1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_damage_helper.h>
26
27 #include "display/intel_dp.h"
28
29 #include "i915_drv.h"
30 #include "intel_atomic.h"
31 #include "intel_crtc.h"
32 #include "intel_de.h"
33 #include "intel_display_types.h"
34 #include "intel_dp_aux.h"
35 #include "intel_hdmi.h"
36 #include "intel_psr.h"
37 #include "intel_snps_phy.h"
38 #include "skl_universal_plane.h"
39
40 /**
41 * DOC: Panel Self Refresh (PSR/SRD)
42 *
43 * Since Haswell Display controller supports Panel Self-Refresh on display
44 * panels witch have a remote frame buffer (RFB) implemented according to PSR
45 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
46 * when system is idle but display is on as it eliminates display refresh
47 * request to DDR memory completely as long as the frame buffer for that
48 * display is unchanged.
49 *
50 * Panel Self Refresh must be supported by both Hardware (source) and
51 * Panel (sink).
52 *
53 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
54 * to power down the link and memory controller. For DSI panels the same idea
55 * is called "manual mode".
56 *
57 * The implementation uses the hardware-based PSR support which automatically
58 * enters/exits self-refresh mode. The hardware takes care of sending the
59 * required DP aux message and could even retrain the link (that part isn't
60 * enabled yet though). The hardware also keeps track of any frontbuffer
61 * changes to know when to exit self-refresh mode again. Unfortunately that
62 * part doesn't work too well, hence why the i915 PSR support uses the
63 * software frontbuffer tracking to make sure it doesn't miss a screen
64 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
65 * get called by the frontbuffer tracking code. Note that because of locking
66 * issues the self-refresh re-enable code is done from a work queue, which
67 * must be correctly synchronized/cancelled when shutting down the pipe."
68 *
69 * DC3CO (DC3 clock off)
70 *
71 * On top of PSR2, GEN12 adds a intermediate power savings state that turns
72 * clock off automatically during PSR2 idle state.
73 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
74 * entry/exit allows the HW to enter a low-power state even when page flipping
75 * periodically (for instance a 30fps video playback scenario).
76 *
77 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
78 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
79 * frames, if no other flip occurs and the function above is executed, DC3CO is
80 * disabled and PSR2 is configured to enter deep sleep, resetting again in case
81 * of another flip.
82 * Front buffer modifications do not trigger DC3CO activation on purpose as it
83 * would bring a lot of complexity and most of the moderns systems will only
84 * use page flips.
85 */
86
psr_global_enabled(struct intel_dp * intel_dp)87 static bool psr_global_enabled(struct intel_dp *intel_dp)
88 {
89 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
90
91 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
92 case I915_PSR_DEBUG_DEFAULT:
93 return i915->params.enable_psr;
94 case I915_PSR_DEBUG_DISABLE:
95 return false;
96 default:
97 return true;
98 }
99 }
100
psr2_global_enabled(struct intel_dp * intel_dp)101 static bool psr2_global_enabled(struct intel_dp *intel_dp)
102 {
103 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
104
105 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
106 case I915_PSR_DEBUG_DISABLE:
107 case I915_PSR_DEBUG_FORCE_PSR1:
108 return false;
109 default:
110 if (i915->params.enable_psr == 1)
111 return false;
112 return true;
113 }
114 }
115
psr_irq_control(struct intel_dp * intel_dp)116 static void psr_irq_control(struct intel_dp *intel_dp)
117 {
118 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
119 enum transcoder trans_shift;
120 i915_reg_t imr_reg;
121 u32 mask, val;
122
123 /*
124 * gen12+ has registers relative to transcoder and one per transcoder
125 * using the same bit definition: handle it as TRANSCODER_EDP to force
126 * 0 shift in bit definition
127 */
128 if (DISPLAY_VER(dev_priv) >= 12) {
129 trans_shift = 0;
130 imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
131 } else {
132 trans_shift = intel_dp->psr.transcoder;
133 imr_reg = EDP_PSR_IMR;
134 }
135
136 mask = EDP_PSR_ERROR(trans_shift);
137 if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
138 mask |= EDP_PSR_POST_EXIT(trans_shift) |
139 EDP_PSR_PRE_ENTRY(trans_shift);
140
141 /* Warning: it is masking/setting reserved bits too */
142 val = intel_de_read(dev_priv, imr_reg);
143 val &= ~EDP_PSR_TRANS_MASK(trans_shift);
144 val |= ~mask;
145 intel_de_write(dev_priv, imr_reg, val);
146 }
147
psr_event_print(struct drm_i915_private * i915,u32 val,bool psr2_enabled)148 static void psr_event_print(struct drm_i915_private *i915,
149 u32 val, bool psr2_enabled)
150 {
151 drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
152 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
153 drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
154 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
155 drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
156 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
157 drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
158 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
159 drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
160 if (val & PSR_EVENT_GRAPHICS_RESET)
161 drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
162 if (val & PSR_EVENT_PCH_INTERRUPT)
163 drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
164 if (val & PSR_EVENT_MEMORY_UP)
165 drm_dbg_kms(&i915->drm, "\tMemory up\n");
166 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
167 drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
168 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
169 drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
170 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
171 drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
172 if (val & PSR_EVENT_REGISTER_UPDATE)
173 drm_dbg_kms(&i915->drm, "\tRegister updated\n");
174 if (val & PSR_EVENT_HDCP_ENABLE)
175 drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
176 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
177 drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
178 if (val & PSR_EVENT_VBI_ENABLE)
179 drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
180 if (val & PSR_EVENT_LPSP_MODE_EXIT)
181 drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
182 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
183 drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
184 }
185
intel_psr_irq_handler(struct intel_dp * intel_dp,u32 psr_iir)186 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
187 {
188 enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
189 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
190 ktime_t time_ns = ktime_get();
191 enum transcoder trans_shift;
192 i915_reg_t imr_reg;
193
194 if (DISPLAY_VER(dev_priv) >= 12) {
195 trans_shift = 0;
196 imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
197 } else {
198 trans_shift = intel_dp->psr.transcoder;
199 imr_reg = EDP_PSR_IMR;
200 }
201
202 if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
203 intel_dp->psr.last_entry_attempt = time_ns;
204 drm_dbg_kms(&dev_priv->drm,
205 "[transcoder %s] PSR entry attempt in 2 vblanks\n",
206 transcoder_name(cpu_transcoder));
207 }
208
209 if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
210 intel_dp->psr.last_exit = time_ns;
211 drm_dbg_kms(&dev_priv->drm,
212 "[transcoder %s] PSR exit completed\n",
213 transcoder_name(cpu_transcoder));
214
215 if (DISPLAY_VER(dev_priv) >= 9) {
216 u32 val = intel_de_read(dev_priv,
217 PSR_EVENT(cpu_transcoder));
218 bool psr2_enabled = intel_dp->psr.psr2_enabled;
219
220 intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
221 val);
222 psr_event_print(dev_priv, val, psr2_enabled);
223 }
224 }
225
226 if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
227 u32 val;
228
229 drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
230 transcoder_name(cpu_transcoder));
231
232 intel_dp->psr.irq_aux_error = true;
233
234 /*
235 * If this interruption is not masked it will keep
236 * interrupting so fast that it prevents the scheduled
237 * work to run.
238 * Also after a PSR error, we don't want to arm PSR
239 * again so we don't care about unmask the interruption
240 * or unset irq_aux_error.
241 */
242 val = intel_de_read(dev_priv, imr_reg);
243 val |= EDP_PSR_ERROR(trans_shift);
244 intel_de_write(dev_priv, imr_reg, val);
245
246 schedule_work(&intel_dp->psr.work);
247 }
248 }
249
intel_dp_get_alpm_status(struct intel_dp * intel_dp)250 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
251 {
252 u8 alpm_caps = 0;
253
254 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
255 &alpm_caps) != 1)
256 return false;
257 return alpm_caps & DP_ALPM_CAP;
258 }
259
intel_dp_get_sink_sync_latency(struct intel_dp * intel_dp)260 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
261 {
262 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
263 u8 val = 8; /* assume the worst if we can't read the value */
264
265 if (drm_dp_dpcd_readb(&intel_dp->aux,
266 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
267 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
268 else
269 drm_dbg_kms(&i915->drm,
270 "Unable to get sink synchronization latency, assuming 8 frames\n");
271 return val;
272 }
273
intel_dp_get_su_granularity(struct intel_dp * intel_dp)274 static void intel_dp_get_su_granularity(struct intel_dp *intel_dp)
275 {
276 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
277 ssize_t r;
278 u16 w;
279 u8 y;
280
281 /* If sink don't have specific granularity requirements set legacy ones */
282 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) {
283 /* As PSR2 HW sends full lines, we do not care about x granularity */
284 w = 4;
285 y = 4;
286 goto exit;
287 }
288
289 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2);
290 if (r != 2)
291 drm_dbg_kms(&i915->drm,
292 "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
293 /*
294 * Spec says that if the value read is 0 the default granularity should
295 * be used instead.
296 */
297 if (r != 2 || w == 0)
298 w = 4;
299
300 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1);
301 if (r != 1) {
302 drm_dbg_kms(&i915->drm,
303 "Unable to read DP_PSR2_SU_Y_GRANULARITY\n");
304 y = 4;
305 }
306 if (y == 0)
307 y = 1;
308
309 exit:
310 intel_dp->psr.su_w_granularity = w;
311 intel_dp->psr.su_y_granularity = y;
312 }
313
intel_psr_init_dpcd(struct intel_dp * intel_dp)314 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
315 {
316 struct drm_i915_private *dev_priv =
317 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
318
319 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
320 sizeof(intel_dp->psr_dpcd));
321
322 if (!intel_dp->psr_dpcd[0])
323 return;
324 drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
325 intel_dp->psr_dpcd[0]);
326
327 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
328 drm_dbg_kms(&dev_priv->drm,
329 "PSR support not currently available for this panel\n");
330 return;
331 }
332
333 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
334 drm_dbg_kms(&dev_priv->drm,
335 "Panel lacks power state control, PSR cannot be enabled\n");
336 return;
337 }
338
339 intel_dp->psr.sink_support = true;
340 intel_dp->psr.sink_sync_latency =
341 intel_dp_get_sink_sync_latency(intel_dp);
342
343 if (DISPLAY_VER(dev_priv) >= 9 &&
344 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
345 bool y_req = intel_dp->psr_dpcd[1] &
346 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
347 bool alpm = intel_dp_get_alpm_status(intel_dp);
348
349 /*
350 * All panels that supports PSR version 03h (PSR2 +
351 * Y-coordinate) can handle Y-coordinates in VSC but we are
352 * only sure that it is going to be used when required by the
353 * panel. This way panel is capable to do selective update
354 * without a aux frame sync.
