1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/module.h>
29 #include <linux/string_helpers.h>
30 #include <linux/pm_runtime.h>
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35
36 #include "display/intel_atomic.h"
37 #include "display/intel_atomic_plane.h"
38 #include "display/intel_bw.h"
39 #include "display/intel_de.h"
40 #include "display/intel_display_trace.h"
41 #include "display/intel_display_types.h"
42 #include "display/intel_fb.h"
43 #include "display/intel_fbc.h"
44 #include "display/intel_sprite.h"
45 #include "display/skl_universal_plane.h"
46
47 #include "gt/intel_engine_regs.h"
48 #include "gt/intel_gt_regs.h"
49 #include "gt/intel_llc.h"
50
51 #include "i915_drv.h"
52 #include "i915_fixed.h"
53 #include "i915_irq.h"
54 #include "intel_mchbar_regs.h"
55 #include "intel_pcode.h"
56 #include "intel_pm.h"
57 #include "vlv_sideband.h"
58 #include "../../../platform/x86/intel_ips.h"
59
60 static void skl_sagv_disable(struct drm_i915_private *dev_priv);
61
62 struct drm_i915_clock_gating_funcs {
63 void (*init_clock_gating)(struct drm_i915_private *i915);
64 };
65
66 /* Stores plane specific WM parameters */
67 struct skl_wm_params {
68 bool x_tiled, y_tiled;
69 bool rc_surface;
70 bool is_planar;
71 u32 width;
72 u8 cpp;
73 u32 plane_pixel_rate;
74 u32 y_min_scanlines;
75 u32 plane_bytes_per_line;
76 uint_fixed_16_16_t plane_blocks_per_line;
77 uint_fixed_16_16_t y_tile_minimum;
78 u32 linetime_us;
79 u32 dbuf_block_size;
80 };
81
82 /* used in computing the new watermarks state */
83 struct intel_wm_config {
84 unsigned int num_pipes_active;
85 bool sprites_enabled;
86 bool sprites_scaled;
87 };
88
gen9_init_clock_gating(struct drm_i915_private * dev_priv)89 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
90 {
91 if (HAS_LLC(dev_priv)) {
92 /*
93 * WaCompressedResourceDisplayNewHashMode:skl,kbl
94 * Display WA #0390: skl,kbl
95 *
96 * Must match Sampler, Pixel Back End, and Media. See
97 * WaCompressedResourceSamplerPbeMediaNewHashMode.
98 */
99 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
100 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
101 SKL_DE_COMPRESSED_HASH_MODE);
102 }
103
104 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
105 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
106 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
107
108 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
109 intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
110 intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
111
112 /*
113 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
114 * Display WA #0859: skl,bxt,kbl,glk,cfl
115 */
116 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
117 DISP_FBC_MEMORY_WAKE);
118 }
119
bxt_init_clock_gating(struct drm_i915_private * dev_priv)120 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
121 {
122 gen9_init_clock_gating(dev_priv);
123
124 /* WaDisableSDEUnitClockGating:bxt */
125 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
126 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
127
128 /*
129 * FIXME:
130 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
131 */
132 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
133 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
134
135 /*
136 * Wa: Backlight PWM may stop in the asserted state, causing backlight
137 * to stay fully on.
138 */
139 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
140 PWM1_GATING_DIS | PWM2_GATING_DIS);
141
142 /*
143 * Lower the display internal timeout.
144 * This is needed to avoid any hard hangs when DSI port PLL
145 * is off and a MMIO access is attempted by any privilege
146 * application, using batch buffers or any other means.
147 */
148 intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
149
150 /*
151 * WaFbcTurnOffFbcWatermark:bxt
152 * Display WA #0562: bxt
153 */
154 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
155 DISP_FBC_WM_DIS);
156
157 /*
158 * WaFbcHighMemBwCorruptionAvoidance:bxt
159 * Display WA #0883: bxt
160 */
161 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
162 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
163 DPFC_DISABLE_DUMMY0);
164 }
165
glk_init_clock_gating(struct drm_i915_private * dev_priv)166 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
167 {
168 gen9_init_clock_gating(dev_priv);
169
170 /*
171 * WaDisablePWMClockGating:glk
172 * Backlight PWM may stop in the asserted state, causing backlight
173 * to stay fully on.
174 */
175 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
176 PWM1_GATING_DIS | PWM2_GATING_DIS);
177 }
178
pnv_get_mem_freq(struct drm_i915_private * dev_priv)179 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
180 {
181 u32 tmp;
182
183 tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
184
185 switch (tmp & CLKCFG_FSB_MASK) {
186 case CLKCFG_FSB_533:
187 dev_priv->fsb_freq = 533; /* 133*4 */
188 break;
189 case CLKCFG_FSB_800:
190 dev_priv->fsb_freq = 800; /* 200*4 */
191 break;
192 case CLKCFG_FSB_667:
193 dev_priv->fsb_freq = 667; /* 167*4 */
194 break;
195 case CLKCFG_FSB_400:
196 dev_priv->fsb_freq = 400; /* 100*4 */
197 break;
198 }
199
200 switch (tmp & CLKCFG_MEM_MASK) {
201 case CLKCFG_MEM_533:
202 dev_priv->mem_freq = 533;
203 break;
204 case CLKCFG_MEM_667:
205 dev_priv->mem_freq = 667;
206 break;
207 case CLKCFG_MEM_800:
208 dev_priv->mem_freq = 800;
209 break;
210 }
211
212 /* detect pineview DDR3 setting */
213 tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
214 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
215 }
216
ilk_get_mem_freq(struct drm_i915_private * dev_priv)217 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
218 {
219 u16 ddrpll, csipll;
220
221 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
222 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
223
224 switch (ddrpll & 0xff) {
225 case 0xc:
226 dev_priv->mem_freq = 800;
227 break;
228 case 0x10:
229 dev_priv->mem_freq = 1066;
230 break;
231 case 0x14:
232 dev_priv->mem_freq = 1333;
233 break;
234 case 0x18:
235 dev_priv->mem_freq = 1600;
236 break;
237 default:
238 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
239 ddrpll & 0xff);
240 dev_priv->mem_freq = 0;
241 break;
242 }
243
244 switch (csipll & 0x3ff) {
245 case 0x00c:
246 dev_priv->fsb_freq = 3200;
247 break;
248 case 0x00e:
249 dev_priv->fsb_freq = 3733;
250 break;
251 case 0x010:
252 dev_priv->fsb_freq = 4266;
253 break;
254 case 0x012:
255 dev_priv->fsb_freq = 4800;
256 break;
257 case 0x014:
258 dev_priv->fsb_freq = 5333;
259 break;
260 case 0x016:
261 dev_priv->fsb_freq = 5866;
262 break;
263 case 0x018:
264 dev_priv->fsb_freq = 6400;
265 break;
266 default:
267 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
268 csipll & 0x3ff);
269 dev_priv->fsb_freq = 0;
270 break;
271 }
272 }
273
274 static const struct cxsr_latency cxsr_latency_table[] = {
275 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
276 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
277 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
278 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
279 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
280
281 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
282 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
283 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
284 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
285 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
286
287 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
288 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
289 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
290 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
291 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
292
293 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
294 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
295 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
296 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
297 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
298
299 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
300 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
301 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
302 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
303 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
304
305 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
306 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
307 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
308 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
309 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
310 };
311
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)312 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
313 bool is_ddr3,
314 int fsb,
315 int mem)
316 {
317 const struct cxsr_latency *latency;
318 int i;
319
320 if (fsb == 0 || mem == 0)
321 return NULL;
322
323 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
324 latency = &cxsr_latency_table[i];
325 if (is_desktop == latency->is_desktop &&
326 is_ddr3 == latency->is_ddr3 &&
327 fsb == latency->fsb_freq && mem == latency->mem_freq)
328 return latency;
329 }
330
331 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
332
333 return NULL;
334 }
335
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)336 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
337 {
338 u32 val;
339
340 vlv_punit_get(dev_priv);
341
342 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
343 if (enable)
344 val &= ~FORCE_DDR_HIGH_FREQ;
345 else
346 val |= FORCE_DDR_HIGH_FREQ;
347 val &= ~FORCE_DDR_LOW_FREQ;
348 val |= FORCE_DDR_FREQ_REQ_ACK;
349 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
350
351 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
352 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
353 drm_err(&dev_priv->drm,
354 "timed out waiting for Punit DDR DVFS request\n");
355
356 vlv_punit_put(dev_priv);
357 }
358
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)359 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
360 {
361 u32 val;
362
363 vlv_punit_get(dev_priv);
364
365 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
366 if (enable)
367 val |= DSP_MAXFIFO_PM5_ENABLE;
368 else
369 val &= ~DSP_MAXFIFO_PM5_ENABLE;
370 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
371
372 vlv_punit_put(dev_priv);
373 }
374
375 #define FW_WM(value, plane) \
376 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
377
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)378 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
379 {
380 bool was_enabled;
381 u32 val;
382
383 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
384 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
385 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
386 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
387 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
388 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
389 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
390 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
391 } else if (IS_PINEVIEW(dev_priv)) {
392 val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
393 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
394 if (enable)
395 val |= PINEVIEW_SELF_REFRESH_EN;
396 else
397 val &= ~PINEVIEW_SELF_REFRESH_EN;
398 intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
399 intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
400 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
401 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
402 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
403 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
404 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
405 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
406 } else if (IS_I915GM(dev_priv)) {
407 /*
408 * FIXME can't find a bit like this for 915G, and
409 * and yet it does have the related watermark in
410 * FW_BLC_SELF. What's going on?
411 */
412 was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
413 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
414 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
415 intel_uncore_write(&dev_priv->uncore, INSTPM, val);
416 intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
417 } else {
418 return false;
419 }
420
421 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
422
423 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
424 str_enabled_disabled(enable),
425 str_enabled_disabled(was_enabled));
426
427 return was_enabled;
428 }
429
430 /**
431 * intel_set_memory_cxsr - Configure CxSR state
432 * @dev_priv: i915 device
433 * @enable: Allow vs. disallow CxSR
434 *
435 * Allow or disallow the system to enter a special CxSR
436 * (C-state self refresh) state. What typically happens in CxSR mode
437 * is that several display FIFOs may get combined into a single larger
438 * FIFO for a particular plane (so called max FIFO mode) to allow the
439 * system to defer memory fetches longer, and the memory will enter
440 * self refresh.
441 *
442 * Note that enabling CxSR does not guarantee that the system enter
443 * this special mode, nor does it guarantee that the system stays
444 * in that mode once entered. So this just allows/disallows the system
445 * to autonomously utilize the CxSR mode. Other factors such as core
446 * C-states will affect when/if the system actually enters/exits the
447 * CxSR mode.
448 *
449 * Note that on VLV/CHV this actually only controls the max FIFO mode,
450 * and the system is free to enter/exit memory self refresh at any time
451 * even when the use of CxSR has been disallowed.
452 *
453 * While the system is actually in the CxSR/max FIFO mode, some plane
454 * control registers will not get latched on vblank. Thus in order to
455 * guarantee the system will respond to changes in the plane registers
456 * we must always disallow CxSR prior to making changes to those registers.
457 * Unfortunately the system will re-evaluate the CxSR conditions at
458 * frame start which happens after vblank start (which is when the plane
459 * registers would get latched), so we can't proceed with the plane update
460 * during the same frame where we disallowed CxSR.
461 *
462 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
463 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
464 * the hardware w.r.t. HPLL SR when writing to plane registers.
465 * Disallowing just CxSR is sufficient.
466 */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)467 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
468 {
469 bool ret;
470
471 mutex_lock(&dev_priv->wm.wm_mutex);
472 ret = _intel_set_memory_cxsr(dev_priv, enable);
473 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
474 dev_priv->wm.vlv.cxsr = enable;
475 else if (IS_G4X(dev_priv))
476 dev_priv->wm.g4x.cxsr = enable;
477 mutex_unlock(&dev_priv->wm.wm_mutex);
478
479 return ret;
480 }
481
482 /*
483 * Latency for FIFO fetches is dependent on several factors:
484 * - memory configuration (speed, channels)
485 * - chipset
486 * - current MCH state
487 * It can be fairly high in some situations, so here we assume a fairly
488 * pessimal value. It's a tradeoff between extra memory fetches (if we
489 * set this value too high, the FIFO will fetch frequently to stay full)
490 * and power consumption (set it too low to save power and we might see
491 * FIFO underruns and display "flicker").
492 *
493 * A value of 5us seems to be a good balance; safe for very low end
494 * platforms but not overly aggressive on lower latency configs.
495 */
496 static const int pessimal_latency_ns = 5000;
497
498 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
499 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
500
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)501 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
502 {
503 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
505 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
506 enum pipe pipe = crtc->pipe;
507 int sprite0_start, sprite1_start;
508 u32 dsparb, dsparb2, dsparb3;
509
510 switch (pipe) {
511 case PIPE_A:
512 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
513 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
514 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
515 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
516 break;
517 case PIPE_B:
518 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
519 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
520 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
521 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
522 break;
523 case PIPE_C:
524 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
525 dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
526 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
527 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
528 break;
529 default:
530 MISSING_CASE(pipe);
531 return;
532 }
533
534 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
535 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
536 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
537 fifo_state->plane[PLANE_CURSOR] = 63;
538 }
539
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)540 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
541 enum i9xx_plane_id i9xx_plane)
542 {
543 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
544 int size;
545
546 size = dsparb & 0x7f;
547 if (i9xx_plane == PLANE_B)
548 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
549
550 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
551 dsparb, plane_name(i9xx_plane), size);
552
553 return size;
554 }
555
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)556 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
557 enum i9xx_plane_id i9xx_plane)
558 {
559 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
560 int size;
561
562 size = dsparb & 0x1ff;
563 if (i9xx_plane == PLANE_B)
564 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
565 size >>= 1; /* Convert to cachelines */
566
567 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
568 dsparb, plane_name(i9xx_plane), size);
569
570 return size;
571 }
572
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)573 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
574 enum i9xx_plane_id i9xx_plane)
575 {
576 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
577 int size;
578
579 size = dsparb & 0x7f;
580 size >>= 2; /* Convert to cachelines */
581
582 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
583 dsparb, plane_name(i9xx_plane), size);
584
585 return size;
586 }
587
588 /* Pineview has different values for various configs */
589 static const struct intel_watermark_params pnv_display_wm = {
590 .fifo_size = PINEVIEW_DISPLAY_FIFO,
591 .max_wm = PINEVIEW_MAX_WM,
592 .default_wm = PINEVIEW_DFT_WM,
593 .guard_size = PINEVIEW_GUARD_WM,
594 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 };
596
597 static const struct intel_watermark_params pnv_display_hplloff_wm = {
598 .fifo_size = PINEVIEW_DISPLAY_FIFO,
599 .max_wm = PINEVIEW_MAX_WM,
600 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
601 .guard_size = PINEVIEW_GUARD_WM,
602 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
603 };
604
605 static const struct intel_watermark_params pnv_cursor_wm = {
606 .fifo_size = PINEVIEW_CURSOR_FIFO,
607 .max_wm = PINEVIEW_CURSOR_MAX_WM,
608 .default_wm = PINEVIEW_CURSOR_DFT_WM,
609 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
610 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
611 };
612
613 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
614 .fifo_size = PINEVIEW_CURSOR_FIFO,
615 .max_wm = PINEVIEW_CURSOR_MAX_WM,
616 .default_wm = PINEVIEW_CURSOR_DFT_WM,
617 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
618 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
619 };
620
621 static const struct intel_watermark_params i965_cursor_wm_info = {
622 .fifo_size = I965_CURSOR_FIFO,
623 .max_wm = I965_CURSOR_MAX_WM,
624 .default_wm = I965_CURSOR_DFT_WM,
625 .guard_size = 2,
626 .cacheline_size = I915_FIFO_LINE_SIZE,
627 };
628
629 static const struct intel_watermark_params i945_wm_info = {
630 .fifo_size = I945_FIFO_SIZE,
631 .max_wm = I915_MAX_WM,
632 .default_wm = 1,
633 .guard_size = 2,
634 .cacheline_size = I915_FIFO_LINE_SIZE,
635 };
636
637 static const struct intel_watermark_params i915_wm_info = {
638 .fifo_size = I915_FIFO_SIZE,
639 .max_wm = I915_MAX_WM,
640 .default_wm = 1,
641 .guard_size = 2,
642 .cacheline_size = I915_FIFO_LINE_SIZE,
643 };
644
645 static const struct intel_watermark_params i830_a_wm_info = {
646 .fifo_size = I855GM_FIFO_SIZE,
647 .max_wm = I915_MAX_WM,
648 .default_wm = 1,
649 .guard_size = 2,
650 .cacheline_size = I830_FIFO_LINE_SIZE,
651 };
652
653 static const struct intel_watermark_params i830_bc_wm_info = {
654 .fifo_size = I855GM_FIFO_SIZE,
655 .max_wm = I915_MAX_WM/2,
656 .default_wm = 1,
657 .guard_size = 2,
658 .cacheline_size = I830_FIFO_LINE_SIZE,
659 };
660
661 static const struct intel_watermark_params i845_wm_info = {
662 .fifo_size = I830_FIFO_SIZE,
663 .max_wm = I915_MAX_WM,
664 .default_wm = 1,
665 .guard_size = 2,
666 .cacheline_size = I830_FIFO_LINE_SIZE,
667 };
668
669 /**
670 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
671 * @pixel_rate: Pipe pixel rate in kHz
672 * @cpp: Plane bytes per pixel
673 * @latency: Memory wakeup latency in 0.1us units
674 *
675 * Compute the watermark using the method 1 or "small buffer"
676 * formula. The caller may additonally add extra cachelines
677 * to account for TLB misses and clock crossings.
678 *
679 * This method is concerned with the short term drain rate
680 * of the FIFO, ie. it does not account for blanking periods
681 * which would effectively reduce the average drain rate across
682 * a longer period. The name "small" refers to the fact the
683 * FIFO is relatively small compared to the amount of data
684 * fetched.
685 *
686 * The FIFO level vs. time graph might look something like:
687 *
688 * |\ |\
689 * | \ | \
690 * __---__---__ (- plane active, _ blanking)
691 * -> time
692 *
693 * or perhaps like this:
694 *
695 * |\|\ |\|\
696 * __----__----__ (- plane active, _ blanking)
697 * -> time
698 *
699 * Returns:
700 * The watermark in bytes
701 */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)702 static unsigned int intel_wm_method1(unsigned int pixel_rate,
703 unsigned int cpp,
704 unsigned int latency)
705 {
706 u64 ret;
707
708 ret = mul_u32_u32(pixel_rate, cpp * latency);
709 ret = DIV_ROUND_UP_ULL(ret, 10000);
710
711 return ret;
712 }
713
714 /**
715 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
716 * @pixel_rate: Pipe pixel rate in kHz
717 * @htotal: Pipe horizontal total
718 * @width: Plane width in pixels
719 * @cpp: Plane bytes per pixel
720 * @latency: Memory wakeup latency in 0.1us units
721 *
722 * Compute the watermark using the method 2 or "large buffer"
723 * formula. The caller may additonally add extra cachelines
724 * to account for TLB misses and clock crossings.
725 *
726 * This method is concerned with the long term drain rate
727 * of the FIFO, ie. it does account for blanking periods
728 * which effectively reduce the average drain rate across
729 * a longer period. The name "large" refers to the fact the
730 * FIFO is relatively large compared to the amount of data
731 * fetched.
732 *
733 * The FIFO level vs. time graph might look something like:
734 *
735 * |\___ |\___
736 * | \___ | \___
737 * | \ | \
738 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
739 * -> time
740 *
741 * Returns:
742 * The watermark in bytes
743 */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)744 static unsigned int intel_wm_method2(unsigned int pixel_rate,
745 unsigned int htotal,
746 unsigned int width,
747 unsigned int cpp,
748 unsigned int latency)
749 {
750 unsigned int ret;
751
752 /*
753 * FIXME remove once all users are computing
754 * watermarks in the correct place.
