1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_cdclk.h"
11 #include "intel_combo_phy.h"
12 #include "intel_de.h"
13 #include "intel_display_power.h"
14 #include "intel_display_power_map.h"
15 #include "intel_display_power_well.h"
16 #include "intel_display_types.h"
17 #include "intel_dmc.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pch_refclk.h"
20 #include "intel_pcode.h"
21 #include "intel_pm.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_sideband.h"
24
25 #define for_each_power_domain_well(__dev_priv, __power_well, __domain) \
26 for_each_power_well(__dev_priv, __power_well) \
27 for_each_if(test_bit((__domain), (__power_well)->domains.bits))
28
29 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
30 for_each_power_well_reverse(__dev_priv, __power_well) \
31 for_each_if(test_bit((__domain), (__power_well)->domains.bits))
32
33 const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)34 intel_display_power_domain_str(enum intel_display_power_domain domain)
35 {
36 switch (domain) {
37 case POWER_DOMAIN_DISPLAY_CORE:
38 return "DISPLAY_CORE";
39 case POWER_DOMAIN_PIPE_A:
40 return "PIPE_A";
41 case POWER_DOMAIN_PIPE_B:
42 return "PIPE_B";
43 case POWER_DOMAIN_PIPE_C:
44 return "PIPE_C";
45 case POWER_DOMAIN_PIPE_D:
46 return "PIPE_D";
47 case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
48 return "PIPE_PANEL_FITTER_A";
49 case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
50 return "PIPE_PANEL_FITTER_B";
51 case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
52 return "PIPE_PANEL_FITTER_C";
53 case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
54 return "PIPE_PANEL_FITTER_D";
55 case POWER_DOMAIN_TRANSCODER_A:
56 return "TRANSCODER_A";
57 case POWER_DOMAIN_TRANSCODER_B:
58 return "TRANSCODER_B";
59 case POWER_DOMAIN_TRANSCODER_C:
60 return "TRANSCODER_C";
61 case POWER_DOMAIN_TRANSCODER_D:
62 return "TRANSCODER_D";
63 case POWER_DOMAIN_TRANSCODER_EDP:
64 return "TRANSCODER_EDP";
65 case POWER_DOMAIN_TRANSCODER_DSI_A:
66 return "TRANSCODER_DSI_A";
67 case POWER_DOMAIN_TRANSCODER_DSI_C:
68 return "TRANSCODER_DSI_C";
69 case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
70 return "TRANSCODER_VDSC_PW2";
71 case POWER_DOMAIN_PORT_DDI_LANES_A:
72 return "PORT_DDI_LANES_A";
73 case POWER_DOMAIN_PORT_DDI_LANES_B:
74 return "PORT_DDI_LANES_B";
75 case POWER_DOMAIN_PORT_DDI_LANES_C:
76 return "PORT_DDI_LANES_C";
77 case POWER_DOMAIN_PORT_DDI_LANES_D:
78 return "PORT_DDI_LANES_D";
79 case POWER_DOMAIN_PORT_DDI_LANES_E:
80 return "PORT_DDI_LANES_E";
81 case POWER_DOMAIN_PORT_DDI_LANES_F:
82 return "PORT_DDI_LANES_F";
83 case POWER_DOMAIN_PORT_DDI_LANES_TC1:
84 return "PORT_DDI_LANES_TC1";
85 case POWER_DOMAIN_PORT_DDI_LANES_TC2:
86 return "PORT_DDI_LANES_TC2";
87 case POWER_DOMAIN_PORT_DDI_LANES_TC3:
88 return "PORT_DDI_LANES_TC3";
89 case POWER_DOMAIN_PORT_DDI_LANES_TC4:
90 return "PORT_DDI_LANES_TC4";
91 case POWER_DOMAIN_PORT_DDI_LANES_TC5:
92 return "PORT_DDI_LANES_TC5";
93 case POWER_DOMAIN_PORT_DDI_LANES_TC6:
94 return "PORT_DDI_LANES_TC6";
95 case POWER_DOMAIN_PORT_DDI_IO_A:
96 return "PORT_DDI_IO_A";
97 case POWER_DOMAIN_PORT_DDI_IO_B:
98 return "PORT_DDI_IO_B";
99 case POWER_DOMAIN_PORT_DDI_IO_C:
100 return "PORT_DDI_IO_C";
101 case POWER_DOMAIN_PORT_DDI_IO_D:
102 return "PORT_DDI_IO_D";
103 case POWER_DOMAIN_PORT_DDI_IO_E:
104 return "PORT_DDI_IO_E";
105 case POWER_DOMAIN_PORT_DDI_IO_F:
106 return "PORT_DDI_IO_F";
107 case POWER_DOMAIN_PORT_DDI_IO_TC1:
108 return "PORT_DDI_IO_TC1";
109 case POWER_DOMAIN_PORT_DDI_IO_TC2:
110 return "PORT_DDI_IO_TC2";
111 case POWER_DOMAIN_PORT_DDI_IO_TC3:
112 return "PORT_DDI_IO_TC3";
113 case POWER_DOMAIN_PORT_DDI_IO_TC4:
114 return "PORT_DDI_IO_TC4";
115 case POWER_DOMAIN_PORT_DDI_IO_TC5:
116 return "PORT_DDI_IO_TC5";
117 case POWER_DOMAIN_PORT_DDI_IO_TC6:
118 return "PORT_DDI_IO_TC6";
119 case POWER_DOMAIN_PORT_DSI:
120 return "PORT_DSI";
121 case POWER_DOMAIN_PORT_CRT:
122 return "PORT_CRT";
123 case POWER_DOMAIN_PORT_OTHER:
124 return "PORT_OTHER";
125 case POWER_DOMAIN_VGA:
126 return "VGA";
127 case POWER_DOMAIN_AUDIO_MMIO:
128 return "AUDIO_MMIO";
129 case POWER_DOMAIN_AUDIO_PLAYBACK:
130 return "AUDIO_PLAYBACK";
131 case POWER_DOMAIN_AUX_A:
132 return "AUX_A";
133 case POWER_DOMAIN_AUX_B:
134 return "AUX_B";
135 case POWER_DOMAIN_AUX_C:
136 return "AUX_C";
137 case POWER_DOMAIN_AUX_D:
138 return "AUX_D";
139 case POWER_DOMAIN_AUX_E:
140 return "AUX_E";
141 case POWER_DOMAIN_AUX_F:
142 return "AUX_F";
143 case POWER_DOMAIN_AUX_USBC1:
144 return "AUX_USBC1";
145 case POWER_DOMAIN_AUX_USBC2:
146 return "AUX_USBC2";
147 case POWER_DOMAIN_AUX_USBC3:
148 return "AUX_USBC3";
149 case POWER_DOMAIN_AUX_USBC4:
150 return "AUX_USBC4";
151 case POWER_DOMAIN_AUX_USBC5:
152 return "AUX_USBC5";
153 case POWER_DOMAIN_AUX_USBC6:
154 return "AUX_USBC6";
155 case POWER_DOMAIN_AUX_IO_A:
156 return "AUX_IO_A";
157 case POWER_DOMAIN_AUX_TBT1:
158 return "AUX_TBT1";
159 case POWER_DOMAIN_AUX_TBT2:
160 return "AUX_TBT2";
161 case POWER_DOMAIN_AUX_TBT3:
162 return "AUX_TBT3";
163 case POWER_DOMAIN_AUX_TBT4:
164 return "AUX_TBT4";
165 case POWER_DOMAIN_AUX_TBT5:
166 return "AUX_TBT5";
167 case POWER_DOMAIN_AUX_TBT6:
168 return "AUX_TBT6";
169 case POWER_DOMAIN_GMBUS:
170 return "GMBUS";
171 case POWER_DOMAIN_INIT:
172 return "INIT";
173 case POWER_DOMAIN_MODESET:
174 return "MODESET";
175 case POWER_DOMAIN_GT_IRQ:
176 return "GT_IRQ";
177 case POWER_DOMAIN_DC_OFF:
178 return "DC_OFF";
179 case POWER_DOMAIN_TC_COLD_OFF:
180 return "TC_COLD_OFF";
181 default:
182 MISSING_CASE(domain);
183 return "?";
184 }
185 }
186
187 /**
188 * __intel_display_power_is_enabled - unlocked check for a power domain
189 * @dev_priv: i915 device instance
190 * @domain: power domain to check
191 *
192 * This is the unlocked version of intel_display_power_is_enabled() and should
193 * only be used from error capture and recovery code where deadlocks are
194 * possible.
195 *
196 * Returns:
197 * True when the power domain is enabled, false otherwise.
198 */
__intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)199 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
200 enum intel_display_power_domain domain)
201 {
202 struct i915_power_well *power_well;
203 bool is_enabled;
204
205 if (dev_priv->runtime_pm.suspended)
206 return false;
207
208 is_enabled = true;
209
210 for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
211 if (intel_power_well_is_always_on(power_well))
212 continue;
213
214 if (!intel_power_well_is_enabled_cached(power_well)) {
215 is_enabled = false;
216 break;
217 }
218 }
219
220 return is_enabled;
221 }
222
223 /**
224 * intel_display_power_is_enabled - check for a power domain
225 * @dev_priv: i915 device instance
226 * @domain: power domain to check
227 *
228 * This function can be used to check the hw power domain state. It is mostly
229 * used in hardware state readout functions. Everywhere else code should rely
230 * upon explicit power domain reference counting to ensure that the hardware
231 * block is powered up before accessing it.
232 *
233 * Callers must hold the relevant modesetting locks to ensure that concurrent
234 * threads can't disable the power well while the caller tries to read a few
235 * registers.
236 *
237 * Returns:
238 * True when the power domain is enabled, false otherwise.
239 */
intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)240 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
241 enum intel_display_power_domain domain)
242 {
243 struct i915_power_domains *power_domains;
244 bool ret;
245
246 power_domains = &dev_priv->power_domains;
247
248 mutex_lock(&power_domains->lock);
249 ret = __intel_display_power_is_enabled(dev_priv, domain);
250 mutex_unlock(&power_domains->lock);
251
252 return ret;
253 }
254
255 static u32
sanitize_target_dc_state(struct drm_i915_private * dev_priv,u32 target_dc_state)256 sanitize_target_dc_state(struct drm_i915_private *dev_priv,
257 u32 target_dc_state)
258 {
259 static const u32 states[] = {
260 DC_STATE_EN_UPTO_DC6,
261 DC_STATE_EN_UPTO_DC5,
262 DC_STATE_EN_DC3CO,
263 DC_STATE_DISABLE,
264 };
265 int i;
266
267 for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
268 if (target_dc_state != states[i])
269 continue;
270
271 if (dev_priv->dmc.allowed_dc_mask & target_dc_state)
272 break;
273
274 target_dc_state = states[i + 1];
275 }
276
277 return target_dc_state;
278 }
279
280 /**
281 * intel_display_power_set_target_dc_state - Set target dc state.
