1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5 #include <linux/kernel.h>
6 #include <linux/pm_qos.h>
7 #include <linux/slab.h>
8
9 #include <drm/drm_atomic_helper.h>
10 #include <drm/drm_fourcc.h>
11 #include <drm/drm_plane.h>
12 #include <drm/drm_vblank_work.h>
13
14 #include "i915_vgpu.h"
15 #include "i9xx_plane.h"
16 #include "icl_dsi.h"
17 #include "intel_atomic.h"
18 #include "intel_atomic_plane.h"
19 #include "intel_color.h"
20 #include "intel_crtc.h"
21 #include "intel_cursor.h"
22 #include "intel_display_debugfs.h"
23 #include "intel_display_irq.h"
24 #include "intel_display_trace.h"
25 #include "intel_display_types.h"
26 #include "intel_drrs.h"
27 #include "intel_dsi.h"
28 #include "intel_fifo_underrun.h"
29 #include "intel_pipe_crc.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32 #include "intel_vblank.h"
33 #include "intel_vrr.h"
34 #include "skl_universal_plane.h"
35
assert_vblank_disabled(struct drm_crtc * crtc)36 static void assert_vblank_disabled(struct drm_crtc *crtc)
37 {
38 struct drm_i915_private *i915 = to_i915(crtc->dev);
39
40 if (I915_STATE_WARN(i915, drm_crtc_vblank_get(crtc) == 0,
41 "[CRTC:%d:%s] vblank assertion failure (expected off, current on)\n",
42 crtc->base.id, crtc->name))
43 drm_crtc_vblank_put(crtc);
44 }
45
intel_first_crtc(struct drm_i915_private * i915)46 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915)
47 {
48 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0));
49 }
50
intel_crtc_for_pipe(struct drm_i915_private * i915,enum pipe pipe)51 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915,
52 enum pipe pipe)
53 {
54 struct intel_crtc *crtc;
55
56 for_each_intel_crtc(&i915->drm, crtc) {
57 if (crtc->pipe == pipe)
58 return crtc;
59 }
60
61 return NULL;
62 }
63
intel_crtc_wait_for_next_vblank(struct intel_crtc * crtc)64 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc)
65 {
66 drm_crtc_wait_one_vblank(&crtc->base);
67 }
68
intel_wait_for_vblank_if_active(struct drm_i915_private * i915,enum pipe pipe)69 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915,
70 enum pipe pipe)
71 {
72 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
73
74 if (crtc->active)
75 intel_crtc_wait_for_next_vblank(crtc);
76 }
77
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)78 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
79 {
80 struct drm_device *dev = crtc->base.dev;
81 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
82
83 if (!crtc->active)
84 return 0;
85
86 if (!vblank->max_vblank_count)
87 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
88
89 return crtc->base.funcs->get_vblank_counter(&crtc->base);
90 }
91
intel_crtc_max_vblank_count(const struct intel_crtc_state * crtc_state)92 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
93 {
94 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
95
96 /*
97 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt
98 * have updated at the beginning of TE, if we want to use
99 * the hw counter, then we would find it updated in only
100 * the next TE, hence switching to sw counter.
101 */
102 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 |
103 I915_MODE_FLAG_DSI_USE_TE1))
104 return 0;
105
106 /*
107 * On i965gm the hardware frame counter reads
108 * zero when the TV encoder is enabled :(
109 */
110 if (IS_I965GM(dev_priv) &&
111 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
112 return 0;
113
114 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
115 return 0xffffffff; /* full 32 bit counter */
116 else if (DISPLAY_VER(dev_priv) >= 3)
117 return 0xffffff; /* only 24 bits of frame count */
118 else
119 return 0; /* Gen2 doesn't have a hardware frame counter */
120 }
121
intel_crtc_vblank_on(const struct intel_crtc_state * crtc_state)122 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
123 {
124 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
125
126 assert_vblank_disabled(&crtc->base);
127 drm_crtc_set_max_vblank_count(&crtc->base,
128 intel_crtc_max_vblank_count(crtc_state));
129 drm_crtc_vblank_on(&crtc->base);
130
131 /*
132 * Should really happen exactly when we enable the pipe
133 * but we want the frame counters in the trace, and that
134 * requires vblank support on some platforms/outputs.