755 */
756 if (WARN_ON_ONCE(htotal == 0))
757 htotal = 1;
758
759 ret = (latency * pixel_rate) / (htotal * 10000);
760 ret = (ret + 1) * width * cpp;
761
762 return ret;
763 }
764
765 /**
766 * intel_calculate_wm - calculate watermark level
767 * @pixel_rate: pixel clock
768 * @wm: chip FIFO params
769 * @fifo_size: size of the FIFO buffer
770 * @cpp: bytes per pixel
771 * @latency_ns: memory latency for the platform
772 *
773 * Calculate the watermark level (the level at which the display plane will
774 * start fetching from memory again). Each chip has a different display
775 * FIFO size and allocation, so the caller needs to figure that out and pass
776 * in the correct intel_watermark_params structure.
777 *
778 * As the pixel clock runs, the FIFO will be drained at a rate that depends
779 * on the pixel size. When it reaches the watermark level, it'll start
780 * fetching FIFO line sized based chunks from memory until the FIFO fills
781 * past the watermark point. If the FIFO drains completely, a FIFO underrun
782 * will occur, and a display engine hang could result.
783 */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)784 static unsigned int intel_calculate_wm(int pixel_rate,
785 const struct intel_watermark_params *wm,
786 int fifo_size, int cpp,
787 unsigned int latency_ns)
788 {
789 int entries, wm_size;
790
791 /*
792 * Note: we need to make sure we don't overflow for various clock &
793 * latency values.
794 * clocks go from a few thousand to several hundred thousand.
795 * latency is usually a few thousand
796 */
797 entries = intel_wm_method1(pixel_rate, cpp,
798 latency_ns / 100);
799 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
800 wm->guard_size;
801 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
802
803 wm_size = fifo_size - entries;
804 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
805
806 /* Don't promote wm_size to unsigned... */
807 if (wm_size > wm->max_wm)
808 wm_size = wm->max_wm;
809 if (wm_size <= 0)
810 wm_size = wm->default_wm;
811
812 /*
813 * Bspec seems to indicate that the value shouldn't be lower than
814 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
815 * Lets go for 8 which is the burst size since certain platforms
816 * already use a hardcoded 8 (which is what the spec says should be
817 * done).
818 */
819 if (wm_size <= 8)
820 wm_size = 8;
821
822 return wm_size;
823 }
824
is_disabling(int old,int new,int threshold)825 static bool is_disabling(int old, int new, int threshold)
826 {
827 return old >= threshold && new < threshold;
828 }
829
is_enabling(int old,int new,int threshold)830 static bool is_enabling(int old, int new, int threshold)
831 {
832 return old < threshold && new >= threshold;
833 }
834
intel_wm_num_levels(struct drm_i915_private * dev_priv)835 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
836 {
837 return dev_priv->wm.max_level + 1;
838 }
839
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)840 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
841 const struct intel_plane_state *plane_state)
842 {
843 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
844
845 /* FIXME check the 'enable' instead */
846 if (!crtc_state->hw.active)
847 return false;
848
849 /*
850 * Treat cursor with fb as always visible since cursor updates
851 * can happen faster than the vrefresh rate, and the current
852 * watermark code doesn't handle that correctly. Cursor updates
853 * which set/clear the fb or change the cursor size are going
854 * to get throttled by intel_legacy_cursor_update() to work
855 * around this problem with the watermark code.
856 */
857 if (plane->id == PLANE_CURSOR)
858 return plane_state->hw.fb != NULL;
859 else
860 return plane_state->uapi.visible;
861 }
862
intel_crtc_active(struct intel_crtc * crtc)863 static bool intel_crtc_active(struct intel_crtc *crtc)
864 {
865 /* Be paranoid as we can arrive here with only partial
866 * state retrieved from the hardware during setup.
867 *
868 * We can ditch the adjusted_mode.crtc_clock check as soon
869 * as Haswell has gained clock readout/fastboot support.
870 *
871 * We can ditch the crtc->primary->state->fb check as soon as we can
872 * properly reconstruct framebuffers.
873 *
874 * FIXME: The intel_crtc->active here should be switched to
875 * crtc->state->active once we have proper CRTC states wired up
876 * for atomic.
877 */
878 return crtc && crtc->active && crtc->base.primary->state->fb &&
879 crtc->config->hw.adjusted_mode.crtc_clock;
880 }
881
single_enabled_crtc(struct drm_i915_private * dev_priv)882 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
883 {
884 struct intel_crtc *crtc, *enabled = NULL;
885
886 for_each_intel_crtc(&dev_priv->drm, crtc) {
887 if (intel_crtc_active(crtc)) {
888 if (enabled)
889 return NULL;
890 enabled = crtc;
891 }
892 }
893
894 return enabled;
895 }
896
pnv_update_wm(struct drm_i915_private * dev_priv)897 static void pnv_update_wm(struct drm_i915_private *dev_priv)
898 {
899 struct intel_crtc *crtc;
900 const struct cxsr_latency *latency;
901 u32 reg;
902 unsigned int wm;
903
904 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
905 dev_priv->is_ddr3,
906 dev_priv->fsb_freq,
907 dev_priv->mem_freq);
908 if (!latency) {
909 drm_dbg_kms(&dev_priv->drm,
910 "Unknown FSB/MEM found, disable CxSR\n");
911 intel_set_memory_cxsr(dev_priv, false);
912 return;
913 }
914
915 crtc = single_enabled_crtc(dev_priv);
916 if (crtc) {
917 const struct drm_framebuffer *fb =
918 crtc->base.primary->state->fb;
919 int pixel_rate = crtc->config->pixel_rate;
920 int cpp = fb->format->cpp[0];
921
922 /* Display SR */
923 wm = intel_calculate_wm(pixel_rate, &pnv_display_wm,
924 pnv_display_wm.fifo_size,
925 cpp, latency->display_sr);
926 reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
927 reg &= ~DSPFW_SR_MASK;
928 reg |= FW_WM(wm, SR);
929 intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
930 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
931
932 /* cursor SR */
933 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm,
934 pnv_display_wm.fifo_size,
935 4, latency->cursor_sr);
936 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
937 reg &= ~DSPFW_CURSOR_SR_MASK;
938 reg |= FW_WM(wm, CURSOR_SR);
939 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
940
941 /* Display HPLL off SR */
942 wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm,
943 pnv_display_hplloff_wm.fifo_size,
944 cpp, latency->display_hpll_disable);
945 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
946 reg &= ~DSPFW_HPLL_SR_MASK;
947 reg |= FW_WM(wm, HPLL_SR);
948 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
949
950 /* cursor HPLL off SR */
951 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm,
952 pnv_display_hplloff_wm.fifo_size,
953 4, latency->cursor_hpll_disable);
954 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
955 reg &= ~DSPFW_HPLL_CURSOR_MASK;
956 reg |= FW_WM(wm, HPLL_CURSOR);
957 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
958 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
959
960 intel_set_memory_cxsr(dev_priv, true);
961 } else {
962 intel_set_memory_cxsr(dev_priv, false);
963 }
964 }
965
966 /*
967 * Documentation says:
968 * "If the line size is small, the TLB fetches can get in the way of the
969 * data fetches, causing some lag in the pixel data return which is not
970 * accounted for in the above formulas. The following adjustment only
971 * needs to be applied if eight whole lines fit in the buffer at once.
972 * The WM is adjusted upwards by the difference between the FIFO size
973 * and the size of 8 whole lines. This adjustment is always performed
974 * in the actual pixel depth regardless of whether FBC is enabled or not."
975 */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)976 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
977 {
978 int tlb_miss = fifo_size * 64 - width * cpp * 8;
979
980 return max(0, tlb_miss);
981 }
982
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)983 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
984 const struct g4x_wm_values *wm)
985 {
986 enum pipe pipe;
987
988 for_each_pipe(dev_priv, pipe)
989 trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
990
991 intel_uncore_write(&dev_priv->uncore, DSPFW1,
992 FW_WM(wm->sr.plane, SR) |
993 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
994 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
995 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
996 intel_uncore_write(&dev_priv->uncore, DSPFW2,
997 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
998 FW_WM(wm->sr.fbc, FBC_SR) |
999 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
1000 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
1001 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1002 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1003 intel_uncore_write(&dev_priv->uncore, DSPFW3,
1004 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
1005 FW_WM(wm->sr.cursor, CURSOR_SR) |
1006 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1007 FW_WM(wm->hpll.plane, HPLL_SR));
1008
1009 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1010 }
1011
1012 #define FW_WM_VLV(value, plane) \
1013 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1014
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)1015 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1016 const struct vlv_wm_values *wm)
1017 {
1018 enum pipe pipe;
1019
1020 for_each_pipe(dev_priv, pipe) {
1021 trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
1022
1023 intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1024 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1025 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1026 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1027 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1028 }
1029
1030 /*
1031 * Zero the (unused) WM1 watermarks, and also clear all the
1032 * high order bits so that there are no out of bounds values
1033 * present in the registers during the reprogramming.
1034 */
1035 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
1036 intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
1037 intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
1038 intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
1039 intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1040
1041 intel_uncore_write(&dev_priv->uncore, DSPFW1,
1042 FW_WM(wm->sr.plane, SR) |
1043 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1044 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1045 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1046 intel_uncore_write(&dev_priv->uncore, DSPFW2,
1047 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1048 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1049 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1050 intel_uncore_write(&dev_priv->uncore, DSPFW3,
1051 FW_WM(wm->sr.cursor, CURSOR_SR));
1052
1053 if (IS_CHERRYVIEW(dev_priv)) {
1054 intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1055 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1056 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1057 intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1058 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1059 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1060 intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1061 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1062 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1063 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1064 FW_WM(wm->sr.plane >> 9, SR_HI) |
1065 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1066 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1067 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1068 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1069 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1070 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1071 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1072 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1073 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1074 } else {
1075 intel_uncore_write(&dev_priv->uncore, DSPFW7,
1076 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1077 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1078 intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1079 FW_WM(wm->sr.plane >> 9, SR_HI) |
1080 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1081 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1082 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1083 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1084 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1085 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1086 }
1087
1088 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1089 }
1090
1091 #undef FW_WM_VLV
1092
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1093 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1094 {
1095 /* all latencies in usec */
1096 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1097 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1098 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1099
1100 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1101 }
1102
g4x_plane_fifo_size(enum plane_id plane_id,int level)1103 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1104 {
1105 /*
1106 * DSPCNTR[13] supposedly controls whether the
1107 * primary plane can use the FIFO space otherwise
1108 * reserved for the sprite plane. It's not 100% clear
1109 * what the actual FIFO size is, but it looks like we
1110 * can happily set both primary and sprite watermarks
1111 * up to 127 cachelines. So that would seem to mean
1112 * that either DSPCNTR[13] doesn't do anything, or that
1113 * the total FIFO is >= 256 cachelines in size. Either
1114 * way, we don't seem to have to worry about this
1115 * repartitioning as the maximum watermark value the
1116 * register can hold for each plane is lower than the
1117 * minimum FIFO size.
1118 */
1119 switch (plane_id) {
1120 case PLANE_CURSOR:
1121 return 63;
1122 case PLANE_PRIMARY:
1123 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1124 case PLANE_SPRITE0:
1125 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1126 default:
1127 MISSING_CASE(plane_id);
1128 return 0;
1129 }
1130 }
1131
g4x_fbc_fifo_size(int level)1132 static int g4x_fbc_fifo_size(int level)
1133 {
1134 switch (level) {
1135 case G4X_WM_LEVEL_SR:
1136 return 7;
1137 case G4X_WM_LEVEL_HPLL:
1138 return 15;
1139 default:
1140 MISSING_CASE(level);
1141 return 0;
1142 }
1143 }
1144
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1145 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1146 const struct intel_plane_state *plane_state,
1147 int level)
1148 {
1149 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1150 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1151 const struct drm_display_mode *pipe_mode =
1152 &crtc_state->hw.pipe_mode;
1153 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1154 unsigned int pixel_rate, htotal, cpp, width, wm;
1155
1156 if (latency == 0)
1157 return USHRT_MAX;
1158
1159 if (!intel_wm_plane_visible(crtc_state, plane_state))
1160 return 0;
1161
1162 cpp = plane_state->hw.fb->format->cpp[0];
1163
1164 /*
1165 * WaUse32BppForSRWM:ctg,elk
1166 *
1167 * The spec fails to list this restriction for the
1168 * HPLL watermark, which seems a little strange.
1169 * Let's use 32bpp for the HPLL watermark as well.
1170 */
1171 if (plane->id == PLANE_PRIMARY &&
1172 level != G4X_WM_LEVEL_NORMAL)
1173 cpp = max(cpp, 4u);
1174
1175 pixel_rate = crtc_state->pixel_rate;
1176 htotal = pipe_mode->crtc_htotal;
1177 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1178
1179 if (plane->id == PLANE_CURSOR) {
1180 wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1181 } else if (plane->id == PLANE_PRIMARY &&
1182 level == G4X_WM_LEVEL_NORMAL) {
1183 wm = intel_wm_method1(pixel_rate, cpp, latency);
1184 } else {
1185 unsigned int small, large;
1186
1187 small = intel_wm_method1(pixel_rate, cpp, latency);
1188 large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1189
1190 wm = min(small, large);
1191 }
1192
1193 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1194 width, cpp);
1195
1196 wm = DIV_ROUND_UP(wm, 64) + 2;
1197
1198 return min_t(unsigned int, wm, USHRT_MAX);
1199 }
1200
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1201 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1202 int level, enum plane_id plane_id, u16 value)
1203 {
1204 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1205 bool dirty = false;
1206
1207 for (; level < intel_wm_num_levels(dev_priv); level++) {
1208 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1209
1210 dirty |= raw->plane[plane_id] != value;
1211 raw->plane[plane_id] = value;
1212 }
1213
1214 return dirty;
1215 }
1216
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1217 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1218 int level, u16 value)
1219 {
1220 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1221 bool dirty = false;
1222
1223 /* NORMAL level doesn't have an FBC watermark */
1224 level = max(level, G4X_WM_LEVEL_SR);
1225
1226 for (; level < intel_wm_num_levels(dev_priv); level++) {
1227 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1228
1229 dirty |= raw->fbc != value;
1230 raw->fbc = value;
1231 }
1232
1233 return dirty;
1234 }
1235
1236 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1237 const struct intel_plane_state *plane_state,
1238 u32 pri_val);
1239
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1240 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1241 const struct intel_plane_state *plane_state)
1242 {
1243 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1244 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1245 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1246 enum plane_id plane_id = plane->id;
1247 bool dirty = false;
1248 int level;
1249
1250 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1251 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1252 if (plane_id == PLANE_PRIMARY)
1253 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1254 goto out;
1255 }
1256
1257 for (level = 0; level < num_levels; level++) {
1258 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1259 int wm, max_wm;
1260
1261 wm = g4x_compute_wm(crtc_state, plane_state, level);
1262 max_wm = g4x_plane_fifo_size(plane_id, level);
1263
1264 if (wm > max_wm)
1265 break;
1266
1267 dirty |= raw->plane[plane_id] != wm;
1268 raw->plane[plane_id] = wm;
1269
1270 if (plane_id != PLANE_PRIMARY ||
1271 level == G4X_WM_LEVEL_NORMAL)
1272 continue;
1273
1274 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1275 raw->plane[plane_id]);
1276 max_wm = g4x_fbc_fifo_size(level);
1277
1278 /*
1279 * FBC wm is not mandatory as we
1280 * can always just disable its use.
1281 */
1282 if (wm > max_wm)
1283 wm = USHRT_MAX;
1284
1285 dirty |= raw->fbc != wm;
1286 raw->fbc = wm;
1287 }
1288
1289 /* mark watermarks as invalid */
1290 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1291
1292 if (plane_id == PLANE_PRIMARY)
1293 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1294
1295 out:
1296 if (dirty) {
1297 drm_dbg_kms(&dev_priv->drm,
1298 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1299 plane->base.name,
1300 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1301 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1302 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1303
1304 if (plane_id == PLANE_PRIMARY)
1305 drm_dbg_kms(&dev_priv->drm,
1306 "FBC watermarks: SR=%d, HPLL=%d\n",
1307 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1308 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1309 }
1310
1311 return dirty;
1312 }
1313
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1314 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1315 enum plane_id plane_id, int level)
1316 {
1317 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1318
1319 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1320 }
1321
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1322 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1323 int level)
1324 {
1325 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1326
1327 if (level > dev_priv->wm.max_level)
1328 return false;
1329
1330 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1331 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1332 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1333 }
1334
1335 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1336 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1337 struct g4x_wm_state *wm_state, int level)
1338 {
1339 if (level <= G4X_WM_LEVEL_NORMAL) {
1340 enum plane_id plane_id;
1341
1342 for_each_plane_id_on_crtc(crtc, plane_id)
1343 wm_state->wm.plane[plane_id] = USHRT_MAX;
1344 }
1345
1346 if (level <= G4X_WM_LEVEL_SR) {
1347 wm_state->cxsr = false;
1348 wm_state->sr.cursor = USHRT_MAX;
1349 wm_state->sr.plane = USHRT_MAX;
1350 wm_state->sr.fbc = USHRT_MAX;
1351 }
1352
1353 if (level <= G4X_WM_LEVEL_HPLL) {
1354 wm_state->hpll_en = false;
1355 wm_state->hpll.cursor = USHRT_MAX;
1356 wm_state->hpll.plane = USHRT_MAX;
1357 wm_state->hpll.fbc = USHRT_MAX;
1358 }
1359 }
1360
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1361 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1362 int level)
1363 {
1364 if (level < G4X_WM_LEVEL_SR)
1365 return false;
1366
1367 if (level >= G4X_WM_LEVEL_SR &&
1368 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1369 return false;
1370
1371 if (level >= G4X_WM_LEVEL_HPLL &&
1372 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1373 return false;
1374
1375 return true;
1376 }
1377
g4x_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1378 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1379 struct intel_crtc *crtc)
1380 {
1381 struct intel_crtc_state *crtc_state =
1382 intel_atomic_get_new_crtc_state(state, crtc);
1383 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1384 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1385 const struct g4x_pipe_wm *raw;
1386 const struct intel_plane_state *old_plane_state;
1387 const struct intel_plane_state *new_plane_state;
1388 struct intel_plane *plane;
1389 enum plane_id plane_id;
1390 int i, level;
1391 unsigned int dirty = 0;
1392
1393 for_each_oldnew_intel_plane_in_state(state, plane,
1394 old_plane_state,
1395 new_plane_state, i) {
1396 if (new_plane_state->hw.crtc != &crtc->base &&
1397 old_plane_state->hw.crtc != &crtc->base)
1398 continue;
1399
1400 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1401 dirty |= BIT(plane->id);
1402 }
1403
1404 if (!dirty)
1405 return 0;
1406
1407 level = G4X_WM_LEVEL_NORMAL;
1408 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1409 goto out;
1410
1411 raw = &crtc_state->wm.g4x.raw[level];
1412 for_each_plane_id_on_crtc(crtc, plane_id)
1413 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1414
1415 level = G4X_WM_LEVEL_SR;
1416 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1417 goto out;
1418
1419 raw = &crtc_state->wm.g4x.raw[level];
1420 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1421 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1422 wm_state->sr.fbc = raw->fbc;
1423
1424 wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1425
1426 level = G4X_WM_LEVEL_HPLL;
1427 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1428 goto out;
1429
1430 raw = &crtc_state->wm.g4x.raw[level];
1431 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1432 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1433 wm_state->hpll.fbc = raw->fbc;
1434
1435 wm_state->hpll_en = wm_state->cxsr;
1436
1437 level++;
1438
1439 out:
1440 if (level == G4X_WM_LEVEL_NORMAL)
1441 return -EINVAL;
1442
1443 /* invalidate the higher levels */
1444 g4x_invalidate_wms(crtc, wm_state, level);
1445
1446 /*
1447 * Determine if the FBC watermark(s) can be used. IF
1448 * this isn't the case we prefer to disable the FBC
1449 * watermark(s) rather than disable the SR/HPLL
1450 * level(s) entirely. 'level-1' is the highest valid
1451 * level here.