282 * @dev_priv: i915 device
283 * @state: state which needs to be set as target_dc_state.
284 *
285 * This function set the "DC off" power well target_dc_state,
286 * based upon this target_dc_stste, "DC off" power well will
287 * enable desired DC state.
288 */
intel_display_power_set_target_dc_state(struct drm_i915_private * dev_priv,u32 state)289 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
290 u32 state)
291 {
292 struct i915_power_well *power_well;
293 bool dc_off_enabled;
294 struct i915_power_domains *power_domains = &dev_priv->power_domains;
295
296 mutex_lock(&power_domains->lock);
297 power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
298
299 if (drm_WARN_ON(&dev_priv->drm, !power_well))
300 goto unlock;
301
302 state = sanitize_target_dc_state(dev_priv, state);
303
304 if (state == dev_priv->dmc.target_dc_state)
305 goto unlock;
306
307 dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
308 /*
309 * If DC off power well is disabled, need to enable and disable the
310 * DC off power well to effect target DC state.
311 */
312 if (!dc_off_enabled)
313 intel_power_well_enable(dev_priv, power_well);
314
315 dev_priv->dmc.target_dc_state = state;
316
317 if (!dc_off_enabled)
318 intel_power_well_disable(dev_priv, power_well);
319
320 unlock:
321 mutex_unlock(&power_domains->lock);
322 }
323
324 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
325
__async_put_domains_mask(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)326 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
327 struct intel_power_domain_mask *mask)
328 {
329 bitmap_or(mask->bits,
330 power_domains->async_put_domains[0].bits,
331 power_domains->async_put_domains[1].bits,
332 POWER_DOMAIN_NUM);
333 }
334
335 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
336
337 static bool
assert_async_put_domain_masks_disjoint(struct i915_power_domains * power_domains)338 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
339 {
340 struct drm_i915_private *i915 = container_of(power_domains,
341 struct drm_i915_private,
342 power_domains);
343
344 return !drm_WARN_ON(&i915->drm,
345 bitmap_intersects(power_domains->async_put_domains[0].bits,
346 power_domains->async_put_domains[1].bits,
347 POWER_DOMAIN_NUM));
348 }
349
350 static bool
__async_put_domains_state_ok(struct i915_power_domains * power_domains)351 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
352 {
353 struct drm_i915_private *i915 = container_of(power_domains,
354 struct drm_i915_private,
355 power_domains);
356 struct intel_power_domain_mask async_put_mask;
357 enum intel_display_power_domain domain;
358 bool err = false;
359
360 err |= !assert_async_put_domain_masks_disjoint(power_domains);
361 __async_put_domains_mask(power_domains, &async_put_mask);
362 err |= drm_WARN_ON(&i915->drm,
363 !!power_domains->async_put_wakeref !=
364 !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
365
366 for_each_power_domain(domain, &async_put_mask)
367 err |= drm_WARN_ON(&i915->drm,
368 power_domains->domain_use_count[domain] != 1);
369
370 return !err;
371 }
372
print_power_domains(struct i915_power_domains * power_domains,const char * prefix,struct intel_power_domain_mask * mask)373 static void print_power_domains(struct i915_power_domains *power_domains,
374 const char *prefix, struct intel_power_domain_mask *mask)
375 {
376 struct drm_i915_private *i915 = container_of(power_domains,
377 struct drm_i915_private,
378 power_domains);
379 enum intel_display_power_domain domain;
380
381 drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
382 for_each_power_domain(domain, mask)
383 drm_dbg(&i915->drm, "%s use_count %d\n",
384 intel_display_power_domain_str(domain),
385 power_domains->domain_use_count[domain]);
386 }
387
388 static void
print_async_put_domains_state(struct i915_power_domains * power_domains)389 print_async_put_domains_state(struct i915_power_domains *power_domains)
390 {
391 struct drm_i915_private *i915 = container_of(power_domains,
392 struct drm_i915_private,
393 power_domains);
394
395 drm_dbg(&i915->drm, "async_put_wakeref %u\n",
396 power_domains->async_put_wakeref);
397
398 print_power_domains(power_domains, "async_put_domains[0]",
399 &power_domains->async_put_domains[0]);
400 print_power_domains(power_domains, "async_put_domains[1]",
401 &power_domains->async_put_domains[1]);
402 }
403
404 static void
verify_async_put_domains_state(struct i915_power_domains * power_domains)405 verify_async_put_domains_state(struct i915_power_domains *power_domains)
406 {
407 if (!__async_put_domains_state_ok(power_domains))
408 print_async_put_domains_state(power_domains);
409 }
410
411 #else
412
413 static void
assert_async_put_domain_masks_disjoint(struct i915_power_domains * power_domains)414 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
415 {
416 }
417
418 static void
verify_async_put_domains_state(struct i915_power_domains * power_domains)419 verify_async_put_domains_state(struct i915_power_domains *power_domains)
420 {
421 }
422
423 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
424
async_put_domains_mask(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)425 static void async_put_domains_mask(struct i915_power_domains *power_domains,
426 struct intel_power_domain_mask *mask)
427
428 {
429 assert_async_put_domain_masks_disjoint(power_domains);
430
431 __async_put_domains_mask(power_domains, mask);
432 }
433
434 static void
async_put_domains_clear_domain(struct i915_power_domains * power_domains,enum intel_display_power_domain domain)435 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
436 enum intel_display_power_domain domain)
437 {
438 assert_async_put_domain_masks_disjoint(power_domains);
439
440 clear_bit(domain, power_domains->async_put_domains[0].bits);
441 clear_bit(domain, power_domains->async_put_domains[1].bits);
442 }
443
444 static bool
intel_display_power_grab_async_put_ref(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)445 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
446 enum intel_display_power_domain domain)
447 {
448 struct i915_power_domains *power_domains = &dev_priv->power_domains;
449 struct intel_power_domain_mask async_put_mask;
450 bool ret = false;
451
452 async_put_domains_mask(power_domains, &async_put_mask);
453 if (!test_bit(domain, async_put_mask.bits))
454 goto out_verify;
455
456 async_put_domains_clear_domain(power_domains, domain);
457
458 ret = true;
459
460 async_put_domains_mask(power_domains, &async_put_mask);
461 if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
462 goto out_verify;
463
464 cancel_delayed_work(&power_domains->async_put_work);
465 intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
466 fetch_and_zero(&power_domains->async_put_wakeref));
467 out_verify:
468 verify_async_put_domains_state(power_domains);
469
470 return ret;
471 }
472
473 static void
__intel_display_power_get_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)474 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
475 enum intel_display_power_domain domain)
476 {
477 struct i915_power_domains *power_domains = &dev_priv->power_domains;
478 struct i915_power_well *power_well;
479
480 if (intel_display_power_grab_async_put_ref(dev_priv, domain))
481 return;
482
483 for_each_power_domain_well(dev_priv, power_well, domain)
484 intel_power_well_get(dev_priv, power_well);
485
486 power_domains->domain_use_count[domain]++;
487 }
488
489 /**
490 * intel_display_power_get - grab a power domain reference
491 * @dev_priv: i915 device instance
492 * @domain: power domain to reference
493 *
494 * This function grabs a power domain reference for @domain and ensures that the
495 * power domain and all its parents are powered up. Therefore users should only
496 * grab a reference to the innermost power domain they need.
497 *
498 * Any power domain reference obtained by this function must have a symmetric
499 * call to intel_display_power_put() to release the reference again.
500 */
intel_display_power_get(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)501 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
502 enum intel_display_power_domain domain)
503 {
504 struct i915_power_domains *power_domains = &dev_priv->power_domains;
505 intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
506
507 mutex_lock(&power_domains->lock);
508 __intel_display_power_get_domain(dev_priv, domain);
509 mutex_unlock(&power_domains->lock);
510
511 return wakeref;
512 }
513
514 /**
515 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
516 * @dev_priv: i915 device instance
517 * @domain: power domain to reference
518 *
519 * This function grabs a power domain reference for @domain and ensures that the
520 * power domain and all its parents are powered up. Therefore users should only
521 * grab a reference to the innermost power domain they need.
522 *
523 * Any power domain reference obtained by this function must have a symmetric
524 * call to intel_display_power_put() to release the reference again.
525 */
526 intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)527 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
528 enum intel_display_power_domain domain)
529 {
530 struct i915_power_domains *power_domains = &dev_priv->power_domains;
531 intel_wakeref_t wakeref;
532 bool is_enabled;
533
534 wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
535 if (!wakeref)
536 return false;
537
538 mutex_lock(&power_domains->lock);
539
540 if (__intel_display_power_is_enabled(dev_priv, domain)) {
541 __intel_display_power_get_domain(dev_priv, domain);
542 is_enabled = true;
543 } else {
544 is_enabled = false;
545 }
546
547 mutex_unlock(&power_domains->lock);
548
549 if (!is_enabled) {
550 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
551 wakeref = 0;
552 }
553
554 return wakeref;
555 }
556
557 static void
__intel_display_power_put_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)558 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
559 enum intel_display_power_domain domain)
560 {
561 struct i915_power_domains *power_domains;
562 struct i915_power_well *power_well;
563 const char *name = intel_display_power_domain_str(domain);
564 struct intel_power_domain_mask async_put_mask;
565
566 power_domains = &dev_priv->power_domains;
567
568 drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
569 "Use count on domain %s is already zero\n",
570 name);
571 async_put_domains_mask(power_domains, &async_put_mask);
572 drm_WARN(&dev_priv->drm,
573 test_bit(domain, async_put_mask.bits),
574 "Async disabling of domain %s is pending\n",
575 name);
576
577 power_domains->domain_use_count[domain]--;
578
579 for_each_power_domain_well_reverse(dev_priv, power_well, domain)
580 intel_power_well_put(dev_priv, power_well);
581 }
582
__intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)583 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
584 enum intel_display_power_domain domain)
585 {
586 struct i915_power_domains *power_domains = &dev_priv->power_domains;
587
588 mutex_lock(&power_domains->lock);
589 __intel_display_power_put_domain(dev_priv, domain);
590 mutex_unlock(&power_domains->lock);
591 }
592
593 static void
queue_async_put_domains_work(struct i915_power_domains * power_domains,intel_wakeref_t wakeref)594 queue_async_put_domains_work(struct i915_power_domains *power_domains,
595 intel_wakeref_t wakeref)
596 {
597 struct drm_i915_private *i915 = container_of(power_domains,
598 struct drm_i915_private,
599 power_domains);
600 drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
601 power_domains->async_put_wakeref = wakeref;
602 drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
603 &power_domains->async_put_work,
604 msecs_to_jiffies(100)));
605 }
606
607 static void
release_async_put_domains(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)608 release_async_put_domains(struct i915_power_domains *power_domains,
609 struct intel_power_domain_mask *mask)
610 {
611 struct drm_i915_private *dev_priv =
612 container_of(power_domains, struct drm_i915_private,
613 power_domains);
614 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
615 enum intel_display_power_domain domain;
616 intel_wakeref_t wakeref;
617
618 /*
619 * The caller must hold already raw wakeref, upgrade that to a proper
620 * wakeref to make the state checker happy about the HW access during
621 * power well disabling.