135 */
136 trace_intel_pipe_enable(crtc);
137 }
138
intel_crtc_vblank_off(const struct intel_crtc_state * crtc_state)139 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
140 {
141 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
142
143 /*
144 * Should really happen exactly when we disable the pipe
145 * but we want the frame counters in the trace, and that
146 * requires vblank support on some platforms/outputs.
147 */
148 trace_intel_pipe_disable(crtc);
149
150 drm_crtc_vblank_off(&crtc->base);
151 assert_vblank_disabled(&crtc->base);
152 }
153
intel_crtc_state_alloc(struct intel_crtc * crtc)154 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
155 {
156 struct intel_crtc_state *crtc_state;
157
158 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
159
160 if (crtc_state)
161 intel_crtc_state_reset(crtc_state, crtc);
162
163 return crtc_state;
164 }
165
intel_crtc_state_reset(struct intel_crtc_state * crtc_state,struct intel_crtc * crtc)166 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
167 struct intel_crtc *crtc)
168 {
169 memset(crtc_state, 0, sizeof(*crtc_state));
170
171 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
172
173 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
174 crtc_state->master_transcoder = INVALID_TRANSCODER;
175 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
176 crtc_state->scaler_state.scaler_id = -1;
177 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
178 }
179
intel_crtc_alloc(void)180 static struct intel_crtc *intel_crtc_alloc(void)
181 {
182 struct intel_crtc_state *crtc_state;
183 struct intel_crtc *crtc;
184
185 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
186 if (!crtc)
187 return ERR_PTR(-ENOMEM);
188
189 crtc_state = intel_crtc_state_alloc(crtc);
190 if (!crtc_state) {
191 kfree(crtc);
192 return ERR_PTR(-ENOMEM);
193 }
194
195 crtc->base.state = &crtc_state->uapi;
196 crtc->config = crtc_state;
197
198 return crtc;
199 }
200
intel_crtc_free(struct intel_crtc * crtc)201 static void intel_crtc_free(struct intel_crtc *crtc)
202 {
203 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
204 kfree(crtc);
205 }
206
intel_crtc_destroy(struct drm_crtc * _crtc)207 static void intel_crtc_destroy(struct drm_crtc *_crtc)
208 {
209 struct intel_crtc *crtc = to_intel_crtc(_crtc);
210
211 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos);
212
213 drm_crtc_cleanup(&crtc->base);
214 kfree(crtc);
215 }
216
intel_crtc_late_register(struct drm_crtc * crtc)217 static int intel_crtc_late_register(struct drm_crtc *crtc)
218 {
219 intel_crtc_debugfs_add(to_intel_crtc(crtc));
220 return 0;
221 }
222
223 #define INTEL_CRTC_FUNCS \
224 .set_config = drm_atomic_helper_set_config, \
225 .destroy = intel_crtc_destroy, \
226 .page_flip = drm_atomic_helper_page_flip, \
227 .atomic_duplicate_state = intel_crtc_duplicate_state, \
228 .atomic_destroy_state = intel_crtc_destroy_state, \
229 .set_crc_source = intel_crtc_set_crc_source, \
230 .verify_crc_source = intel_crtc_verify_crc_source, \
231 .get_crc_sources = intel_crtc_get_crc_sources, \
232 .late_register = intel_crtc_late_register
233
234 static const struct drm_crtc_funcs bdw_crtc_funcs = {
235 INTEL_CRTC_FUNCS,
236
237 .get_vblank_counter = g4x_get_vblank_counter,
238 .enable_vblank = bdw_enable_vblank,
239 .disable_vblank = bdw_disable_vblank,
240 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
241 };
242
243 static const struct drm_crtc_funcs ilk_crtc_funcs = {
244 INTEL_CRTC_FUNCS,
245
246 .get_vblank_counter = g4x_get_vblank_counter,
247 .enable_vblank = ilk_enable_vblank,
248 .disable_vblank = ilk_disable_vblank,
249 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