1452 */
1453 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1454
1455 return 0;
1456 }
1457
g4x_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1458 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1459 struct intel_crtc *crtc)
1460 {
1461 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1462 struct intel_crtc_state *new_crtc_state =
1463 intel_atomic_get_new_crtc_state(state, crtc);
1464 const struct intel_crtc_state *old_crtc_state =
1465 intel_atomic_get_old_crtc_state(state, crtc);
1466 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1467 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1468 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1469 enum plane_id plane_id;
1470
1471 if (!new_crtc_state->hw.active ||
1472 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1473 *intermediate = *optimal;
1474
1475 intermediate->cxsr = false;
1476 intermediate->hpll_en = false;
1477 goto out;
1478 }
1479
1480 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1481 !new_crtc_state->disable_cxsr;
1482 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1483 !new_crtc_state->disable_cxsr;
1484 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1485
1486 for_each_plane_id_on_crtc(crtc, plane_id) {
1487 intermediate->wm.plane[plane_id] =
1488 max(optimal->wm.plane[plane_id],
1489 active->wm.plane[plane_id]);
1490
1491 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1492 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1493 }
1494
1495 intermediate->sr.plane = max(optimal->sr.plane,
1496 active->sr.plane);
1497 intermediate->sr.cursor = max(optimal->sr.cursor,
1498 active->sr.cursor);
1499 intermediate->sr.fbc = max(optimal->sr.fbc,
1500 active->sr.fbc);
1501
1502 intermediate->hpll.plane = max(optimal->hpll.plane,
1503 active->hpll.plane);
1504 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1505 active->hpll.cursor);
1506 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1507 active->hpll.fbc);
1508
1509 drm_WARN_ON(&dev_priv->drm,
1510 (intermediate->sr.plane >
1511 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1512 intermediate->sr.cursor >
1513 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1514 intermediate->cxsr);
1515 drm_WARN_ON(&dev_priv->drm,
1516 (intermediate->sr.plane >
1517 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1518 intermediate->sr.cursor >
1519 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1520 intermediate->hpll_en);
1521
1522 drm_WARN_ON(&dev_priv->drm,
1523 intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1524 intermediate->fbc_en && intermediate->cxsr);
1525 drm_WARN_ON(&dev_priv->drm,
1526 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1527 intermediate->fbc_en && intermediate->hpll_en);
1528
1529 out:
1530 /*
1531 * If our intermediate WM are identical to the final WM, then we can
1532 * omit the post-vblank programming; only update if it's different.
1533 */
1534 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1535 new_crtc_state->wm.need_postvbl_update = true;
1536
1537 return 0;
1538 }
1539
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1540 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1541 struct g4x_wm_values *wm)
1542 {
1543 struct intel_crtc *crtc;
1544 int num_active_pipes = 0;
1545
1546 wm->cxsr = true;
1547 wm->hpll_en = true;
1548 wm->fbc_en = true;
1549
1550 for_each_intel_crtc(&dev_priv->drm, crtc) {
1551 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1552
1553 if (!crtc->active)
1554 continue;
1555
1556 if (!wm_state->cxsr)
1557 wm->cxsr = false;
1558 if (!wm_state->hpll_en)
1559 wm->hpll_en = false;
1560 if (!wm_state->fbc_en)
1561 wm->fbc_en = false;
1562
1563 num_active_pipes++;
1564 }
1565
1566 if (num_active_pipes != 1) {
1567 wm->cxsr = false;
1568 wm->hpll_en = false;
1569 wm->fbc_en = false;
1570 }
1571
1572 for_each_intel_crtc(&dev_priv->drm, crtc) {
1573 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1574 enum pipe pipe = crtc->pipe;
1575
1576 wm->pipe[pipe] = wm_state->wm;
1577 if (crtc->active && wm->cxsr)
1578 wm->sr = wm_state->sr;
1579 if (crtc->active && wm->hpll_en)
1580 wm->hpll = wm_state->hpll;
1581 }
1582 }
1583
g4x_program_watermarks(struct drm_i915_private * dev_priv)1584 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1585 {
1586 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1587 struct g4x_wm_values new_wm = {};
1588
1589 g4x_merge_wm(dev_priv, &new_wm);
1590
1591 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1592 return;
1593
1594 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1595 _intel_set_memory_cxsr(dev_priv, false);
1596
1597 g4x_write_wm_values(dev_priv, &new_wm);
1598
1599 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1600 _intel_set_memory_cxsr(dev_priv, true);
1601
1602 *old_wm = new_wm;
1603 }
1604
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1605 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1606 struct intel_crtc *crtc)
1607 {
1608 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1609 const struct intel_crtc_state *crtc_state =
1610 intel_atomic_get_new_crtc_state(state, crtc);
1611
1612 mutex_lock(&dev_priv->wm.wm_mutex);
1613 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1614 g4x_program_watermarks(dev_priv);
1615 mutex_unlock(&dev_priv->wm.wm_mutex);
1616 }
1617
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1618 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1619 struct intel_crtc *crtc)
1620 {
1621 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1622 const struct intel_crtc_state *crtc_state =
1623 intel_atomic_get_new_crtc_state(state, crtc);
1624
1625 if (!crtc_state->wm.need_postvbl_update)
1626 return;
1627
1628 mutex_lock(&dev_priv->wm.wm_mutex);
1629 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1630 g4x_program_watermarks(dev_priv);
1631 mutex_unlock(&dev_priv->wm.wm_mutex);
1632 }
1633
1634 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1635 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1636 unsigned int htotal,
1637 unsigned int width,
1638 unsigned int cpp,
1639 unsigned int latency)
1640 {
1641 unsigned int ret;
1642
1643 ret = intel_wm_method2(pixel_rate, htotal,
1644 width, cpp, latency);
1645 ret = DIV_ROUND_UP(ret, 64);
1646
1647 return ret;
1648 }
1649
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1650 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1651 {
1652 /* all latencies in usec */
1653 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1654
1655 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1656
1657 if (IS_CHERRYVIEW(dev_priv)) {
1658 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1659 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1660
1661 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1662 }
1663 }
1664
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1665 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1666 const struct intel_plane_state *plane_state,
1667 int level)
1668 {
1669 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1670 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1671 const struct drm_display_mode *pipe_mode =
1672 &crtc_state->hw.pipe_mode;
1673 unsigned int pixel_rate, htotal, cpp, width, wm;
1674
1675 if (dev_priv->wm.pri_latency[level] == 0)
1676 return USHRT_MAX;
1677
1678 if (!intel_wm_plane_visible(crtc_state, plane_state))
1679 return 0;
1680
1681 cpp = plane_state->hw.fb->format->cpp[0];
1682 pixel_rate = crtc_state->pixel_rate;
1683 htotal = pipe_mode->crtc_htotal;
1684 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1685
1686 if (plane->id == PLANE_CURSOR) {
1687 /*
1688 * FIXME the formula gives values that are
1689 * too big for the cursor FIFO, and hence we
1690 * would never be able to use cursors. For
1691 * now just hardcode the watermark.
1692 */
1693 wm = 63;
1694 } else {
1695 wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1696 dev_priv->wm.pri_latency[level] * 10);
1697 }
1698
1699 return min_t(unsigned int, wm, USHRT_MAX);
1700 }
1701
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1702 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1703 {
1704 return (active_planes & (BIT(PLANE_SPRITE0) |
1705 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1706 }
1707
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1708 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1709 {
1710 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1711 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1712 const struct g4x_pipe_wm *raw =
1713 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1714 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1715 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1716 int num_active_planes = hweight8(active_planes);
1717 const int fifo_size = 511;
1718 int fifo_extra, fifo_left = fifo_size;
1719 int sprite0_fifo_extra = 0;
1720 unsigned int total_rate;
1721 enum plane_id plane_id;
1722
1723 /*
1724 * When enabling sprite0 after sprite1 has already been enabled
1725 * we tend to get an underrun unless sprite0 already has some
1726 * FIFO space allcoated. Hence we always allocate at least one
1727 * cacheline for sprite0 whenever sprite1 is enabled.
1728 *
1729 * All other plane enable sequences appear immune to this problem.
1730 */
1731 if (vlv_need_sprite0_fifo_workaround(active_planes))
1732 sprite0_fifo_extra = 1;
1733
1734 total_rate = raw->plane[PLANE_PRIMARY] +
1735 raw->plane[PLANE_SPRITE0] +
1736 raw->plane[PLANE_SPRITE1] +
1737 sprite0_fifo_extra;
1738
1739 if (total_rate > fifo_size)
1740 return -EINVAL;
1741
1742 if (total_rate == 0)
1743 total_rate = 1;
1744
1745 for_each_plane_id_on_crtc(crtc, plane_id) {
1746 unsigned int rate;
1747
1748 if ((active_planes & BIT(plane_id)) == 0) {
1749 fifo_state->plane[plane_id] = 0;
1750 continue;
1751 }
1752
1753 rate = raw->plane[plane_id];
1754 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1755 fifo_left -= fifo_state->plane[plane_id];
1756 }
1757
1758 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1759 fifo_left -= sprite0_fifo_extra;
1760
1761 fifo_state->plane[PLANE_CURSOR] = 63;
1762
1763 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1764
1765 /* spread the remainder evenly */
1766 for_each_plane_id_on_crtc(crtc, plane_id) {
1767 int plane_extra;
1768
1769 if (fifo_left == 0)
1770 break;
1771
1772 if ((active_planes & BIT(plane_id)) == 0)
1773 continue;
1774
1775 plane_extra = min(fifo_extra, fifo_left);
1776 fifo_state->plane[plane_id] += plane_extra;
1777 fifo_left -= plane_extra;
1778 }
1779
1780 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1781
1782 /* give it all to the first plane if none are active */
1783 if (active_planes == 0) {
1784 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1785 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1786 }
1787
1788 return 0;
1789 }
1790
1791 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1792 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1793 struct vlv_wm_state *wm_state, int level)
1794 {
1795 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1796
1797 for (; level < intel_wm_num_levels(dev_priv); level++) {
1798 enum plane_id plane_id;
1799
1800 for_each_plane_id_on_crtc(crtc, plane_id)
1801 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1802
1803 wm_state->sr[level].cursor = USHRT_MAX;
1804 wm_state->sr[level].plane = USHRT_MAX;
1805 }
1806 }
1807
vlv_invert_wm_value(u16 wm,u16 fifo_size)1808 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1809 {
1810 if (wm > fifo_size)
1811 return USHRT_MAX;
1812 else
1813 return fifo_size - wm;
1814 }
1815
1816 /*
1817 * Starting from 'level' set all higher
1818 * levels to 'value' in the "raw" watermarks.
1819 */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1820 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1821 int level, enum plane_id plane_id, u16 value)
1822 {
1823 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1824 int num_levels = intel_wm_num_levels(dev_priv);
1825 bool dirty = false;
1826
1827 for (; level < num_levels; level++) {
1828 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1829
1830 dirty |= raw->plane[plane_id] != value;
1831 raw->plane[plane_id] = value;
1832 }
1833
1834 return dirty;
1835 }
1836
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1837 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1838 const struct intel_plane_state *plane_state)
1839 {
1840 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1841 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1842 enum plane_id plane_id = plane->id;
1843 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1844 int level;
1845 bool dirty = false;
1846
1847 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1848 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1849 goto out;
1850 }
1851
1852 for (level = 0; level < num_levels; level++) {
1853 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1854 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1855 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1856
1857 if (wm > max_wm)
1858 break;
1859
1860 dirty |= raw->plane[plane_id] != wm;
1861 raw->plane[plane_id] = wm;
1862 }
1863
1864 /* mark all higher levels as invalid */
1865 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1866
1867 out:
1868 if (dirty)
1869 drm_dbg_kms(&dev_priv->drm,
1870 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1871 plane->base.name,
1872 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1873 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1874 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1875
1876 return dirty;
1877 }
1878
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1879 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1880 enum plane_id plane_id, int level)
1881 {
1882 const struct g4x_pipe_wm *raw =
1883 &crtc_state->wm.vlv.raw[level];
1884 const struct vlv_fifo_state *fifo_state =
1885 &crtc_state->wm.vlv.fifo_state;
1886
1887 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1888 }
1889
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1890 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1891 {
1892 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1893 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1894 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1895 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1896 }
1897
vlv_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1898 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1899 struct intel_crtc *crtc)
1900 {
1901 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1902 struct intel_crtc_state *crtc_state =
1903 intel_atomic_get_new_crtc_state(state, crtc);
1904 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1905 const struct vlv_fifo_state *fifo_state =
1906 &crtc_state->wm.vlv.fifo_state;
1907 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1908 int num_active_planes = hweight8(active_planes);
1909 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1910 const struct intel_plane_state *old_plane_state;
1911 const struct intel_plane_state *new_plane_state;
1912 struct intel_plane *plane;
1913 enum plane_id plane_id;
1914 int level, ret, i;
1915 unsigned int dirty = 0;
1916
1917 for_each_oldnew_intel_plane_in_state(state, plane,
1918 old_plane_state,
1919 new_plane_state, i) {
1920 if (new_plane_state->hw.crtc != &crtc->base &&
1921 old_plane_state->hw.crtc != &crtc->base)
1922 continue;
1923
1924 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1925 dirty |= BIT(plane->id);
1926 }
1927
1928 /*
1929 * DSPARB registers may have been reset due to the
1930 * power well being turned off. Make sure we restore
1931 * them to a consistent state even if no primary/sprite
1932 * planes are initially active.
1933 */
1934 if (needs_modeset)
1935 crtc_state->fifo_changed = true;
1936
1937 if (!dirty)
1938 return 0;
1939
1940 /* cursor changes don't warrant a FIFO recompute */
1941 if (dirty & ~BIT(PLANE_CURSOR)) {
1942 const struct intel_crtc_state *old_crtc_state =
1943 intel_atomic_get_old_crtc_state(state, crtc);
1944 const struct vlv_fifo_state *old_fifo_state =
1945 &old_crtc_state->wm.vlv.fifo_state;
1946
1947 ret = vlv_compute_fifo(crtc_state);
1948 if (ret)
1949 return ret;
1950
1951 if (needs_modeset ||
1952 memcmp(old_fifo_state, fifo_state,
1953 sizeof(*fifo_state)) != 0)
1954 crtc_state->fifo_changed = true;
1955 }
1956
1957 /* initially allow all levels */
1958 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1959 /*
1960 * Note that enabling cxsr with no primary/sprite planes
1961 * enabled can wedge the pipe. Hence we only allow cxsr
1962 * with exactly one enabled primary/sprite plane.
1963 */
1964 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1965
1966 for (level = 0; level < wm_state->num_levels; level++) {
1967 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1968 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1969
1970 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1971 break;
1972
1973 for_each_plane_id_on_crtc(crtc, plane_id) {
1974 wm_state->wm[level].plane[plane_id] =
1975 vlv_invert_wm_value(raw->plane[plane_id],
1976 fifo_state->plane[plane_id]);
1977 }
1978
1979 wm_state->sr[level].plane =
1980 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1981 raw->plane[PLANE_SPRITE0],
1982 raw->plane[PLANE_SPRITE1]),
1983 sr_fifo_size);
1984
1985 wm_state->sr[level].cursor =
1986 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1987 63);
1988 }
1989
1990 if (level == 0)
1991 return -EINVAL;
1992
1993 /* limit to only levels we can actually handle */
1994 wm_state->num_levels = level;
1995
1996 /* invalidate the higher levels */
1997 vlv_invalidate_wms(crtc, wm_state, level);
1998
1999 return 0;
2000 }
2001
2002 #define VLV_FIFO(plane, value) \
2003 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2004
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)2005 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2006 struct intel_crtc *crtc)
2007 {
2008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2009 struct intel_uncore *uncore = &dev_priv->uncore;
2010 const struct intel_crtc_state *crtc_state =
2011 intel_atomic_get_new_crtc_state(state, crtc);
2012 const struct vlv_fifo_state *fifo_state =
2013 &crtc_state->wm.vlv.fifo_state;
2014 int sprite0_start, sprite1_start, fifo_size;
2015 u32 dsparb, dsparb2, dsparb3;
2016
2017 if (!crtc_state->fifo_changed)
2018 return;
2019
2020 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2021 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2022 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2023
2024 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2025 drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2026
2027 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2028
2029 /*
2030 * uncore.lock serves a double purpose here. It allows us to
2031 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2032 * it protects the DSPARB registers from getting clobbered by
2033 * parallel updates from multiple pipes.
2034 *
2035 * intel_pipe_update_start() has already disabled interrupts
2036 * for us, so a plain spin_lock() is sufficient here.
2037 */
2038 spin_lock(&uncore->lock);
2039
2040 switch (crtc->pipe) {
2041 case PIPE_A:
2042 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2043 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2044
2045 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2046 VLV_FIFO(SPRITEB, 0xff));
2047 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2048 VLV_FIFO(SPRITEB, sprite1_start));
2049
2050 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2051 VLV_FIFO(SPRITEB_HI, 0x1));
2052 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2053 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2054
2055 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2056 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2057 break;
2058 case PIPE_B:
2059 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2060 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2061
2062 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2063 VLV_FIFO(SPRITED, 0xff));
2064 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2065 VLV_FIFO(SPRITED, sprite1_start));
2066
2067 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2068 VLV_FIFO(SPRITED_HI, 0xff));
2069 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2070 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2071
2072 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2073 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2074 break;
2075 case PIPE_C:
2076 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2077 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2078
2079 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2080 VLV_FIFO(SPRITEF, 0xff));
2081 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2082 VLV_FIFO(SPRITEF, sprite1_start));
2083
2084 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2085 VLV_FIFO(SPRITEF_HI, 0xff));
2086 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2087 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2088
2089 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2090 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2091 break;
2092 default:
2093 break;
2094 }
2095
2096 intel_uncore_posting_read_fw(uncore, DSPARB);
2097
2098 spin_unlock(&uncore->lock);
2099 }
2100
2101 #undef VLV_FIFO
2102
vlv_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2103 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
2104 struct intel_crtc *crtc)
2105 {
2106 struct intel_crtc_state *new_crtc_state =
2107 intel_atomic_get_new_crtc_state(state, crtc);
2108 const struct intel_crtc_state *old_crtc_state =
2109 intel_atomic_get_old_crtc_state(state, crtc);
2110 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2111 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2112 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2113 int level;
2114
2115 if (!new_crtc_state->hw.active ||
2116 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2117 *intermediate = *optimal;
2118
2119 intermediate->cxsr = false;
2120 goto out;
2121 }
2122
2123 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2124 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2125 !new_crtc_state->disable_cxsr;
2126
2127 for (level = 0; level < intermediate->num_levels; level++) {
2128 enum plane_id plane_id;
2129
2130 for_each_plane_id_on_crtc(crtc, plane_id) {
2131 intermediate->wm[level].plane[plane_id] =
2132 min(optimal->wm[level].plane[plane_id],
2133 active->wm[level].plane[plane_id]);
2134 }
2135
2136 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2137 active->sr[level].plane);
2138 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2139 active->sr[level].cursor);
2140 }
2141
2142 vlv_invalidate_wms(crtc, intermediate, level);
2143
2144 out:
2145 /*
2146 * If our intermediate WM are identical to the final WM, then we can
2147 * omit the post-vblank programming; only update if it's different.