622 */
623 assert_rpm_raw_wakeref_held(rpm);
624 wakeref = intel_runtime_pm_get(rpm);
625
626 for_each_power_domain(domain, mask) {
627 /* Clear before put, so put's sanity check is happy. */
628 async_put_domains_clear_domain(power_domains, domain);
629 __intel_display_power_put_domain(dev_priv, domain);
630 }
631
632 intel_runtime_pm_put(rpm, wakeref);
633 }
634
635 static void
intel_display_power_put_async_work(struct work_struct * work)636 intel_display_power_put_async_work(struct work_struct *work)
637 {
638 struct drm_i915_private *dev_priv =
639 container_of(work, struct drm_i915_private,
640 power_domains.async_put_work.work);
641 struct i915_power_domains *power_domains = &dev_priv->power_domains;
642 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
643 intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
644 intel_wakeref_t old_work_wakeref = 0;
645
646 mutex_lock(&power_domains->lock);
647
648 /*
649 * Bail out if all the domain refs pending to be released were grabbed
650 * by subsequent gets or a flush_work.
651 */
652 old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
653 if (!old_work_wakeref)
654 goto out_verify;
655
656 release_async_put_domains(power_domains,
657 &power_domains->async_put_domains[0]);
658
659 /* Requeue the work if more domains were async put meanwhile. */
660 if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
661 bitmap_copy(power_domains->async_put_domains[0].bits,
662 power_domains->async_put_domains[1].bits,
663 POWER_DOMAIN_NUM);
664 bitmap_zero(power_domains->async_put_domains[1].bits,
665 POWER_DOMAIN_NUM);
666 queue_async_put_domains_work(power_domains,
667 fetch_and_zero(&new_work_wakeref));
668 } else {
669 /*
670 * Cancel the work that got queued after this one got dequeued,
671 * since here we released the corresponding async-put reference.
672 */
673 cancel_delayed_work(&power_domains->async_put_work);
674 }
675
676 out_verify:
677 verify_async_put_domains_state(power_domains);
678
679 mutex_unlock(&power_domains->lock);
680
681 if (old_work_wakeref)
682 intel_runtime_pm_put_raw(rpm, old_work_wakeref);
683 if (new_work_wakeref)
684 intel_runtime_pm_put_raw(rpm, new_work_wakeref);
685 }
686
687 /**
688 * intel_display_power_put_async - release a power domain reference asynchronously
689 * @i915: i915 device instance
690 * @domain: power domain to reference
691 * @wakeref: wakeref acquired for the reference that is being released
692 *
693 * This function drops the power domain reference obtained by
694 * intel_display_power_get*() and schedules a work to power down the
695 * corresponding hardware block if this is the last reference.
696 */
__intel_display_power_put_async(struct drm_i915_private * i915,enum intel_display_power_domain domain,intel_wakeref_t wakeref)697 void __intel_display_power_put_async(struct drm_i915_private *i915,
698 enum intel_display_power_domain domain,
699 intel_wakeref_t wakeref)
700 {
701 struct i915_power_domains *power_domains = &i915->power_domains;
702 struct intel_runtime_pm *rpm = &i915->runtime_pm;
703 intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
704
705 mutex_lock(&power_domains->lock);
706
707 if (power_domains->domain_use_count[domain] > 1) {
708 __intel_display_power_put_domain(i915, domain);
709
710 goto out_verify;
711 }
712
713 drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
714
715 /* Let a pending work requeue itself or queue a new one. */
716 if (power_domains->async_put_wakeref) {
717 set_bit(domain, power_domains->async_put_domains[1].bits);
718 } else {
719 set_bit(domain, power_domains->async_put_domains[0].bits);
720 queue_async_put_domains_work(power_domains,
721 fetch_and_zero(&work_wakeref));
722 }
723
724 out_verify:
725 verify_async_put_domains_state(power_domains);
726
727 mutex_unlock(&power_domains->lock);
728
729 if (work_wakeref)
730 intel_runtime_pm_put_raw(rpm, work_wakeref);
731
732 intel_runtime_pm_put(rpm, wakeref);
733 }
734
735 /**
736 * intel_display_power_flush_work - flushes the async display power disabling work
737 * @i915: i915 device instance
738 *
739 * Flushes any pending work that was scheduled by a preceding
740 * intel_display_power_put_async() call, completing the disabling of the
741 * corresponding power domains.
742 *
743 * Note that the work handler function may still be running after this
744 * function returns; to ensure that the work handler isn't running use
745 * intel_display_power_flush_work_sync() instead.
746 */
intel_display_power_flush_work(struct drm_i915_private * i915)747 void intel_display_power_flush_work(struct drm_i915_private *i915)
748 {
749 struct i915_power_domains *power_domains = &i915->power_domains;
750 struct intel_power_domain_mask async_put_mask;
751 intel_wakeref_t work_wakeref;
752
753 mutex_lock(&power_domains->lock);
754
755 work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
756 if (!work_wakeref)
757 goto out_verify;
758
759 async_put_domains_mask(power_domains, &async_put_mask);
760 release_async_put_domains(power_domains, &async_put_mask);
761 cancel_delayed_work(&power_domains->async_put_work);
762
763 out_verify:
764 verify_async_put_domains_state(power_domains);
765
766 mutex_unlock(&power_domains->lock);
767
768 if (work_wakeref)
769 intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
770 }
771
772 /**
773 * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
774 * @i915: i915 device instance
775 *
776 * Like intel_display_power_flush_work(), but also ensure that the work
777 * handler function is not running any more when this function returns.
778 */
779 static void
intel_display_power_flush_work_sync(struct drm_i915_private * i915)780 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
781 {
782 struct i915_power_domains *power_domains = &i915->power_domains;
783
784 intel_display_power_flush_work(i915);
785 cancel_delayed_work_sync(&power_domains->async_put_work);
786
787 verify_async_put_domains_state(power_domains);
788
789 drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
790 }
791
792 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
793 /**
794 * intel_display_power_put - release a power domain reference
795 * @dev_priv: i915 device instance
796 * @domain: power domain to reference
797 * @wakeref: wakeref acquired for the reference that is being released
798 *
799 * This function drops the power domain reference obtained by
800 * intel_display_power_get() and might power down the corresponding hardware
801 * block right away if this is the last reference.
802 */
intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain,intel_wakeref_t wakeref)803 void intel_display_power_put(struct drm_i915_private *dev_priv,
804 enum intel_display_power_domain domain,
805 intel_wakeref_t wakeref)
806 {
807 __intel_display_power_put(dev_priv, domain);
808 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
809 }
810 #else
811 /**
812 * intel_display_power_put_unchecked - release an unchecked power domain reference
813 * @dev_priv: i915 device instance
814 * @domain: power domain to reference
815 *
816 * This function drops the power domain reference obtained by
817 * intel_display_power_get() and might power down the corresponding hardware
818 * block right away if this is the last reference.
819 *
820 * This function is only for the power domain code's internal use to suppress wakeref
821 * tracking when the correspondig debug kconfig option is disabled, should not
822 * be used otherwise.
823 */
intel_display_power_put_unchecked(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)824 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
825 enum intel_display_power_domain domain)
826 {
827 __intel_display_power_put(dev_priv, domain);
828 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
829 }
830 #endif
831
832 void
intel_display_power_get_in_set(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,enum intel_display_power_domain domain)833 intel_display_power_get_in_set(struct drm_i915_private *i915,
834 struct intel_display_power_domain_set *power_domain_set,
835 enum intel_display_power_domain domain)
836 {
837 intel_wakeref_t __maybe_unused wf;
838
839 drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
840
841 wf = intel_display_power_get(i915, domain);
842 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
843 power_domain_set->wakerefs[domain] = wf;
844 #endif
845 set_bit(domain, power_domain_set->mask.bits);
846 }
847
848 bool
intel_display_power_get_in_set_if_enabled(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,enum intel_display_power_domain domain)849 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
850 struct intel_display_power_domain_set *power_domain_set,
851 enum intel_display_power_domain domain)
852 {
853 intel_wakeref_t wf;
854
855 drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
856
857 wf = intel_display_power_get_if_enabled(i915, domain);
858 if (!wf)
859 return false;
860
861 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
862 power_domain_set->wakerefs[domain] = wf;
863 #endif
864 set_bit(domain, power_domain_set->mask.bits);
865
866 return true;
867 }
868
869 void
intel_display_power_put_mask_in_set(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,struct intel_power_domain_mask * mask)870 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
871 struct intel_display_power_domain_set *power_domain_set,
872 struct intel_power_domain_mask *mask)
873 {
874 enum intel_display_power_domain domain;
875
876 drm_WARN_ON(&i915->drm,
877 !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
878
879 for_each_power_domain(domain, mask) {
880 intel_wakeref_t __maybe_unused wf = -1;
881
882 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
883 wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
884 #endif
885 intel_display_power_put(i915, domain, wf);
886 clear_bit(domain, power_domain_set->mask.bits);
887 }
888 }
889
890 static int
sanitize_disable_power_well_option(const struct drm_i915_private * dev_priv,int disable_power_well)891 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
892 int disable_power_well)
893 {
894 if (disable_power_well >= 0)
895 return !!disable_power_well;
896
897 return 1;
898 }
899
get_allowed_dc_mask(const struct drm_i915_private * dev_priv,int enable_dc)900 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
901 int enable_dc)
902 {
903 u32 mask;
904 int requested_dc;
905 int max_dc;
906
907 if (!HAS_DISPLAY(dev_priv))
908 return 0;
909
910 if (IS_DG1(dev_priv))
911 max_dc = 3;
912 else if (DISPLAY_VER(dev_priv) >= 12)
913 max_dc = 4;
914 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
915 max_dc = 1;
916 else if (DISPLAY_VER(dev_priv) >= 9)
917 max_dc = 2;
918 else
919 max_dc = 0;
920
921 /*
922 * DC9 has a separate HW flow from the rest of the DC states,
923 * not depending on the DMC firmware. It's needed by system
924 * suspend/resume, so allow it unconditionally.