250 };
251
252 static const struct drm_crtc_funcs g4x_crtc_funcs = {
253 INTEL_CRTC_FUNCS,
254
255 .get_vblank_counter = g4x_get_vblank_counter,
256 .enable_vblank = i965_enable_vblank,
257 .disable_vblank = i965_disable_vblank,
258 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
259 };
260
261 static const struct drm_crtc_funcs i965_crtc_funcs = {
262 INTEL_CRTC_FUNCS,
263
264 .get_vblank_counter = i915_get_vblank_counter,
265 .enable_vblank = i965_enable_vblank,
266 .disable_vblank = i965_disable_vblank,
267 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
268 };
269
270 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
271 INTEL_CRTC_FUNCS,
272
273 .get_vblank_counter = i915_get_vblank_counter,
274 .enable_vblank = i915gm_enable_vblank,
275 .disable_vblank = i915gm_disable_vblank,
276 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
277 };
278
279 static const struct drm_crtc_funcs i915_crtc_funcs = {
280 INTEL_CRTC_FUNCS,
281
282 .get_vblank_counter = i915_get_vblank_counter,
283 .enable_vblank = i8xx_enable_vblank,
284 .disable_vblank = i8xx_disable_vblank,
285 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
286 };
287
288 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
289 INTEL_CRTC_FUNCS,
290
291 /* no hw vblank counter */
292 .enable_vblank = i8xx_enable_vblank,
293 .disable_vblank = i8xx_disable_vblank,
294 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
295 };
296
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)297 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
298 {
299 struct intel_plane *primary, *cursor;
300 const struct drm_crtc_funcs *funcs;
301 struct intel_crtc *crtc;
302 int sprite, ret;
303
304 crtc = intel_crtc_alloc();
305 if (IS_ERR(crtc))
306 return PTR_ERR(crtc);
307
308 crtc->pipe = pipe;
309 crtc->num_scalers = DISPLAY_RUNTIME_INFO(dev_priv)->num_scalers[pipe];
310
311 if (DISPLAY_VER(dev_priv) >= 9)
312 primary = skl_universal_plane_create(dev_priv, pipe,
313 PLANE_PRIMARY);
314 else
315 primary = intel_primary_plane_create(dev_priv, pipe);
316 if (IS_ERR(primary)) {
317 ret = PTR_ERR(primary);
318 goto fail;
319 }
320 crtc->plane_ids_mask |= BIT(primary->id);
321
322 intel_init_fifo_underrun_reporting(dev_priv, crtc, false);
323
324 for_each_sprite(dev_priv, pipe, sprite) {
325 struct intel_plane *plane;
326
327 if (DISPLAY_VER(dev_priv) >= 9)
328 plane = skl_universal_plane_create(dev_priv, pipe,
329 PLANE_SPRITE0 + sprite);
330 else
331 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
332 if (IS_ERR(plane)) {
333 ret = PTR_ERR(plane);
334 goto fail;
335 }
336 crtc->plane_ids_mask |= BIT(plane->id);
337 }
338
339 cursor = intel_cursor_plane_create(dev_priv, pipe);
340 if (IS_ERR(cursor)) {
341 ret = PTR_ERR(cursor);
342 goto fail;
343 }
344 crtc->plane_ids_mask |= BIT(cursor->id);
345
346 if (HAS_GMCH(dev_priv)) {
347 if (IS_CHERRYVIEW(dev_priv) ||
348 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
349 funcs = &g4x_crtc_funcs;
350 else if (DISPLAY_VER(dev_priv) == 4)
351 funcs = &i965_crtc_funcs;
352 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
353 funcs = &i915gm_crtc_funcs;
354 else if (DISPLAY_VER(dev_priv) == 3)
355 funcs = &i915_crtc_funcs;
356 else
357 funcs = &i8xx_crtc_funcs;
358 } else {
359 if (DISPLAY_VER(dev_priv) >= 8)
360 funcs = &bdw_crtc_funcs;
361 else
362 funcs = &ilk_crtc_funcs;
363 }
364
365 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
366 &primary->base, &cursor->base,
367 funcs, "pipe %c", pipe_name(pipe));
368 if (ret)
369 goto fail;
370
371 if (DISPLAY_VER(dev_priv) >= 11)
372 drm_crtc_create_scaling_filter_property(&crtc->base,
373 BIT(DRM_SCALING_FILTER_DEFAULT) |
