1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright(c) 2020 Intel Corporation.
4 */
5 #include <linux/workqueue.h>
6
7 #include "gem/i915_gem_context.h"
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_gt.h"
11
12 #include "i915_drv.h"
13
14 #include "intel_pxp.h"
15 #include "intel_pxp_gsccs.h"
16 #include "intel_pxp_irq.h"
17 #include "intel_pxp_regs.h"
18 #include "intel_pxp_session.h"
19 #include "intel_pxp_tee.h"
20 #include "intel_pxp_types.h"
21
22 /**
23 * DOC: PXP
24 *
25 * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
26 * It allows execution and flip to display of protected (i.e. encrypted)
27 * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
28 *
29 * Objects can opt-in to PXP encryption at creation time via the
30 * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
31 * correctly protected they must be used in conjunction with a context created
32 * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
33 * of those two uapi flags for details and restrictions.
34 *
35 * Protected objects are tied to a pxp session; currently we only support one
36 * session, which i915 manages and whose index is available in the uapi
37 * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
38 * protected objects.
39 * The session is invalidated by the HW when certain events occur (e.g.
40 * suspend/resume). When this happens, all the objects that were used with the
41 * session are marked as invalid and all contexts marked as using protected
42 * content are banned. Any further attempt at using them in an execbuf call is
43 * rejected, while flips are converted to black frames.
44 *
45 * Some of the PXP setup operations are performed by the Management Engine,
46 * which is handled by the mei driver; communication between i915 and mei is
47 * performed via the mei_pxp component module.
48 */
49
intel_pxp_is_supported(const struct intel_pxp * pxp)50 bool intel_pxp_is_supported(const struct intel_pxp *pxp)
51 {
52 return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp;
53 }
54
intel_pxp_is_enabled(const struct intel_pxp * pxp)55 bool intel_pxp_is_enabled(const struct intel_pxp *pxp)
56 {
57 return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp && pxp->ce;
58 }
59
intel_pxp_is_active(const struct intel_pxp * pxp)60 bool intel_pxp_is_active(const struct intel_pxp *pxp)
61 {
62 return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp && pxp->arb_is_valid;
63 }
64
kcr_pxp_set_status(const struct intel_pxp * pxp,bool enable)65 static void kcr_pxp_set_status(const struct intel_pxp *pxp, bool enable)
66 {
67 u32 val = enable ? _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES) :
68 _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES);
69
70 intel_uncore_write(pxp->ctrl_gt->uncore, KCR_INIT(pxp->kcr_base), val);
71 }
72
kcr_pxp_enable(const struct intel_pxp * pxp)73 static void kcr_pxp_enable(const struct intel_pxp *pxp)
74 {
75 kcr_pxp_set_status(pxp, true);
76 }
77
kcr_pxp_disable(const struct intel_pxp * pxp)78 static void kcr_pxp_disable(const struct intel_pxp *pxp)
79 {
80 kcr_pxp_set_status(pxp, false);
81 }
82
create_vcs_context(struct intel_pxp * pxp)83 static int create_vcs_context(struct intel_pxp *pxp)
84 {
85 static struct lock_class_key pxp_lock;
86 struct intel_gt *gt = pxp->ctrl_gt;
87 struct intel_engine_cs *engine;
88 struct intel_context *ce;
89 int i;
90
91 /*
92 * Find the first VCS engine present. We're guaranteed there is one
93 * if we're in this function due to the check in has_pxp
94 */
95 for (i = 0, engine = NULL; !engine; i++)
96 engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
97
98 GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
99
100 ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
101 I915_GEM_HWS_PXP_ADDR,
102 &pxp_lock, "pxp_context");
103 if (IS_ERR(ce)) {
104 drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n");
105 return PTR_ERR(ce);
106 }
107
108 pxp->ce = ce;
109
110 return 0;
111 }
112
destroy_vcs_context(struct intel_pxp * pxp)113 static void destroy_vcs_context(struct intel_pxp *pxp)
114 {
115 if (pxp->ce)
116 intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
117 }
118
pxp_init_full(struct intel_pxp * pxp)119 static void pxp_init_full(struct intel_pxp *pxp)
120 {
121 struct intel_gt *gt = pxp->ctrl_gt;
122 int ret;
123
124 /*
125 * we'll use the completion to check if there is a termination pending,
126 * so we start it as completed and we reinit it when a termination
127 * is triggered.