925 */
926 mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
927 DISPLAY_VER(dev_priv) >= 11 ?
928 DC_STATE_EN_DC9 : 0;
929
930 if (!dev_priv->params.disable_power_well)
931 max_dc = 0;
932
933 if (enable_dc >= 0 && enable_dc <= max_dc) {
934 requested_dc = enable_dc;
935 } else if (enable_dc == -1) {
936 requested_dc = max_dc;
937 } else if (enable_dc > max_dc && enable_dc <= 4) {
938 drm_dbg_kms(&dev_priv->drm,
939 "Adjusting requested max DC state (%d->%d)\n",
940 enable_dc, max_dc);
941 requested_dc = max_dc;
942 } else {
943 drm_err(&dev_priv->drm,
944 "Unexpected value for enable_dc (%d)\n", enable_dc);
945 requested_dc = max_dc;
946 }
947
948 switch (requested_dc) {
949 case 4:
950 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
951 break;
952 case 3:
953 mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
954 break;
955 case 2:
956 mask |= DC_STATE_EN_UPTO_DC6;
957 break;
958 case 1:
959 mask |= DC_STATE_EN_UPTO_DC5;
960 break;
961 }
962
963 drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
964
965 return mask;
966 }
967
968 /**
969 * intel_power_domains_init - initializes the power domain structures
970 * @dev_priv: i915 device instance
971 *
972 * Initializes the power domain structures for @dev_priv depending upon the
973 * supported platform.
974 */
intel_power_domains_init(struct drm_i915_private * dev_priv)975 int intel_power_domains_init(struct drm_i915_private *dev_priv)
976 {
977 struct i915_power_domains *power_domains = &dev_priv->power_domains;
978
979 dev_priv->params.disable_power_well =
980 sanitize_disable_power_well_option(dev_priv,
981 dev_priv->params.disable_power_well);
982 dev_priv->dmc.allowed_dc_mask =
983 get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
984
985 dev_priv->dmc.target_dc_state =
986 sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
987
988 mutex_init(&power_domains->lock);
989
990 INIT_DELAYED_WORK(&power_domains->async_put_work,
991 intel_display_power_put_async_work);
992
993 return intel_display_power_map_init(power_domains);
994 }
995
996 /**
997 * intel_power_domains_cleanup - clean up power domains resources
998 * @dev_priv: i915 device instance
999 *
1000 * Release any resources acquired by intel_power_domains_init()
1001 */
intel_power_domains_cleanup(struct drm_i915_private * dev_priv)1002 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1003 {
1004 intel_display_power_map_cleanup(&dev_priv->power_domains);
1005 }
1006
intel_power_domains_sync_hw(struct drm_i915_private * dev_priv)1007 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1008 {
1009 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1010 struct i915_power_well *power_well;
1011
1012 mutex_lock(&power_domains->lock);
1013 for_each_power_well(dev_priv, power_well)
1014 intel_power_well_sync_hw(dev_priv, power_well);
1015 mutex_unlock(&power_domains->lock);
1016 }
1017
gen9_dbuf_slice_set(struct drm_i915_private * dev_priv,enum dbuf_slice slice,bool enable)1018 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1019 enum dbuf_slice slice, bool enable)
1020 {
1021 i915_reg_t reg = DBUF_CTL_S(slice);
1022 bool state;
1023
1024 intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1025 enable ? DBUF_POWER_REQUEST : 0);
1026 intel_de_posting_read(dev_priv, reg);
1027 udelay(10);
1028
1029 state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1030 drm_WARN(&dev_priv->drm, enable != state,
1031 "DBuf slice %d power %s timeout!\n",
1032 slice, str_enable_disable(enable));
1033 }
1034
gen9_dbuf_slices_update(struct drm_i915_private * dev_priv,u8 req_slices)1035 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1036 u8 req_slices)
1037 {
1038 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1039 u8 slice_mask = INTEL_INFO(dev_priv)->dbuf.slice_mask;
1040 enum dbuf_slice slice;
1041
1042 drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1043 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1044 req_slices, slice_mask);
1045
1046 drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1047 req_slices);
1048
1049 /*
1050 * Might be running this in parallel to gen9_dc_off_power_well_enable
1051 * being called from intel_dp_detect for instance,
1052 * which causes assertion triggered by race condition,
1053 * as gen9_assert_dbuf_enabled might preempt this when registers
1054 * were already updated, while dev_priv was not.
1055 */
1056 mutex_lock(&power_domains->lock);
1057
1058 for_each_dbuf_slice(dev_priv, slice)
1059 gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1060
1061 dev_priv->dbuf.enabled_slices = req_slices;
1062
1063 mutex_unlock(&power_domains->lock);
1064 }
1065
gen9_dbuf_enable(struct drm_i915_private * dev_priv)1066 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1067 {
1068 dev_priv->dbuf.enabled_slices =
1069 intel_enabled_dbuf_slices_mask(dev_priv);
1070
1071 /*
1072 * Just power up at least 1 slice, we will
1073 * figure out later which slices we have and what we need.
1074 */
1075 gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
1076 dev_priv->dbuf.enabled_slices);
1077 }
1078
gen9_dbuf_disable(struct drm_i915_private * dev_priv)1079 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1080 {
1081 gen9_dbuf_slices_update(dev_priv, 0);
1082 }
1083
gen12_dbuf_slices_config(struct drm_i915_private * dev_priv)1084 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1085 {
1086 enum dbuf_slice slice;
1087
1088 if (IS_ALDERLAKE_P(dev_priv))
1089 return;
1090
1091 for_each_dbuf_slice(dev_priv, slice)
1092 intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1093 DBUF_TRACKER_STATE_SERVICE_MASK,
1094 DBUF_TRACKER_STATE_SERVICE(8));
1095 }
1096
icl_mbus_init(struct drm_i915_private * dev_priv)1097 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1098 {
1099 unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
1100 u32 mask, val, i;
1101
1102 if (IS_ALDERLAKE_P(dev_priv))
1103 return;
1104
1105 mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1106 MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1107 MBUS_ABOX_B_CREDIT_MASK |
1108 MBUS_ABOX_BW_CREDIT_MASK;
1109 val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1110 MBUS_ABOX_BT_CREDIT_POOL2(16) |
1111 MBUS_ABOX_B_CREDIT(1) |
1112 MBUS_ABOX_BW_CREDIT(1);
1113
1114 /*
1115 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1116 * expect us to program the abox_ctl0 register as well, even though
1117 * we don't have to program other instance-0 registers like BW_BUDDY.
1118 */
1119 if (DISPLAY_VER(dev_priv) == 12)
1120 abox_regs |= BIT(0);
1121
1122 for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1123 intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1124 }
1125
hsw_assert_cdclk(struct drm_i915_private * dev_priv)1126 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1127 {
1128 u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1129
1130 /*
1131 * The LCPLL register should be turned on by the BIOS. For now
1132 * let's just check its state and print errors in case
1133 * something is wrong. Don't even try to turn it on.
1134 */
1135
1136 if (val & LCPLL_CD_SOURCE_FCLK)
1137 drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1138
1139 if (val & LCPLL_PLL_DISABLE)
1140 drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1141
1142 if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1143 drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1144 }
1145
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)1146 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1147 {
1148 struct drm_device *dev = &dev_priv->drm;
1149 struct intel_crtc *crtc;
1150
1151 for_each_intel_crtc(dev, crtc)
1152 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
1153 pipe_name(crtc->pipe));
1154
1155 I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1156 "Display power well on\n");
1157 I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1158 "SPLL enabled\n");
1159 I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1160 "WRPLL1 enabled\n");
1161 I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1162 "WRPLL2 enabled\n");
1163 I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1164 "Panel power on\n");
1165 I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1166 "CPU PWM1 enabled\n");
1167 if (IS_HASWELL(dev_priv))
1168 I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1169 "CPU PWM2 enabled\n");
1170 I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1171 "PCH PWM1 enabled\n");
1172 I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
1173 "Utility pin enabled\n");
1174 I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1175 "PCH GTC enabled\n");
1176
1177 /*
1178 * In theory we can still leave IRQs enabled, as long as only the HPD
1179 * interrupts remain enabled. We used to check for that, but since it's
1180 * gen-specific and since we only disable LCPLL after we fully disable
1181 * the interrupts, the check below should be enough.
1182 */
1183 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
1184 }
1185
hsw_read_dcomp(struct drm_i915_private * dev_priv)1186 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1187 {
1188 if (IS_HASWELL(dev_priv))
1189 return intel_de_read(dev_priv, D_COMP_HSW);
1190 else
1191 return intel_de_read(dev_priv, D_COMP_BDW);
1192 }
1193
hsw_write_dcomp(struct drm_i915_private * dev_priv,u32 val)1194 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1195 {
1196 if (IS_HASWELL(dev_priv)) {
1197 if (snb_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
1198 drm_dbg_kms(&dev_priv->drm,
1199 "Failed to write to D_COMP\n");
1200 } else {
1201 intel_de_write(dev_priv, D_COMP_BDW, val);
1202 intel_de_posting_read(dev_priv, D_COMP_BDW);
1203 }
1204 }
1205
1206 /*
1207 * This function implements pieces of two sequences from BSpec:
1208 * - Sequence for display software to disable LCPLL
1209 * - Sequence for display software to allow package C8+
1210 * The steps implemented here are just the steps that actually touch the LCPLL
1211 * register. Callers should take care of disabling all the display engine
1212 * functions, doing the mode unset, fixing interrupts, etc.