355 *
356 * To support PSR version 02h and PSR version 03h without
357 * Y-coordinate requirement panels we would need to enable
358 * GTC first.
359 */
360 intel_dp->psr.sink_psr2_support = y_req && alpm;
361 drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
362 intel_dp->psr.sink_psr2_support ? "" : "not ");
363
364 if (intel_dp->psr.sink_psr2_support) {
365 intel_dp->psr.colorimetry_support =
366 intel_dp_get_colorimetry_status(intel_dp);
367 intel_dp_get_su_granularity(intel_dp);
368 }
369 }
370 }
371
intel_psr_enable_sink(struct intel_dp * intel_dp)372 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
373 {
374 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
375 u8 dpcd_val = DP_PSR_ENABLE;
376
377 /* Enable ALPM at sink for psr2 */
378 if (intel_dp->psr.psr2_enabled) {
379 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
380 DP_ALPM_ENABLE |
381 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
382
383 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
384 } else {
385 if (intel_dp->psr.link_standby)
386 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
387
388 if (DISPLAY_VER(dev_priv) >= 8)
389 dpcd_val |= DP_PSR_CRC_VERIFICATION;
390 }
391
392 if (intel_dp->psr.req_psr2_sdp_prior_scanline)
393 dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE;
394
395 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
396
397 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
398 }
399
intel_psr1_get_tp_time(struct intel_dp * intel_dp)400 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
401 {
402 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
403 u32 val = 0;
404
405 if (DISPLAY_VER(dev_priv) >= 11)
406 val |= EDP_PSR_TP4_TIME_0US;
407
408 if (dev_priv->params.psr_safest_params) {
409 val |= EDP_PSR_TP1_TIME_2500us;
410 val |= EDP_PSR_TP2_TP3_TIME_2500us;
411 goto check_tp3_sel;
412 }
413
414 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
415 val |= EDP_PSR_TP1_TIME_0us;
416 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
417 val |= EDP_PSR_TP1_TIME_100us;
418 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
419 val |= EDP_PSR_TP1_TIME_500us;
420 else
421 val |= EDP_PSR_TP1_TIME_2500us;
422
423 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
424 val |= EDP_PSR_TP2_TP3_TIME_0us;
425 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
426 val |= EDP_PSR_TP2_TP3_TIME_100us;
427 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
428 val |= EDP_PSR_TP2_TP3_TIME_500us;
429 else
430 val |= EDP_PSR_TP2_TP3_TIME_2500us;
431
432 check_tp3_sel:
433 if (intel_dp_source_supports_tps3(dev_priv) &&
434 drm_dp_tps3_supported(intel_dp->dpcd))
435 val |= EDP_PSR_TP1_TP3_SEL;
436 else
437 val |= EDP_PSR_TP1_TP2_SEL;
438
439 return val;
440 }
441
psr_compute_idle_frames(struct intel_dp * intel_dp)442 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
443 {
444 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
445 int idle_frames;
446
447 /* Let's use 6 as the minimum to cover all known cases including the
448 * off-by-one issue that HW has in some cases.
449 */
450 idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
451 idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
452
453 if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
454 idle_frames = 0xf;
455
456 return idle_frames;
457 }
458
hsw_activate_psr1(struct intel_dp * intel_dp)459 static void hsw_activate_psr1(struct intel_dp *intel_dp)
460 {
461 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
462 u32 max_sleep_time = 0x1f;
463 u32 val = EDP_PSR_ENABLE;
464
465 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
466
467 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
468 if (IS_HASWELL(dev_priv))
469 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
470
471 if (intel_dp->psr.link_standby)
472 val |= EDP_PSR_LINK_STANDBY;
473
474 val |= intel_psr1_get_tp_time(intel_dp);
475
476 if (DISPLAY_VER(dev_priv) >= 8)
477 val |= EDP_PSR_CRC_ENABLE;
478
479 val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
480 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
481 intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
482 }
483
intel_psr2_get_tp_time(struct intel_dp * intel_dp)484 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
485 {
486 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
487 u32 val = 0;
488
489 if (dev_priv->params.psr_safest_params)
490 return EDP_PSR2_TP2_TIME_2500us;
491
492 if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
493 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
494 val |= EDP_PSR2_TP2_TIME_50us;
495 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
496 val |= EDP_PSR2_TP2_TIME_100us;
497 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
498 val |= EDP_PSR2_TP2_TIME_500us;
499 else
500 val |= EDP_PSR2_TP2_TIME_2500us;
501
502 return val;
503 }
504
hsw_activate_psr2(struct intel_dp * intel_dp)505 static void hsw_activate_psr2(struct intel_dp *intel_dp)
506 {
507 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
508 u32 val = EDP_PSR2_ENABLE;
509
510 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
511
512 if (!IS_ALDERLAKE_P(dev_priv))
513 val |= EDP_SU_TRACK_ENABLE;
514
515 if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12)
516 val |= EDP_Y_COORDINATE_ENABLE;
517
518 val |= EDP_PSR2_FRAME_BEFORE_SU(max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2));
519 val |= intel_psr2_get_tp_time(intel_dp);
520
521 /* Wa_22012278275:adl-p */
522 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_E0)) {
523 static const u8 map[] = {
524 2, /* 5 lines */
525 1, /* 6 lines */
526 0, /* 7 lines */
527 3, /* 8 lines */
528 6, /* 9 lines */
529 5, /* 10 lines */
530 4, /* 11 lines */
531 7, /* 12 lines */
532 };
533 /*
534 * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see
535 * comments bellow for more information
536 */
537 u32 tmp, lines = 7;
538
539 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
540
541 tmp = map[lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES];
542 tmp = tmp << TGL_EDP_PSR2_IO_BUFFER_WAKE_SHIFT;
543 val |= tmp;
544
545 tmp = map[lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES];
546 tmp = tmp << TGL_EDP_PSR2_FAST_WAKE_MIN_SHIFT;
547 val |= tmp;
548 } else if (DISPLAY_VER(dev_priv) >= 12) {
549 /*
550 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
551 * values from BSpec. In order to setting an optimal power
552 * consumption, lower than 4k resoluition mode needs to decrese
553 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
554 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
555 */
556 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
557 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
558 val |= TGL_EDP_PSR2_FAST_WAKE(7);
559 } else if (DISPLAY_VER(dev_priv) >= 9) {
560 val |= EDP_PSR2_IO_BUFFER_WAKE(7);
561 val |= EDP_PSR2_FAST_WAKE(7);
562 }
563
564 if (intel_dp->psr.req_psr2_sdp_prior_scanline)
565 val |= EDP_PSR2_SU_SDP_SCANLINE;
566
567 if (intel_dp->psr.psr2_sel_fetch_enabled) {
568 u32 tmp;
569
570 /* Wa_1408330847 */
571 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
572 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
573 DIS_RAM_BYPASS_PSR2_MAN_TRACK,
574 DIS_RAM_BYPASS_PSR2_MAN_TRACK);
575
576 tmp = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
577 drm_WARN_ON(&dev_priv->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE));
578 } else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
579 intel_de_write(dev_priv,
580 PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
581 }
582
583 /*
584 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
585 * recommending keep this bit unset while PSR2 is enabled.
586 */
587 intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
588
589 intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
590 }
591
592 static bool
transcoder_has_psr2(struct drm_i915_private * dev_priv,enum transcoder trans)593 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
594 {
595 if (IS_ALDERLAKE_P(dev_priv))
596 return trans == TRANSCODER_A || trans == TRANSCODER_B;
597 else if (DISPLAY_VER(dev_priv) >= 12)
598 return trans == TRANSCODER_A;
599 else
600 return trans == TRANSCODER_EDP;
601 }
602
intel_get_frame_time_us(const struct intel_crtc_state * cstate)603 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
604 {
605 if (!cstate || !cstate->hw.active)
606 return 0;
607
608 return DIV_ROUND_UP(1000 * 1000,
609 drm_mode_vrefresh(&cstate->hw.adjusted_mode));
610 }
611
psr2_program_idle_frames(struct intel_dp * intel_dp,u32 idle_frames)612 static void psr2_program_idle_frames(struct intel_dp *intel_dp,
613 u32 idle_frames)
614 {
615 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
616 u32 val;
617
618 idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT;
619 val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
620 val &= ~EDP_PSR2_IDLE_FRAME_MASK;
621 val |= idle_frames;
622 intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
623 }
624
tgl_psr2_enable_dc3co(struct intel_dp * intel_dp)625 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
626 {
627 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
628
629 psr2_program_idle_frames(intel_dp, 0);
630 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
631 }
632
tgl_psr2_disable_dc3co(struct intel_dp * intel_dp)633 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
634 {
635 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
636
637 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
638 psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
639 }
640
tgl_dc3co_disable_work(struct work_struct * work)641 static void tgl_dc3co_disable_work(struct work_struct *work)
642 {
643 struct intel_dp *intel_dp =
644 container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
645
646 mutex_lock(&intel_dp->psr.lock);
647 /* If delayed work is pending, it is not idle */
648 if (delayed_work_pending(&intel_dp->psr.dc3co_work))
649 goto unlock;
650
651 tgl_psr2_disable_dc3co(intel_dp);
652 unlock:
653 mutex_unlock(&intel_dp->psr.lock);
654 }
655
tgl_disallow_dc3co_on_psr2_exit(struct intel_dp * intel_dp)656 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
657 {
658 if (!intel_dp->psr.dc3co_exitline)
659 return;
660
661 cancel_delayed_work(&intel_dp->psr.dc3co_work);
662 /* Before PSR2 exit disallow dc3co*/
663 tgl_psr2_disable_dc3co(intel_dp);
664 }
665
666 static bool
dc3co_is_pipe_port_compatible(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)667 dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp,
668 struct intel_crtc_state *crtc_state)
669 {
670 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
671 enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
672 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
673 enum port port = dig_port->base.port;
674
675 if (IS_ALDERLAKE_P(dev_priv))
676 return pipe <= PIPE_B && port <= PORT_B;
677 else
678 return pipe == PIPE_A && port == PORT_A;
679 }
680
681 static void
tgl_dc3co_exitline_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)682 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
683 struct intel_crtc_state *crtc_state)
684 {
685 const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
686 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
687 u32 exit_scanlines;
688
689 /*
690 * FIXME: Due to the changed sequence of activating/deactivating DC3CO,
691 * disable DC3CO until the changed dc3co activating/deactivating sequence
692 * is applied. B.Specs:49196
693 */
694 return;
695
696 /*
697 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
698 * TODO: when the issue is addressed, this restriction should be removed.