374 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR));
375
376 intel_color_crtc_init(crtc);
377 intel_drrs_crtc_init(crtc);
378 intel_crtc_crc_init(crtc);
379
380 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE);
381
382 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
383
384 return 0;
385
386 fail:
387 intel_crtc_free(crtc);
388
389 return ret;
390 }
391
intel_crtc_needs_vblank_work(const struct intel_crtc_state * crtc_state)392 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state)
393 {
394 return crtc_state->hw.active &&
395 !intel_crtc_needs_modeset(crtc_state) &&
396 !crtc_state->preload_luts &&
397 intel_crtc_needs_color_update(crtc_state);
398 }
399
intel_crtc_vblank_work(struct kthread_work * base)400 static void intel_crtc_vblank_work(struct kthread_work *base)
401 {
402 struct drm_vblank_work *work = to_drm_vblank_work(base);
403 struct intel_crtc_state *crtc_state =
404 container_of(work, typeof(*crtc_state), vblank_work);
405 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
406
407 trace_intel_crtc_vblank_work_start(crtc);
408
409 intel_color_load_luts(crtc_state);
410
411 if (crtc_state->uapi.event) {
412 spin_lock_irq(&crtc->base.dev->event_lock);
413 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event);
414 crtc_state->uapi.event = NULL;
415 spin_unlock_irq(&crtc->base.dev->event_lock);
416 }
417
418 trace_intel_crtc_vblank_work_end(crtc);
419 }
420
intel_crtc_vblank_work_init(struct intel_crtc_state * crtc_state)421 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state)
422 {
423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
424
425 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base,
426 intel_crtc_vblank_work);
427 /*
428 * Interrupt latency is critical for getting the vblank
429 * work executed as early as possible during the vblank.
430 */
431 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0);
432 }
433
intel_wait_for_vblank_workers(struct intel_atomic_state * state)434 void intel_wait_for_vblank_workers(struct intel_atomic_state *state)
435 {
436 struct intel_crtc_state *crtc_state;
437 struct intel_crtc *crtc;
438 int i;
439
440 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
441 if (!intel_crtc_needs_vblank_work(crtc_state))
442 continue;
443
444 drm_vblank_work_flush(&crtc_state->vblank_work);
445 cpu_latency_qos_update_request(&crtc->vblank_pm_qos,
446 PM_QOS_DEFAULT_VALUE);
447 }
448 }
449
intel_usecs_to_scanlines(const struct drm_display_mode * adjusted_mode,int usecs)450 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode,
451 int usecs)
452 {
453 /* paranoia */
454 if (!adjusted_mode->crtc_htotal)
455 return 1;
456
457 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock,
458 1000 * adjusted_mode->crtc_htotal);
459 }
460
intel_mode_vblank_start(const struct drm_display_mode * mode)461 static int intel_mode_vblank_start(const struct drm_display_mode *mode)
462 {
463 int vblank_start = mode->crtc_vblank_start;
464
465 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
466 vblank_start = DIV_ROUND_UP(vblank_start, 2);
467
468 return vblank_start;
469 }
470
471 /**
472 * intel_pipe_update_start() - start update of a set of display registers
473 * @new_crtc_state: the new crtc state
474 *
475 * Mark the start of an update to pipe registers that should be updated
476 * atomically regarding vblank. If the next vblank will happens within
477 * the next 100 us, this function waits until the vblank passes.
478 *
479 * After a successful call to this function, interrupts will be disabled
480 * until a subsequent call to intel_pipe_update_end(). That is done to
481 * avoid random delays.