2148 */
2149 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2150 new_crtc_state->wm.need_postvbl_update = true;
2151
2152 return 0;
2153 }
2154
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2155 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2156 struct vlv_wm_values *wm)
2157 {
2158 struct intel_crtc *crtc;
2159 int num_active_pipes = 0;
2160
2161 wm->level = dev_priv->wm.max_level;
2162 wm->cxsr = true;
2163
2164 for_each_intel_crtc(&dev_priv->drm, crtc) {
2165 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2166
2167 if (!crtc->active)
2168 continue;
2169
2170 if (!wm_state->cxsr)
2171 wm->cxsr = false;
2172
2173 num_active_pipes++;
2174 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2175 }
2176
2177 if (num_active_pipes != 1)
2178 wm->cxsr = false;
2179
2180 if (num_active_pipes > 1)
2181 wm->level = VLV_WM_LEVEL_PM2;
2182
2183 for_each_intel_crtc(&dev_priv->drm, crtc) {
2184 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2185 enum pipe pipe = crtc->pipe;
2186
2187 wm->pipe[pipe] = wm_state->wm[wm->level];
2188 if (crtc->active && wm->cxsr)
2189 wm->sr = wm_state->sr[wm->level];
2190
2191 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2192 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2193 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2194 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2195 }
2196 }
2197
vlv_program_watermarks(struct drm_i915_private * dev_priv)2198 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2199 {
2200 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2201 struct vlv_wm_values new_wm = {};
2202
2203 vlv_merge_wm(dev_priv, &new_wm);
2204
2205 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2206 return;
2207
2208 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2209 chv_set_memory_dvfs(dev_priv, false);
2210
2211 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2212 chv_set_memory_pm5(dev_priv, false);
2213
2214 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2215 _intel_set_memory_cxsr(dev_priv, false);
2216
2217 vlv_write_wm_values(dev_priv, &new_wm);
2218
2219 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2220 _intel_set_memory_cxsr(dev_priv, true);
2221
2222 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2223 chv_set_memory_pm5(dev_priv, true);
2224
2225 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2226 chv_set_memory_dvfs(dev_priv, true);
2227
2228 *old_wm = new_wm;
2229 }
2230
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2231 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2232 struct intel_crtc *crtc)
2233 {
2234 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2235 const struct intel_crtc_state *crtc_state =
2236 intel_atomic_get_new_crtc_state(state, crtc);
2237
2238 mutex_lock(&dev_priv->wm.wm_mutex);
2239 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2240 vlv_program_watermarks(dev_priv);
2241 mutex_unlock(&dev_priv->wm.wm_mutex);
2242 }
2243
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2244 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2245 struct intel_crtc *crtc)
2246 {
2247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2248 const struct intel_crtc_state *crtc_state =
2249 intel_atomic_get_new_crtc_state(state, crtc);
2250
2251 if (!crtc_state->wm.need_postvbl_update)
2252 return;
2253
2254 mutex_lock(&dev_priv->wm.wm_mutex);
2255 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2256 vlv_program_watermarks(dev_priv);
2257 mutex_unlock(&dev_priv->wm.wm_mutex);
2258 }
2259
i965_update_wm(struct drm_i915_private * dev_priv)2260 static void i965_update_wm(struct drm_i915_private *dev_priv)
2261 {
2262 struct intel_crtc *crtc;
2263 int srwm = 1;
2264 int cursor_sr = 16;
2265 bool cxsr_enabled;
2266
2267 /* Calc sr entries for one plane configs */
2268 crtc = single_enabled_crtc(dev_priv);
2269 if (crtc) {
2270 /* self-refresh has much higher latency */
2271 static const int sr_latency_ns = 12000;
2272 const struct drm_display_mode *pipe_mode =
2273 &crtc->config->hw.pipe_mode;
2274 const struct drm_framebuffer *fb =
2275 crtc->base.primary->state->fb;
2276 int pixel_rate = crtc->config->pixel_rate;
2277 int htotal = pipe_mode->crtc_htotal;
2278 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2279 int cpp = fb->format->cpp[0];
2280 int entries;
2281
2282 entries = intel_wm_method2(pixel_rate, htotal,
2283 width, cpp, sr_latency_ns / 100);
2284 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2285 srwm = I965_FIFO_SIZE - entries;
2286 if (srwm < 0)
2287 srwm = 1;
2288 srwm &= 0x1ff;
2289 drm_dbg_kms(&dev_priv->drm,
2290 "self-refresh entries: %d, wm: %d\n",
2291 entries, srwm);
2292
2293 entries = intel_wm_method2(pixel_rate, htotal,
2294 crtc->base.cursor->state->crtc_w, 4,
2295 sr_latency_ns / 100);
2296 entries = DIV_ROUND_UP(entries,
2297 i965_cursor_wm_info.cacheline_size) +
2298 i965_cursor_wm_info.guard_size;
2299
2300 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2301 if (cursor_sr > i965_cursor_wm_info.max_wm)
2302 cursor_sr = i965_cursor_wm_info.max_wm;
2303
2304 drm_dbg_kms(&dev_priv->drm,
2305 "self-refresh watermark: display plane %d "
2306 "cursor %d\n", srwm, cursor_sr);
2307
2308 cxsr_enabled = true;
2309 } else {
2310 cxsr_enabled = false;
2311 /* Turn off self refresh if both pipes are enabled */
2312 intel_set_memory_cxsr(dev_priv, false);
2313 }
2314
2315 drm_dbg_kms(&dev_priv->drm,
2316 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2317 srwm);
2318
2319 /* 965 has limitations... */
2320 intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2321 FW_WM(8, CURSORB) |
2322 FW_WM(8, PLANEB) |
2323 FW_WM(8, PLANEA));
2324 intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2325 FW_WM(8, PLANEC_OLD));
2326 /* update cursor SR watermark */
2327 intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2328
2329 if (cxsr_enabled)
2330 intel_set_memory_cxsr(dev_priv, true);
2331 }
2332
2333 #undef FW_WM
2334
intel_crtc_for_plane(struct drm_i915_private * i915,enum i9xx_plane_id i9xx_plane)2335 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2336 enum i9xx_plane_id i9xx_plane)
2337 {
2338 struct intel_plane *plane;
2339
2340 for_each_intel_plane(&i915->drm, plane) {
2341 if (plane->id == PLANE_PRIMARY &&
2342 plane->i9xx_plane == i9xx_plane)
2343 return intel_crtc_for_pipe(i915, plane->pipe);
2344 }
2345
2346 return NULL;
2347 }
2348
i9xx_update_wm(struct drm_i915_private * dev_priv)2349 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2350 {
2351 const struct intel_watermark_params *wm_info;
2352 u32 fwater_lo;
2353 u32 fwater_hi;
2354 int cwm, srwm = 1;
2355 int fifo_size;
2356 int planea_wm, planeb_wm;
2357 struct intel_crtc *crtc;
2358
2359 if (IS_I945GM(dev_priv))
2360 wm_info = &i945_wm_info;
2361 else if (DISPLAY_VER(dev_priv) != 2)
2362 wm_info = &i915_wm_info;
2363 else
2364 wm_info = &i830_a_wm_info;
2365
2366 if (DISPLAY_VER(dev_priv) == 2)
2367 fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2368 else
2369 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2370 crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2371 if (intel_crtc_active(crtc)) {
2372 const struct drm_framebuffer *fb =
2373 crtc->base.primary->state->fb;
2374 int cpp;
2375
2376 if (DISPLAY_VER(dev_priv) == 2)
2377 cpp = 4;
2378 else
2379 cpp = fb->format->cpp[0];
2380
2381 planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2382 wm_info, fifo_size, cpp,
2383 pessimal_latency_ns);
2384 } else {
2385 planea_wm = fifo_size - wm_info->guard_size;
2386 if (planea_wm > (long)wm_info->max_wm)
2387 planea_wm = wm_info->max_wm;
2388 }
2389
2390 if (DISPLAY_VER(dev_priv) == 2)
2391 wm_info = &i830_bc_wm_info;
2392
2393 if (DISPLAY_VER(dev_priv) == 2)
2394 fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2395 else
2396 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2397 crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2398 if (intel_crtc_active(crtc)) {
2399 const struct drm_framebuffer *fb =
2400 crtc->base.primary->state->fb;
2401 int cpp;
2402
2403 if (DISPLAY_VER(dev_priv) == 2)
2404 cpp = 4;
2405 else
2406 cpp = fb->format->cpp[0];
2407
2408 planeb_wm = intel_calculate_wm(crtc->config->pixel_rate,
2409 wm_info, fifo_size, cpp,
2410 pessimal_latency_ns);
2411 } else {
2412 planeb_wm = fifo_size - wm_info->guard_size;
2413 if (planeb_wm > (long)wm_info->max_wm)
2414 planeb_wm = wm_info->max_wm;
2415 }
2416
2417 drm_dbg_kms(&dev_priv->drm,
2418 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2419
2420 crtc = single_enabled_crtc(dev_priv);
2421 if (IS_I915GM(dev_priv) && crtc) {
2422 struct drm_i915_gem_object *obj;
2423
2424 obj = intel_fb_obj(crtc->base.primary->state->fb);
2425
2426 /* self-refresh seems busted with untiled */
2427 if (!i915_gem_object_is_tiled(obj))
2428 crtc = NULL;
2429 }
2430
2431 /*
2432 * Overlay gets an aggressive default since video jitter is bad.
2433 */
2434 cwm = 2;
2435
2436 /* Play safe and disable self-refresh before adjusting watermarks. */
2437 intel_set_memory_cxsr(dev_priv, false);
2438
2439 /* Calc sr entries for one plane configs */
2440 if (HAS_FW_BLC(dev_priv) && crtc) {
2441 /* self-refresh has much higher latency */
2442 static const int sr_latency_ns = 6000;
2443 const struct drm_display_mode *pipe_mode =
2444 &crtc->config->hw.pipe_mode;
2445 const struct drm_framebuffer *fb =
2446 crtc->base.primary->state->fb;
2447 int pixel_rate = crtc->config->pixel_rate;
2448 int htotal = pipe_mode->crtc_htotal;
2449 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2450 int cpp;
2451 int entries;
2452
2453 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2454 cpp = 4;
2455 else
2456 cpp = fb->format->cpp[0];
2457
2458 entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2459 sr_latency_ns / 100);
2460 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2461 drm_dbg_kms(&dev_priv->drm,
2462 "self-refresh entries: %d\n", entries);
2463 srwm = wm_info->fifo_size - entries;
2464 if (srwm < 0)
2465 srwm = 1;
2466
2467 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2468 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2469 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2470 else
2471 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2472 }
2473
2474 drm_dbg_kms(&dev_priv->drm,
2475 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2476 planea_wm, planeb_wm, cwm, srwm);
2477
2478 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2479 fwater_hi = (cwm & 0x1f);
2480
2481 /* Set request length to 8 cachelines per fetch */
2482 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2483 fwater_hi = fwater_hi | (1 << 8);
2484
2485 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2486 intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2487
2488 if (crtc)
2489 intel_set_memory_cxsr(dev_priv, true);
2490 }
2491
i845_update_wm(struct drm_i915_private * dev_priv)2492 static void i845_update_wm(struct drm_i915_private *dev_priv)
2493 {
2494 struct intel_crtc *crtc;
2495 u32 fwater_lo;
2496 int planea_wm;
2497
2498 crtc = single_enabled_crtc(dev_priv);
2499 if (crtc == NULL)
2500 return;
2501
2502 planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2503 &i845_wm_info,
2504 i845_get_fifo_size(dev_priv, PLANE_A),
2505 4, pessimal_latency_ns);
2506 fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2507 fwater_lo |= (3<<8) | planea_wm;
2508
2509 drm_dbg_kms(&dev_priv->drm,
2510 "Setting FIFO watermarks - A: %d\n", planea_wm);
2511
2512 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2513 }
2514
2515 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2516 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2517 unsigned int cpp,
2518 unsigned int latency)
2519 {
2520 unsigned int ret;
2521
2522 ret = intel_wm_method1(pixel_rate, cpp, latency);
2523 ret = DIV_ROUND_UP(ret, 64) + 2;
2524
2525 return ret;
2526 }
2527
2528 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2529 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2530 unsigned int htotal,
2531 unsigned int width,
2532 unsigned int cpp,
2533 unsigned int latency)
2534 {
2535 unsigned int ret;
2536
2537 ret = intel_wm_method2(pixel_rate, htotal,
2538 width, cpp, latency);
2539 ret = DIV_ROUND_UP(ret, 64) + 2;
2540
2541 return ret;
2542 }
2543
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2544 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2545 {
2546 /*
2547 * Neither of these should be possible since this function shouldn't be
2548 * called if the CRTC is off or the plane is invisible. But let's be
2549 * extra paranoid to avoid a potential divide-by-zero if we screw up
2550 * elsewhere in the driver.
2551 */
2552 if (WARN_ON(!cpp))
2553 return 0;
2554 if (WARN_ON(!horiz_pixels))
2555 return 0;
2556
2557 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2558 }
2559
2560 struct ilk_wm_maximums {
2561 u16 pri;
2562 u16 spr;
2563 u16 cur;
2564 u16 fbc;
2565 };
2566
2567 /*
2568 * For both WM_PIPE and WM_LP.
2569 * mem_value must be in 0.1us units.
2570 */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2571 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2572 const struct intel_plane_state *plane_state,
2573 u32 mem_value, bool is_lp)
2574 {
2575 u32 method1, method2;
2576 int cpp;
2577
2578 if (mem_value == 0)
2579 return U32_MAX;
2580
2581 if (!intel_wm_plane_visible(crtc_state, plane_state))
2582 return 0;
2583
2584 cpp = plane_state->hw.fb->format->cpp[0];
2585
2586 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2587
2588 if (!is_lp)
2589 return method1;
2590
2591 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2592 crtc_state->hw.pipe_mode.crtc_htotal,
2593 drm_rect_width(&plane_state->uapi.src) >> 16,
2594 cpp, mem_value);
2595
2596 return min(method1, method2);
2597 }
2598
2599 /*
2600 * For both WM_PIPE and WM_LP.
2601 * mem_value must be in 0.1us units.
2602 */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2603 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2604 const struct intel_plane_state *plane_state,
2605 u32 mem_value)
2606 {
2607 u32 method1, method2;
2608 int cpp;
2609
2610 if (mem_value == 0)
2611 return U32_MAX;
2612
2613 if (!intel_wm_plane_visible(crtc_state, plane_state))
2614 return 0;
2615
2616 cpp = plane_state->hw.fb->format->cpp[0];
2617
2618 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2619 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2620 crtc_state->hw.pipe_mode.crtc_htotal,
2621 drm_rect_width(&plane_state->uapi.src) >> 16,
2622 cpp, mem_value);
2623 return min(method1, method2);
2624 }
2625
2626 /*
2627 * For both WM_PIPE and WM_LP.
2628 * mem_value must be in 0.1us units.
2629 */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2630 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2631 const struct intel_plane_state *plane_state,
2632 u32 mem_value)
2633 {
2634 int cpp;
2635
2636 if (mem_value == 0)
2637 return U32_MAX;
2638
2639 if (!intel_wm_plane_visible(crtc_state, plane_state))
2640 return 0;
2641
2642 cpp = plane_state->hw.fb->format->cpp[0];
2643
2644 return ilk_wm_method2(crtc_state->pixel_rate,
2645 crtc_state->hw.pipe_mode.crtc_htotal,
2646 drm_rect_width(&plane_state->uapi.src) >> 16,
2647 cpp, mem_value);
2648 }
2649
2650 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2651 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2652 const struct intel_plane_state *plane_state,
2653 u32 pri_val)
2654 {
2655 int cpp;
2656
2657 if (!intel_wm_plane_visible(crtc_state, plane_state))
2658 return 0;
2659
2660 cpp = plane_state->hw.fb->format->cpp[0];
2661
2662 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2663 cpp);
2664 }
2665
2666 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2667 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2668 {
2669 if (DISPLAY_VER(dev_priv) >= 8)
2670 return 3072;
2671 else if (DISPLAY_VER(dev_priv) >= 7)
2672 return 768;
2673 else
2674 return 512;
2675 }
2676
2677 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2678 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2679 int level, bool is_sprite)
2680 {
2681 if (DISPLAY_VER(dev_priv) >= 8)
2682 /* BDW primary/sprite plane watermarks */
2683 return level == 0 ? 255 : 2047;
2684 else if (DISPLAY_VER(dev_priv) >= 7)
2685 /* IVB/HSW primary/sprite plane watermarks */
2686 return level == 0 ? 127 : 1023;
2687 else if (!is_sprite)
2688 /* ILK/SNB primary plane watermarks */
2689 return level == 0 ? 127 : 511;
2690 else
2691 /* ILK/SNB sprite plane watermarks */
2692 return level == 0 ? 63 : 255;
2693 }
2694
2695 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2696 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2697 {
2698 if (DISPLAY_VER(dev_priv) >= 7)
2699 return level == 0 ? 63 : 255;
2700 else
2701 return level == 0 ? 31 : 63;
2702 }
2703
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2704 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2705 {
2706 if (DISPLAY_VER(dev_priv) >= 8)
2707 return 31;
2708 else
2709 return 15;
2710 }
2711
2712 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2713 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2714 int level,
2715 const struct intel_wm_config *config,
2716 enum intel_ddb_partitioning ddb_partitioning,
2717 bool is_sprite)
2718 {
2719 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2720
2721 /* if sprites aren't enabled, sprites get nothing */
2722 if (is_sprite && !config->sprites_enabled)
2723 return 0;
2724
2725 /* HSW allows LP1+ watermarks even with multiple pipes */
2726 if (level == 0 || config->num_pipes_active > 1) {
2727 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2728
2729 /*
2730 * For some reason the non self refresh
2731 * FIFO size is only half of the self
2732 * refresh FIFO size on ILK/SNB.
2733 */
2734 if (DISPLAY_VER(dev_priv) <= 6)
2735 fifo_size /= 2;
2736 }
2737
2738 if (config->sprites_enabled) {
2739 /* level 0 is always calculated with 1:1 split */
2740 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2741 if (is_sprite)
2742 fifo_size *= 5;
2743 fifo_size /= 6;
2744 } else {
2745 fifo_size /= 2;
2746 }
2747 }
2748
2749 /* clamp to max that the registers can hold */
2750 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2751 }
2752
2753 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2754 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2755 int level,
2756 const struct intel_wm_config *config)
2757 {
2758 /* HSW LP1+ watermarks w/ multiple pipes */
2759 if (level > 0 && config->num_pipes_active > 1)
2760 return 64;
2761
2762 /* otherwise just report max that registers can hold */
2763 return ilk_cursor_wm_reg_max(dev_priv, level);
2764 }
2765
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2766 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2767 int level,
2768 const struct intel_wm_config *config,
2769 enum intel_ddb_partitioning ddb_partitioning,
2770 struct ilk_wm_maximums *max)
2771 {
2772 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2773 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2774 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2775 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2776 }
2777
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2778 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2779 int level,
2780 struct ilk_wm_maximums *max)
2781 {
2782 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2783 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2784 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2785 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2786 }
2787
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2788 static bool ilk_validate_wm_level(int level,
2789 const struct ilk_wm_maximums *max,
2790 struct intel_wm_level *result)
2791 {
2792 bool ret;
2793
2794 /* already determined to be invalid? */
2795 if (!result->enable)
2796 return false;
2797
2798 result->enable = result->pri_val <= max->pri &&
2799 result->spr_val <= max->spr &&
2800 result->cur_val <= max->cur;
2801
2802 ret = result->enable;
2803
2804 /*
2805 * HACK until we can pre-compute everything,
2806 * and thus fail gracefully if LP0 watermarks
2807 * are exceeded...
2808 */
2809 if (level == 0 && !result->enable) {
2810 if (result->pri_val > max->pri)
2811 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2812 level, result->pri_val, max->pri);
2813 if (result->spr_val > max->spr)
2814 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2815 level, result->spr_val, max->spr);
2816 if (result->cur_val > max->cur)
2817 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2818 level, result->cur_val, max->cur);
2819
2820 result->pri_val = min_t(u32, result->pri_val, max->pri);
2821 result->spr_val = min_t(u32, result->spr_val, max->spr);
2822 result->cur_val = min_t(u32, result->cur_val, max->cur);
2823 result->enable = true;
2824 }
2825
2826 return ret;
2827 }
2828
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2829 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2830 const struct intel_crtc *crtc,
2831 int level,
2832 struct intel_crtc_state *crtc_state,
2833 const struct intel_plane_state *pristate,
2834 const struct intel_plane_state *sprstate,
2835 const struct intel_plane_state *curstate,
2836 struct intel_wm_level *result)
2837 {
2838 u16 pri_latency = dev_priv->wm.pri_latency[level];
2839 u16 spr_latency = dev_priv->wm.spr_latency[level];
2840 u16 cur_latency = dev_priv->wm.cur_latency[level];
2841
2842 /* WM1+ latency values stored in 0.5us units */
2843 if (level > 0) {
2844 pri_latency *= 5;
2845 spr_latency *= 5;
2846 cur_latency *= 5;
2847 }
2848
2849 if (pristate) {
2850 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2851 pri_latency, level);
2852 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2853 }
2854
2855 if (sprstate)
2856 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2857
2858 if (curstate)
2859 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2860
2861 result->enable = true;
2862 }
2863
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[])2864 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2865 u16 wm[])
2866 {
2867 struct intel_uncore *uncore = &dev_priv->uncore;
2868
2869 if (DISPLAY_VER(dev_priv) >= 9) {
2870 u32 val;
2871 int ret, i;
2872 int level, max_level = ilk_wm_max_level(dev_priv);
2873 int mult = IS_DG2(dev_priv) ? 2 : 1;
2874
2875 /* read the first set of memory latencies[0:3] */
2876 val = 0; /* data0 to be programmed to 0 for first set */
2877 ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY,
2878 &val, NULL);
2879
2880 if (ret) {
2881 drm_err(&dev_priv->drm,
2882 "SKL Mailbox read error = %d\n", ret);
2883 return;
2884 }
2885
2886 wm[0] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2887 wm[1] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2888 GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2889 wm[2] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2890 GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2891 wm[3] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2892 GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2893
2894 /* read the second set of memory latencies[4:7] */
2895 val = 1; /* data0 to be programmed to 1 for second set */
2896 ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY,
2897 &val, NULL);
2898 if (ret) {
2899 drm_err(&dev_priv->drm,
2900 "SKL Mailbox read error = %d\n", ret);
2901 return;
2902 }
2903
2904 wm[4] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2905 wm[5] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2906 GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2907 wm[6] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2908 GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2909 wm[7] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2910 GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2911
2912 /*
2913 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2914 * need to be disabled. We make sure to sanitize the values out
2915 * of the punit to satisfy this requirement.