699 */
700 if (crtc_state->enable_psr2_sel_fetch)
701 return;
702
703 if (!(dev_priv->dmc.allowed_dc_mask & DC_STATE_EN_DC3CO))
704 return;
705
706 if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state))
707 return;
708
709 /* Wa_16011303918:adl-p */
710 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
711 return;
712
713 /*
714 * DC3CO Exit time 200us B.Spec 49196
715 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
716 */
717 exit_scanlines =
718 intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
719
720 if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
721 return;
722
723 crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
724 }
725
intel_psr2_sel_fetch_config_valid(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)726 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
727 struct intel_crtc_state *crtc_state)
728 {
729 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
730
731 if (!dev_priv->params.enable_psr2_sel_fetch &&
732 intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
733 drm_dbg_kms(&dev_priv->drm,
734 "PSR2 sel fetch not enabled, disabled by parameter\n");
735 return false;
736 }
737
738 if (crtc_state->uapi.async_flip) {
739 drm_dbg_kms(&dev_priv->drm,
740 "PSR2 sel fetch not enabled, async flip enabled\n");
741 return false;
742 }
743
744 /* Wa_14010254185 Wa_14010103792 */
745 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
746 drm_dbg_kms(&dev_priv->drm,
747 "PSR2 sel fetch not enabled, missing the implementation of WAs\n");
748 return false;
749 }
750
751 return crtc_state->enable_psr2_sel_fetch = true;
752 }
753
psr2_granularity_check(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)754 static bool psr2_granularity_check(struct intel_dp *intel_dp,
755 struct intel_crtc_state *crtc_state)
756 {
757 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
758 const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
759 const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
760 u16 y_granularity = 0;
761
762 /* PSR2 HW only send full lines so we only need to validate the width */
763 if (crtc_hdisplay % intel_dp->psr.su_w_granularity)
764 return false;
765
766 if (crtc_vdisplay % intel_dp->psr.su_y_granularity)
767 return false;
768
769 /* HW tracking is only aligned to 4 lines */
770 if (!crtc_state->enable_psr2_sel_fetch)
771 return intel_dp->psr.su_y_granularity == 4;
772
773 /*
774 * adl_p has 1 line granularity. For other platforms with SW tracking we
775 * can adjust the y coordinates to match sink requirement if multiple of
776 * 4.
777 */
778 if (IS_ALDERLAKE_P(dev_priv))
779 y_granularity = intel_dp->psr.su_y_granularity;
780 else if (intel_dp->psr.su_y_granularity <= 2)
781 y_granularity = 4;
782 else if ((intel_dp->psr.su_y_granularity % 4) == 0)
783 y_granularity = intel_dp->psr.su_y_granularity;
784
785 if (y_granularity == 0 || crtc_vdisplay % y_granularity)
786 return false;
787
788 crtc_state->su_y_granularity = y_granularity;
789 return true;
790 }
791
_compute_psr2_sdp_prior_scanline_indication(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)792 static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp,
793 struct intel_crtc_state *crtc_state)
794 {
795 const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode;
796 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
797 u32 hblank_total, hblank_ns, req_ns;
798
799 hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start;
800 hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock);
801
802 /* From spec: (72 / number of lanes) * 1000 / symbol clock frequency MHz */
803 req_ns = (72 / crtc_state->lane_count) * 1000 / (crtc_state->port_clock / 1000);
804
805 if ((hblank_ns - req_ns) > 100)
806 return true;
807
808 if (DISPLAY_VER(dev_priv) < 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b)
809 return false;
810
811 crtc_state->req_psr2_sdp_prior_scanline = true;
812 return true;
813 }
814
intel_psr2_config_valid(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state)815 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
816 struct intel_crtc_state *crtc_state)
817 {
818 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
819 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
820 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
821 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
822
823 if (!intel_dp->psr.sink_psr2_support)
824 return false;
825
826 /* JSL and EHL only supports eDP 1.3 */
827 if (IS_JSL_EHL(dev_priv)) {
828 drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
829 return false;
830 }
831
832 /* Wa_16011181250 */
833 if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
834 IS_DG2(dev_priv)) {
835 drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n");
836 return false;
837 }
838
839 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
840 drm_dbg_kms(&dev_priv->drm, "PSR2 not completely functional in this stepping\n");
841 return false;
842 }
843
844 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
845 drm_dbg_kms(&dev_priv->drm,
846 "PSR2 not supported in transcoder %s\n",
847 transcoder_name(crtc_state->cpu_transcoder));
848 return false;
849 }
850
851 if (!psr2_global_enabled(intel_dp)) {
852 drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
853 return false;
854 }
855
856 /*
857 * DSC and PSR2 cannot be enabled simultaneously. If a requested
858 * resolution requires DSC to be enabled, priority is given to DSC
859 * over PSR2.
860 */
861 if (crtc_state->dsc.compression_enable) {
862 drm_dbg_kms(&dev_priv->drm,
863 "PSR2 cannot be enabled since DSC is enabled\n");
864 return false;
865 }
866
867 if (crtc_state->crc_enabled) {
868 drm_dbg_kms(&dev_priv->drm,
869 "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
870 return false;
871 }
872
873 if (DISPLAY_VER(dev_priv) >= 12) {
874 psr_max_h = 5120;
875 psr_max_v = 3200;
876 max_bpp = 30;
877 } else if (DISPLAY_VER(dev_priv) >= 10) {
878 psr_max_h = 4096;
879 psr_max_v = 2304;
880 max_bpp = 24;
881 } else if (DISPLAY_VER(dev_priv) == 9) {
882 psr_max_h = 3640;
883 psr_max_v = 2304;
884 max_bpp = 24;
885 }
886
887 if (crtc_state->pipe_bpp > max_bpp) {
888 drm_dbg_kms(&dev_priv->drm,
889 "PSR2 not enabled, pipe bpp %d > max supported %d\n",
890 crtc_state->pipe_bpp, max_bpp);
891 return false;
892 }
893
894 /* Wa_16011303918:adl-p */
895 if (crtc_state->vrr.enable &&
896 IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
897 drm_dbg_kms(&dev_priv->drm,
898 "PSR2 not enabled, not compatible with HW stepping + VRR\n");
899 return false;
900 }
901
902 if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) {
903 drm_dbg_kms(&dev_priv->drm,
904 "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n");
905 return false;
906 }
907
908 if (HAS_PSR2_SEL_FETCH(dev_priv)) {
909 if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
910 !HAS_PSR_HW_TRACKING(dev_priv)) {
911 drm_dbg_kms(&dev_priv->drm,
912 "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
913 return false;
914 }
915 }
916
917 /* Wa_2209313811 */
918 if (!crtc_state->enable_psr2_sel_fetch &&
919 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
920 drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n");
921 goto unsupported;
922 }
923
924 if (!psr2_granularity_check(intel_dp, crtc_state)) {
925 drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n");
926 goto unsupported;
927 }
928
929 if (!crtc_state->enable_psr2_sel_fetch &&
930 (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
931 drm_dbg_kms(&dev_priv->drm,
932 "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
933 crtc_hdisplay, crtc_vdisplay,
934 psr_max_h, psr_max_v);
935 goto unsupported;
936 }
937
938 tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
939 return true;
940
941 unsupported:
942 crtc_state->enable_psr2_sel_fetch = false;
943 return false;
944 }
945
intel_psr_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)946 void intel_psr_compute_config(struct intel_dp *intel_dp,
947 struct intel_crtc_state *crtc_state,
948 struct drm_connector_state *conn_state)
949 {
950 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
951 const struct drm_display_mode *adjusted_mode =
952 &crtc_state->hw.adjusted_mode;
953 int psr_setup_time;
954
955 /*
956 * Current PSR panels dont work reliably with VRR enabled
957 * So if VRR is enabled, do not enable PSR.
958 */
959 if (crtc_state->vrr.enable)
960 return;
961
962 if (!CAN_PSR(intel_dp))
963 return;
964
965 if (!psr_global_enabled(intel_dp)) {
966 drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
967 return;
968 }
969
970 if (intel_dp->psr.sink_not_reliable) {
971 drm_dbg_kms(&dev_priv->drm,
972 "PSR sink implementation is not reliable\n");
973 return;
974 }
975
976 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
977 drm_dbg_kms(&dev_priv->drm,
978 "PSR condition failed: Interlaced mode enabled\n");
979 return;
980 }
981
982 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
983 if (psr_setup_time < 0) {
984 drm_dbg_kms(&dev_priv->drm,
985 "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
986 intel_dp->psr_dpcd[1]);
987 return;
988 }
989
990 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
991 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
992 drm_dbg_kms(&dev_priv->drm,
993 "PSR condition failed: PSR setup time (%d us) too long\n",
994 psr_setup_time);
995 return;
996 }
997
998 crtc_state->has_psr = true;
999 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
1000
1001 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1002 intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1003 &crtc_state->psr_vsc);
1004 }
1005
intel_psr_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1006 void intel_psr_get_config(struct intel_encoder *encoder,
1007 struct intel_crtc_state *pipe_config)
1008 {
1009 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1010 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1011 struct intel_dp *intel_dp;
1012 u32 val;
1013
1014 if (!dig_port)
1015 return;
1016
1017 intel_dp = &dig_port->dp;
1018 if (!CAN_PSR(intel_dp))
1019 return;
1020
1021 mutex_lock(&intel_dp->psr.lock);
1022 if (!intel_dp->psr.enabled)
1023 goto unlock;
1024
1025 /*
1026 * Not possible to read EDP_PSR/PSR2_CTL registers as it is
1027 * enabled/disabled because of frontbuffer tracking and others.