1213 */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)1214 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1215 bool switch_to_fclk, bool allow_power_down)
1216 {
1217 u32 val;
1218
1219 assert_can_disable_lcpll(dev_priv);
1220
1221 val = intel_de_read(dev_priv, LCPLL_CTL);
1222
1223 if (switch_to_fclk) {
1224 val |= LCPLL_CD_SOURCE_FCLK;
1225 intel_de_write(dev_priv, LCPLL_CTL, val);
1226
1227 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1228 LCPLL_CD_SOURCE_FCLK_DONE, 1))
1229 drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1230
1231 val = intel_de_read(dev_priv, LCPLL_CTL);
1232 }
1233
1234 val |= LCPLL_PLL_DISABLE;
1235 intel_de_write(dev_priv, LCPLL_CTL, val);
1236 intel_de_posting_read(dev_priv, LCPLL_CTL);
1237
1238 if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1239 drm_err(&dev_priv->drm, "LCPLL still locked\n");
1240
1241 val = hsw_read_dcomp(dev_priv);
1242 val |= D_COMP_COMP_DISABLE;
1243 hsw_write_dcomp(dev_priv, val);
1244 ndelay(100);
1245
1246 if (wait_for((hsw_read_dcomp(dev_priv) &
1247 D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1248 drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1249
1250 if (allow_power_down) {
1251 val = intel_de_read(dev_priv, LCPLL_CTL);
1252 val |= LCPLL_POWER_DOWN_ALLOW;
1253 intel_de_write(dev_priv, LCPLL_CTL, val);
1254 intel_de_posting_read(dev_priv, LCPLL_CTL);
1255 }
1256 }
1257
1258 /*
1259 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1260 * source.
1261 */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)1262 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1263 {
1264 u32 val;
1265
1266 val = intel_de_read(dev_priv, LCPLL_CTL);
1267
1268 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1269 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1270 return;
1271
1272 /*
1273 * Make sure we're not on PC8 state before disabling PC8, otherwise
1274 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1275 */
1276 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1277
1278 if (val & LCPLL_POWER_DOWN_ALLOW) {
1279 val &= ~LCPLL_POWER_DOWN_ALLOW;
1280 intel_de_write(dev_priv, LCPLL_CTL, val);
1281 intel_de_posting_read(dev_priv, LCPLL_CTL);
1282 }
1283
1284 val = hsw_read_dcomp(dev_priv);
1285 val |= D_COMP_COMP_FORCE;
1286 val &= ~D_COMP_COMP_DISABLE;
1287 hsw_write_dcomp(dev_priv, val);
1288
1289 val = intel_de_read(dev_priv, LCPLL_CTL);
1290 val &= ~LCPLL_PLL_DISABLE;
1291 intel_de_write(dev_priv, LCPLL_CTL, val);
1292
1293 if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1294 drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1295
1296 if (val & LCPLL_CD_SOURCE_FCLK) {
1297 val = intel_de_read(dev_priv, LCPLL_CTL);
1298 val &= ~LCPLL_CD_SOURCE_FCLK;
1299 intel_de_write(dev_priv, LCPLL_CTL, val);
1300
1301 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1302 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1303 drm_err(&dev_priv->drm,
1304 "Switching back to LCPLL failed\n");
1305 }
1306
1307 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1308
1309 intel_update_cdclk(dev_priv);
1310 intel_cdclk_dump_config(dev_priv, &dev_priv->cdclk.hw, "Current CDCLK");
1311 }
1312
1313 /*
1314 * Package states C8 and deeper are really deep PC states that can only be
1315 * reached when all the devices on the system allow it, so even if the graphics
1316 * device allows PC8+, it doesn't mean the system will actually get to these
1317 * states. Our driver only allows PC8+ when going into runtime PM.
1318 *
1319 * The requirements for PC8+ are that all the outputs are disabled, the power
1320 * well is disabled and most interrupts are disabled, and these are also
1321 * requirements for runtime PM. When these conditions are met, we manually do
1322 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1323 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1324 * hang the machine.
1325 *
1326 * When we really reach PC8 or deeper states (not just when we allow it) we lose
1327 * the state of some registers, so when we come back from PC8+ we need to
1328 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1329 * need to take care of the registers kept by RC6. Notice that this happens even
1330 * if we don't put the device in PCI D3 state (which is what currently happens
1331 * because of the runtime PM support).
1332 *
1333 * For more, read "Display Sequences for Package C8" on the hardware
1334 * documentation.
1335 */
hsw_enable_pc8(struct drm_i915_private * dev_priv)1336 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1337 {
1338 u32 val;
1339
1340 drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1341
1342 if (HAS_PCH_LPT_LP(dev_priv)) {
1343 val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1344 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
1345 intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1346 }
1347
1348 lpt_disable_clkout_dp(dev_priv);
1349 hsw_disable_lcpll(dev_priv, true, true);
1350 }
1351
hsw_disable_pc8(struct drm_i915_private * dev_priv)1352 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1353 {
1354 u32 val;
1355
1356 drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1357
1358 hsw_restore_lcpll(dev_priv);
1359 intel_init_pch_refclk(dev_priv);
1360
1361 if (HAS_PCH_LPT_LP(dev_priv)) {
1362 val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
1363 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
1364 intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
1365 }
1366 }
1367
intel_pch_reset_handshake(struct drm_i915_private * dev_priv,bool enable)1368 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1369 bool enable)
1370 {
1371 i915_reg_t reg;
1372 u32 reset_bits, val;
1373
1374 if (IS_IVYBRIDGE(dev_priv)) {
1375 reg = GEN7_MSG_CTL;
1376 reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1377 } else {
1378 reg = HSW_NDE_RSTWRN_OPT;
1379 reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1380 }
1381
1382 val = intel_de_read(dev_priv, reg);
1383
1384 if (enable)
1385 val |= reset_bits;
1386 else
1387 val &= ~reset_bits;
1388
1389 intel_de_write(dev_priv, reg, val);
1390 }
1391
skl_display_core_init(struct drm_i915_private * dev_priv,bool resume)1392 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1393 bool resume)
1394 {
1395 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1396 struct i915_power_well *well;
1397
1398 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1399
1400 /* enable PCH reset handshake */
1401 intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1402
1403 if (!HAS_DISPLAY(dev_priv))
1404 return;
1405
1406 /* enable PG1 and Misc I/O */
1407 mutex_lock(&power_domains->lock);
1408
1409 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1410 intel_power_well_enable(dev_priv, well);
1411
1412 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1413 intel_power_well_enable(dev_priv, well);
1414
1415 mutex_unlock(&power_domains->lock);
1416
1417 intel_cdclk_init_hw(dev_priv);
1418
1419 gen9_dbuf_enable(dev_priv);
1420
1421 if (resume)
1422 intel_dmc_load_program(dev_priv);
1423 }
1424
skl_display_core_uninit(struct drm_i915_private * dev_priv)1425 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1426 {
1427 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1428 struct i915_power_well *well;
1429
1430 if (!HAS_DISPLAY(dev_priv))
1431 return;
1432
1433 gen9_disable_dc_states(dev_priv);
1434
1435 gen9_dbuf_disable(dev_priv);
1436
1437 intel_cdclk_uninit_hw(dev_priv);
1438
1439 /* The spec doesn't call for removing the reset handshake flag */
1440 /* disable PG1 and Misc I/O */
1441
1442 mutex_lock(&power_domains->lock);
1443
1444 /*
1445 * BSpec says to keep the MISC IO power well enabled here, only
1446 * remove our request for power well 1.
1447 * Note that even though the driver's request is removed power well 1
1448 * may stay enabled after this due to DMC's own request on it.
1449 */
1450 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1451 intel_power_well_disable(dev_priv, well);
1452
1453 mutex_unlock(&power_domains->lock);
1454
1455 usleep_range(10, 30); /* 10 us delay per Bspec */
1456 }
1457
bxt_display_core_init(struct drm_i915_private * dev_priv,bool resume)1458 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1459 {
1460 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1461 struct i915_power_well *well;
1462
1463 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1464
1465 /*
1466 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1467 * or else the reset will hang because there is no PCH to respond.
1468 * Move the handshake programming to initialization sequence.
1469 * Previously was left up to BIOS.
1470 */
1471 intel_pch_reset_handshake(dev_priv, false);
1472
1473 if (!HAS_DISPLAY(dev_priv))
1474 return;
1475
1476 /* Enable PG1 */
1477 mutex_lock(&power_domains->lock);
1478
1479 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1480 intel_power_well_enable(dev_priv, well);
1481
1482 mutex_unlock(&power_domains->lock);
1483
1484 intel_cdclk_init_hw(dev_priv);
1485
1486 gen9_dbuf_enable(dev_priv);
1487
1488 if (resume)
1489 intel_dmc_load_program(dev_priv);
1490 }
1491
bxt_display_core_uninit(struct drm_i915_private * dev_priv)1492 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1493 {
1494 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1495 struct i915_power_well *well;
1496
1497 if (!HAS_DISPLAY(dev_priv))
1498 return;
1499
1500 gen9_disable_dc_states(dev_priv);
1501
1502 gen9_dbuf_disable(dev_priv);
1503
1504 intel_cdclk_uninit_hw(dev_priv);
1505
1506 /* The spec doesn't call for removing the reset handshake flag */
1507
1508 /*
1509 * Disable PW1 (PG1).
1510 * Note that even though the driver's request is removed power well 1
1511 * may stay enabled after this due to DMC's own request on it.