2916 */
2917 for (level = 1; level <= max_level; level++) {
2918 if (wm[level] == 0) {
2919 for (i = level + 1; i <= max_level; i++)
2920 wm[i] = 0;
2921
2922 max_level = level - 1;
2923
2924 break;
2925 }
2926 }
2927
2928 /*
2929 * WaWmMemoryReadLatency
2930 *
2931 * punit doesn't take into account the read latency so we need
2932 * to add proper adjustement to each valid level we retrieve
2933 * from the punit when level 0 response data is 0us.
2934 */
2935 if (wm[0] == 0) {
2936 u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
2937
2938 for (level = 0; level <= max_level; level++)
2939 wm[level] += adjust;
2940 }
2941
2942 /*
2943 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2944 * If we could not get dimm info enable this WA to prevent from
2945 * any underrun. If not able to get Dimm info assume 16GB dimm
2946 * to avoid any underrun.
2947 */
2948 if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2949 wm[0] += 1;
2950 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2951 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2952
2953 wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2954 if (wm[0] == 0)
2955 wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2956 wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2957 wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2958 wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2959 wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2960 } else if (DISPLAY_VER(dev_priv) >= 6) {
2961 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2962
2963 wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2964 wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2965 wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2966 wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2967 } else if (DISPLAY_VER(dev_priv) >= 5) {
2968 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2969
2970 /* ILK primary LP0 latency is 700 ns */
2971 wm[0] = 7;
2972 wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2973 wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2974 } else {
2975 MISSING_CASE(INTEL_DEVID(dev_priv));
2976 }
2977 }
2978
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2979 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2980 u16 wm[5])
2981 {
2982 /* ILK sprite LP0 latency is 1300 ns */
2983 if (DISPLAY_VER(dev_priv) == 5)
2984 wm[0] = 13;
2985 }
2986
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2987 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2988 u16 wm[5])
2989 {
2990 /* ILK cursor LP0 latency is 1300 ns */
2991 if (DISPLAY_VER(dev_priv) == 5)
2992 wm[0] = 13;
2993 }
2994
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2995 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2996 {
2997 /* how many WM levels are we expecting */
2998 if (HAS_HW_SAGV_WM(dev_priv))
2999 return 5;
3000 else if (DISPLAY_VER(dev_priv) >= 9)
3001 return 7;
3002 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3003 return 4;
3004 else if (DISPLAY_VER(dev_priv) >= 6)
3005 return 3;
3006 else
3007 return 2;
3008 }
3009
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[])3010 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3011 const char *name,
3012 const u16 wm[])
3013 {
3014 int level, max_level = ilk_wm_max_level(dev_priv);
3015
3016 for (level = 0; level <= max_level; level++) {
3017 unsigned int latency = wm[level];
3018
3019 if (latency == 0) {
3020 drm_dbg_kms(&dev_priv->drm,
3021 "%s WM%d latency not provided\n",
3022 name, level);
3023 continue;
3024 }
3025
3026 /*
3027 * - latencies are in us on gen9.
3028 * - before then, WM1+ latency values are in 0.5us units
3029 */
3030 if (DISPLAY_VER(dev_priv) >= 9)
3031 latency *= 10;
3032 else if (level > 0)
3033 latency *= 5;
3034
3035 drm_dbg_kms(&dev_priv->drm,
3036 "%s WM%d latency %u (%u.%u usec)\n", name, level,
3037 wm[level], latency / 10, latency % 10);
3038 }
3039 }
3040
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)3041 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3042 u16 wm[5], u16 min)
3043 {
3044 int level, max_level = ilk_wm_max_level(dev_priv);
3045
3046 if (wm[0] >= min)
3047 return false;
3048
3049 wm[0] = max(wm[0], min);
3050 for (level = 1; level <= max_level; level++)
3051 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3052
3053 return true;
3054 }
3055
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3056 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3057 {
3058 bool changed;
3059
3060 /*
3061 * The BIOS provided WM memory latency values are often
3062 * inadequate for high resolution displays. Adjust them.
3063 */
3064 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
3065 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
3066 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3067
3068 if (!changed)
3069 return;
3070
3071 drm_dbg_kms(&dev_priv->drm,
3072 "WM latency values increased to avoid potential underruns\n");
3073 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3074 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3075 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3076 }
3077
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3078 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3079 {
3080 /*
3081 * On some SNB machines (Thinkpad X220 Tablet at least)
3082 * LP3 usage can cause vblank interrupts to be lost.
3083 * The DEIIR bit will go high but it looks like the CPU
3084 * never gets interrupted.
3085 *
3086 * It's not clear whether other interrupt source could
3087 * be affected or if this is somehow limited to vblank
3088 * interrupts only. To play it safe we disable LP3
3089 * watermarks entirely.
3090 */
3091 if (dev_priv->wm.pri_latency[3] == 0 &&
3092 dev_priv->wm.spr_latency[3] == 0 &&
3093 dev_priv->wm.cur_latency[3] == 0)
3094 return;
3095
3096 dev_priv->wm.pri_latency[3] = 0;
3097 dev_priv->wm.spr_latency[3] = 0;
3098 dev_priv->wm.cur_latency[3] = 0;
3099
3100 drm_dbg_kms(&dev_priv->drm,
3101 "LP3 watermarks disabled due to potential for lost interrupts\n");
3102 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3103 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3104 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3105 }
3106
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3107 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3108 {
3109 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3110
3111 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3112 sizeof(dev_priv->wm.pri_latency));
3113 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3114 sizeof(dev_priv->wm.pri_latency));
3115
3116 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3117 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3118
3119 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3120 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3121 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3122
3123 if (DISPLAY_VER(dev_priv) == 6) {
3124 snb_wm_latency_quirk(dev_priv);
3125 snb_wm_lp3_irq_quirk(dev_priv);
3126 }
3127 }
3128
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3129 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3130 {
3131 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3132 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3133 }
3134
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3135 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3136 struct intel_pipe_wm *pipe_wm)
3137 {
3138 /* LP0 watermark maximums depend on this pipe alone */
3139 const struct intel_wm_config config = {
3140 .num_pipes_active = 1,
3141 .sprites_enabled = pipe_wm->sprites_enabled,
3142 .sprites_scaled = pipe_wm->sprites_scaled,
3143 };
3144 struct ilk_wm_maximums max;
3145
3146 /* LP0 watermarks always use 1/2 DDB partitioning */
3147 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3148
3149 /* At least LP0 must be valid */
3150 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3151 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3152 return false;
3153 }
3154
3155 return true;
3156 }
3157
3158 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3159 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
3160 struct intel_crtc *crtc)
3161 {
3162 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3163 struct intel_crtc_state *crtc_state =
3164 intel_atomic_get_new_crtc_state(state, crtc);
3165 struct intel_pipe_wm *pipe_wm;
3166 struct intel_plane *plane;
3167 const struct intel_plane_state *plane_state;
3168 const struct intel_plane_state *pristate = NULL;
3169 const struct intel_plane_state *sprstate = NULL;
3170 const struct intel_plane_state *curstate = NULL;
3171 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3172 struct ilk_wm_maximums max;
3173
3174 pipe_wm = &crtc_state->wm.ilk.optimal;
3175
3176 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3177 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3178 pristate = plane_state;
3179 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3180 sprstate = plane_state;
3181 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3182 curstate = plane_state;
3183 }
3184
3185 pipe_wm->pipe_enabled = crtc_state->hw.active;
3186 pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
3187 pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
3188
3189 usable_level = max_level;
3190
3191 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3192 if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3193 usable_level = 1;
3194
3195 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3196 if (pipe_wm->sprites_scaled)
3197 usable_level = 0;
3198
3199 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3200 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3201 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3202
3203 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3204 return -EINVAL;
3205
3206 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3207
3208 for (level = 1; level <= usable_level; level++) {
3209 struct intel_wm_level *wm = &pipe_wm->wm[level];
3210
3211 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3212 pristate, sprstate, curstate, wm);
3213
3214 /*
3215 * Disable any watermark level that exceeds the
3216 * register maximums since such watermarks are
3217 * always invalid.
3218 */
3219 if (!ilk_validate_wm_level(level, &max, wm)) {
3220 memset(wm, 0, sizeof(*wm));
3221 break;
3222 }
3223 }
3224
3225 return 0;
3226 }
3227
3228 /*
3229 * Build a set of 'intermediate' watermark values that satisfy both the old
3230 * state and the new state. These can be programmed to the hardware
3231 * immediately.
3232 */
ilk_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3233 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
3234 struct intel_crtc *crtc)
3235 {
3236 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3237 struct intel_crtc_state *new_crtc_state =
3238 intel_atomic_get_new_crtc_state(state, crtc);
3239 const struct intel_crtc_state *old_crtc_state =
3240 intel_atomic_get_old_crtc_state(state, crtc);
3241 struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
3242 const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
3243 int level, max_level = ilk_wm_max_level(dev_priv);
3244
3245 /*
3246 * Start with the final, target watermarks, then combine with the
3247 * currently active watermarks to get values that are safe both before
3248 * and after the vblank.
3249 */
3250 *a = new_crtc_state->wm.ilk.optimal;
3251 if (!new_crtc_state->hw.active ||
3252 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
3253 state->skip_intermediate_wm)
3254 return 0;
3255
3256 a->pipe_enabled |= b->pipe_enabled;
3257 a->sprites_enabled |= b->sprites_enabled;
3258 a->sprites_scaled |= b->sprites_scaled;
3259
3260 for (level = 0; level <= max_level; level++) {
3261 struct intel_wm_level *a_wm = &a->wm[level];
3262 const struct intel_wm_level *b_wm = &b->wm[level];
3263
3264 a_wm->enable &= b_wm->enable;
3265 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3266 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3267 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3268 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3269 }
3270
3271 /*
3272 * We need to make sure that these merged watermark values are
3273 * actually a valid configuration themselves. If they're not,
3274 * there's no safe way to transition from the old state to
3275 * the new state, so we need to fail the atomic transaction.
3276 */
3277 if (!ilk_validate_pipe_wm(dev_priv, a))
3278 return -EINVAL;
3279
3280 /*
3281 * If our intermediate WM are identical to the final WM, then we can
3282 * omit the post-vblank programming; only update if it's different.
3283 */
3284 if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
3285 new_crtc_state->wm.need_postvbl_update = true;
3286
3287 return 0;
3288 }
3289
3290 /*
3291 * Merge the watermarks from all active pipes for a specific level.
3292 */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3293 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3294 int level,
3295 struct intel_wm_level *ret_wm)
3296 {
3297 const struct intel_crtc *crtc;
3298
3299 ret_wm->enable = true;
3300
3301 for_each_intel_crtc(&dev_priv->drm, crtc) {
3302 const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3303 const struct intel_wm_level *wm = &active->wm[level];
3304
3305 if (!active->pipe_enabled)
3306 continue;
3307
3308 /*
3309 * The watermark values may have been used in the past,
3310 * so we must maintain them in the registers for some
3311 * time even if the level is now disabled.
3312 */
3313 if (!wm->enable)
3314 ret_wm->enable = false;
3315
3316 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3317 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3318 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3319 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3320 }
3321 }
3322
3323 /*
3324 * Merge all low power watermarks for all active pipes.
3325 */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3326 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3327 const struct intel_wm_config *config,
3328 const struct ilk_wm_maximums *max,
3329 struct intel_pipe_wm *merged)
3330 {
3331 int level, max_level = ilk_wm_max_level(dev_priv);
3332 int last_enabled_level = max_level;
3333
3334 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3335 if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3336 config->num_pipes_active > 1)
3337 last_enabled_level = 0;
3338
3339 /* ILK: FBC WM must be disabled always */
3340 merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3341
3342 /* merge each WM1+ level */
3343 for (level = 1; level <= max_level; level++) {
3344 struct intel_wm_level *wm = &merged->wm[level];
3345
3346 ilk_merge_wm_level(dev_priv, level, wm);
3347
3348 if (level > last_enabled_level)
3349 wm->enable = false;
3350 else if (!ilk_validate_wm_level(level, max, wm))
3351 /* make sure all following levels get disabled */
3352 last_enabled_level = level - 1;
3353
3354 /*
3355 * The spec says it is preferred to disable
3356 * FBC WMs instead of disabling a WM level.
3357 */
3358 if (wm->fbc_val > max->fbc) {
3359 if (wm->enable)
3360 merged->fbc_wm_enabled = false;
3361 wm->fbc_val = 0;
3362 }
3363 }
3364
3365 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3366 if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3367 dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) {
3368 for (level = 2; level <= max_level; level++) {
3369 struct intel_wm_level *wm = &merged->wm[level];
3370
3371 wm->enable = false;
3372 }
3373 }
3374 }
3375
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3376 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3377 {
3378 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3379 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3380 }
3381
3382 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3383 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3384 int level)
3385 {
3386 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3387 return 2 * level;
3388 else
3389 return dev_priv->wm.pri_latency[level];
3390 }
3391
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3392 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3393 const struct intel_pipe_wm *merged,
3394 enum intel_ddb_partitioning partitioning,
3395 struct ilk_wm_values *results)
3396 {
3397 struct intel_crtc *crtc;
3398 int level, wm_lp;
3399
3400 results->enable_fbc_wm = merged->fbc_wm_enabled;
3401 results->partitioning = partitioning;
3402
3403 /* LP1+ register values */
3404 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3405 const struct intel_wm_level *r;
3406
3407 level = ilk_wm_lp_to_level(wm_lp, merged);
3408
3409 r = &merged->wm[level];
3410
3411 /*
3412 * Maintain the watermark values even if the level is
3413 * disabled. Doing otherwise could cause underruns.
3414 */
3415 results->wm_lp[wm_lp - 1] =
3416 WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3417 WM_LP_PRIMARY(r->pri_val) |
3418 WM_LP_CURSOR(r->cur_val);
3419
3420 if (r->enable)
3421 results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3422
3423 if (DISPLAY_VER(dev_priv) >= 8)
3424 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3425 else
3426 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3427
3428 results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3429
3430 /*
3431 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3432 * level is disabled. Doing otherwise could cause underruns.
3433 */
3434 if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3435 drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3436 results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3437 }
3438 }
3439
3440 /* LP0 register values */
3441 for_each_intel_crtc(&dev_priv->drm, crtc) {
3442 enum pipe pipe = crtc->pipe;
3443 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3444 const struct intel_wm_level *r = &pipe_wm->wm[0];
3445
3446 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3447 continue;
3448
3449 results->wm_pipe[pipe] =
3450 WM0_PIPE_PRIMARY(r->pri_val) |
3451 WM0_PIPE_SPRITE(r->spr_val) |
3452 WM0_PIPE_CURSOR(r->cur_val);
3453 }
3454 }
3455
3456 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3457 * case both are at the same level. Prefer r1 in case they're the same. */
3458 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3459 ilk_find_best_result(struct drm_i915_private *dev_priv,
3460 struct intel_pipe_wm *r1,
3461 struct intel_pipe_wm *r2)
3462 {
3463 int level, max_level = ilk_wm_max_level(dev_priv);
3464 int level1 = 0, level2 = 0;
3465
3466 for (level = 1; level <= max_level; level++) {
3467 if (r1->wm[level].enable)
3468 level1 = level;
3469 if (r2->wm[level].enable)
3470 level2 = level;
3471 }
3472
3473 if (level1 == level2) {
3474 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3475 return r2;
3476 else
3477 return r1;
3478 } else if (level1 > level2) {
3479 return r1;
3480 } else {
3481 return r2;
3482 }
3483 }
3484
3485 /* dirty bits used to track which watermarks need changes */
3486 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3487 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3488 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3489 #define WM_DIRTY_FBC (1 << 24)
3490 #define WM_DIRTY_DDB (1 << 25)
3491
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3492 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3493 const struct ilk_wm_values *old,
3494 const struct ilk_wm_values *new)
3495 {
3496 unsigned int dirty = 0;
3497 enum pipe pipe;
3498 int wm_lp;
3499
3500 for_each_pipe(dev_priv, pipe) {
3501 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3502 dirty |= WM_DIRTY_PIPE(pipe);
3503 /* Must disable LP1+ watermarks too */
3504 dirty |= WM_DIRTY_LP_ALL;
3505 }
3506 }
3507
3508 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3509 dirty |= WM_DIRTY_FBC;
3510 /* Must disable LP1+ watermarks too */
3511 dirty |= WM_DIRTY_LP_ALL;
3512 }
3513
3514 if (old->partitioning != new->partitioning) {
3515 dirty |= WM_DIRTY_DDB;
3516 /* Must disable LP1+ watermarks too */
3517 dirty |= WM_DIRTY_LP_ALL;
3518 }
3519
3520 /* LP1+ watermarks already deemed dirty, no need to continue */
3521 if (dirty & WM_DIRTY_LP_ALL)
3522 return dirty;
3523
3524 /* Find the lowest numbered LP1+ watermark in need of an update... */
3525 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3526 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3527 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3528 break;
3529 }
3530
3531 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3532 for (; wm_lp <= 3; wm_lp++)
3533 dirty |= WM_DIRTY_LP(wm_lp);
3534
3535 return dirty;
3536 }
3537
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3538 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3539 unsigned int dirty)
3540 {
3541 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3542 bool changed = false;
3543
3544 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3545 previous->wm_lp[2] &= ~WM_LP_ENABLE;
3546 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3547 changed = true;
3548 }
3549 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3550 previous->wm_lp[1] &= ~WM_LP_ENABLE;
3551 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3552 changed = true;
3553 }
3554 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3555 previous->wm_lp[0] &= ~WM_LP_ENABLE;
3556 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3557 changed = true;
3558 }
3559
3560 /*
3561 * Don't touch WM_LP_SPRITE_ENABLE here.
3562 * Doing so could cause underruns.
3563 */
3564
3565 return changed;
3566 }
3567
3568 /*
3569 * The spec says we shouldn't write when we don't need, because every write
3570 * causes WMs to be re-evaluated, expending some power.