1028 */
1029 pipe_config->has_psr = true;
1030 pipe_config->has_psr2 = intel_dp->psr.psr2_enabled;
1031 pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1032
1033 if (!intel_dp->psr.psr2_enabled)
1034 goto unlock;
1035
1036 if (HAS_PSR2_SEL_FETCH(dev_priv)) {
1037 val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
1038 if (val & PSR2_MAN_TRK_CTL_ENABLE)
1039 pipe_config->enable_psr2_sel_fetch = true;
1040 }
1041
1042 if (DISPLAY_VER(dev_priv) >= 12) {
1043 val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder));
1044 val &= EXITLINE_MASK;
1045 pipe_config->dc3co_exitline = val;
1046 }
1047 unlock:
1048 mutex_unlock(&intel_dp->psr.lock);
1049 }
1050
intel_psr_activate(struct intel_dp * intel_dp)1051 static void intel_psr_activate(struct intel_dp *intel_dp)
1052 {
1053 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1054 enum transcoder transcoder = intel_dp->psr.transcoder;
1055
1056 if (transcoder_has_psr2(dev_priv, transcoder))
1057 drm_WARN_ON(&dev_priv->drm,
1058 intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
1059
1060 drm_WARN_ON(&dev_priv->drm,
1061 intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
1062 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
1063 lockdep_assert_held(&intel_dp->psr.lock);
1064
1065 /* psr1 and psr2 are mutually exclusive.*/
1066 if (intel_dp->psr.psr2_enabled)
1067 hsw_activate_psr2(intel_dp);
1068 else
1069 hsw_activate_psr1(intel_dp);
1070
1071 intel_dp->psr.active = true;
1072 }
1073
wa_16013835468_bit_get(struct intel_dp * intel_dp)1074 static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp)
1075 {
1076 switch (intel_dp->psr.pipe) {
1077 case PIPE_A:
1078 return LATENCY_REPORTING_REMOVED_PIPE_A;
1079 case PIPE_B:
1080 return LATENCY_REPORTING_REMOVED_PIPE_B;
1081 case PIPE_C:
1082 return LATENCY_REPORTING_REMOVED_PIPE_C;
1083 default:
1084 MISSING_CASE(intel_dp->psr.pipe);
1085 return 0;
1086 }
1087 }
1088
intel_psr_enable_source(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1089 static void intel_psr_enable_source(struct intel_dp *intel_dp,
1090 const struct intel_crtc_state *crtc_state)
1091 {
1092 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1093 enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
1094 u32 mask;
1095
1096 /*
1097 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
1098 * mask LPSP to avoid dependency on other drivers that might block
1099 * runtime_pm besides preventing other hw tracking issues now we
1100 * can rely on frontbuffer tracking.
1101 */
1102 mask = EDP_PSR_DEBUG_MASK_MEMUP |
1103 EDP_PSR_DEBUG_MASK_HPD |
1104 EDP_PSR_DEBUG_MASK_LPSP |
1105 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
1106
1107 if (DISPLAY_VER(dev_priv) < 11)
1108 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
1109
1110 intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
1111 mask);
1112
1113 psr_irq_control(intel_dp);
1114
1115 if (intel_dp->psr.dc3co_exitline) {
1116 u32 val;
1117
1118 /*
1119 * TODO: if future platforms supports DC3CO in more than one
1120 * transcoder, EXITLINE will need to be unset when disabling PSR
1121 */
1122 val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
1123 val &= ~EXITLINE_MASK;
1124 val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT;
1125 val |= EXITLINE_ENABLE;
1126 intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
1127 }
1128
1129 if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
1130 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
1131 intel_dp->psr.psr2_sel_fetch_enabled ?
1132 IGNORE_PSR2_HW_TRACKING : 0);
1133
1134 if (intel_dp->psr.psr2_enabled) {
1135 if (DISPLAY_VER(dev_priv) == 9)
1136 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1137 PSR2_VSC_ENABLE_PROG_HEADER |
1138 PSR2_ADD_VERTICAL_LINE_COUNT);
1139
1140 /*
1141 * Wa_16014451276:adlp
1142 * All supported adlp panels have 1-based X granularity, this may
1143 * cause issues if non-supported panels are used.
1144 */
1145 if (IS_ALDERLAKE_P(dev_priv))
1146 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1147 ADLP_1_BASED_X_GRANULARITY);
1148
1149 /* Wa_16011168373:adl-p */
1150 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1151 intel_de_rmw(dev_priv,
1152 TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1153 TRANS_SET_CONTEXT_LATENCY_MASK,
1154 TRANS_SET_CONTEXT_LATENCY_VALUE(1));
1155
1156 /* Wa_16012604467:adlp */
1157 if (IS_ALDERLAKE_P(dev_priv))
1158 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 0,
1159 CLKGATE_DIS_MISC_DMASC_GATING_DIS);
1160
1161 /* Wa_16013835468:tgl[b0+], dg1 */
1162 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) ||
1163 IS_DG1(dev_priv)) {
1164 u16 vtotal, vblank;
1165
1166 vtotal = crtc_state->uapi.adjusted_mode.crtc_vtotal -
1167 crtc_state->uapi.adjusted_mode.crtc_vdisplay;
1168 vblank = crtc_state->uapi.adjusted_mode.crtc_vblank_end -
1169 crtc_state->uapi.adjusted_mode.crtc_vblank_start;
1170 if (vblank > vtotal)
1171 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0,
1172 wa_16013835468_bit_get(intel_dp));
1173 }
1174 }
1175 }
1176
psr_interrupt_error_check(struct intel_dp * intel_dp)1177 static bool psr_interrupt_error_check(struct intel_dp *intel_dp)
1178 {
1179 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1180 u32 val;
1181
1182 /*
1183 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1184 * will still keep the error set even after the reset done in the
1185 * irq_preinstall and irq_uninstall hooks.
1186 * And enabling in this situation cause the screen to freeze in the
1187 * first time that PSR HW tries to activate so lets keep PSR disabled
1188 * to avoid any rendering problems.
1189 */
1190 if (DISPLAY_VER(dev_priv) >= 12) {
1191 val = intel_de_read(dev_priv,
1192 TRANS_PSR_IIR(intel_dp->psr.transcoder));
1193 val &= EDP_PSR_ERROR(0);
1194 } else {
1195 val = intel_de_read(dev_priv, EDP_PSR_IIR);
1196 val &= EDP_PSR_ERROR(intel_dp->psr.transcoder);
1197 }
1198 if (val) {
1199 intel_dp->psr.sink_not_reliable = true;
1200 drm_dbg_kms(&dev_priv->drm,
1201 "PSR interruption error set, not enabling PSR\n");
1202 return false;
1203 }
1204
1205 return true;
1206 }
1207
intel_psr_enable_locked(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1208 static void intel_psr_enable_locked(struct intel_dp *intel_dp,
1209 const struct intel_crtc_state *crtc_state)
1210 {
1211 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1212 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1213 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
1214 struct intel_encoder *encoder = &dig_port->base;
1215 u32 val;
1216
1217 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
1218
1219 intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
1220 intel_dp->psr.busy_frontbuffer_bits = 0;
1221 intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
1222 intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
1223 /* DC5/DC6 requires at least 6 idle frames */
1224 val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
1225 intel_dp->psr.dc3co_exit_delay = val;
1226 intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline;
1227 intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
1228 intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1229 intel_dp->psr.req_psr2_sdp_prior_scanline =
1230 crtc_state->req_psr2_sdp_prior_scanline;
1231
1232 if (!psr_interrupt_error_check(intel_dp))
1233 return;
1234
1235 drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1236 intel_dp->psr.psr2_enabled ? "2" : "1");
1237 intel_write_dp_vsc_sdp(encoder, crtc_state, &crtc_state->psr_vsc);
1238 intel_snps_phy_update_psr_power_state(dev_priv, phy, true);
1239 intel_psr_enable_sink(intel_dp);
1240 intel_psr_enable_source(intel_dp, crtc_state);
1241 intel_dp->psr.enabled = true;
1242 intel_dp->psr.paused = false;
1243
1244 intel_psr_activate(intel_dp);
1245 }
1246
intel_psr_exit(struct intel_dp * intel_dp)1247 static void intel_psr_exit(struct intel_dp *intel_dp)
1248 {
1249 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1250 u32 val;
1251
1252 if (!intel_dp->psr.active) {
1253 if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1254 val = intel_de_read(dev_priv,
1255 EDP_PSR2_CTL(intel_dp->psr.transcoder));
1256 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1257 }
1258
1259 val = intel_de_read(dev_priv,
1260 EDP_PSR_CTL(intel_dp->psr.transcoder));
1261 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1262
1263 return;
1264 }
1265
1266 if (intel_dp->psr.psr2_enabled) {
1267 tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1268 val = intel_de_read(dev_priv,
1269 EDP_PSR2_CTL(intel_dp->psr.transcoder));
1270 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1271 val &= ~EDP_PSR2_ENABLE;
1272 intel_de_write(dev_priv,
1273 EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1274 } else {
1275 val = intel_de_read(dev_priv,
1276 EDP_PSR_CTL(intel_dp->psr.transcoder));
1277 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1278 val &= ~EDP_PSR_ENABLE;
1279 intel_de_write(dev_priv,
1280 EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1281 }
1282 intel_dp->psr.active = false;
1283 }
1284
intel_psr_wait_exit_locked(struct intel_dp * intel_dp)1285 static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp)
1286 {
1287 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1288 i915_reg_t psr_status;
1289 u32 psr_status_mask;
1290
1291 if (intel_dp->psr.psr2_enabled) {
1292 psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1293 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1294 } else {
1295 psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1296 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1297 }
1298
1299 /* Wait till PSR is idle */
1300 if (intel_de_wait_for_clear(dev_priv, psr_status,
1301 psr_status_mask, 2000))
1302 drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1303 }
1304
intel_psr_disable_locked(struct intel_dp * intel_dp)1305 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1306 {
1307 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1308 enum phy phy = intel_port_to_phy(dev_priv,
1309 dp_to_dig_port(intel_dp)->base.port);
1310
1311 lockdep_assert_held(&intel_dp->psr.lock);
1312
1313 if (!intel_dp->psr.enabled)
1314 return;
1315
1316 drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1317 intel_dp->psr.psr2_enabled ? "2" : "1");
1318
1319 intel_psr_exit(intel_dp);
1320 intel_psr_wait_exit_locked(intel_dp);
1321
1322 /* Wa_1408330847 */
1323 if (intel_dp->psr.psr2_sel_fetch_enabled &&
1324 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1325 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1326 DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1327
1328 if (intel_dp->psr.psr2_enabled) {
1329 /* Wa_16011168373:adl-p */
1330 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1331 intel_de_rmw(dev_priv,
1332 TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1333 TRANS_SET_CONTEXT_LATENCY_MASK, 0);
1334
1335 /* Wa_16012604467:adlp */
1336 if (IS_ALDERLAKE_P(dev_priv))
1337 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC,
1338 CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0);
1339
1340 /* Wa_16013835468:tgl[b0+], dg1 */
1341 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) ||
1342 IS_DG1(dev_priv))
1343 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1,
1344 wa_16013835468_bit_get(intel_dp), 0);
1345 }
1346
1347 intel_snps_phy_update_psr_power_state(dev_priv, phy, false);
1348
1349 /* Disable PSR on Sink */
1350 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1351
1352 if (intel_dp->psr.psr2_enabled)
1353 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1354
1355 intel_dp->psr.enabled = false;
1356 intel_dp->psr.psr2_enabled = false;
1357 intel_dp->psr.psr2_sel_fetch_enabled = false;
1358 intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1359 }
1360
1361 /**
1362 * intel_psr_disable - Disable PSR
1363 * @intel_dp: Intel DP
1364 * @old_crtc_state: old CRTC state
1365 *
1366 * This function needs to be called before disabling pipe.
