_rps_set_manual(rps, true);
2354 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2355 ((caps.min_freq <<
2356 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2357 GEN9_IGNORE_SLICE_RATIO));
2358 intel_rps_set_manual(rps, false);
2359 } else {
2360 intel_rps_set(rps, rps->min_freq);
2361 }
2362
2363 mutex_unlock(&rps->lock);
2364 }
2365
rps_read_mmio(struct intel_rps * rps,i915_reg_t reg32)2366 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2367 {
2368 struct intel_gt *gt = rps_to_gt(rps);
2369 intel_wakeref_t wakeref;
2370 u32 val;
2371
2372 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2373 val = intel_uncore_read(gt->uncore, reg32);
2374
2375 return val;
2376 }
2377
rps_read_mask_mmio(struct intel_rps * rps,i915_reg_t reg32,u32 mask)2378 bool rps_read_mask_mmio(struct intel_rps *rps,
2379 i915_reg_t reg32, u32 mask)
2380 {
2381 return rps_read_mmio(rps, reg32) & mask;
2382 }
2383
2384 /* External interface for intel_ips.ko */
2385
2386 static struct drm_i915_private __rcu *ips_mchdev;
2387
2388 /**
2389 * Tells the intel_ips driver that the i915 driver is now loaded, if
2390 * IPS got loaded first.
2391 *
2392 * This awkward dance is so that neither module has to depend on the
2393 * other in order for IPS to do the appropriate communication of
2394 * GPU turbo limits to i915.
2395 */
2396 static void
ips_ping_for_i915_load(void)2397 ips_ping_for_i915_load(void)
2398 {
2399 void (*link)(void);
2400
2401 link = symbol_get(ips_link_to_i915_driver);
2402 if (link) {
2403 link();
2404 symbol_put(ips_link_to_i915_driver);
2405 }
2406 }
2407
intel_rps_driver_register(struct intel_rps * rps)2408 void intel_rps_driver_register(struct intel_rps *rps)
2409 {
2410 struct intel_gt *gt = rps_to_gt(rps);
2411
2412 /*
2413 * We only register the i915 ips part with intel-ips once everything is
2414 * set up, to avoid intel-ips sneaking in and reading bogus values.
2415 */
2416 if (GRAPHICS_VER(gt->i915) == 5) {
2417 GEM_BUG_ON(ips_mchdev);
2418 rcu_assign_pointer(ips_mchdev, gt->i915);
2419 ips_ping_for_i915_load();
2420 }
2421 }
2422
intel_rps_driver_unregister(struct intel_rps * rps)2423 void intel_rps_driver_unregister(struct intel_rps *rps)
2424 {
2425 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2426 rcu_assign_pointer(ips_mchdev, NULL);
2427 }
2428
mchdev_get(void)2429 static struct drm_i915_private *mchdev_get(void)
2430 {
2431 struct drm_i915_private *i915;
2432
2433 rcu_read_lock();
2434 i915 = rcu_dereference(ips_mchdev);
2435 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2436 i915 = NULL;
2437 rcu_read_unlock();
2438
2439 return i915;
2440 }
2441
2442 /**
2443 * i915_read_mch_val - return value for IPS use
2444 *
2445 * Calculate and return a value for the IPS driver to use when deciding whether
2446 * we have thermal and power headroom to increase CPU or GPU power budget.
2447 */
i915_read_mch_val(void)2448 unsigned long i915_read_mch_val(void)
2449 {
2450 struct drm_i915_private *i915;
2451 unsigned long chipset_val = 0;
2452 unsigned long graphics_val = 0;
2453 intel_wakeref_t wakeref;
2454
2455 i915 = mchdev_get();
2456 if (!i915)
2457 return 0;
2458
2459 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2460 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2461
2462 spin_lock_irq(&mchdev_lock);
2463 chipset_val = __ips_chipset_val(ips);
2464 graphics_val = __ips_gfx_val(ips);
2465 spin_unlock_irq(&mchdev_lock);
2466 }
2467
2468 drm_dev_put(&i915->drm);
2469 return chipset_val + graphics_val;
2470 }
2471 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2472
2473 /**
2474 * i915_gpu_raise - raise GPU frequency limit
2475 *
2476 * Raise the limit; IPS indicates we have thermal headroom.
2477 */
i915_gpu_raise(void)2478 bool i915_gpu_raise(void)
2479 {
2480 struct drm_i915_private *i915;
2481 struct intel_rps *rps;
2482
2483 i915 = mchdev_get();
2484 if (!i915)
2485 return false;
2486
2487 rps = &to_gt(i915)->rps;
2488
2489 spin_lock_irq(&mchdev_lock);
2490 if (rps->max_freq_softlimit < rps->max_freq)
2491 rps->max_freq_softlimit++;
2492 spin_unlock_irq(&mchdev_lock);
2493
2494 drm_dev_put(&i915->drm);
2495 return true;
2496 }
2497 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2498
2499 /**
2500 * i915_gpu_lower - lower GPU frequency limit
2501 *
2502 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2503 * frequency maximum.
2504 */
i915_gpu_lower(void)2505 bool i915_gpu_lower(void)
2506 {
2507 struct drm_i915_private *i915;
2508 struct intel_rps *rps;
2509
2510 i915 = mchdev_get();
2511 if (!i915)
2512 return false;
2513
2514 rps = &to_gt(i915)->rps;
2515
2516 spin_lock_irq(&mchdev_lock);
2517 if (rps->max_freq_softlimit > rps->min_freq)
2518 rps->max_freq_softlimit--;
2519 spin_unlock_irq(&mchdev_lock);
2520
2521 drm_dev_put(&i915->drm);
2522 return true;
2523 }
2524 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2525
2526 /**
2527 * i915_gpu_busy - indicate GPU business to IPS
2528 *
2529 * Tell the IPS driver whether or not the GPU is busy.
2530 */
i915_gpu_busy(void)2531 bool i915_gpu_busy(void)
2532 {
2533 struct drm_i915_private *i915;
2534 bool ret;
2535
2536 i915 = mchdev_get();
2537 if (!i915)
2538 return false;
2539
2540 ret = to_gt(i915)->awake;
2541
2542 drm_dev_put(&i915->drm);
2543 return ret;
2544 }
2545 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2546
2547 /**
2548 * i915_gpu_turbo_disable - disable graphics turbo
2549 *
2550 * Disable graphics turbo by resetting the max frequency and setting the
2551 * current frequency to the default.
2552 */
i915_gpu_turbo_disable(void)2553 bool i915_gpu_turbo_disable(void)
2554 {
2555 struct drm_i915_private *i915;
2556 struct intel_rps *rps;
2557 bool ret;
2558
2559 i915 = mchdev_get();
2560 if (!i915)
2561 return false;
2562
2563 rps = &to_gt(i915)->rps;
2564
2565 spin_lock_irq(&mchdev_lock);
2566 rps->max_freq_softlimit = rps->min_freq;
2567 ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2568 spin_unlock_irq(&mchdev_lock);
2569
2570 drm_dev_put(&i915->drm);
2571 return ret;
2572 }
2573 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2574
2575 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2576 #include "selftest_rps.c"
2577 #include "selftest_slpc.c"
2578 #endif
2579