3571 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3572 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3573 struct ilk_wm_values *results)
3574 {
3575 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3576 unsigned int dirty;
3577 u32 val;
3578
3579 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3580 if (!dirty)
3581 return;
3582
3583 _ilk_disable_lp_wm(dev_priv, dirty);
3584
3585 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3586 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3587 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3588 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3589 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3590 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3591
3592 if (dirty & WM_DIRTY_DDB) {
3593 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3594 val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3595 if (results->partitioning == INTEL_DDB_PART_1_2)
3596 val &= ~WM_MISC_DATA_PARTITION_5_6;
3597 else
3598 val |= WM_MISC_DATA_PARTITION_5_6;
3599 intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3600 } else {
3601 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3602 if (results->partitioning == INTEL_DDB_PART_1_2)
3603 val &= ~DISP_DATA_PARTITION_5_6;
3604 else
3605 val |= DISP_DATA_PARTITION_5_6;
3606 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3607 }
3608 }
3609
3610 if (dirty & WM_DIRTY_FBC) {
3611 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3612 if (results->enable_fbc_wm)
3613 val &= ~DISP_FBC_WM_DIS;
3614 else
3615 val |= DISP_FBC_WM_DIS;
3616 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3617 }
3618
3619 if (dirty & WM_DIRTY_LP(1) &&
3620 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3621 intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3622
3623 if (DISPLAY_VER(dev_priv) >= 7) {
3624 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3625 intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3626 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3627 intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3628 }
3629
3630 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3631 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3632 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3633 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3634 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3635 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3636
3637 dev_priv->wm.hw = *results;
3638 }
3639
ilk_disable_lp_wm(struct drm_i915_private * dev_priv)3640 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3641 {
3642 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3643 }
3644
intel_enabled_dbuf_slices_mask(struct drm_i915_private * dev_priv)3645 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3646 {
3647 u8 enabled_slices = 0;
3648 enum dbuf_slice slice;
3649
3650 for_each_dbuf_slice(dev_priv, slice) {
3651 if (intel_uncore_read(&dev_priv->uncore,
3652 DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
3653 enabled_slices |= BIT(slice);
3654 }
3655
3656 return enabled_slices;
3657 }
3658
3659 /*
3660 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3661 * so assume we'll always need it in order to avoid underruns.
3662 */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3663 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3664 {
3665 return DISPLAY_VER(dev_priv) == 9;
3666 }
3667
3668 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3669 intel_has_sagv(struct drm_i915_private *dev_priv)
3670 {
3671 return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
3672 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3673 }
3674
3675 static u32
intel_sagv_block_time(struct drm_i915_private * dev_priv)3676 intel_sagv_block_time(struct drm_i915_private *dev_priv)
3677 {
3678 if (DISPLAY_VER(dev_priv) >= 12) {
3679 u32 val = 0;
3680 int ret;
3681
3682 ret = snb_pcode_read(dev_priv,
3683 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3684 &val, NULL);
3685 if (ret) {
3686 drm_dbg_kms(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3687 return 0;
3688 }
3689
3690 return val;
3691 } else if (DISPLAY_VER(dev_priv) == 11) {
3692 return 10;
3693 } else if (DISPLAY_VER(dev_priv) == 9 && !IS_LP(dev_priv)) {
3694 return 30;
3695 } else {
3696 return 0;
3697 }
3698 }
3699
intel_sagv_init(struct drm_i915_private * i915)3700 static void intel_sagv_init(struct drm_i915_private *i915)
3701 {
3702 if (!intel_has_sagv(i915))
3703 i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
3704
3705 /*
3706 * Probe to see if we have working SAGV control.
3707 * For icl+ this was already determined by intel_bw_init_hw().
3708 */
3709 if (DISPLAY_VER(i915) < 11)
3710 skl_sagv_disable(i915);
3711
3712 drm_WARN_ON(&i915->drm, i915->sagv_status == I915_SAGV_UNKNOWN);
3713
3714 i915->sagv_block_time_us = intel_sagv_block_time(i915);
3715
3716 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
3717 str_yes_no(intel_has_sagv(i915)), i915->sagv_block_time_us);
3718
3719 /* avoid overflow when adding with wm0 latency/etc. */
3720 if (drm_WARN(&i915->drm, i915->sagv_block_time_us > U16_MAX,
3721 "Excessive SAGV block time %u, ignoring\n",
3722 i915->sagv_block_time_us))
3723 i915->sagv_block_time_us = 0;
3724
3725 if (!intel_has_sagv(i915))
3726 i915->sagv_block_time_us = 0;
3727 }
3728
3729 /*
3730 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3731 * depending on power and performance requirements. The display engine access
3732 * to system memory is blocked during the adjustment time. Because of the
3733 * blocking time, having this enabled can cause full system hangs and/or pipe
3734 * underruns if we don't meet all of the following requirements:
3735 *
3736 * - <= 1 pipe enabled
3737 * - All planes can enable watermarks for latencies >= SAGV engine block time
3738 * - We're not using an interlaced display configuration
3739 */
skl_sagv_enable(struct drm_i915_private * dev_priv)3740 static void skl_sagv_enable(struct drm_i915_private *dev_priv)
3741 {
3742 int ret;
3743
3744 if (!intel_has_sagv(dev_priv))
3745 return;
3746
3747 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3748 return;
3749
3750 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3751 ret = snb_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3752 GEN9_SAGV_ENABLE);
3753
3754 /* We don't need to wait for SAGV when enabling */
3755
3756 /*
3757 * Some skl systems, pre-release machines in particular,
3758 * don't actually have SAGV.
3759 */
3760 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3761 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3762 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3763 return;
3764 } else if (ret < 0) {
3765 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3766 return;
3767 }
3768
3769 dev_priv->sagv_status = I915_SAGV_ENABLED;
3770 }
3771
skl_sagv_disable(struct drm_i915_private * dev_priv)3772 static void skl_sagv_disable(struct drm_i915_private *dev_priv)
3773 {
3774 int ret;
3775
3776 if (!intel_has_sagv(dev_priv))
3777 return;
3778
3779 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3780 return;
3781
3782 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3783 /* bspec says to keep retrying for at least 1 ms */
3784 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3785 GEN9_SAGV_DISABLE,
3786 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3787 1);
3788 /*
3789 * Some skl systems, pre-release machines in particular,
3790 * don't actually have SAGV.
3791 */
3792 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3793 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3794 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3795 return;
3796 } else if (ret < 0) {
3797 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3798 return;
3799 }
3800
3801 dev_priv->sagv_status = I915_SAGV_DISABLED;
3802 }
3803
skl_sagv_pre_plane_update(struct intel_atomic_state * state)3804 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
3805 {
3806 struct drm_i915_private *i915 = to_i915(state->base.dev);
3807 const struct intel_bw_state *new_bw_state =
3808 intel_atomic_get_new_bw_state(state);
3809
3810 if (!new_bw_state)
3811 return;
3812
3813 if (!intel_can_enable_sagv(i915, new_bw_state))
3814 skl_sagv_disable(i915);
3815 }
3816
skl_sagv_post_plane_update(struct intel_atomic_state * state)3817 static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
3818 {
3819 struct drm_i915_private *i915 = to_i915(state->base.dev);
3820 const struct intel_bw_state *new_bw_state =
3821 intel_atomic_get_new_bw_state(state);
3822
3823 if (!new_bw_state)
3824 return;
3825
3826 if (intel_can_enable_sagv(i915, new_bw_state))
3827 skl_sagv_enable(i915);
3828 }
3829
icl_sagv_pre_plane_update(struct intel_atomic_state * state)3830 static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
3831 {
3832 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3833 const struct intel_bw_state *old_bw_state =
3834 intel_atomic_get_old_bw_state(state);
3835 const struct intel_bw_state *new_bw_state =
3836 intel_atomic_get_new_bw_state(state);
3837 u16 old_mask, new_mask;
3838
3839 if (!new_bw_state)
3840 return;
3841
3842 old_mask = old_bw_state->qgv_points_mask;
3843 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3844
3845 if (old_mask == new_mask)
3846 return;
3847
3848 WARN_ON(!new_bw_state->base.changed);
3849
3850 drm_dbg_kms(&dev_priv->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
3851 old_mask, new_mask);
3852
3853 /*
3854 * Restrict required qgv points before updating the configuration.
3855 * According to BSpec we can't mask and unmask qgv points at the same
3856 * time. Also masking should be done before updating the configuration
3857 * and unmasking afterwards.
3858 */
3859 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3860 }
3861
icl_sagv_post_plane_update(struct intel_atomic_state * state)3862 static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
3863 {
3864 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3865 const struct intel_bw_state *old_bw_state =
3866 intel_atomic_get_old_bw_state(state);
3867 const struct intel_bw_state *new_bw_state =
3868 intel_atomic_get_new_bw_state(state);
3869 u16 old_mask, new_mask;
3870
3871 if (!new_bw_state)
3872 return;
3873
3874 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3875 new_mask = new_bw_state->qgv_points_mask;
3876
3877 if (old_mask == new_mask)
3878 return;
3879
3880 WARN_ON(!new_bw_state->base.changed);
3881
3882 drm_dbg_kms(&dev_priv->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
3883 old_mask, new_mask);
3884
3885 /*
3886 * Allow required qgv points after updating the configuration.
3887 * According to BSpec we can't mask and unmask qgv points at the same
3888 * time. Also masking should be done before updating the configuration
3889 * and unmasking afterwards.
3890 */
3891 icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3892 }
3893
intel_sagv_pre_plane_update(struct intel_atomic_state * state)3894 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3895 {
3896 struct drm_i915_private *i915 = to_i915(state->base.dev);
3897
3898 /*
3899 * Just return if we can't control SAGV or don't have it.
3900 * This is different from situation when we have SAGV but just can't
3901 * afford it due to DBuf limitation - in case if SAGV is completely
3902 * disabled in a BIOS, we are not even allowed to send a PCode request,
3903 * as it will throw an error. So have to check it here.
3904 */
3905 if (!intel_has_sagv(i915))
3906 return;
3907
3908 if (DISPLAY_VER(i915) >= 11)
3909 icl_sagv_pre_plane_update(state);
3910 else
3911 skl_sagv_pre_plane_update(state);
3912 }
3913
intel_sagv_post_plane_update(struct intel_atomic_state * state)3914 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3915 {
3916 struct drm_i915_private *i915 = to_i915(state->base.dev);
3917
3918 /*
3919 * Just return if we can't control SAGV or don't have it.
3920 * This is different from situation when we have SAGV but just can't
3921 * afford it due to DBuf limitation - in case if SAGV is completely
3922 * disabled in a BIOS, we are not even allowed to send a PCode request,
3923 * as it will throw an error. So have to check it here.
3924 */
3925 if (!intel_has_sagv(i915))
3926 return;
3927
3928 if (DISPLAY_VER(i915) >= 11)
3929 icl_sagv_post_plane_update(state);
3930 else
3931 skl_sagv_post_plane_update(state);
3932 }
3933
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3934 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3935 {
3936 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3937 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3938 enum plane_id plane_id;
3939 int max_level = INT_MAX;
3940
3941 if (!intel_has_sagv(dev_priv))
3942 return false;
3943
3944 if (!crtc_state->hw.active)
3945 return true;
3946
3947 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3948 return false;
3949
3950 for_each_plane_id_on_crtc(crtc, plane_id) {
3951 const struct skl_plane_wm *wm =
3952 &crtc_state->wm.skl.optimal.planes[plane_id];
3953 int level;
3954
3955 /* Skip this plane if it's not enabled */
3956 if (!wm->wm[0].enable)
3957 continue;
3958
3959 /* Find the highest enabled wm level for this plane */
3960 for (level = ilk_wm_max_level(dev_priv);
3961 !wm->wm[level].enable; --level)
3962 { }
3963
3964 /* Highest common enabled wm level for all planes */
3965 max_level = min(level, max_level);
3966 }
3967
3968 /* No enabled planes? */
3969 if (max_level == INT_MAX)
3970 return true;
3971
3972 for_each_plane_id_on_crtc(crtc, plane_id) {
3973 const struct skl_plane_wm *wm =
3974 &crtc_state->wm.skl.optimal.planes[plane_id];
3975
3976 /*
3977 * All enabled planes must have enabled a common wm level that
3978 * can tolerate memory latencies higher than sagv_block_time_us
3979 */
3980 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
3981 return false;
3982 }
3983
3984 return true;
3985 }
3986
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3987 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3988 {
3989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3990 enum plane_id plane_id;
3991
3992 if (!crtc_state->hw.active)
3993 return true;
3994
3995 for_each_plane_id_on_crtc(crtc, plane_id) {
3996 const struct skl_plane_wm *wm =
3997 &crtc_state->wm.skl.optimal.planes[plane_id];
3998
3999 if (wm->wm[0].enable && !wm->sagv.wm0.enable)
4000 return false;
4001 }
4002
4003 return true;
4004 }
4005
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)4006 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
4007 {
4008 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4010
4011 if (DISPLAY_VER(dev_priv) >= 12)
4012 return tgl_crtc_can_enable_sagv(crtc_state);
4013 else
4014 return skl_crtc_can_enable_sagv(crtc_state);
4015 }
4016
intel_can_enable_sagv(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)4017 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
4018 const struct intel_bw_state *bw_state)
4019 {
4020 if (DISPLAY_VER(dev_priv) < 11 &&
4021 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
4022 return false;
4023
4024 return bw_state->pipe_sagv_reject == 0;
4025 }
4026
intel_compute_sagv_mask(struct intel_atomic_state * state)4027 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
4028 {
4029 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4030 int ret;
4031 struct intel_crtc *crtc;
4032 struct intel_crtc_state *new_crtc_state;
4033 struct intel_bw_state *new_bw_state = NULL;
4034 const struct intel_bw_state *old_bw_state = NULL;
4035 int i;
4036
4037 for_each_new_intel_crtc_in_state(state, crtc,
4038 new_crtc_state, i) {
4039 new_bw_state = intel_atomic_get_bw_state(state);
4040 if (IS_ERR(new_bw_state))
4041 return PTR_ERR(new_bw_state);
4042
4043 old_bw_state = intel_atomic_get_old_bw_state(state);
4044
4045 if (intel_crtc_can_enable_sagv(new_crtc_state))
4046 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
4047 else
4048 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
4049 }
4050
4051 if (!new_bw_state)
4052 return 0;
4053
4054 new_bw_state->active_pipes =
4055 intel_calc_active_pipes(state, old_bw_state->active_pipes);
4056
4057 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4058 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4059 if (ret)
4060 return ret;
4061 }
4062
4063 if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4064 intel_can_enable_sagv(dev_priv, old_bw_state)) {
4065 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4066 if (ret)
4067 return ret;
4068 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4069 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4070 if (ret)
4071 return ret;
4072 }
4073
4074 for_each_new_intel_crtc_in_state(state, crtc,
4075 new_crtc_state, i) {
4076 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4077
4078 /*
4079 * We store use_sagv_wm in the crtc state rather than relying on
4080 * that bw state since we have no convenient way to get at the
4081 * latter from the plane commit hooks (especially in the legacy
4082 * cursor case)
4083 */
4084 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
4085 DISPLAY_VER(dev_priv) >= 12 &&
4086 intel_can_enable_sagv(dev_priv, new_bw_state);
4087 }
4088
4089 return 0;
4090 }
4091
skl_ddb_entry_init(struct skl_ddb_entry * entry,u16 start,u16 end)4092 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
4093 u16 start, u16 end)
4094 {
4095 entry->start = start;
4096 entry->end = end;
4097
4098 return end;
4099 }
4100
intel_dbuf_slice_size(struct drm_i915_private * dev_priv)4101 static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
4102 {
4103 return INTEL_INFO(dev_priv)->dbuf.size /
4104 hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
4105 }
4106
4107 static void
skl_ddb_entry_for_slices(struct drm_i915_private * dev_priv,u8 slice_mask,struct skl_ddb_entry * ddb)4108 skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
4109 struct skl_ddb_entry *ddb)
4110 {
4111 int slice_size = intel_dbuf_slice_size(dev_priv);
4112
4113 if (!slice_mask) {
4114 ddb->start = 0;
4115 ddb->end = 0;
4116 return;
4117 }
4118
4119 ddb->start = (ffs(slice_mask) - 1) * slice_size;
4120 ddb->end = fls(slice_mask) * slice_size;
4121
4122 WARN_ON(ddb->start >= ddb->end);
4123 WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
4124 }
4125
mbus_ddb_offset(struct drm_i915_private * i915,u8 slice_mask)4126 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
4127 {
4128 struct skl_ddb_entry ddb;
4129
4130 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
4131 slice_mask = BIT(DBUF_S1);
4132 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
4133 slice_mask = BIT(DBUF_S3);
4134
4135 skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
4136
4137 return ddb.start;
4138 }
4139
skl_ddb_dbuf_slice_mask(struct drm_i915_private * dev_priv,const struct skl_ddb_entry * entry)4140 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4141 const struct skl_ddb_entry *entry)
4142 {
4143 int slice_size = intel_dbuf_slice_size(dev_priv);
4144 enum dbuf_slice start_slice, end_slice;
4145 u8 slice_mask = 0;
4146
4147 if (!skl_ddb_entry_size(entry))
4148 return 0;
4149
4150 start_slice = entry->start / slice_size;
4151 end_slice = (entry->end - 1) / slice_size;
4152
4153 /*
4154 * Per plane DDB entry can in a really worst case be on multiple slices
4155 * but single entry is anyway contigious.
4156 */
4157 while (start_slice <= end_slice) {
4158 slice_mask |= BIT(start_slice);
4159 start_slice++;
4160 }
4161
4162 return slice_mask;
4163 }
4164
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)4165 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
4166 {
4167 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4168 int hdisplay, vdisplay;
4169
4170 if (!crtc_state->hw.active)
4171 return 0;
4172
4173 /*
4174 * Watermark/ddb requirement highly depends upon width of the
4175 * framebuffer, So instead of allocating DDB equally among pipes
4176 * distribute DDB based on resolution/width of the display.
4177 */
4178 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
4179
4180 return hdisplay;
4181 }
4182
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)4183 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
4184 enum pipe for_pipe,
4185 unsigned int *weight_start,
4186 unsigned int *weight_end,
4187 unsigned int *weight_total)
4188 {
4189 struct drm_i915_private *dev_priv =
4190 to_i915(dbuf_state->base.state->base.dev);
4191 enum pipe pipe;
4192
4193 *weight_start = 0;
4194 *weight_end = 0;
4195 *weight_total = 0;
4196
4197 for_each_pipe(dev_priv, pipe) {
4198 int weight = dbuf_state->weight[pipe];
4199
4200 /*
4201 * Do not account pipes using other slice sets
4202 * luckily as of current BSpec slice sets do not partially
4203 * intersect(pipes share either same one slice or same slice set
4204 * i.e no partial intersection), so it is enough to check for
4205 * equality for now.
4206 */
4207 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4208 continue;
4209
4210 *weight_total += weight;
4211 if (pipe < for_pipe) {
4212 *weight_start += weight;
4213 *weight_end += weight;
4214 } else if (pipe == for_pipe) {
4215 *weight_end += weight;
4216 }
4217 }
4218 }
4219
4220 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)4221 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4222 {
4223 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4224 unsigned int weight_total, weight_start, weight_end;
4225 const struct intel_dbuf_state *old_dbuf_state =
4226 intel_atomic_get_old_dbuf_state(state);
4227 struct intel_dbuf_state *new_dbuf_state =
4228 intel_atomic_get_new_dbuf_state(state);
4229 struct intel_crtc_state *crtc_state;
4230 struct skl_ddb_entry ddb_slices;
4231 enum pipe pipe = crtc->pipe;
4232 unsigned int mbus_offset = 0;
4233 u32 ddb_range_size;
4234 u32 dbuf_slice_mask;
4235 u32 start, end;
4236 int ret;
4237
4238 if (new_dbuf_state->weight[pipe] == 0) {
4239 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
4240 goto out;
4241 }
4242
4243 dbuf_slice_mask = new_dbuf_state->slices[pipe];
4244
4245 skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
4246 mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
4247 ddb_range_size = skl_ddb_entry_size(&ddb_slices);
4248
4249 intel_crtc_dbuf_weights(new_dbuf_state, pipe,
4250 &weight_start, &weight_end, &weight_total);
4251
4252 start = ddb_range_size * weight_start / weight_total;
4253 end = ddb_range_size * weight_end / weight_total;
4254
4255 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
4256 ddb_slices.start - mbus_offset + start,
4257 ddb_slices.start - mbus_offset + end);
4258
4259 out:
4260 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
4261 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
4262 &new_dbuf_state->ddb[pipe]))
4263 return 0;
4264
4265 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
4266 if (ret)
4267 return ret;
4268
4269 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
4270 if (IS_ERR(crtc_state))
4271 return PTR_ERR(crtc_state);
4272
4273 /*
4274 * Used for checking overlaps, so we need absolute
4275 * offsets instead of MBUS relative offsets.