1367 */
intel_psr_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)1368 void intel_psr_disable(struct intel_dp *intel_dp,
1369 const struct intel_crtc_state *old_crtc_state)
1370 {
1371 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1372
1373 if (!old_crtc_state->has_psr)
1374 return;
1375
1376 if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1377 return;
1378
1379 mutex_lock(&intel_dp->psr.lock);
1380
1381 intel_psr_disable_locked(intel_dp);
1382
1383 mutex_unlock(&intel_dp->psr.lock);
1384 cancel_work_sync(&intel_dp->psr.work);
1385 cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1386 }
1387
1388 /**
1389 * intel_psr_pause - Pause PSR
1390 * @intel_dp: Intel DP
1391 *
1392 * This function need to be called after enabling psr.
1393 */
intel_psr_pause(struct intel_dp * intel_dp)1394 void intel_psr_pause(struct intel_dp *intel_dp)
1395 {
1396 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1397 struct intel_psr *psr = &intel_dp->psr;
1398
1399 if (!CAN_PSR(intel_dp))
1400 return;
1401
1402 mutex_lock(&psr->lock);
1403
1404 if (!psr->enabled) {
1405 mutex_unlock(&psr->lock);
1406 return;
1407 }
1408
1409 /* If we ever hit this, we will need to add refcount to pause/resume */
1410 drm_WARN_ON(&dev_priv->drm, psr->paused);
1411
1412 intel_psr_exit(intel_dp);
1413 intel_psr_wait_exit_locked(intel_dp);
1414 psr->paused = true;
1415
1416 mutex_unlock(&psr->lock);
1417
1418 cancel_work_sync(&psr->work);
1419 cancel_delayed_work_sync(&psr->dc3co_work);
1420 }
1421
1422 /**
1423 * intel_psr_resume - Resume PSR
1424 * @intel_dp: Intel DP
1425 *
1426 * This function need to be called after pausing psr.
1427 */
intel_psr_resume(struct intel_dp * intel_dp)1428 void intel_psr_resume(struct intel_dp *intel_dp)
1429 {
1430 struct intel_psr *psr = &intel_dp->psr;
1431
1432 if (!CAN_PSR(intel_dp))
1433 return;
1434
1435 mutex_lock(&psr->lock);
1436
1437 if (!psr->paused)
1438 goto unlock;
1439
1440 psr->paused = false;
1441 intel_psr_activate(intel_dp);
1442
1443 unlock:
1444 mutex_unlock(&psr->lock);
1445 }
1446
man_trk_ctl_enable_bit_get(struct drm_i915_private * dev_priv)1447 static u32 man_trk_ctl_enable_bit_get(struct drm_i915_private *dev_priv)
1448 {
1449 return IS_ALDERLAKE_P(dev_priv) ? 0 : PSR2_MAN_TRK_CTL_ENABLE;
1450 }
1451
man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private * dev_priv)1452 static u32 man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private *dev_priv)
1453 {
1454 return IS_ALDERLAKE_P(dev_priv) ?
1455 ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME :
1456 PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1457 }
1458
man_trk_ctl_partial_frame_bit_get(struct drm_i915_private * dev_priv)1459 static u32 man_trk_ctl_partial_frame_bit_get(struct drm_i915_private *dev_priv)
1460 {
1461 return IS_ALDERLAKE_P(dev_priv) ?
1462 ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE :
1463 PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1464 }
1465
man_trk_ctl_continuos_full_frame(struct drm_i915_private * dev_priv)1466 static u32 man_trk_ctl_continuos_full_frame(struct drm_i915_private *dev_priv)
1467 {
1468 return IS_ALDERLAKE_P(dev_priv) ?
1469 ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME :
1470 PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME;
1471 }
1472
psr_force_hw_tracking_exit(struct intel_dp * intel_dp)1473 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1474 {
1475 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1476
1477 if (intel_dp->psr.psr2_sel_fetch_enabled)
1478 intel_de_write(dev_priv,
1479 PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
1480 man_trk_ctl_enable_bit_get(dev_priv) |
1481 man_trk_ctl_partial_frame_bit_get(dev_priv) |
1482 man_trk_ctl_single_full_frame_bit_get(dev_priv));
1483
1484 /*
1485 * Display WA #0884: skl+
1486 * This documented WA for bxt can be safely applied
1487 * broadly so we can force HW tracking to exit PSR
1488 * instead of disabling and re-enabling.
1489 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1490 * but it makes more sense write to the current active
1491 * pipe.
1492 *
1493 * This workaround do not exist for platforms with display 10 or newer
1494 * but testing proved that it works for up display 13, for newer
1495 * than that testing will be needed.
1496 */
1497 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1498 }
1499
intel_psr2_disable_plane_sel_fetch(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)1500 void intel_psr2_disable_plane_sel_fetch(struct intel_plane *plane,
1501 const struct intel_crtc_state *crtc_state)
1502 {
1503 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1504 enum pipe pipe = plane->pipe;
1505
1506 if (!crtc_state->enable_psr2_sel_fetch)
1507 return;
1508
1509 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 0);
1510 }
1511
intel_psr2_program_plane_sel_fetch(struct intel_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int color_plane)1512 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1513 const struct intel_crtc_state *crtc_state,
1514 const struct intel_plane_state *plane_state,
1515 int color_plane)
1516 {
1517 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1518 enum pipe pipe = plane->pipe;
1519 const struct drm_rect *clip;
1520 u32 val;
1521 int x, y;
1522
1523 if (!crtc_state->enable_psr2_sel_fetch)
1524 return;
1525
1526 if (plane->id == PLANE_CURSOR) {
1527 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1528 plane_state->ctl);
1529 return;
1530 }
1531
1532 clip = &plane_state->psr2_sel_fetch_area;
1533
1534 val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1535 val |= plane_state->uapi.dst.x1;
1536 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1537
1538 x = plane_state->view.color_plane[color_plane].x;
1539
1540 /*
1541 * From Bspec: UV surface Start Y Position = half of Y plane Y
1542 * start position.
1543 */
1544 if (!color_plane)
1545 y = plane_state->view.color_plane[color_plane].y + clip->y1;
1546 else
1547 y = plane_state->view.color_plane[color_plane].y + clip->y1 / 2;
1548
1549 val = y << 16 | x;
1550
1551 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1552 val);
1553
1554 /* Sizes are 0 based */
1555 val = (drm_rect_height(clip) - 1) << 16;
1556 val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1557 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1558
1559 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1560 PLANE_SEL_FETCH_CTL_ENABLE);
1561 }
1562
intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state * crtc_state)1563 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1564 {
1565 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1566 struct intel_encoder *encoder;
1567
1568 if (!crtc_state->enable_psr2_sel_fetch)
1569 return;
1570
1571 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1572 crtc_state->uapi.encoder_mask) {
1573 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1574
1575 lockdep_assert_held(&intel_dp->psr.lock);
1576 if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
1577 return;
1578 break;
1579 }
1580
1581 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1582 crtc_state->psr2_man_track_ctl);
1583 }
1584
psr2_man_trk_ctl_calc(struct intel_crtc_state * crtc_state,struct drm_rect * clip,bool full_update)1585 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1586 struct drm_rect *clip, bool full_update)
1587 {
1588 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1589 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1590 u32 val = man_trk_ctl_enable_bit_get(dev_priv);
1591
1592 /* SF partial frame enable has to be set even on full update */
1593 val |= man_trk_ctl_partial_frame_bit_get(dev_priv);
1594
1595 if (full_update) {
1596 /*
1597 * Not applying Wa_14014971508:adlp as we do not support the
1598 * feature that requires this workaround.
1599 */
1600 val |= man_trk_ctl_single_full_frame_bit_get(dev_priv);
1601 goto exit;
1602 }
1603
1604 if (clip->y1 == -1)
1605 goto exit;
1606
1607 if (IS_ALDERLAKE_P(dev_priv)) {
1608 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1);
1609 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 - 1);
1610 } else {
1611 drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1612
1613 val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1614 val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1615 }
1616 exit:
1617 crtc_state->psr2_man_track_ctl = val;
1618 }
1619
clip_area_update(struct drm_rect * overlap_damage_area,struct drm_rect * damage_area)1620 static void clip_area_update(struct drm_rect *overlap_damage_area,
1621 struct drm_rect *damage_area)
1622 {
1623 if (overlap_damage_area->y1 == -1) {
1624 overlap_damage_area->y1 = damage_area->y1;
1625 overlap_damage_area->y2 = damage_area->y2;
1626 return;
1627 }
1628
1629 if (damage_area->y1 < overlap_damage_area->y1)
1630 overlap_damage_area->y1 = damage_area->y1;
1631
1632 if (damage_area->y2 > overlap_damage_area->y2)
1633 overlap_damage_area->y2 = damage_area->y2;
1634 }
1635
intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state * crtc_state,struct drm_rect * pipe_clip)1636 static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state,
1637 struct drm_rect *pipe_clip)
1638 {
1639 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1640 const u16 y_alignment = crtc_state->su_y_granularity;
1641
1642 pipe_clip->y1 -= pipe_clip->y1 % y_alignment;
1643 if (pipe_clip->y2 % y_alignment)
1644 pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment;
1645
1646 if (IS_ALDERLAKE_P(dev_priv) && crtc_state->dsc.compression_enable)
1647 drm_warn(&dev_priv->drm, "Missing PSR2 sel fetch alignment with DSC\n");
1648 }
1649
1650 /*
1651 * TODO: Not clear how to handle planes with negative position,
1652 * also planes are not updated if they have a negative X
1653 * position so for now doing a full update in this cases
1654 *
1655 * Plane scaling and rotation is not supported by selective fetch and both
1656 * properties can change without a modeset, so need to be check at every
1657 * atomic commmit.