1512 */
1513 mutex_lock(&power_domains->lock);
1514
1515 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1516 intel_power_well_disable(dev_priv, well);
1517
1518 mutex_unlock(&power_domains->lock);
1519
1520 usleep_range(10, 30); /* 10 us delay per Bspec */
1521 }
1522
1523 struct buddy_page_mask {
1524 u32 page_mask;
1525 u8 type;
1526 u8 num_channels;
1527 };
1528
1529 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1530 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF },
1531 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF },
1532 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1533 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1534 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F },
1535 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E },
1536 { .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1537 { .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1538 {}
1539 };
1540
1541 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1542 { .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1543 { .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 },
1544 { .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 },
1545 { .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1546 { .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1547 { .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 },
1548 { .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 },
1549 { .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1550 {}
1551 };
1552
tgl_bw_buddy_init(struct drm_i915_private * dev_priv)1553 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1554 {
1555 enum intel_dram_type type = dev_priv->dram_info.type;
1556 u8 num_channels = dev_priv->dram_info.num_channels;
1557 const struct buddy_page_mask *table;
1558 unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
1559 int config, i;
1560
1561 /* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1562 if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1563 return;
1564
1565 if (IS_ALDERLAKE_S(dev_priv) ||
1566 IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1567 IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
1568 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
1569 /* Wa_1409767108:tgl,dg1,adl-s */
1570 table = wa_1409767108_buddy_page_masks;
1571 else
1572 table = tgl_buddy_page_masks;
1573
1574 for (config = 0; table[config].page_mask != 0; config++)
1575 if (table[config].num_channels == num_channels &&
1576 table[config].type == type)
1577 break;
1578
1579 if (table[config].page_mask == 0) {
1580 drm_dbg(&dev_priv->drm,
1581 "Unknown memory configuration; disabling address buddy logic.\n");
1582 for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1583 intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1584 BW_BUDDY_DISABLE);
1585 } else {
1586 for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1587 intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1588 table[config].page_mask);
1589
1590 /* Wa_22010178259:tgl,dg1,rkl,adl-s */
1591 if (DISPLAY_VER(dev_priv) == 12)
1592 intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1593 BW_BUDDY_TLB_REQ_TIMER_MASK,
1594 BW_BUDDY_TLB_REQ_TIMER(0x8));
1595 }
1596 }
1597 }
1598
icl_display_core_init(struct drm_i915_private * dev_priv,bool resume)1599 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1600 bool resume)
1601 {
1602 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1603 struct i915_power_well *well;
1604 u32 val;
1605
1606 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1607
1608 /* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1609 if (INTEL_PCH_TYPE(dev_priv) >= PCH_JSP &&
1610 INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1611 intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1612 PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1613
1614 /* 1. Enable PCH reset handshake. */
1615 intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1616
1617 if (!HAS_DISPLAY(dev_priv))
1618 return;
1619
1620 /* 2. Initialize all combo phys */
1621 intel_combo_phy_init(dev_priv);
1622
1623 /*
1624 * 3. Enable Power Well 1 (PG1).
1625 * The AUX IO power wells will be enabled on demand.
1626 */
1627 mutex_lock(&power_domains->lock);
1628 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1629 intel_power_well_enable(dev_priv, well);
1630 mutex_unlock(&power_domains->lock);
1631
1632 /* 4. Enable CDCLK. */
1633 intel_cdclk_init_hw(dev_priv);
1634
1635 if (DISPLAY_VER(dev_priv) >= 12)
1636 gen12_dbuf_slices_config(dev_priv);
1637
1638 /* 5. Enable DBUF. */
1639 gen9_dbuf_enable(dev_priv);
1640
1641 /* 6. Setup MBUS. */
1642 icl_mbus_init(dev_priv);
1643
1644 /* 7. Program arbiter BW_BUDDY registers */
1645 if (DISPLAY_VER(dev_priv) >= 12)
1646 tgl_bw_buddy_init(dev_priv);
1647
1648 /* 8. Ensure PHYs have completed calibration and adaptation */
1649 if (IS_DG2(dev_priv))
1650 intel_snps_phy_wait_for_calibration(dev_priv);
1651
1652 if (resume)
1653 intel_dmc_load_program(dev_priv);
1654
1655 /* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1656 if (DISPLAY_VER(dev_priv) >= 12) {
1657 val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1658 DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
1659 intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
1660 }
1661
1662 /* Wa_14011503030:xelpd */
1663 if (DISPLAY_VER(dev_priv) >= 13)
1664 intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1665 }
1666
icl_display_core_uninit(struct drm_i915_private * dev_priv)1667 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1668 {
1669 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1670 struct i915_power_well *well;
1671
1672 if (!HAS_DISPLAY(dev_priv))
1673 return;
1674
1675 gen9_disable_dc_states(dev_priv);
1676
1677 /* 1. Disable all display engine functions -> aready done */
1678
1679 /* 2. Disable DBUF */
1680 gen9_dbuf_disable(dev_priv);
1681
1682 /* 3. Disable CD clock */
1683 intel_cdclk_uninit_hw(dev_priv);
1684
1685 /*
1686 * 4. Disable Power Well 1 (PG1).
1687 * The AUX IO power wells are toggled on demand, so they are already
1688 * disabled at this point.
1689 */
1690 mutex_lock(&power_domains->lock);
1691 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1692 intel_power_well_disable(dev_priv, well);
1693 mutex_unlock(&power_domains->lock);
1694
1695 /* 5. */
1696 intel_combo_phy_uninit(dev_priv);
1697 }
1698
chv_phy_control_init(struct drm_i915_private * dev_priv)1699 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1700 {
1701 struct i915_power_well *cmn_bc =
1702 lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1703 struct i915_power_well *cmn_d =
1704 lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1705
1706 /*
1707 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1708 * workaround never ever read DISPLAY_PHY_CONTROL, and
1709 * instead maintain a shadow copy ourselves. Use the actual
1710 * power well state and lane status to reconstruct the
1711 * expected initial value.
1712 */
1713 dev_priv->chv_phy_control =
1714 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1715 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1716 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1717 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1718 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1719
1720 /*
1721 * If all lanes are disabled we leave the override disabled
1722 * with all power down bits cleared to match the state we
1723 * would use after disabling the port. Otherwise enable the
1724 * override and set the lane powerdown bits accding to the
1725 * current lane status.
1726 */
1727 if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1728 u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1729 unsigned int mask;
1730
1731 mask = status & DPLL_PORTB_READY_MASK;
1732 if (mask == 0xf)
1733 mask = 0x0;
1734 else
1735 dev_priv->chv_phy_control |=
1736 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1737
1738 dev_priv->chv_phy_control |=
1739 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1740
1741 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1742 if (mask == 0xf)
1743 mask = 0x0;
1744 else
1745 dev_priv->chv_phy_control |=
1746 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1747
1748 dev_priv->chv_phy_control |=
1749 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1750
1751 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1752
1753 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
1754 } else {
1755 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
1756 }
1757
1758 if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1759 u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1760 unsigned int mask;
1761
1762 mask = status & DPLL_PORTD_READY_MASK;
1763
1764 if (mask == 0xf)
1765 mask = 0x0;
1766 else
1767 dev_priv->chv_phy_control |=
1768 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1769
1770 dev_priv->chv_phy_control |=
1771 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1772
1773 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1774
1775 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
1776 } else {
1777 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
1778 }
1779
1780 drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1781 dev_priv->chv_phy_control);
1782
1783 /* Defer application of initial phy_control to enabling the powerwell */
1784 }
1785
vlv_cmnlane_wa(struct drm_i915_private * dev_priv)1786 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1787 {
1788 struct i915_power_well *cmn =
1789 lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1790 struct i915_power_well *disp2d =
1791 lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1792
1793 /* If the display might be already active skip this */
1794 if (intel_power_well_is_enabled(dev_priv, cmn) &&
1795 intel_power_well_is_enabled(dev_priv, disp2d) &&
1796 intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1797 return;
1798
1799 drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1800
1801 /* cmnlane needs DPLL registers */
1802 intel_power_well_enable(dev_priv, disp2d);
1803
1804 /*
1805 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1806 * Need to assert and de-assert PHY SB reset by gating the
1807 * common lane power, then un-gating it.
1808 * Simply ungating isn't enough to reset the PHY enough to get
1809 * ports and lanes running.
1810 */
1811 intel_power_well_disable(dev_priv, cmn);
1812 }
1813
vlv_punit_is_power_gated(struct drm_i915_private * dev_priv,u32 reg0)1814 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1815 {
1816 bool ret;
1817
1818 vlv_punit_get(dev_priv);
1819 ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1820 vlv_punit_put(dev_priv);
1821
1822 return ret;
1823 }
1824
assert_ved_power_gated(struct drm_i915_private * dev_priv)1825 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1826 {
1827 drm_WARN(&dev_priv->drm,
1828 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1829 "VED not power gated\n");
1830 }
1831
assert_isp_power_gated(struct drm_i915_private * dev_priv)1832 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1833 {
1834 static const struct pci_device_id isp_ids[] = {
1835 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1836 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1837 {}
1838 };
1839
1840 drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1841 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1842 "ISP not power gated\n");
1843 }
1844
1845 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1846
1847 /**
1848 * intel_power_domains_init_hw - initialize hardware power domain state
1849 * @i915: i915 device instance
1850 * @resume: Called from resume code paths or not
1851 *
1852 * This function initializes the hardware power domain state and enables all
1853 * power wells belonging to the INIT power domain. Power wells in other
1854 * domains (and not in the INIT domain) are referenced or disabled by
1855 * intel_modeset_readout_hw_state(). After that the reference count of each
1856 * power well must match its HW enabled state, see
1857 * intel_power_domains_verify_state().
1858 *
1859 * It will return with power domains disabled (to be enabled later by
1860 * intel_power_domains_enable()) and must be paired with
1861 * intel_power_domains_driver_remove().
1862 */
intel_power_domains_init_hw(struct drm_i915_private * i915,bool resume)1863 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1864 {
1865 struct i915_power_domains *power_domains = &i915->power_domains;
1866
1867 power_domains->initializing = true;
1868
1869 if (DISPLAY_VER(i915) >= 11) {
1870 icl_display_core_init(i915, resume);
1871 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1872 bxt_display_core_init(i915, resume);
1873 } else if (DISPLAY_VER(i915) == 9) {
1874 skl_display_core_init(i915, resume);
1875 } else if (IS_CHERRYVIEW(i915)) {
1876 mutex_lock(&power_domains->lock);
1877 chv_phy_control_init(i915);
1878 mutex_unlock(&power_domains->lock);
1879 assert_isp_power_gated(i915);
1880 } else if (IS_VALLEYVIEW(i915)) {
1881 mutex_lock(&power_domains->lock);
1882 vlv_cmnlane_wa(i915);
1883 mutex_unlock(&power_domains->lock);
1884 assert_ved_power_gated(i915);
1885 assert_isp_power_gated(i915);
1886 } else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1887 hsw_assert_cdclk(i915);
1888 intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1889 } else if (IS_IVYBRIDGE(i915)) {
1890 intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1891 }
1892
1893 /*
1894 * Keep all power wells enabled for any dependent HW access during
1895 * initialization and to make sure we keep BIOS enabled display HW
1896 * resources powered until display HW readout is complete. We drop
1897 * this reference in intel_power_domains_enable().