4276 */
4277 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
4278 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
4279
4280 drm_dbg_kms(&dev_priv->drm,
4281 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4282 crtc->base.base.id, crtc->base.name,
4283 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
4284 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
4285 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
4286 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4287
4288 return 0;
4289 }
4290
4291 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4292 int width, const struct drm_format_info *format,
4293 u64 modifier, unsigned int rotation,
4294 u32 plane_pixel_rate, struct skl_wm_params *wp,
4295 int color_plane);
4296
4297 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4298 struct intel_plane *plane,
4299 int level,
4300 unsigned int latency,
4301 const struct skl_wm_params *wp,
4302 const struct skl_wm_level *result_prev,
4303 struct skl_wm_level *result /* out */);
4304
4305 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)4306 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4307 int num_active)
4308 {
4309 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
4310 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4311 int level, max_level = ilk_wm_max_level(dev_priv);
4312 struct skl_wm_level wm = {};
4313 int ret, min_ddb_alloc = 0;
4314 struct skl_wm_params wp;
4315
4316 ret = skl_compute_wm_params(crtc_state, 256,
4317 drm_format_info(DRM_FORMAT_ARGB8888),
4318 DRM_FORMAT_MOD_LINEAR,
4319 DRM_MODE_ROTATE_0,
4320 crtc_state->pixel_rate, &wp, 0);
4321 drm_WARN_ON(&dev_priv->drm, ret);
4322
4323 for (level = 0; level <= max_level; level++) {
4324 unsigned int latency = dev_priv->wm.skl_latency[level];
4325
4326 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
4327 if (wm.min_ddb_alloc == U16_MAX)
4328 break;
4329
4330 min_ddb_alloc = wm.min_ddb_alloc;
4331 }
4332
4333 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4334 }
4335
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)4336 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
4337 {
4338 skl_ddb_entry_init(entry,
4339 REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
4340 REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
4341 if (entry->end)
4342 entry->end++;
4343 }
4344
4345 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)4346 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4347 const enum pipe pipe,
4348 const enum plane_id plane_id,
4349 struct skl_ddb_entry *ddb,
4350 struct skl_ddb_entry *ddb_y)
4351 {
4352 u32 val;
4353
4354 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4355 if (plane_id == PLANE_CURSOR) {
4356 val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4357 skl_ddb_entry_init_from_hw(ddb, val);
4358 return;
4359 }
4360
4361 val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4362 skl_ddb_entry_init_from_hw(ddb, val);
4363
4364 if (DISPLAY_VER(dev_priv) >= 11)
4365 return;
4366
4367 val = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4368 skl_ddb_entry_init_from_hw(ddb_y, val);
4369 }
4370
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)4371 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4372 struct skl_ddb_entry *ddb,
4373 struct skl_ddb_entry *ddb_y)
4374 {
4375 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4376 enum intel_display_power_domain power_domain;
4377 enum pipe pipe = crtc->pipe;
4378 intel_wakeref_t wakeref;
4379 enum plane_id plane_id;
4380
4381 power_domain = POWER_DOMAIN_PIPE(pipe);
4382 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4383 if (!wakeref)
4384 return;
4385
4386 for_each_plane_id_on_crtc(crtc, plane_id)
4387 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4388 plane_id,
4389 &ddb[plane_id],
4390 &ddb_y[plane_id]);
4391
4392 intel_display_power_put(dev_priv, power_domain, wakeref);
4393 }
4394
4395 struct dbuf_slice_conf_entry {
4396 u8 active_pipes;
4397 u8 dbuf_mask[I915_MAX_PIPES];
4398 bool join_mbus;
4399 };
4400
4401 /*
4402 * Table taken from Bspec 12716
4403 * Pipes do have some preferred DBuf slice affinity,
4404 * plus there are some hardcoded requirements on how
4405 * those should be distributed for multipipe scenarios.
4406 * For more DBuf slices algorithm can get even more messy
4407 * and less readable, so decided to use a table almost
4408 * as is from BSpec itself - that way it is at least easier
4409 * to compare, change and check.
4410 */
4411 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4412 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4413 {
4414 {
4415 .active_pipes = BIT(PIPE_A),
4416 .dbuf_mask = {
4417 [PIPE_A] = BIT(DBUF_S1),
4418 },
4419 },
4420 {
4421 .active_pipes = BIT(PIPE_B),
4422 .dbuf_mask = {
4423 [PIPE_B] = BIT(DBUF_S1),
4424 },
4425 },
4426 {
4427 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4428 .dbuf_mask = {
4429 [PIPE_A] = BIT(DBUF_S1),
4430 [PIPE_B] = BIT(DBUF_S2),
4431 },
4432 },
4433 {
4434 .active_pipes = BIT(PIPE_C),
4435 .dbuf_mask = {
4436 [PIPE_C] = BIT(DBUF_S2),
4437 },
4438 },
4439 {
4440 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4441 .dbuf_mask = {
4442 [PIPE_A] = BIT(DBUF_S1),
4443 [PIPE_C] = BIT(DBUF_S2),
4444 },
4445 },
4446 {
4447 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4448 .dbuf_mask = {
4449 [PIPE_B] = BIT(DBUF_S1),
4450 [PIPE_C] = BIT(DBUF_S2),
4451 },
4452 },
4453 {
4454 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4455 .dbuf_mask = {
4456 [PIPE_A] = BIT(DBUF_S1),
4457 [PIPE_B] = BIT(DBUF_S1),
4458 [PIPE_C] = BIT(DBUF_S2),
4459 },
4460 },
4461 {}
4462 };
4463
4464 /*
4465 * Table taken from Bspec 49255
4466 * Pipes do have some preferred DBuf slice affinity,
4467 * plus there are some hardcoded requirements on how
4468 * those should be distributed for multipipe scenarios.
4469 * For more DBuf slices algorithm can get even more messy
4470 * and less readable, so decided to use a table almost
4471 * as is from BSpec itself - that way it is at least easier
4472 * to compare, change and check.
4473 */
4474 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4475 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4476 {
4477 {
4478 .active_pipes = BIT(PIPE_A),
4479 .dbuf_mask = {
4480 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4481 },
4482 },
4483 {
4484 .active_pipes = BIT(PIPE_B),
4485 .dbuf_mask = {
4486 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4487 },
4488 },
4489 {
4490 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4491 .dbuf_mask = {
4492 [PIPE_A] = BIT(DBUF_S2),
4493 [PIPE_B] = BIT(DBUF_S1),
4494 },
4495 },
4496 {
4497 .active_pipes = BIT(PIPE_C),
4498 .dbuf_mask = {
4499 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4500 },
4501 },
4502 {
4503 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4504 .dbuf_mask = {
4505 [PIPE_A] = BIT(DBUF_S1),
4506 [PIPE_C] = BIT(DBUF_S2),
4507 },
4508 },
4509 {
4510 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4511 .dbuf_mask = {
4512 [PIPE_B] = BIT(DBUF_S1),
4513 [PIPE_C] = BIT(DBUF_S2),
4514 },
4515 },
4516 {
4517 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4518 .dbuf_mask = {
4519 [PIPE_A] = BIT(DBUF_S1),
4520 [PIPE_B] = BIT(DBUF_S1),
4521 [PIPE_C] = BIT(DBUF_S2),
4522 },
4523 },
4524 {
4525 .active_pipes = BIT(PIPE_D),
4526 .dbuf_mask = {
4527 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4528 },
4529 },
4530 {
4531 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4532 .dbuf_mask = {
4533 [PIPE_A] = BIT(DBUF_S1),
4534 [PIPE_D] = BIT(DBUF_S2),
4535 },
4536 },
4537 {
4538 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4539 .dbuf_mask = {
4540 [PIPE_B] = BIT(DBUF_S1),
4541 [PIPE_D] = BIT(DBUF_S2),
4542 },
4543 },
4544 {
4545 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4546 .dbuf_mask = {
4547 [PIPE_A] = BIT(DBUF_S1),
4548 [PIPE_B] = BIT(DBUF_S1),
4549 [PIPE_D] = BIT(DBUF_S2),
4550 },
4551 },
4552 {
4553 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4554 .dbuf_mask = {
4555 [PIPE_C] = BIT(DBUF_S1),
4556 [PIPE_D] = BIT(DBUF_S2),
4557 },
4558 },
4559 {
4560 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4561 .dbuf_mask = {
4562 [PIPE_A] = BIT(DBUF_S1),
4563 [PIPE_C] = BIT(DBUF_S2),
4564 [PIPE_D] = BIT(DBUF_S2),
4565 },
4566 },
4567 {
4568 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4569 .dbuf_mask = {
4570 [PIPE_B] = BIT(DBUF_S1),
4571 [PIPE_C] = BIT(DBUF_S2),
4572 [PIPE_D] = BIT(DBUF_S2),
4573 },
4574 },
4575 {
4576 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4577 .dbuf_mask = {
4578 [PIPE_A] = BIT(DBUF_S1),
4579 [PIPE_B] = BIT(DBUF_S1),
4580 [PIPE_C] = BIT(DBUF_S2),
4581 [PIPE_D] = BIT(DBUF_S2),
4582 },
4583 },
4584 {}
4585 };
4586
4587 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
4588 {
4589 .active_pipes = BIT(PIPE_A),
4590 .dbuf_mask = {
4591 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4592 },
4593 },
4594 {
4595 .active_pipes = BIT(PIPE_B),
4596 .dbuf_mask = {
4597 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4598 },
4599 },
4600 {
4601 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4602 .dbuf_mask = {
4603 [PIPE_A] = BIT(DBUF_S1),
4604 [PIPE_B] = BIT(DBUF_S2),
4605 },
4606 },
4607 {
4608 .active_pipes = BIT(PIPE_C),
4609 .dbuf_mask = {
4610 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4611 },
4612 },
4613 {
4614 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4615 .dbuf_mask = {
4616 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4617 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4618 },
4619 },
4620 {
4621 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4622 .dbuf_mask = {
4623 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4624 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4625 },
4626 },
4627 {
4628 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4629 .dbuf_mask = {
4630 [PIPE_A] = BIT(DBUF_S1),
4631 [PIPE_B] = BIT(DBUF_S2),
4632 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4633 },
4634 },
4635 {
4636 .active_pipes = BIT(PIPE_D),
4637 .dbuf_mask = {
4638 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4639 },
4640 },
4641 {
4642 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4643 .dbuf_mask = {
4644 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4645 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4646 },
4647 },
4648 {
4649 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4650 .dbuf_mask = {
4651 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4652 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4653 },
4654 },
4655 {
4656 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4657 .dbuf_mask = {
4658 [PIPE_A] = BIT(DBUF_S1),
4659 [PIPE_B] = BIT(DBUF_S2),
4660 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4661 },
4662 },
4663 {
4664 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4665 .dbuf_mask = {
4666 [PIPE_C] = BIT(DBUF_S3),
4667 [PIPE_D] = BIT(DBUF_S4),
4668 },
4669 },
4670 {
4671 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4672 .dbuf_mask = {
4673 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4674 [PIPE_C] = BIT(DBUF_S3),
4675 [PIPE_D] = BIT(DBUF_S4),
4676 },
4677 },
4678 {
4679 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4680 .dbuf_mask = {
4681 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4682 [PIPE_C] = BIT(DBUF_S3),
4683 [PIPE_D] = BIT(DBUF_S4),
4684 },
4685 },
4686 {
4687 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4688 .dbuf_mask = {
4689 [PIPE_A] = BIT(DBUF_S1),
4690 [PIPE_B] = BIT(DBUF_S2),
4691 [PIPE_C] = BIT(DBUF_S3),
4692 [PIPE_D] = BIT(DBUF_S4),
4693 },
4694 },
4695 {}
4696 };
4697
4698 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
4699 /*
4700 * Keep the join_mbus cases first so check_mbus_joined()
4701 * will prefer them over the !join_mbus cases.
4702 */
4703 {
4704 .active_pipes = BIT(PIPE_A),
4705 .dbuf_mask = {
4706 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4707 },
4708 .join_mbus = true,
4709 },
4710 {
4711 .active_pipes = BIT(PIPE_B),
4712 .dbuf_mask = {
4713 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4714 },
4715 .join_mbus = true,
4716 },
4717 {
4718 .active_pipes = BIT(PIPE_A),
4719 .dbuf_mask = {
4720 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4721 },
4722 .join_mbus = false,
4723 },
4724 {
4725 .active_pipes = BIT(PIPE_B),
4726 .dbuf_mask = {
4727 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4728 },
4729 .join_mbus = false,
4730 },
4731 {
4732 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4733 .dbuf_mask = {
4734 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4735 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4736 },
4737 },
4738 {
4739 .active_pipes = BIT(PIPE_C),
4740 .dbuf_mask = {
4741 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4742 },
4743 },
4744 {
4745 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4746 .dbuf_mask = {
4747 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4748 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4749 },
4750 },
4751 {
4752 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4753 .dbuf_mask = {
4754 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4755 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4756 },
4757 },
4758 {
4759 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4760 .dbuf_mask = {
4761 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4762 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4763 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4764 },
4765 },
4766 {
4767 .active_pipes = BIT(PIPE_D),
4768 .dbuf_mask = {
4769 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4770 },
4771 },
4772 {
4773 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4774 .dbuf_mask = {
4775 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4776 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4777 },
4778 },
4779 {
4780 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4781 .dbuf_mask = {
4782 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4783 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4784 },
4785 },
4786 {
4787 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4788 .dbuf_mask = {
4789 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4790 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4791 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4792 },
4793 },
4794 {
4795 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4796 .dbuf_mask = {
4797 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4798 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4799 },
4800 },
4801 {
4802 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4803 .dbuf_mask = {
4804 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4805 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4806 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4807 },
4808 },
4809 {
4810 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4811 .dbuf_mask = {
4812 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4813 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4814 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4815 },
4816 },
4817 {
4818 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4819 .dbuf_mask = {
4820 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4821 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4822 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4823 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4824 },
4825 },
4826 {}
4827
4828 };
4829
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4830 static bool check_mbus_joined(u8 active_pipes,
4831 const struct dbuf_slice_conf_entry *dbuf_slices)
4832 {
4833 int i;
4834
4835 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
4836 if (dbuf_slices[i].active_pipes == active_pipes)
4837 return dbuf_slices[i].join_mbus;
4838 }
4839 return false;
4840 }
4841
adlp_check_mbus_joined(u8 active_pipes)4842 static bool adlp_check_mbus_joined(u8 active_pipes)
4843 {
4844 return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
4845 }
4846
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus,const struct dbuf_slice_conf_entry * dbuf_slices)4847 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
4848 const struct dbuf_slice_conf_entry *dbuf_slices)
4849 {
4850 int i;
4851
4852 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
4853 if (dbuf_slices[i].active_pipes == active_pipes &&
4854 dbuf_slices[i].join_mbus == join_mbus)
4855 return dbuf_slices[i].dbuf_mask[pipe];
4856 }
4857 return 0;
4858 }
4859
4860 /*
4861 * This function finds an entry with same enabled pipe configuration and
4862 * returns correspondent DBuf slice mask as stated in BSpec for particular
4863 * platform.
4864 */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4865 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4866 {
4867 /*
4868 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4869 * required calculating "pipe ratio" in order to determine
4870 * if one or two slices can be used for single pipe configurations
4871 * as additional constraint to the existing table.
4872 * However based on recent info, it should be not "pipe ratio"
4873 * but rather ratio between pixel_rate and cdclk with additional
4874 * constants, so for now we are using only table until this is
4875 * clarified. Also this is the reason why crtc_state param is
4876 * still here - we will need it once those additional constraints
4877 * pop up.
4878 */
4879 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4880 icl_allowed_dbufs);
4881 }
4882
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4883 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4884 {
4885 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4886 tgl_allowed_dbufs);
4887 }
4888
adlp_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4889 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4890 {
4891 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4892 adlp_allowed_dbufs);
4893 }
4894
dg2_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4895 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4896 {
4897 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4898 dg2_allowed_dbufs);
4899 }
4900
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes,bool join_mbus)4901 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
4902 {
4903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4904 enum pipe pipe = crtc->pipe;
4905
4906 if (IS_DG2(dev_priv))
4907 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4908 else if (IS_ALDERLAKE_P(dev_priv))
4909 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4910 else if (DISPLAY_VER(dev_priv) == 12)
4911 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4912 else if (DISPLAY_VER(dev_priv) == 11)
4913 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4914 /*
4915 * For anything else just return one slice yet.
4916 * Should be extended for other platforms.
4917 */
4918 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4919 }
4920
4921 static bool
use_minimal_wm0_only(const struct intel_crtc_state * crtc_state,struct intel_plane * plane)4922 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
4923 struct intel_plane *plane)
4924 {
4925 struct drm_i915_private *i915 = to_i915(plane->base.dev);
4926
4927 return DISPLAY_VER(i915) >= 13 &&
4928 crtc_state->uapi.async_flip &&
4929 plane->async_flip;
4930 }
4931
4932 static u64
skl_total_relative_data_rate(const struct intel_crtc_state * crtc_state)4933 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
4934 {
4935 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4936 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
4937 enum plane_id plane_id;
4938 u64 data_rate = 0;
4939
4940 for_each_plane_id_on_crtc(crtc, plane_id) {
4941 if (plane_id == PLANE_CURSOR)
4942 continue;
4943
4944 data_rate += crtc_state->rel_data_rate[plane_id];
4945
4946 if (DISPLAY_VER(i915) < 11)
4947 data_rate += crtc_state->rel_data_rate_y[plane_id];
4948 }
4949
4950 return data_rate;
4951 }
4952
4953 const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)4954 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
4955 enum plane_id plane_id,
4956 int level)
4957 {
4958 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4959
4960 if (level == 0 && pipe_wm->use_sagv_wm)
4961 return &wm->sagv.wm0;
4962
4963 return &wm->wm[level];
4964 }
4965
4966 const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)4967 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
4968 enum plane_id plane_id)
4969 {
4970 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4971
4972 if (pipe_wm->use_sagv_wm)
4973 return &wm->sagv.trans_wm;
4974
4975 return &wm->trans_wm;
4976 }
4977
4978 /*
4979 * We only disable the watermarks for each plane if
4980 * they exceed the ddb allocation of said plane. This
4981 * is done so that we don't end up touching cursor
4982 * watermarks needlessly when some other plane reduces
4983 * our max possible watermark level.
4984 *
4985 * Bspec has this to say about the PLANE_WM enable bit:
4986 * "All the watermarks at this level for all enabled
4987 * planes must be enabled before the level will be used."
4988 * So this is actually safe to do.
4989 */
4990 static void
skl_check_wm_level(struct skl_wm_level * wm,const struct skl_ddb_entry * ddb)4991 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
4992 {
4993 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
4994 memset(wm, 0, sizeof(*wm));
4995 }
4996
4997 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,const struct skl_ddb_entry * ddb_y,const struct skl_ddb_entry * ddb)4998 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
4999 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
5000 {
5001 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
5002 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
5003 memset(wm, 0, sizeof(*wm));
5004 memset(uv_wm, 0, sizeof(*uv_wm));
5005 }
5006 }
5007
icl_need_wm1_wa(struct drm_i915_private * i915,enum plane_id plane_id)5008 static bool icl_need_wm1_wa(struct drm_i915_private *i915,
5009 enum plane_id plane_id)
5010 {
5011 /*
5012 * Wa_1408961008:icl, ehl
5013 * Wa_14012656716:tgl, adl
5014 * Underruns with WM1+ disabled
5015 */
5016 return DISPLAY_VER(i915) == 11 ||
5017 (IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR);
5018 }
5019
5020 struct skl_plane_ddb_iter {
5021 u64 data_rate;
5022 u16 start, size;
5023 };
5024
5025 static void
skl_allocate_plane_ddb(struct skl_plane_ddb_iter * iter,struct skl_ddb_entry * ddb,const struct skl_wm_level * wm,u64 data_rate)5026 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
5027 struct skl_ddb_entry *ddb,
5028 const struct skl_wm_level *wm,
5029 u64 data_rate)
5030 {
5031 u16 size, extra = 0;
5032
5033 if (data_rate) {
5034 extra = min_t(u16, iter->size,
5035 DIV64_U64_ROUND_UP(iter->size * data_rate,
5036 iter->data_rate));
5037 iter->size -= extra;
5038 iter->data_rate -= data_rate;
5039 }
5040
5041 /*
5042 * Keep ddb entry of all disabled planes explicitly zeroed
5043 * to avoid skl_ddb_add_affected_planes() adding them to
5044 * the state when other planes change their allocations.