1658 */
psr2_sel_fetch_plane_state_supported(const struct intel_plane_state * plane_state)1659 static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state)
1660 {
1661 if (plane_state->uapi.dst.y1 < 0 ||
1662 plane_state->uapi.dst.x1 < 0 ||
1663 plane_state->scaler_id >= 0 ||
1664 plane_state->uapi.rotation != DRM_MODE_ROTATE_0)
1665 return false;
1666
1667 return true;
1668 }
1669
1670 /*
1671 * Check for pipe properties that is not supported by selective fetch.
1672 *
1673 * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed
1674 * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch
1675 * enabled and going to the full update path.
1676 */
psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state * crtc_state)1677 static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state)
1678 {
1679 if (crtc_state->scaler_state.scaler_id >= 0)
1680 return false;
1681
1682 return true;
1683 }
1684
intel_psr2_sel_fetch_update(struct intel_atomic_state * state,struct intel_crtc * crtc)1685 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1686 struct intel_crtc *crtc)
1687 {
1688 struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1689 struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1690 struct intel_plane_state *new_plane_state, *old_plane_state;
1691 struct intel_plane *plane;
1692 bool full_update = false;
1693 int i, ret;
1694
1695 if (!crtc_state->enable_psr2_sel_fetch)
1696 return 0;
1697
1698 if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) {
1699 full_update = true;
1700 goto skip_sel_fetch_set_loop;
1701 }
1702
1703 /*
1704 * Calculate minimal selective fetch area of each plane and calculate
1705 * the pipe damaged area.
1706 * In the next loop the plane selective fetch area will actually be set
1707 * using whole pipe damaged area.
1708 */
1709 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1710 new_plane_state, i) {
1711 struct drm_rect src, damaged_area = { .y1 = -1 };
1712 struct drm_atomic_helper_damage_iter iter;
1713 struct drm_rect clip;
1714
1715 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1716 continue;
1717
1718 if (!new_plane_state->uapi.visible &&
1719 !old_plane_state->uapi.visible)
1720 continue;
1721
1722 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1723 full_update = true;
1724 break;
1725 }
1726
1727 /*
1728 * If visibility or plane moved, mark the whole plane area as
1729 * damaged as it needs to be complete redraw in the new and old
1730 * position.
1731 */
1732 if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1733 !drm_rect_equals(&new_plane_state->uapi.dst,
1734 &old_plane_state->uapi.dst)) {
1735 if (old_plane_state->uapi.visible) {
1736 damaged_area.y1 = old_plane_state->uapi.dst.y1;
1737 damaged_area.y2 = old_plane_state->uapi.dst.y2;
1738 clip_area_update(&pipe_clip, &damaged_area);
1739 }
1740
1741 if (new_plane_state->uapi.visible) {
1742 damaged_area.y1 = new_plane_state->uapi.dst.y1;
1743 damaged_area.y2 = new_plane_state->uapi.dst.y2;
1744 clip_area_update(&pipe_clip, &damaged_area);
1745 }
1746 continue;
1747 } else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) {
1748 /* If alpha changed mark the whole plane area as damaged */
1749 damaged_area.y1 = new_plane_state->uapi.dst.y1;
1750 damaged_area.y2 = new_plane_state->uapi.dst.y2;
1751 clip_area_update(&pipe_clip, &damaged_area);
1752 continue;
1753 }
1754
1755 drm_rect_fp_to_int(&src, &new_plane_state->uapi.src);
1756
1757 drm_atomic_helper_damage_iter_init(&iter,
1758 &old_plane_state->uapi,
1759 &new_plane_state->uapi);
1760 drm_atomic_for_each_plane_damage(&iter, &clip) {
1761 if (drm_rect_intersect(&clip, &src))
1762 clip_area_update(&damaged_area, &clip);
1763 }
1764
1765 if (damaged_area.y1 == -1)
1766 continue;
1767
1768 damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1769 damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1770 clip_area_update(&pipe_clip, &damaged_area);
1771 }
1772
1773 if (full_update)
1774 goto skip_sel_fetch_set_loop;
1775
1776 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1777 if (ret)
1778 return ret;
1779
1780 intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip);
1781
1782 /*
1783 * Now that we have the pipe damaged area check if it intersect with
1784 * every plane, if it does set the plane selective fetch area.
1785 */
1786 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1787 new_plane_state, i) {
1788 struct drm_rect *sel_fetch_area, inter;
1789 struct intel_plane *linked = new_plane_state->planar_linked_plane;
1790
1791 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1792 !new_plane_state->uapi.visible)
1793 continue;
1794
1795 inter = pipe_clip;
1796 if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1797 continue;
1798
1799 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1800 full_update = true;
1801 break;
1802 }
1803
1804 sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1805 sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1806 sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1807 crtc_state->update_planes |= BIT(plane->id);
1808
1809 /*
1810 * Sel_fetch_area is calculated for UV plane. Use
1811 * same area for Y plane as well.
1812 */
1813 if (linked) {
1814 struct intel_plane_state *linked_new_plane_state;
1815 struct drm_rect *linked_sel_fetch_area;
1816
1817 linked_new_plane_state = intel_atomic_get_plane_state(state, linked);
1818 if (IS_ERR(linked_new_plane_state))
1819 return PTR_ERR(linked_new_plane_state);
1820
1821 linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area;
1822 linked_sel_fetch_area->y1 = sel_fetch_area->y1;
1823 linked_sel_fetch_area->y2 = sel_fetch_area->y2;
1824 crtc_state->update_planes |= BIT(linked->id);
1825 }
1826 }
1827
1828 skip_sel_fetch_set_loop:
1829 psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1830 return 0;
1831 }
1832
intel_psr_pre_plane_update(struct intel_atomic_state * state,struct intel_crtc * crtc)1833 void intel_psr_pre_plane_update(struct intel_atomic_state *state,
1834 struct intel_crtc *crtc)
1835 {
1836 struct drm_i915_private *i915 = to_i915(state->base.dev);
1837 const struct intel_crtc_state *crtc_state =
1838 intel_atomic_get_new_crtc_state(state, crtc);
1839 struct intel_encoder *encoder;
1840
1841 if (!HAS_PSR(i915))
1842 return;
1843
1844 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1845 crtc_state->uapi.encoder_mask) {
1846 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1847 struct intel_psr *psr = &intel_dp->psr;
1848 bool needs_to_disable = false;
1849
1850 mutex_lock(&psr->lock);
1851
1852 /*
1853 * Reasons to disable:
1854 * - PSR disabled in new state
1855 * - All planes will go inactive
1856 * - Changing between PSR versions
1857 */
1858 needs_to_disable |= intel_crtc_needs_modeset(crtc_state);
1859 needs_to_disable |= !crtc_state->has_psr;
1860 needs_to_disable |= !crtc_state->active_planes;
1861 needs_to_disable |= crtc_state->has_psr2 != psr->psr2_enabled;
1862
1863 if (psr->enabled && needs_to_disable)
1864 intel_psr_disable_locked(intel_dp);
1865
1866 mutex_unlock(&psr->lock);
1867 }
1868 }
1869
_intel_psr_post_plane_update(const struct intel_atomic_state * state,const struct intel_crtc_state * crtc_state)1870 static void _intel_psr_post_plane_update(const struct intel_atomic_state *state,
1871 const struct intel_crtc_state *crtc_state)
1872 {
1873 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1874 struct intel_encoder *encoder;
1875
1876 if (!crtc_state->has_psr)
1877 return;
1878
1879 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1880 crtc_state->uapi.encoder_mask) {
1881 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1882 struct intel_psr *psr = &intel_dp->psr;
1883
1884 mutex_lock(&psr->lock);
1885
1886 if (psr->sink_not_reliable)
1887 goto exit;
1888
1889 drm_WARN_ON(&dev_priv->drm, psr->enabled && !crtc_state->active_planes);
1890
1891 /* Only enable if there is active planes */
1892 if (!psr->enabled && crtc_state->active_planes)
1893 intel_psr_enable_locked(intel_dp, crtc_state);
1894
1895 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1896 if (crtc_state->crc_enabled && psr->enabled)
1897 psr_force_hw_tracking_exit(intel_dp);
1898
1899 exit:
1900 mutex_unlock(&psr->lock);
1901 }
1902 }
1903
intel_psr_post_plane_update(const struct intel_atomic_state * state)1904 void intel_psr_post_plane_update(const struct intel_atomic_state *state)
1905 {
1906 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1907 struct intel_crtc_state *crtc_state;
1908 struct intel_crtc *crtc;
1909 int i;
1910
1911 if (!HAS_PSR(dev_priv))
1912 return;
1913
1914 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
1915 _intel_psr_post_plane_update(state, crtc_state);
1916 }
1917
_psr2_ready_for_pipe_update_locked(struct intel_dp * intel_dp)1918 static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1919 {
1920 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1921
1922 /*
1923 * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough.
1924 * As all higher states has bit 4 of PSR2 state set we can just wait for
1925 * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared.
1926 */
1927 return intel_de_wait_for_clear(dev_priv,
1928 EDP_PSR2_STATUS(intel_dp->psr.transcoder),
1929 EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50);
1930 }
1931
_psr1_ready_for_pipe_update_locked(struct intel_dp * intel_dp)1932 static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1933 {
1934 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1935
1936 /*
1937 * From bspec: Panel Self Refresh (BDW+)
1938 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1939 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1940 * defensive enough to cover everything.