1898 */
1899 drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1900 power_domains->init_wakeref =
1901 intel_display_power_get(i915, POWER_DOMAIN_INIT);
1902
1903 /* Disable power support if the user asked so. */
1904 if (!i915->params.disable_power_well) {
1905 drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1906 i915->power_domains.disable_wakeref = intel_display_power_get(i915,
1907 POWER_DOMAIN_INIT);
1908 }
1909 intel_power_domains_sync_hw(i915);
1910
1911 power_domains->initializing = false;
1912 }
1913
1914 /**
1915 * intel_power_domains_driver_remove - deinitialize hw power domain state
1916 * @i915: i915 device instance
1917 *
1918 * De-initializes the display power domain HW state. It also ensures that the
1919 * device stays powered up so that the driver can be reloaded.
1920 *
1921 * It must be called with power domains already disabled (after a call to
1922 * intel_power_domains_disable()) and must be paired with
1923 * intel_power_domains_init_hw().
1924 */
intel_power_domains_driver_remove(struct drm_i915_private * i915)1925 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1926 {
1927 intel_wakeref_t wakeref __maybe_unused =
1928 fetch_and_zero(&i915->power_domains.init_wakeref);
1929
1930 /* Remove the refcount we took to keep power well support disabled. */
1931 if (!i915->params.disable_power_well)
1932 intel_display_power_put(i915, POWER_DOMAIN_INIT,
1933 fetch_and_zero(&i915->power_domains.disable_wakeref));
1934
1935 intel_display_power_flush_work_sync(i915);
1936
1937 intel_power_domains_verify_state(i915);
1938
1939 /* Keep the power well enabled, but cancel its rpm wakeref. */
1940 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1941 }
1942
1943 /**
1944 * intel_power_domains_sanitize_state - sanitize power domains state
1945 * @i915: i915 device instance
1946 *
1947 * Sanitize the power domains state during driver loading and system resume.
1948 * The function will disable all display power wells that BIOS has enabled
1949 * without a user for it (any user for a power well has taken a reference
1950 * on it by the time this function is called, after the state of all the
1951 * pipe, encoder, etc. HW resources have been sanitized).
1952 */
intel_power_domains_sanitize_state(struct drm_i915_private * i915)1953 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
1954 {
1955 struct i915_power_domains *power_domains = &i915->power_domains;
1956 struct i915_power_well *power_well;
1957
1958 mutex_lock(&power_domains->lock);
1959
1960 for_each_power_well_reverse(i915, power_well) {
1961 if (power_well->desc->always_on || power_well->count ||
1962 !intel_power_well_is_enabled(i915, power_well))
1963 continue;
1964
1965 drm_dbg_kms(&i915->drm,
1966 "BIOS left unused %s power well enabled, disabling it\n",
1967 intel_power_well_name(power_well));
1968 intel_power_well_disable(i915, power_well);
1969 }
1970
1971 mutex_unlock(&power_domains->lock);
1972 }
1973
1974 /**
1975 * intel_power_domains_enable - enable toggling of display power wells
1976 * @i915: i915 device instance
1977 *
1978 * Enable the ondemand enabling/disabling of the display power wells. Note that
1979 * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
1980 * only at specific points of the display modeset sequence, thus they are not
1981 * affected by the intel_power_domains_enable()/disable() calls. The purpose
1982 * of these function is to keep the rest of power wells enabled until the end
1983 * of display HW readout (which will acquire the power references reflecting
1984 * the current HW state).
1985 */
intel_power_domains_enable(struct drm_i915_private * i915)1986 void intel_power_domains_enable(struct drm_i915_private *i915)
1987 {
1988 intel_wakeref_t wakeref __maybe_unused =
1989 fetch_and_zero(&i915->power_domains.init_wakeref);
1990
1991 intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
1992 intel_power_domains_verify_state(i915);
1993 }
1994
1995 /**
1996 * intel_power_domains_disable - disable toggling of display power wells
1997 * @i915: i915 device instance
1998 *
1999 * Disable the ondemand enabling/disabling of the display power wells. See
2000 * intel_power_domains_enable() for which power wells this call controls.
2001 */
intel_power_domains_disable(struct drm_i915_private * i915)2002 void intel_power_domains_disable(struct drm_i915_private *i915)
2003 {
2004 struct i915_power_domains *power_domains = &i915->power_domains;
2005
2006 drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2007 power_domains->init_wakeref =
2008 intel_display_power_get(i915, POWER_DOMAIN_INIT);
2009
2010 intel_power_domains_verify_state(i915);
2011 }
2012
2013 /**
2014 * intel_power_domains_suspend - suspend power domain state
2015 * @i915: i915 device instance
2016 * @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
2017 *
2018 * This function prepares the hardware power domain state before entering
2019 * system suspend.
2020 *
2021 * It must be called with power domains already disabled (after a call to
2022 * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2023 */
intel_power_domains_suspend(struct drm_i915_private * i915,enum i915_drm_suspend_mode suspend_mode)2024 void intel_power_domains_suspend(struct drm_i915_private *i915,
2025 enum i915_drm_suspend_mode suspend_mode)
2026 {
2027 struct i915_power_domains *power_domains = &i915->power_domains;
2028 intel_wakeref_t wakeref __maybe_unused =
2029 fetch_and_zero(&power_domains->init_wakeref);
2030
2031 intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2032
2033 /*
2034 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2035 * support don't manually deinit the power domains. This also means the
2036 * DMC firmware will stay active, it will power down any HW
2037 * resources as required and also enable deeper system power states
2038 * that would be blocked if the firmware was inactive.
2039 */
2040 if (!(i915->dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
2041 suspend_mode == I915_DRM_SUSPEND_IDLE &&
2042 intel_dmc_has_payload(i915)) {
2043 intel_display_power_flush_work(i915);
2044 intel_power_domains_verify_state(i915);
2045 return;
2046 }
2047
2048 /*
2049 * Even if power well support was disabled we still want to disable
2050 * power wells if power domains must be deinitialized for suspend.
2051 */
2052 if (!i915->params.disable_power_well)
2053 intel_display_power_put(i915, POWER_DOMAIN_INIT,
2054 fetch_and_zero(&i915->power_domains.disable_wakeref));
2055
2056 intel_display_power_flush_work(i915);
2057 intel_power_domains_verify_state(i915);
2058
2059 if (DISPLAY_VER(i915) >= 11)
2060 icl_display_core_uninit(i915);
2061 else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2062 bxt_display_core_uninit(i915);
2063 else if (DISPLAY_VER(i915) == 9)
2064 skl_display_core_uninit(i915);
2065
2066 power_domains->display_core_suspended = true;
2067 }
2068
2069 /**
2070 * intel_power_domains_resume - resume power domain state
2071 * @i915: i915 device instance
2072 *
2073 * This function resume the hardware power domain state during system resume.
2074 *
2075 * It will return with power domain support disabled (to be enabled later by
2076 * intel_power_domains_enable()) and must be paired with
2077 * intel_power_domains_suspend().
2078 */
intel_power_domains_resume(struct drm_i915_private * i915)2079 void intel_power_domains_resume(struct drm_i915_private *i915)
2080 {
2081 struct i915_power_domains *power_domains = &i915->power_domains;
2082
2083 if (power_domains->display_core_suspended) {
2084 intel_power_domains_init_hw(i915, true);
2085 power_domains->display_core_suspended = false;
2086 } else {
2087 drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2088 power_domains->init_wakeref =
2089 intel_display_power_get(i915, POWER_DOMAIN_INIT);
2090 }
2091
2092 intel_power_domains_verify_state(i915);
2093 }
2094
2095 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2096
intel_power_domains_dump_info(struct drm_i915_private * i915)2097 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2098 {
2099 struct i915_power_domains *power_domains = &i915->power_domains;
2100 struct i915_power_well *power_well;
2101
2102 for_each_power_well(i915, power_well) {
2103 enum intel_display_power_domain domain;
2104
2105 drm_dbg(&i915->drm, "%-25s %d\n",
2106 intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2107
2108 for_each_power_domain(domain, intel_power_well_domains(power_well))
2109 drm_dbg(&i915->drm, " %-23s %d\n",
2110 intel_display_power_domain_str(domain),
2111 power_domains->domain_use_count[domain]);
2112 }
2113 }
2114
2115 /**
2116 * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2117 * @i915: i915 device instance
2118 *
2119 * Verify if the reference count of each power well matches its HW enabled
2120 * state and the total refcount of the domains it belongs to. This must be
2121 * called after modeset HW state sanitization, which is responsible for
2122 * acquiring reference counts for any power wells in use and disabling the
2123 * ones left on by BIOS but not required by any active output.