482 */
intel_pipe_update_start(struct intel_crtc_state * new_crtc_state)483 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state)
484 {
485 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
486 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
487 const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode;
488 long timeout = msecs_to_jiffies_timeout(1);
489 int scanline, min, max, vblank_start;
490 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
491 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
492 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
493 DEFINE_WAIT(wait);
494
495 intel_psr_lock(new_crtc_state);
496
497 if (new_crtc_state->do_async_flip)
498 return;
499
500 if (intel_crtc_needs_vblank_work(new_crtc_state))
501 intel_crtc_vblank_work_init(new_crtc_state);
502
503 if (new_crtc_state->vrr.enable) {
504 if (intel_vrr_is_push_sent(new_crtc_state))
505 vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state);
506 else
507 vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state);
508 } else {
509 vblank_start = intel_mode_vblank_start(adjusted_mode);
510 }
511
512 /* FIXME needs to be calibrated sensibly */
513 min = vblank_start - intel_usecs_to_scanlines(adjusted_mode,
514 VBLANK_EVASION_TIME_US);
515 max = vblank_start - 1;
516
517 /*
518 * M/N is double buffered on the transcoder's undelayed vblank,
519 * so with seamless M/N we must evade both vblanks.
520 */
521 if (new_crtc_state->seamless_m_n && intel_crtc_needs_fastset(new_crtc_state))
522 min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay;
523
524 if (min <= 0 || max <= 0)
525 goto irq_disable;
526
527 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base)))
528 goto irq_disable;
529
530 /*
531 * Wait for psr to idle out after enabling the VBL interrupts
532 * VBL interrupts will start the PSR exit and prevent a PSR
533 * re-entry as well.
534 */
535 intel_psr_wait_for_idle_locked(new_crtc_state);
536
537 local_irq_disable();
538
539 crtc->debug.min_vbl = min;
540 crtc->debug.max_vbl = max;
541 trace_intel_pipe_update_start(crtc);
542
543 for (;;) {
544 /*
545 * prepare_to_wait() has a memory barrier, which guarantees
546 * other CPUs can see the task state update by the time we
547 * read the scanline.
548 */
549 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
550
551 scanline = intel_get_crtc_scanline(crtc);
552 if (scanline < min || scanline > max)
553 break;
554
555 if (!timeout) {
556 drm_err(&dev_priv->drm,
557 "Potential atomic update failure on pipe %c\n",
558 pipe_name(crtc->pipe));
559 break;
560 }
561
562 local_irq_enable();
563
564 timeout = schedule_timeout(timeout);
565
566 local_irq_disable();
567 }
568
569 finish_wait(wq, &wait);
570
571 drm_crtc_vblank_put(&crtc->base);
572
573 /*
574 * On VLV/CHV DSI the scanline counter would appear to
575 * increment approx. 1/3 of a scanline before start of vblank.
576 * The registers still get latched at start of vblank however.
577 * This means we must not write any registers on the first
578 * line of vblank (since not the whole line is actually in
579 * vblank). And unfortunately we can't use the interrupt to
580 * wait here since it will fire too soon. We could use the
581 * frame start interrupt instead since it will fire after the
582 * critical scanline, but that would require more changes
583 * in the interrupt code. So for now we'll just do the nasty
584 * thing and poll for the bad scanline to pass us by.
585 *
586 * FIXME figure out if BXT+ DSI suffers from this as well
587 */
588 while (need_vlv_dsi_wa && scanline == vblank_start)
589 scanline = intel_get_crtc_scanline(crtc);
590
591 crtc->debug.scanline_start = scanline;
592 crtc->debug.start_vbl_time = ktime_get();
593 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc);
594
595 trace_intel_pipe_update_vblank_evaded(crtc);
596 return;
597
598 irq_disable:
599 local_irq_disable();
600 }
601
602 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE)
dbg_vblank_evade(struct intel_crtc * crtc,ktime_t end)603 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end)
604 {
605 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time));
606 unsigned int h;
607
608 h = ilog2(delta >> 9);
609 if (h >= ARRAY_SIZE(crtc->debug.vbl.times))
610 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1;
611 crtc->debug.vbl.times[h]++;
612
613 crtc->debug.vbl.sum += delta;
614 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min)
615 crtc->debug.vbl.min = delta;
616 if (delta > crtc->debug.vbl.max)
617 crtc->debug.vbl.max = delta;
618
619 if (delta > 1000 * VBLANK_EVASION_TIME_US) {
620 drm_dbg_kms(crtc->base.dev,
621 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n",
622 pipe_name(crtc->pipe),
623 div_u64(delta, 1000),
624 VBLANK_EVASION_TIME_US);
625 crtc->debug.vbl.over++;
626 }
627 }
628 #else
dbg_vblank_evade(struct intel_crtc * crtc,ktime_t end)629 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {}
630 #endif
631
632 /**
633 * intel_pipe_update_end() - end update of a set of display registers
634 * @new_crtc_state: the new crtc state
635 *
636 * Mark the end of an update started with intel_pipe_update_start(). This
637 * re-enables interrupts and verifies the update was actually completed
638 * before a vblank.