1941 */
1942 return intel_de_wait_for_clear(dev_priv,
1943 EDP_PSR_STATUS(intel_dp->psr.transcoder),
1944 EDP_PSR_STATUS_STATE_MASK, 50);
1945 }
1946
1947 /**
1948 * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update
1949 * @new_crtc_state: new CRTC state
1950 *
1951 * This function is expected to be called from pipe_update_start() where it is
1952 * not expected to race with PSR enable or disable.
1953 */
intel_psr_wait_for_idle_locked(const struct intel_crtc_state * new_crtc_state)1954 void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state)
1955 {
1956 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
1957 struct intel_encoder *encoder;
1958
1959 if (!new_crtc_state->has_psr)
1960 return;
1961
1962 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1963 new_crtc_state->uapi.encoder_mask) {
1964 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1965 int ret;
1966
1967 lockdep_assert_held(&intel_dp->psr.lock);
1968
1969 if (!intel_dp->psr.enabled)
1970 continue;
1971
1972 if (intel_dp->psr.psr2_enabled)
1973 ret = _psr2_ready_for_pipe_update_locked(intel_dp);
1974 else
1975 ret = _psr1_ready_for_pipe_update_locked(intel_dp);
1976
1977 if (ret)
1978 drm_err(&dev_priv->drm, "PSR wait timed out, atomic update may fail\n");
1979 }
1980 }
1981
__psr_wait_for_idle_locked(struct intel_dp * intel_dp)1982 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
1983 {
1984 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1985 i915_reg_t reg;
1986 u32 mask;
1987 int err;
1988
1989 if (!intel_dp->psr.enabled)
1990 return false;
1991
1992 if (intel_dp->psr.psr2_enabled) {
1993 reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1994 mask = EDP_PSR2_STATUS_STATE_MASK;
1995 } else {
1996 reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1997 mask = EDP_PSR_STATUS_STATE_MASK;
1998 }
1999
2000 mutex_unlock(&intel_dp->psr.lock);
2001
2002 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
2003 if (err)
2004 drm_err(&dev_priv->drm,
2005 "Timed out waiting for PSR Idle for re-enable\n");
2006
2007 /* After the unlocked wait, verify that PSR is still wanted! */
2008 mutex_lock(&intel_dp->psr.lock);
2009 return err == 0 && intel_dp->psr.enabled;
2010 }
2011
intel_psr_fastset_force(struct drm_i915_private * dev_priv)2012 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
2013 {
2014 struct drm_connector_list_iter conn_iter;
2015 struct drm_device *dev = &dev_priv->drm;
2016 struct drm_modeset_acquire_ctx ctx;
2017 struct drm_atomic_state *state;
2018 struct drm_connector *conn;
2019 int err = 0;
2020
2021 state = drm_atomic_state_alloc(dev);
2022 if (!state)
2023 return -ENOMEM;
2024
2025 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2026 state->acquire_ctx = &ctx;
2027
2028 retry:
2029
2030 drm_connector_list_iter_begin(dev, &conn_iter);
2031 drm_for_each_connector_iter(conn, &conn_iter) {
2032 struct drm_connector_state *conn_state;
2033 struct drm_crtc_state *crtc_state;
2034
2035 if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
2036 continue;
2037
2038 conn_state = drm_atomic_get_connector_state(state, conn);
2039 if (IS_ERR(conn_state)) {
2040 err = PTR_ERR(conn_state);
2041 break;
2042 }
2043
2044 if (!conn_state->crtc)
2045 continue;
2046
2047 crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
2048 if (IS_ERR(crtc_state)) {
2049 err = PTR_ERR(crtc_state);
2050 break;
2051 }
2052
2053 /* Mark mode as changed to trigger a pipe->update() */
2054 crtc_state->mode_changed = true;
2055 }
2056 drm_connector_list_iter_end(&conn_iter);
2057
2058 if (err == 0)
2059 err = drm_atomic_commit(state);
2060
2061 if (err == -EDEADLK) {
2062 drm_atomic_state_clear(state);
2063 err = drm_modeset_backoff(&ctx);
2064 if (!err)
2065 goto retry;
2066 }
2067
2068 drm_modeset_drop_locks(&ctx);
2069 drm_modeset_acquire_fini(&ctx);
2070 drm_atomic_state_put(state);
2071
2072 return err;
2073 }
2074
intel_psr_debug_set(struct intel_dp * intel_dp,u64 val)2075 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
2076 {
2077 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2078 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
2079 u32 old_mode;
2080 int ret;
2081
2082 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
2083 mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
2084 drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
2085 return -EINVAL;
2086 }
2087
2088 ret = mutex_lock_interruptible(&intel_dp->psr.lock);
2089 if (ret)
2090 return ret;
2091
2092 old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
2093 intel_dp->psr.debug = val;
2094
2095 /*
2096 * Do it right away if it's already enabled, otherwise it will be done
2097 * when enabling the source.
2098 */
2099 if (intel_dp->psr.enabled)
2100 psr_irq_control(intel_dp);
2101
2102 mutex_unlock(&intel_dp->psr.lock);
2103
2104 if (old_mode != mode)
2105 ret = intel_psr_fastset_force(dev_priv);
2106
2107 return ret;
2108 }
2109
intel_psr_handle_irq(struct intel_dp * intel_dp)2110 static void intel_psr_handle_irq(struct intel_dp *intel_dp)
2111 {
2112 struct intel_psr *psr = &intel_dp->psr;
2113
2114 intel_psr_disable_locked(intel_dp);
2115 psr->sink_not_reliable = true;
2116 /* let's make sure that sink is awaken */
2117 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
2118 }
2119
intel_psr_work(struct work_struct * work)2120 static void intel_psr_work(struct work_struct *work)
2121 {
2122 struct intel_dp *intel_dp =
2123 container_of(work, typeof(*intel_dp), psr.work);
2124
2125 mutex_lock(&intel_dp->psr.lock);
2126
2127 if (!intel_dp->psr.enabled)
2128 goto unlock;
2129
2130 if (READ_ONCE(intel_dp->psr.irq_aux_error))
2131 intel_psr_handle_irq(intel_dp);
2132
2133 /*
2134 * We have to make sure PSR is ready for re-enable
2135 * otherwise it keeps disabled until next full enable/disable cycle.
2136 * PSR might take some time to get fully disabled
2137 * and be ready for re-enable.
2138 */
2139 if (!__psr_wait_for_idle_locked(intel_dp))
2140 goto unlock;
2141
2142 /*
2143 * The delayed work can race with an invalidate hence we need to
2144 * recheck. Since psr_flush first clears this and then reschedules we
2145 * won't ever miss a flush when bailing out here.
2146 */
2147 if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
2148 goto unlock;
2149
2150 intel_psr_activate(intel_dp);
2151 unlock:
2152 mutex_unlock(&intel_dp->psr.lock);
2153 }
2154
_psr_invalidate_handle(struct intel_dp * intel_dp)2155 static void _psr_invalidate_handle(struct intel_dp *intel_dp)
2156 {
2157 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2158
2159 if (intel_dp->psr.psr2_sel_fetch_enabled) {
2160 u32 val;
2161
2162 if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
2163 return;
2164
2165 val = man_trk_ctl_enable_bit_get(dev_priv) |
2166 man_trk_ctl_partial_frame_bit_get(dev_priv) |
2167 man_trk_ctl_continuos_full_frame(dev_priv);
2168 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), val);
2169 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2170 intel_dp->psr.psr2_sel_fetch_cff_enabled = true;
2171 } else {
2172 intel_psr_exit(intel_dp);
2173 }
2174 }
2175
2176 /**
2177 * intel_psr_invalidate - Invalidade PSR
2178 * @dev_priv: i915 device
2179 * @frontbuffer_bits: frontbuffer plane tracking bits
2180 * @origin: which operation caused the invalidate
2181 *
2182 * Since the hardware frontbuffer tracking has gaps we need to integrate
2183 * with the software frontbuffer tracking. This function gets called every
2184 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
2185 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
2186 *
2187 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
2188 */
intel_psr_invalidate(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)2189 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
2190 unsigned frontbuffer_bits, enum fb_op_origin origin)
2191 {
2192 struct intel_encoder *encoder;
2193
2194 if (origin == ORIGIN_FLIP)
2195 return;
2196
2197 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2198 unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2199 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2200
2201 mutex_lock(&intel_dp->psr.lock);
2202 if (!intel_dp->psr.enabled) {
2203 mutex_unlock(&intel_dp->psr.lock);
2204 continue;
2205 }
2206
2207 pipe_frontbuffer_bits &=
2208 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2209 intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
2210
2211 if (pipe_frontbuffer_bits)
2212 _psr_invalidate_handle(intel_dp);
2213
2214 mutex_unlock(&intel_dp->psr.lock);
2215 }
2216 }
2217 /*
2218 * When we will be completely rely on PSR2 S/W tracking in future,
2219 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
2220 * event also therefore tgl_dc3co_flush_locked() require to be changed
2221 * accordingly in future.
2222 */
2223 static void
tgl_dc3co_flush_locked(struct intel_dp * intel_dp,unsigned int frontbuffer_bits,enum fb_op_origin origin)2224 tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
2225 enum fb_op_origin origin)
2226 {
2227 if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.psr2_enabled ||
2228 !intel_dp->psr.active)
2229 return;
2230
2231 /*
2232 * At every frontbuffer flush flip event modified delay of delayed work,
2233 * when delayed work schedules that means display has been idle.