128 */
129 init_completion(&pxp->termination);
130 complete_all(&pxp->termination);
131
132 if (pxp->ctrl_gt->type == GT_MEDIA)
133 pxp->kcr_base = MTL_KCR_BASE;
134 else
135 pxp->kcr_base = GEN12_KCR_BASE;
136
137 intel_pxp_session_management_init(pxp);
138
139 ret = create_vcs_context(pxp);
140 if (ret)
141 return;
142
143 if (HAS_ENGINE(pxp->ctrl_gt, GSC0))
144 ret = intel_pxp_gsccs_init(pxp);
145 else
146 ret = intel_pxp_tee_component_init(pxp);
147 if (ret)
148 goto out_context;
149
150 drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
151
152 return;
153
154 out_context:
155 destroy_vcs_context(pxp);
156 }
157
find_gt_for_required_teelink(struct drm_i915_private * i915)158 static struct intel_gt *find_gt_for_required_teelink(struct drm_i915_private *i915)
159 {
160 /*
161 * NOTE: Only certain platforms require PXP-tee-backend dependencies
162 * for HuC authentication. For now, its limited to DG2.
163 */
164 if (IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC) &&
165 intel_huc_is_loaded_by_gsc(&to_gt(i915)->uc.huc) && intel_uc_uses_huc(&to_gt(i915)->uc))
166 return to_gt(i915);
167
168 return NULL;
169 }
170
find_gt_for_required_protected_content(struct drm_i915_private * i915)171 static struct intel_gt *find_gt_for_required_protected_content(struct drm_i915_private *i915)
172 {
173 if (!IS_ENABLED(CONFIG_DRM_I915_PXP) || !INTEL_INFO(i915)->has_pxp)
174 return NULL;
175
176 /*
177 * For MTL onwards, PXP-controller-GT needs to have a valid GSC engine
178 * on the media GT. NOTE: if we have a media-tile with a GSC-engine,
179 * the VDBOX is already present so skip that check. We also have to
180 * ensure the GSC and HUC firmware are coming online
181 */
182 if (i915->media_gt && HAS_ENGINE(i915->media_gt, GSC0) &&
183 intel_uc_fw_is_loadable(&i915->media_gt->uc.gsc.fw) &&
184 intel_uc_fw_is_loadable(&i915->media_gt->uc.huc.fw))
185 return i915->media_gt;
186
187 /*
188 * Else we rely on mei-pxp module but only on legacy platforms
189 * prior to having separate media GTs and has a valid VDBOX.
190 */
191 if (IS_ENABLED(CONFIG_INTEL_MEI_PXP) && !i915->media_gt && VDBOX_MASK(to_gt(i915)))
192 return to_gt(i915);
193
194 return NULL;
195 }
196
intel_pxp_init(struct drm_i915_private * i915)197 int intel_pxp_init(struct drm_i915_private *i915)
198 {
199 struct intel_gt *gt;
200 bool is_full_feature = false;
201
202 /*
203 * NOTE: Get the ctrl_gt before checking intel_pxp_is_supported since
204 * we still need it if PXP's backend tee transport is needed.
205 */
206 gt = find_gt_for_required_protected_content(i915);
207 if (gt)
208 is_full_feature = true;
209 else
210 gt = find_gt_for_required_teelink(i915);
211
212 if (!gt)
213 return -ENODEV;
214
215 /*
216 * At this point, we will either enable full featured PXP capabilities
217 * including session and object management, or we will init the backend tee
218 * channel for internal users such as HuC loading by GSC
219 */
220 i915->pxp = kzalloc(sizeof(*i915->pxp), GFP_KERNEL);
221 if (!i915->pxp)
222 return -ENOMEM;
223
224 /* init common info used by all feature-mode usages*/
225 i915->pxp->ctrl_gt = gt;
226 mutex_init(&i915->pxp->tee_mutex);
227
228 /*
229 * If full PXP feature is not available but HuC is loaded by GSC on pre-MTL
230 * such as DG2, we can skip the init of the full PXP session/object management
231 * and just init the tee channel.