2124 */
intel_power_domains_verify_state(struct drm_i915_private * i915)2125 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2126 {
2127 struct i915_power_domains *power_domains = &i915->power_domains;
2128 struct i915_power_well *power_well;
2129 bool dump_domain_info;
2130
2131 mutex_lock(&power_domains->lock);
2132
2133 verify_async_put_domains_state(power_domains);
2134
2135 dump_domain_info = false;
2136 for_each_power_well(i915, power_well) {
2137 enum intel_display_power_domain domain;
2138 int domains_count;
2139 bool enabled;
2140
2141 enabled = intel_power_well_is_enabled(i915, power_well);
2142 if ((intel_power_well_refcount(power_well) ||
2143 intel_power_well_is_always_on(power_well)) !=
2144 enabled)
2145 drm_err(&i915->drm,
2146 "power well %s state mismatch (refcount %d/enabled %d)",
2147 intel_power_well_name(power_well),
2148 intel_power_well_refcount(power_well), enabled);
2149
2150 domains_count = 0;
2151 for_each_power_domain(domain, intel_power_well_domains(power_well))
2152 domains_count += power_domains->domain_use_count[domain];
2153
2154 if (intel_power_well_refcount(power_well) != domains_count) {
2155 drm_err(&i915->drm,
2156 "power well %s refcount/domain refcount mismatch "
2157 "(refcount %d/domains refcount %d)\n",
2158 intel_power_well_name(power_well),
2159 intel_power_well_refcount(power_well),
2160 domains_count);
2161 dump_domain_info = true;
2162 }
2163 }
2164
2165 if (dump_domain_info) {
2166 static bool dumped;
2167
2168 if (!dumped) {
2169 intel_power_domains_dump_info(i915);
2170 dumped = true;
2171 }
2172 }
2173
2174 mutex_unlock(&power_domains->lock);
2175 }
2176
2177 #else
2178
intel_power_domains_verify_state(struct drm_i915_private * i915)2179 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2180 {
2181 }
2182
2183 #endif
2184
intel_display_power_suspend_late(struct drm_i915_private * i915)2185 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2186 {
2187 if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2188 IS_BROXTON(i915)) {
2189 bxt_enable_dc9(i915);
2190 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2191 hsw_enable_pc8(i915);
2192 }
2193
2194 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2195 if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2196 intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2197 }
2198
intel_display_power_resume_early(struct drm_i915_private * i915)2199 void intel_display_power_resume_early(struct drm_i915_private *i915)
2200 {
2201 if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2202 IS_BROXTON(i915)) {
2203 gen9_sanitize_dc_state(i915);
2204 bxt_disable_dc9(i915);
2205 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2206 hsw_disable_pc8(i915);
2207 }
2208
2209 /* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2210 if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2211 intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2212 }
2213
intel_display_power_suspend(struct drm_i915_private * i915)2214 void intel_display_power_suspend(struct drm_i915_private *i915)
2215 {
2216 if (DISPLAY_VER(i915) >= 11) {
2217 icl_display_core_uninit(i915);
2218 bxt_enable_dc9(i915);
2219 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2220 bxt_display_core_uninit(i915);
2221 bxt_enable_dc9(i915);
2222 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2223 hsw_enable_pc8(i915);
2224 }
2225 }
2226
intel_display_power_resume(struct drm_i915_private * i915)2227 void intel_display_power_resume(struct drm_i915_private *i915)
2228 {
2229 if (DISPLAY_VER(i915) >= 11) {
2230 bxt_disable_dc9(i915);
2231 icl_display_core_init(i915, true);
2232 if (intel_dmc_has_payload(i915)) {
2233 if (i915->dmc.allowed_dc_mask &
2234 DC_STATE_EN_UPTO_DC6)
2235 skl_enable_dc6(i915);
2236 else if (i915->dmc.allowed_dc_mask &
2237 DC_STATE_EN_UPTO_DC5)
2238 gen9_enable_dc5(i915);
2239 }
2240 } else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2241 bxt_disable_dc9(i915);
2242 bxt_display_core_init(i915, true);
2243 if (intel_dmc_has_payload(i915) &&
2244 (i915->dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2245 gen9_enable_dc5(i915);
2246 } else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2247 hsw_disable_pc8(i915);
2248 }
2249 }
2250
intel_display_power_debug(struct drm_i915_private * i915,struct seq_file * m)2251 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2252 {
2253 struct i915_power_domains *power_domains = &i915->power_domains;
2254 int i;
2255
2256 mutex_lock(&power_domains->lock);
2257
2258 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2259 for (i = 0; i < power_domains->power_well_count; i++) {
2260 struct i915_power_well *power_well;
2261 enum intel_display_power_domain power_domain;
2262
2263 power_well = &power_domains->power_wells[i];
2264 seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2265 intel_power_well_refcount(power_well));
2266
2267 for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2268 seq_printf(m, " %-23s %d\n",
2269 intel_display_power_domain_str(power_domain),
2270 power_domains->domain_use_count[power_domain]);
2271 }
2272
2273 mutex_unlock(&power_domains->lock);
2274 }
2275
2276 struct intel_ddi_port_domains {
2277 enum port port_start;
2278 enum port port_end;
2279 enum aux_ch aux_ch_start;
2280 enum aux_ch aux_ch_end;
2281
2282 enum intel_display_power_domain ddi_lanes;
2283 enum intel_display_power_domain ddi_io;
2284 enum intel_display_power_domain aux_legacy_usbc;
2285 enum intel_display_power_domain aux_tbt;
2286 };
2287
2288 static const struct intel_ddi_port_domains
2289 i9xx_port_domains[] = {
2290 {
2291 .port_start = PORT_A,
2292 .port_end = PORT_F,
2293 .aux_ch_start = AUX_CH_A,
2294 .aux_ch_end = AUX_CH_F,
2295
2296 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2297 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2298 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2299 .aux_tbt = POWER_DOMAIN_INVALID,
2300 },
2301 };
2302
2303 static const struct intel_ddi_port_domains
2304 d11_port_domains[] = {
2305 {
2306 .port_start = PORT_A,
2307 .port_end = PORT_B,
2308 .aux_ch_start = AUX_CH_A,
2309 .aux_ch_end = AUX_CH_B,
2310
2311 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2312 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2313 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2314 .aux_tbt = POWER_DOMAIN_INVALID,
2315 }, {
2316 .port_start = PORT_C,
2317 .port_end = PORT_F,
2318 .aux_ch_start = AUX_CH_C,
2319 .aux_ch_end = AUX_CH_F,
2320
2321 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2322 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2323 .aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2324 .aux_tbt = POWER_DOMAIN_AUX_TBT1,
2325 },
2326 };
2327
2328 static const struct intel_ddi_port_domains
2329 d12_port_domains[] = {
2330 {
2331 .port_start = PORT_A,
2332 .port_end = PORT_C,
2333 .aux_ch_start = AUX_CH_A,
2334 .aux_ch_end = AUX_CH_C,
2335
2336 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2337 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2338 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2339 .aux_tbt = POWER_DOMAIN_INVALID,
2340 }, {
2341 .port_start = PORT_TC1,
2342 .port_end = PORT_TC6,
2343 .aux_ch_start = AUX_CH_USBC1,
2344 .aux_ch_end = AUX_CH_USBC6,
2345
2346 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2347 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2348 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2349 .aux_tbt = POWER_DOMAIN_AUX_TBT1,
2350 },
2351 };
2352
2353 static const struct intel_ddi_port_domains
2354 d13_port_domains[] = {
2355 {
2356 .port_start = PORT_A,
2357 .port_end = PORT_C,
2358 .aux_ch_start = AUX_CH_A,
2359 .aux_ch_end = AUX_CH_C,
2360
2361 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2362 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2363 .aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2364 .aux_tbt = POWER_DOMAIN_INVALID,
2365 }, {
2366 .port_start = PORT_TC1,
2367 .port_end = PORT_TC4,
2368 .aux_ch_start = AUX_CH_USBC1,
2369 .aux_ch_end = AUX_CH_USBC4,
2370
2371 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2372 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2373 .aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2374 .aux_tbt = POWER_DOMAIN_AUX_TBT1,
2375 }, {
2376 .port_start = PORT_D_XELPD,
2377 .port_end = PORT_E_XELPD,
2378 .aux_ch_start = AUX_CH_D_XELPD,
2379 .aux_ch_end = AUX_CH_E_XELPD,
2380
2381 .ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2382 .ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2383 .aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2384 .aux_tbt = POWER_DOMAIN_INVALID,
2385 },
2386 };
2387
2388 static void
intel_port_domains_for_platform(struct drm_i915_private * i915,const struct intel_ddi_port_domains ** domains,int * domains_size)2389 intel_port_domains_for_platform(struct drm_i915_private *i915,
2390 const struct intel_ddi_port_domains **domains,
2391 int *domains_size)
2392 {
2393 if (DISPLAY_VER(i915) >= 13) {
2394 *domains = d13_port_domains;
2395 *domains_size = ARRAY_SIZE(d13_port_domains);
2396 } else if (DISPLAY_VER(i915) >= 12) {
2397 *domains = d12_port_domains;
2398 *domains_size = ARRAY_SIZE(d12_port_domains);
2399 } else if (DISPLAY_VER(i915) >= 11) {
2400 *domains = d11_port_domains;
2401 *domains_size = ARRAY_SIZE(d11_port_domains);
2402 } else {
2403 *domains = i9xx_port_domains;
2404 *domains_size = ARRAY_SIZE(i9xx_port_domains);
2405 }
2406 }
2407
2408 static const struct intel_ddi_port_domains *
intel_port_domains_for_port(struct drm_i915_private * i915,enum port port)2409 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2410 {
2411 const struct intel_ddi_port_domains *domains;
2412 int domains_size;
2413 int i;
2414
2415 intel_port_domains_for_platform(i915, &domains, &domains_size);
2416 for (i = 0; i < domains_size; i++)
2417 if (port >= domains[i].port_start && port <= domains[i].port_end)
2418 return &domains[i];
2419
2420 return NULL;
2421 }
2422
2423 enum intel_display_power_domain
intel_display_power_ddi_io_domain(struct drm_i915_private * i915,enum port port)2424 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2425 {
2426 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2427
2428 if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_io == POWER_DOMAIN_INVALID)
2429 return POWER_DOMAIN_PORT_DDI_IO_A;
2430
2431 return domains->ddi_io + (int)(port - domains->port_start);
2432 }
2433
2434 enum intel_display_power_domain
intel_display_power_ddi_lanes_domain(struct drm_i915_private * i915,enum port port)2435 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2436 {
2437 const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2438
2439 if (drm_WARN_ON(&i915->drm, !domains) || domains->ddi_lanes == POWER_DOMAIN_INVALID)
2440 return POWER_DOMAIN_PORT_DDI_LANES_A;
2441
2442 return domains->ddi_lanes + (int)(port - domains->port_start);
2443 }
2444
2445 static const struct intel_ddi_port_domains *
intel_port_domains_for_aux_ch(struct drm_i915_private * i915,enum aux_ch aux_ch)2446 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2447 {
2448 const struct intel_ddi_port_domains *domains;
2449 int domains_size;
2450 int i;
2451
2452 intel_port_domains_for_platform(i915, &domains, &domains_size);
2453 for (i = 0; i < domains_size; i++)
2454 if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2455 return &domains[i];
2456
2457 return NULL;
2458 }
2459
2460 enum intel_display_power_domain
intel_display_power_legacy_aux_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2461 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2462 {
2463 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2464
2465 if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID)
2466 return POWER_DOMAIN_AUX_A;
2467
2468 return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2469 }
2470
2471 enum intel_display_power_domain
intel_display_power_tbt_aux_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2472 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2473 {
2474 const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2475
2476 if (drm_WARN_ON(&i915->drm, !domains) || domains->aux_tbt == POWER_DOMAIN_INVALID)
2477 return POWER_DOMAIN_AUX_TBT1;
2478
2479 return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2480 }
2481