2234 */
2235 if (!(frontbuffer_bits &
2236 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
2237 return;
2238
2239 tgl_psr2_enable_dc3co(intel_dp);
2240 mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
2241 intel_dp->psr.dc3co_exit_delay);
2242 }
2243
_psr_flush_handle(struct intel_dp * intel_dp)2244 static void _psr_flush_handle(struct intel_dp *intel_dp)
2245 {
2246 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2247
2248 if (intel_dp->psr.psr2_sel_fetch_enabled) {
2249 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
2250 /* can we turn CFF off? */
2251 if (intel_dp->psr.busy_frontbuffer_bits == 0) {
2252 u32 val = man_trk_ctl_enable_bit_get(dev_priv) |
2253 man_trk_ctl_partial_frame_bit_get(dev_priv) |
2254 man_trk_ctl_single_full_frame_bit_get(dev_priv);
2255
2256 /*
2257 * turn continuous full frame off and do a single
2258 * full frame
2259 */
2260 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
2261 val);
2262 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2263 intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
2264 }
2265 } else {
2266 /*
2267 * continuous full frame is disabled, only a single full
2268 * frame is required
2269 */
2270 psr_force_hw_tracking_exit(intel_dp);
2271 }
2272 } else {
2273 psr_force_hw_tracking_exit(intel_dp);
2274
2275 if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
2276 schedule_work(&intel_dp->psr.work);
2277 }
2278 }
2279
2280 /**
2281 * intel_psr_flush - Flush PSR
2282 * @dev_priv: i915 device
2283 * @frontbuffer_bits: frontbuffer plane tracking bits
2284 * @origin: which operation caused the flush
2285 *
2286 * Since the hardware frontbuffer tracking has gaps we need to integrate
2287 * with the software frontbuffer tracking. This function gets called every
2288 * time frontbuffer rendering has completed and flushed out to memory. PSR
2289 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
2290 *
2291 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
2292 */
intel_psr_flush(struct drm_i915_private * dev_priv,unsigned frontbuffer_bits,enum fb_op_origin origin)2293 void intel_psr_flush(struct drm_i915_private *dev_priv,
2294 unsigned frontbuffer_bits, enum fb_op_origin origin)
2295 {
2296 struct intel_encoder *encoder;
2297
2298 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2299 unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2300 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2301
2302 mutex_lock(&intel_dp->psr.lock);
2303 if (!intel_dp->psr.enabled) {
2304 mutex_unlock(&intel_dp->psr.lock);
2305 continue;
2306 }
2307
2308 pipe_frontbuffer_bits &=
2309 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2310 intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
2311
2312 /*
2313 * If the PSR is paused by an explicit intel_psr_paused() call,
2314 * we have to ensure that the PSR is not activated until
2315 * intel_psr_resume() is called.
2316 */
2317 if (intel_dp->psr.paused)
2318 goto unlock;
2319
2320 if (origin == ORIGIN_FLIP ||
2321 (origin == ORIGIN_CURSOR_UPDATE &&
2322 !intel_dp->psr.psr2_sel_fetch_enabled)) {
2323 tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin);
2324 goto unlock;
2325 }
2326
2327 if (pipe_frontbuffer_bits == 0)
2328 goto unlock;
2329
2330 /* By definition flush = invalidate + flush */
2331 _psr_flush_handle(intel_dp);
2332 unlock:
2333 mutex_unlock(&intel_dp->psr.lock);
2334 }
2335 }
2336
2337 /**
2338 * intel_psr_init - Init basic PSR work and mutex.
2339 * @intel_dp: Intel DP
2340 *
2341 * This function is called after the initializing connector.
2342 * (the initializing of connector treats the handling of connector capabilities)
2343 * And it initializes basic PSR stuff for each DP Encoder.
2344 */
intel_psr_init(struct intel_dp * intel_dp)2345 void intel_psr_init(struct intel_dp *intel_dp)
2346 {
2347 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2348 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2349
2350 if (!HAS_PSR(dev_priv))
2351 return;
2352
2353 /*
2354 * HSW spec explicitly says PSR is tied to port A.
2355 * BDW+ platforms have a instance of PSR registers per transcoder but
2356 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
2357 * than eDP one.
2358 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
2359 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
2360 * But GEN12 supports a instance of PSR registers per transcoder.
2361 */
2362 if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) {
2363 drm_dbg_kms(&dev_priv->drm,
2364 "PSR condition failed: Port not supported\n");
2365 return;
2366 }
2367
2368 intel_dp->psr.source_support = true;
2369
2370 if (dev_priv->params.enable_psr == -1)
2371 if (!dev_priv->vbt.psr.enable)
2372 dev_priv->params.enable_psr = 0;
2373
2374 /* Set link_standby x link_off defaults */
2375 if (DISPLAY_VER(dev_priv) < 12)
2376 /* For new platforms up to TGL let's respect VBT back again */
2377 intel_dp->psr.link_standby = dev_priv->vbt.psr.full_link;
2378
2379 INIT_WORK(&intel_dp->psr.work, intel_psr_work);
2380 INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
2381 mutex_init(&intel_dp->psr.lock);
2382 }
2383
psr_get_status_and_error_status(struct intel_dp * intel_dp,u8 * status,u8 * error_status)2384 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
2385 u8 *status, u8 *error_status)
2386 {
2387 struct drm_dp_aux *aux = &intel_dp->aux;
2388 int ret;
2389
2390 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
2391 if (ret != 1)
2392 return ret;
2393
2394 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
2395 if (ret != 1)
2396 return ret;
2397
2398 *status = *status & DP_PSR_SINK_STATE_MASK;
2399
2400 return 0;
2401 }
2402
psr_alpm_check(struct intel_dp * intel_dp)2403 static void psr_alpm_check(struct intel_dp *intel_dp)
2404 {
2405 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2406 struct drm_dp_aux *aux = &intel_dp->aux;
2407 struct intel_psr *psr = &intel_dp->psr;
2408 u8 val;
2409 int r;
2410
2411 if (!psr->psr2_enabled)
2412 return;
2413
2414 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
2415 if (r != 1) {
2416 drm_err(&dev_priv->drm, "Error reading ALPM status\n");
2417 return;
2418 }
2419
2420 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
2421 intel_psr_disable_locked(intel_dp);
2422 psr->sink_not_reliable = true;
2423 drm_dbg_kms(&dev_priv->drm,
2424 "ALPM lock timeout error, disabling PSR\n");
2425
2426 /* Clearing error */
2427 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
2428 }
2429 }
2430
psr_capability_changed_check(struct intel_dp * intel_dp)2431 static void psr_capability_changed_check(struct intel_dp *intel_dp)
2432 {
2433 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2434 struct intel_psr *psr = &intel_dp->psr;
2435 u8 val;
2436 int r;
2437
2438 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
2439 if (r != 1) {
2440 drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
2441 return;
2442 }
2443
2444 if (val & DP_PSR_CAPS_CHANGE) {
2445 intel_psr_disable_locked(intel_dp);
2446 psr->sink_not_reliable = true;
2447 drm_dbg_kms(&dev_priv->drm,
2448 "Sink PSR capability changed, disabling PSR\n");
2449
2450 /* Clearing it */
2451 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
2452 }
2453 }
2454
intel_psr_short_pulse(struct intel_dp * intel_dp)2455 void intel_psr_short_pulse(struct intel_dp *intel_dp)
2456 {
2457 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2458 struct intel_psr *psr = &intel_dp->psr;
2459 u8 status, error_status;
2460 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
2461 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
2462 DP_PSR_LINK_CRC_ERROR;
2463
2464 if (!CAN_PSR(intel_dp))
2465 return;
2466
2467 mutex_lock(&psr->lock);
2468
2469 if (!psr->enabled)
2470 goto exit;
2471
2472 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
2473 drm_err(&dev_priv->drm,
2474 "Error reading PSR status or error status\n");
2475 goto exit;
2476 }
2477
2478 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
2479 intel_psr_disable_locked(intel_dp);
2480 psr->sink_not_reliable = true;
2481 }
2482
2483 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
2484 drm_dbg_kms(&dev_priv->drm,
2485 "PSR sink internal error, disabling PSR\n");
2486 if (error_status & DP_PSR_RFB_STORAGE_ERROR)
2487 drm_dbg_kms(&dev_priv->drm,
2488 "PSR RFB storage error, disabling PSR\n");
2489 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
2490 drm_dbg_kms(&dev_priv->drm,
2491 "PSR VSC SDP uncorrectable error, disabling PSR\n");
2492 if (error_status & DP_PSR_LINK_CRC_ERROR)
2493 drm_dbg_kms(&dev_priv->drm,
2494 "PSR Link CRC error, disabling PSR\n");
2495
2496 if (error_status & ~errors)
2497 drm_err(&dev_priv->drm,
2498 "PSR_ERROR_STATUS unhandled errors %x\n",
2499 error_status & ~errors);
2500 /* clear status register */
2501 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2502
2503 psr_alpm_check(intel_dp);
2504 psr_capability_changed_check(intel_dp);
2505
2506 exit:
2507 mutex_unlock(&psr->lock);
2508 }
2509
intel_psr_enabled(struct intel_dp * intel_dp)2510 bool intel_psr_enabled(struct intel_dp *intel_dp)
2511 {
2512 bool ret;
2513
2514 if (!CAN_PSR(intel_dp))
2515 return false;
2516
2517 mutex_lock(&intel_dp->psr.lock);
2518 ret = intel_dp->psr.enabled;
2519 mutex_unlock(&intel_dp->psr.lock);
2520
2521 return ret;
2522 }
2523
2524 /**
2525 * intel_psr_lock - grab PSR lock
2526 * @crtc_state: the crtc state
2527 *
2528 * This is initially meant to be used by around CRTC update, when
2529 * vblank sensitive registers are updated and we need grab the lock
2530 * before it to avoid vblank evasion.
2531 */
intel_psr_lock(const struct intel_crtc_state * crtc_state)2532 void intel_psr_lock(const struct intel_crtc_state *crtc_state)
2533 {
2534 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2535 struct intel_encoder *encoder;
2536
2537 if (!crtc_state->has_psr)
2538 return;
2539
2540 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2541 crtc_state->uapi.encoder_mask) {
2542 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2543
2544 mutex_lock(&intel_dp->psr.lock);
2545 break;
2546 }
2547 }
2548
2549 /**
2550 * intel_psr_unlock - release PSR lock
2551 * @crtc_state: the crtc state
2552 *
2553 * Release the PSR lock that was held during pipe update.
2554 */
intel_psr_unlock(const struct intel_crtc_state * crtc_state)2555 void intel_psr_unlock(const struct intel_crtc_state *crtc_state)
2556 {
2557 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2558 struct intel_encoder *encoder;
2559
2560 if (!crtc_state->has_psr)
2561 return;
2562
2563 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2564 crtc_state->uapi.encoder_mask) {
2565 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2566
2567 mutex_unlock(&intel_dp->psr.lock);
2568 break;
2569 }
2570 }
2571