232 */
233 if (is_full_feature)
234 pxp_init_full(i915->pxp);
235 else
236 intel_pxp_tee_component_init(i915->pxp);
237
238 return 0;
239 }
240
intel_pxp_fini(struct drm_i915_private * i915)241 void intel_pxp_fini(struct drm_i915_private *i915)
242 {
243 if (!i915->pxp)
244 return;
245
246 i915->pxp->arb_is_valid = false;
247
248 if (HAS_ENGINE(i915->pxp->ctrl_gt, GSC0))
249 intel_pxp_gsccs_fini(i915->pxp);
250 else
251 intel_pxp_tee_component_fini(i915->pxp);
252
253 destroy_vcs_context(i915->pxp);
254
255 kfree(i915->pxp);
256 i915->pxp = NULL;
257 }
258
intel_pxp_mark_termination_in_progress(struct intel_pxp * pxp)259 void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
260 {
261 pxp->arb_is_valid = false;
262 reinit_completion(&pxp->termination);
263 }
264
pxp_queue_termination(struct intel_pxp * pxp)265 static void pxp_queue_termination(struct intel_pxp *pxp)
266 {
267 struct intel_gt *gt = pxp->ctrl_gt;
268
269 /*
270 * We want to get the same effect as if we received a termination
271 * interrupt, so just pretend that we did.
272 */
273 spin_lock_irq(gt->irq_lock);
274 intel_pxp_mark_termination_in_progress(pxp);
275 pxp->session_events |= PXP_TERMINATION_REQUEST;
276 queue_work(system_unbound_wq, &pxp->session_work);
277 spin_unlock_irq(gt->irq_lock);
278 }
279
pxp_component_bound(struct intel_pxp * pxp)280 static bool pxp_component_bound(struct intel_pxp *pxp)
281 {
282 bool bound = false;
283
284 mutex_lock(&pxp->tee_mutex);
285 if (pxp->pxp_component)
286 bound = true;
287 mutex_unlock(&pxp->tee_mutex);
288
289 return bound;
290 }
291
intel_pxp_get_backend_timeout_ms(struct intel_pxp * pxp)292 int intel_pxp_get_backend_timeout_ms(struct intel_pxp *pxp)
293 {
294 if (HAS_ENGINE(pxp->ctrl_gt, GSC0))
295 return GSCFW_MAX_ROUND_TRIP_LATENCY_MS;
296 else
297 return 250;
298 }
299
__pxp_global_teardown_final(struct intel_pxp * pxp)300 static int __pxp_global_teardown_final(struct intel_pxp *pxp)
301 {
302 int timeout;
303
304 if (!pxp->arb_is_valid)
305 return 0;
306 /*
307 * To ensure synchronous and coherent session teardown completion
308 * in response to suspend or shutdown triggers, don't use a worker.
309 */
310 intel_pxp_mark_termination_in_progress(pxp);
311 intel_pxp_terminate(pxp, false);
312
313 timeout = intel_pxp_get_backend_timeout_ms(pxp);
314
315 if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(timeout)))
316 return -ETIMEDOUT;
317
318 return 0;
319 }
320
__pxp_global_teardown_restart(struct intel_pxp * pxp)321 static int __pxp_global_teardown_restart(struct intel_pxp *pxp)
322 {
323 int timeout;
324
325 if (pxp->arb_is_valid)
326 return 0;
327 /*
328 * The arb-session is currently inactive and we are doing a reset and restart
329 * due to a runtime event. Use the worker that was designed for this.
330 */
331 pxp_queue_termination(pxp);
332
333 timeout = intel_pxp_get_backend_timeout_ms(pxp);
334
335 if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(timeout)))
336 return -ETIMEDOUT;
337
338 return 0;
339 }
340
intel_pxp_end(struct intel_pxp * pxp)341 void intel_pxp_end(struct intel_pxp *pxp)
342 {
343 struct drm_i915_private *i915 = pxp->ctrl_gt->i915;
344 intel_wakeref_t wakeref;
345
346 if (!intel_pxp_is_enabled(pxp))
347 return;
348
349 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
350
351 mutex_lock(&pxp->arb_mutex);
352
353 if (__pxp_global_teardown_final(pxp))
354 drm_dbg(&i915->drm, "PXP end timed out\n");
355
356 mutex_unlock(&pxp->arb_mutex);
357
358 intel_pxp_fini_hw(pxp);
359 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
360 }
361
362 /*
363 * this helper is used by both intel_pxp_start and by
364 * the GET_PARAM IOCTL that user space calls. Thus, the
365 * return values here should match the UAPI spec.