639 */
intel_pipe_update_end(struct intel_crtc_state * new_crtc_state)640 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state)
641 {
642 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
643 enum pipe pipe = crtc->pipe;
644 int scanline_end = intel_get_crtc_scanline(crtc);
645 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc);
646 ktime_t end_vbl_time = ktime_get();
647 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
648
649 intel_psr_unlock(new_crtc_state);
650
651 if (new_crtc_state->do_async_flip)
652 return;
653
654 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end);
655
656 /*
657 * Incase of mipi dsi command mode, we need to set frame update
658 * request for every commit.
659 */
660 if (DISPLAY_VER(dev_priv) >= 11 &&
661 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
662 icl_dsi_frame_update(new_crtc_state);
663
664 /* We're still in the vblank-evade critical section, this can't race.
665 * Would be slightly nice to just grab the vblank count and arm the
666 * event outside of the critical section - the spinlock might spin for a
667 * while ... */
668 if (intel_crtc_needs_vblank_work(new_crtc_state)) {
669 drm_vblank_work_schedule(&new_crtc_state->vblank_work,
670 drm_crtc_accurate_vblank_count(&crtc->base) + 1,
671 false);
672 } else if (new_crtc_state->uapi.event) {
673 drm_WARN_ON(&dev_priv->drm,
674 drm_crtc_vblank_get(&crtc->base) != 0);
675
676 spin_lock(&crtc->base.dev->event_lock);
677 drm_crtc_arm_vblank_event(&crtc->base,
678 new_crtc_state->uapi.event);
679 spin_unlock(&crtc->base.dev->event_lock);
680
681 new_crtc_state->uapi.event = NULL;
682 }
683
684 /*
685 * Send VRR Push to terminate Vblank. If we are already in vblank
686 * this has to be done _after_ sampling the frame counter, as
687 * otherwise the push would immediately terminate the vblank and
688 * the sampled frame counter would correspond to the next frame
689 * instead of the current frame.
690 *
691 * There is a tiny race here (iff vblank evasion failed us) where
692 * we might sample the frame counter just before vmax vblank start
693 * but the push would be sent just after it. That would cause the
694 * push to affect the next frame instead of the current frame,
695 * which would cause the next frame to terminate already at vmin
696 * vblank start instead of vmax vblank start.
697 */
698 intel_vrr_send_push(new_crtc_state);
699
700 /*
701 * Seamless M/N update may need to update frame timings.
702 *
703 * FIXME Should be synchronized with the start of vblank somehow...
704 */
705 if (new_crtc_state->seamless_m_n && intel_crtc_needs_fastset(new_crtc_state))
706 intel_crtc_update_active_timings(new_crtc_state,
707 new_crtc_state->vrr.enable);
708
709 local_irq_enable();
710
711 if (intel_vgpu_active(dev_priv))
712 return;
713
714 if (crtc->debug.start_vbl_count &&
715 crtc->debug.start_vbl_count != end_vbl_count) {
716 drm_err(&dev_priv->drm,
717 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n",
718 pipe_name(pipe), crtc->debug.start_vbl_count,
719 end_vbl_count,
720 ktime_us_delta(end_vbl_time,
721 crtc->debug.start_vbl_time),
722 crtc->debug.min_vbl, crtc->debug.max_vbl,
723 crtc->debug.scanline_start, scanline_end);
724 }
725
726 dbg_vblank_evade(crtc, end_vbl_time);
727 }
728