366 */
intel_pxp_get_readiness_status(struct intel_pxp * pxp)367 int intel_pxp_get_readiness_status(struct intel_pxp *pxp)
368 {
369 if (!intel_pxp_is_enabled(pxp))
370 return -ENODEV;
371
372 if (HAS_ENGINE(pxp->ctrl_gt, GSC0)) {
373 if (wait_for(intel_pxp_gsccs_is_ready_for_sessions(pxp), 250))
374 return 2;
375 } else {
376 if (wait_for(pxp_component_bound(pxp), 250))
377 return 2;
378 }
379 return 1;
380 }
381
382 /*
383 * the arb session is restarted from the irq work when we receive the
384 * termination completion interrupt
385 */
intel_pxp_start(struct intel_pxp * pxp)386 int intel_pxp_start(struct intel_pxp *pxp)
387 {
388 int ret = 0;
389
390 ret = intel_pxp_get_readiness_status(pxp);
391 if (ret < 0)
392 return ret;
393 else if (ret > 1)
394 return -EIO; /* per UAPI spec, user may retry later */
395
396 mutex_lock(&pxp->arb_mutex);
397
398 ret = __pxp_global_teardown_restart(pxp);
399 if (ret)
400 goto unlock;
401
402 /* make sure the compiler doesn't optimize the double access */
403 barrier();
404
405 if (!pxp->arb_is_valid)
406 ret = -EIO;
407
408 unlock:
409 mutex_unlock(&pxp->arb_mutex);
410 return ret;
411 }
412
intel_pxp_init_hw(struct intel_pxp * pxp)413 void intel_pxp_init_hw(struct intel_pxp *pxp)
414 {
415 kcr_pxp_enable(pxp);
416 intel_pxp_irq_enable(pxp);
417 }
418
intel_pxp_fini_hw(struct intel_pxp * pxp)419 void intel_pxp_fini_hw(struct intel_pxp *pxp)
420 {
421 kcr_pxp_disable(pxp);
422 intel_pxp_irq_disable(pxp);
423 }
424
intel_pxp_key_check(struct intel_pxp * pxp,struct drm_i915_gem_object * obj,bool assign)425 int intel_pxp_key_check(struct intel_pxp *pxp,
426 struct drm_i915_gem_object *obj,
427 bool assign)
428 {
429 if (!intel_pxp_is_active(pxp))
430 return -ENODEV;
431
432 if (!i915_gem_object_is_protected(obj))
433 return -EINVAL;
434
435 GEM_BUG_ON(!pxp->key_instance);
436
437 /*
438 * If this is the first time we're using this object, it's not
439 * encrypted yet; it will be encrypted with the current key, so mark it
440 * as such. If the object is already encrypted, check instead if the
441 * used key is still valid.
442 */
443 if (!obj->pxp_key_instance && assign)
444 obj->pxp_key_instance = pxp->key_instance;
445
446 if (obj->pxp_key_instance != pxp->key_instance)
447 return -ENOEXEC;
448
449 return 0;
450 }
451
intel_pxp_invalidate(struct intel_pxp * pxp)452 void intel_pxp_invalidate(struct intel_pxp *pxp)
453 {
454 struct drm_i915_private *i915 = pxp->ctrl_gt->i915;
455 struct i915_gem_context *ctx, *cn;
456
457 /* ban all contexts marked as protected */
458 spin_lock_irq(&i915->gem.contexts.lock);
459 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
460 struct i915_gem_engines_iter it;
461 struct intel_context *ce;
462
463 if (!kref_get_unless_zero(&ctx->ref))
464 continue;
465
466 if (likely(!i915_gem_context_uses_protected_content(ctx))) {
467 i915_gem_context_put(ctx);
468 continue;
469 }
470
471 spin_unlock_irq(&i915->gem.contexts.lock);
472
473 /*
474 * By the time we get here we are either going to suspend with
475 * quiesced execution or the HW keys are already long gone and
476 * in this case it is worthless to attempt to close the context
477 * and wait for its execution. It will hang the GPU if it has
478 * not already. So, as a fast mitigation, we can ban the
479 * context as quick as we can. That might race with the
480 * execbuffer, but currently this is the best that can be done.
481 */
482 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
483 intel_context_ban(ce, NULL);
484 i915_gem_context_unlock_engines(ctx);
485
486 /*
487 * The context has been banned, no need to keep the wakeref.
488 * This is safe from races because the only other place this
489 * is touched is context_release and we're holding a ctx ref
490 */
491 if (ctx->pxp_wakeref) {
492 intel_runtime_pm_put(&i915->runtime_pm,
493 ctx->pxp_wakeref);
494 ctx->pxp_wakeref = 0;
495 }
496
497 spin_lock_irq(&i915->gem.contexts.lock);
498 list_safe_reset_next(ctx, cn, link);
499 i915_gem_context_put(ctx);
500 }
501 spin_unlock_irq(&i915->gem.contexts.lock);
502 }
503