5045 */
5046 size = wm->min_ddb_alloc + extra;
5047 if (size)
5048 iter->start = skl_ddb_entry_init(ddb, iter->start,
5049 iter->start + size);
5050 }
5051
5052 static int
skl_crtc_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)5053 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
5054 struct intel_crtc *crtc)
5055 {
5056 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5057 struct intel_crtc_state *crtc_state =
5058 intel_atomic_get_new_crtc_state(state, crtc);
5059 const struct intel_dbuf_state *dbuf_state =
5060 intel_atomic_get_new_dbuf_state(state);
5061 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
5062 int num_active = hweight8(dbuf_state->active_pipes);
5063 struct skl_plane_ddb_iter iter;
5064 enum plane_id plane_id;
5065 u16 cursor_size;
5066 u32 blocks;
5067 int level;
5068
5069 /* Clear the partitioning for disabled planes. */
5070 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
5071 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
5072
5073 if (!crtc_state->hw.active)
5074 return 0;
5075
5076 iter.start = alloc->start;
5077 iter.size = skl_ddb_entry_size(alloc);
5078 if (iter.size == 0)
5079 return 0;
5080
5081 /* Allocate fixed number of blocks for cursor. */
5082 cursor_size = skl_cursor_allocation(crtc_state, num_active);
5083 iter.size -= cursor_size;
5084 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
5085 alloc->end - cursor_size, alloc->end);
5086
5087 iter.data_rate = skl_total_relative_data_rate(crtc_state);
5088
5089 /*
5090 * Find the highest watermark level for which we can satisfy the block
5091 * requirement of active planes.
5092 */
5093 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
5094 blocks = 0;
5095 for_each_plane_id_on_crtc(crtc, plane_id) {
5096 const struct skl_plane_wm *wm =
5097 &crtc_state->wm.skl.optimal.planes[plane_id];
5098
5099 if (plane_id == PLANE_CURSOR) {
5100 const struct skl_ddb_entry *ddb =
5101 &crtc_state->wm.skl.plane_ddb[plane_id];
5102
5103 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
5104 drm_WARN_ON(&dev_priv->drm,
5105 wm->wm[level].min_ddb_alloc != U16_MAX);
5106 blocks = U32_MAX;
5107 break;
5108 }
5109 continue;
5110 }
5111
5112 blocks += wm->wm[level].min_ddb_alloc;
5113 blocks += wm->uv_wm[level].min_ddb_alloc;
5114 }
5115
5116 if (blocks <= iter.size) {
5117 iter.size -= blocks;
5118 break;
5119 }
5120 }
5121
5122 if (level < 0) {
5123 drm_dbg_kms(&dev_priv->drm,
5124 "Requested display configuration exceeds system DDB limitations");
5125 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
5126 blocks, iter.size);
5127 return -EINVAL;
5128 }
5129
5130 /* avoid the WARN later when we don't allocate any extra DDB */
5131 if (iter.data_rate == 0)
5132 iter.size = 0;
5133
5134 /*
5135 * Grant each plane the blocks it requires at the highest achievable
5136 * watermark level, plus an extra share of the leftover blocks
5137 * proportional to its relative data rate.
5138 */
5139 for_each_plane_id_on_crtc(crtc, plane_id) {
5140 struct skl_ddb_entry *ddb =
5141 &crtc_state->wm.skl.plane_ddb[plane_id];
5142 struct skl_ddb_entry *ddb_y =
5143 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5144 const struct skl_plane_wm *wm =
5145 &crtc_state->wm.skl.optimal.planes[plane_id];
5146
5147 if (plane_id == PLANE_CURSOR)
5148 continue;
5149
5150 if (DISPLAY_VER(dev_priv) < 11 &&
5151 crtc_state->nv12_planes & BIT(plane_id)) {
5152 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
5153 crtc_state->rel_data_rate_y[plane_id]);
5154 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
5155 crtc_state->rel_data_rate[plane_id]);
5156 } else {
5157 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
5158 crtc_state->rel_data_rate[plane_id]);
5159 }
5160 }
5161 drm_WARN_ON(&dev_priv->drm, iter.size != 0 || iter.data_rate != 0);
5162
5163 /*
5164 * When we calculated watermark values we didn't know how high
5165 * of a level we'd actually be able to hit, so we just marked
5166 * all levels as "enabled." Go back now and disable the ones
5167 * that aren't actually possible.
5168 */
5169 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5170 for_each_plane_id_on_crtc(crtc, plane_id) {
5171 const struct skl_ddb_entry *ddb =
5172 &crtc_state->wm.skl.plane_ddb[plane_id];
5173 const struct skl_ddb_entry *ddb_y =
5174 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5175 struct skl_plane_wm *wm =
5176 &crtc_state->wm.skl.optimal.planes[plane_id];
5177
5178 if (DISPLAY_VER(dev_priv) < 11 &&
5179 crtc_state->nv12_planes & BIT(plane_id))
5180 skl_check_nv12_wm_level(&wm->wm[level],
5181 &wm->uv_wm[level],
5182 ddb_y, ddb);
5183 else
5184 skl_check_wm_level(&wm->wm[level], ddb);
5185
5186 if (icl_need_wm1_wa(dev_priv, plane_id) &&
5187 level == 1 && wm->wm[0].enable) {
5188 wm->wm[level].blocks = wm->wm[0].blocks;
5189 wm->wm[level].lines = wm->wm[0].lines;
5190 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5191 }
5192 }
5193 }
5194
5195 /*
5196 * Go back and disable the transition and SAGV watermarks
5197 * if it turns out we don't have enough DDB blocks for them.
5198 */
5199 for_each_plane_id_on_crtc(crtc, plane_id) {
5200 const struct skl_ddb_entry *ddb =
5201 &crtc_state->wm.skl.plane_ddb[plane_id];
5202 const struct skl_ddb_entry *ddb_y =
5203 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5204 struct skl_plane_wm *wm =
5205 &crtc_state->wm.skl.optimal.planes[plane_id];
5206
5207 if (DISPLAY_VER(dev_priv) < 11 &&
5208 crtc_state->nv12_planes & BIT(plane_id)) {
5209 skl_check_wm_level(&wm->trans_wm, ddb_y);
5210 } else {
5211 WARN_ON(skl_ddb_entry_size(ddb_y));
5212
5213 skl_check_wm_level(&wm->trans_wm, ddb);
5214 }
5215
5216 skl_check_wm_level(&wm->sagv.wm0, ddb);
5217 skl_check_wm_level(&wm->sagv.trans_wm, ddb);
5218 }
5219
5220 return 0;
5221 }
5222
5223 /*
5224 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5225 * for the read latency) and cpp should always be <= 8, so that
5226 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5227 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5228 */
5229 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)5230 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5231 u8 cpp, u32 latency, u32 dbuf_block_size)
5232 {
5233 u32 wm_intermediate_val;
5234 uint_fixed_16_16_t ret;
5235
5236 if (latency == 0)
5237 return FP_16_16_MAX;
5238
5239 wm_intermediate_val = latency * pixel_rate * cpp;
5240 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5241
5242 if (DISPLAY_VER(dev_priv) >= 10)
5243 ret = add_fixed16_u32(ret, 1);
5244
5245 return ret;
5246 }
5247
5248 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)5249 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5250 uint_fixed_16_16_t plane_blocks_per_line)
5251 {
5252 u32 wm_intermediate_val;
5253 uint_fixed_16_16_t ret;
5254
5255 if (latency == 0)
5256 return FP_16_16_MAX;
5257
5258 wm_intermediate_val = latency * pixel_rate;
5259 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5260 pipe_htotal * 1000);
5261 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5262 return ret;
5263 }
5264
5265 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)5266 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5267 {
5268 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5269 u32 pixel_rate;
5270 u32 crtc_htotal;
5271 uint_fixed_16_16_t linetime_us;
5272
5273 if (!crtc_state->hw.active)
5274 return u32_to_fixed16(0);
5275
5276 pixel_rate = crtc_state->pixel_rate;
5277
5278 if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5279 return u32_to_fixed16(0);
5280
5281 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5282 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5283
5284 return linetime_us;
5285 }
5286
5287 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)5288 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5289 int width, const struct drm_format_info *format,
5290 u64 modifier, unsigned int rotation,
5291 u32 plane_pixel_rate, struct skl_wm_params *wp,
5292 int color_plane)
5293 {
5294 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5295 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5296 u32 interm_pbpl;
5297
5298 /* only planar format has two planes */
5299 if (color_plane == 1 &&
5300 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5301 drm_dbg_kms(&dev_priv->drm,
5302 "Non planar format have single plane\n");
5303 return -EINVAL;
5304 }
5305
5306 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5307 modifier == I915_FORMAT_MOD_4_TILED ||
5308 modifier == I915_FORMAT_MOD_Yf_TILED ||
5309 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5310 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5311 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5312 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5313 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5314 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5315
5316 wp->width = width;
5317 if (color_plane == 1 && wp->is_planar)
5318 wp->width /= 2;
5319
5320 wp->cpp = format->cpp[color_plane];
5321 wp->plane_pixel_rate = plane_pixel_rate;
5322
5323 if (DISPLAY_VER(dev_priv) >= 11 &&
5324 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
5325 wp->dbuf_block_size = 256;
5326 else
5327 wp->dbuf_block_size = 512;
5328
5329 if (drm_rotation_90_or_270(rotation)) {
5330 switch (wp->cpp) {
5331 case 1:
5332 wp->y_min_scanlines = 16;
5333 break;
5334 case 2:
5335 wp->y_min_scanlines = 8;
5336 break;
5337 case 4:
5338 wp->y_min_scanlines = 4;
5339 break;
5340 default:
5341 MISSING_CASE(wp->cpp);
5342 return -EINVAL;
5343 }
5344 } else {
5345 wp->y_min_scanlines = 4;
5346 }
5347
5348 if (skl_needs_memory_bw_wa(dev_priv))
5349 wp->y_min_scanlines *= 2;
5350
5351 wp->plane_bytes_per_line = wp->width * wp->cpp;
5352 if (wp->y_tiled) {
5353 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5354 wp->y_min_scanlines,
5355 wp->dbuf_block_size);
5356
5357 if (DISPLAY_VER(dev_priv) >= 10)
5358 interm_pbpl++;
5359
5360 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5361 wp->y_min_scanlines);
5362 } else {
5363 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5364 wp->dbuf_block_size);
5365
5366 if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
5367 interm_pbpl++;
5368
5369 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5370 }
5371
5372 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5373 wp->plane_blocks_per_line);
5374
5375 wp->linetime_us = fixed16_to_u32_round_up(
5376 intel_get_linetime_us(crtc_state));
5377
5378 return 0;
5379 }
5380
5381 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)5382 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5383 const struct intel_plane_state *plane_state,
5384 struct skl_wm_params *wp, int color_plane)
5385 {
5386 const struct drm_framebuffer *fb = plane_state->hw.fb;
5387 int width;
5388
5389 /*
5390 * Src coordinates are already rotated by 270 degrees for
5391 * the 90/270 degree plane rotation cases (to match the
5392 * GTT mapping), hence no need to account for rotation here.
5393 */
5394 width = drm_rect_width(&plane_state->uapi.src) >> 16;
5395
5396 return skl_compute_wm_params(crtc_state, width,
5397 fb->format, fb->modifier,
5398 plane_state->hw.rotation,
5399 intel_plane_pixel_rate(crtc_state, plane_state),
5400 wp, color_plane);
5401 }
5402
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)5403 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5404 {
5405 if (DISPLAY_VER(dev_priv) >= 10)
5406 return true;
5407
5408 /* The number of lines are ignored for the level 0 watermark. */
5409 return level > 0;
5410 }
5411
skl_wm_max_lines(struct drm_i915_private * dev_priv)5412 static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
5413 {
5414 if (DISPLAY_VER(dev_priv) >= 13)
5415 return 255;
5416 else
5417 return 31;
5418 }
5419
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)5420 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5421 struct intel_plane *plane,
5422 int level,
5423 unsigned int latency,
5424 const struct skl_wm_params *wp,
5425 const struct skl_wm_level *result_prev,
5426 struct skl_wm_level *result /* out */)
5427 {
5428 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5429 uint_fixed_16_16_t method1, method2;
5430 uint_fixed_16_16_t selected_result;
5431 u32 blocks, lines, min_ddb_alloc = 0;
5432
5433 if (latency == 0 ||
5434 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
5435 /* reject it */
5436 result->min_ddb_alloc = U16_MAX;
5437 return;
5438 }
5439
5440 /*
5441 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5442 * Display WA #1141: kbl,cfl
5443 */
5444 if ((IS_KABYLAKE(dev_priv) ||
5445 IS_COFFEELAKE(dev_priv) ||
5446 IS_COMETLAKE(dev_priv)) &&
5447 dev_priv->ipc_enabled)
5448 latency += 4;
5449
5450 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5451 latency += 15;
5452
5453 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5454 wp->cpp, latency, wp->dbuf_block_size);
5455 method2 = skl_wm_method2(wp->plane_pixel_rate,
5456 crtc_state->hw.pipe_mode.crtc_htotal,
5457 latency,
5458 wp->plane_blocks_per_line);
5459
5460 if (wp->y_tiled) {
5461 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5462 } else {
5463 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5464 wp->dbuf_block_size < 1) &&
5465 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5466 selected_result = method2;
5467 } else if (latency >= wp->linetime_us) {
5468 if (DISPLAY_VER(dev_priv) == 9)
5469 selected_result = min_fixed16(method1, method2);
5470 else
5471 selected_result = method2;
5472 } else {
5473 selected_result = method1;
5474 }
5475 }
5476
5477 blocks = fixed16_to_u32_round_up(selected_result) + 1;
5478 /*
5479 * Lets have blocks at minimum equivalent to plane_blocks_per_line
5480 * as there will be at minimum one line for lines configuration. This
5481 * is a work around for FIFO underruns observed with resolutions like
5482 * 4k 60 Hz in single channel DRAM configurations.
5483 *
5484 * As per the Bspec 49325, if the ddb allocation can hold at least
5485 * one plane_blocks_per_line, we should have selected method2 in
5486 * the above logic. Assuming that modern versions have enough dbuf
5487 * and method2 guarantees blocks equivalent to at least 1 line,
5488 * select the blocks as plane_blocks_per_line.
5489 *
5490 * TODO: Revisit the logic when we have better understanding on DRAM
5491 * channels' impact on the level 0 memory latency and the relevant
5492 * wm calculations.
5493 */
5494 if (skl_wm_has_lines(dev_priv, level))
5495 blocks = max(blocks,
5496 fixed16_to_u32_round_up(wp->plane_blocks_per_line));
5497 lines = div_round_up_fixed16(selected_result,
5498 wp->plane_blocks_per_line);
5499
5500 if (DISPLAY_VER(dev_priv) == 9) {
5501 /* Display WA #1125: skl,bxt,kbl */
5502 if (level == 0 && wp->rc_surface)
5503 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5504
5505 /* Display WA #1126: skl,bxt,kbl */
5506 if (level >= 1 && level <= 7) {
5507 if (wp->y_tiled) {
5508 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5509 lines += wp->y_min_scanlines;
5510 } else {
5511 blocks++;
5512 }
5513
5514 /*
5515 * Make sure result blocks for higher latency levels are
5516 * atleast as high as level below the current level.
5517 * Assumption in DDB algorithm optimization for special
5518 * cases. Also covers Display WA #1125 for RC.
5519 */
5520 if (result_prev->blocks > blocks)
5521 blocks = result_prev->blocks;
5522 }
5523 }
5524
5525 if (DISPLAY_VER(dev_priv) >= 11) {
5526 if (wp->y_tiled) {
5527 int extra_lines;
5528
5529 if (lines % wp->y_min_scanlines == 0)
5530 extra_lines = wp->y_min_scanlines;
5531 else
5532 extra_lines = wp->y_min_scanlines * 2 -
5533 lines % wp->y_min_scanlines;
5534
5535 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
5536 wp->plane_blocks_per_line);
5537 } else {
5538 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
5539 }
5540 }
5541
5542 if (!skl_wm_has_lines(dev_priv, level))
5543 lines = 0;
5544
5545 if (lines > skl_wm_max_lines(dev_priv)) {
5546 /* reject it */
5547 result->min_ddb_alloc = U16_MAX;
5548 return;
5549 }
5550
5551 /*
5552 * If lines is valid, assume we can use this watermark level
5553 * for now. We'll come back and disable it after we calculate the
5554 * DDB allocation if it turns out we don't actually have enough
5555 * blocks to satisfy it.
5556 */
5557 result->blocks = blocks;
5558 result->lines = lines;
5559 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5560 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
5561 result->enable = true;
5562
5563 if (DISPLAY_VER(dev_priv) < 12 && dev_priv->sagv_block_time_us)
5564 result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5565 }
5566
5567 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)5568 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5569 struct intel_plane *plane,
5570 const struct skl_wm_params *wm_params,
5571 struct skl_wm_level *levels)
5572 {
5573 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5574 int level, max_level = ilk_wm_max_level(dev_priv);
5575 struct skl_wm_level *result_prev = &levels[0];
5576
5577 for (level = 0; level <= max_level; level++) {
5578 struct skl_wm_level *result = &levels[level];
5579 unsigned int latency = dev_priv->wm.skl_latency[level];
5580
5581 skl_compute_plane_wm(crtc_state, plane, level, latency,
5582 wm_params, result_prev, result);
5583
5584 result_prev = result;
5585 }
5586 }
5587
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)5588 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5589 struct intel_plane *plane,
5590 const struct skl_wm_params *wm_params,
5591 struct skl_plane_wm *plane_wm)
5592 {
5593 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5594 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5595 struct skl_wm_level *levels = plane_wm->wm;
5596 unsigned int latency = 0;
5597
5598 if (dev_priv->sagv_block_time_us)
5599 latency = dev_priv->sagv_block_time_us + dev_priv->wm.skl_latency[0];
5600
5601 skl_compute_plane_wm(crtc_state, plane, 0, latency,
5602 wm_params, &levels[0],
5603 sagv_wm);
5604 }
5605
skl_compute_transition_wm(struct drm_i915_private * dev_priv,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)5606 static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
5607 struct skl_wm_level *trans_wm,
5608 const struct skl_wm_level *wm0,
5609 const struct skl_wm_params *wp)
5610 {
5611 u16 trans_min, trans_amount, trans_y_tile_min;
5612 u16 wm0_blocks, trans_offset, blocks;
5613
5614 /* Transition WM don't make any sense if ipc is disabled */
5615 if (!dev_priv->ipc_enabled)
5616 return;
5617
5618 /*
5619 * WaDisableTWM:skl,kbl,cfl,bxt
5620 * Transition WM are not recommended by HW team for GEN9
5621 */
5622 if (DISPLAY_VER(dev_priv) == 9)
5623 return;
5624
5625 if (DISPLAY_VER(dev_priv) >= 11)
5626 trans_min = 4;
5627 else
5628 trans_min = 14;
5629
5630 /* Display WA #1140: glk,cnl */
5631 if (DISPLAY_VER(dev_priv) == 10)
5632 trans_amount = 0;
5633 else
5634 trans_amount = 10; /* This is configurable amount */
5635
5636 trans_offset = trans_min + trans_amount;
5637
5638 /*
5639 * The spec asks for Selected Result Blocks for wm0 (the real value),
5640 * not Result Blocks (the integer value). Pay attention to the capital
5641 * letters. The value wm_l0->blocks is actually Result Blocks, but
5642 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5643 * and since we later will have to get the ceiling of the sum in the
5644 * transition watermarks calculation, we can just pretend Selected
5645 * Result Blocks is Result Blocks minus 1 and it should work for the
5646 * current platforms.
5647 */
5648 wm0_blocks = wm0->blocks - 1;
5649
5650 if (wp->y_tiled) {
5651 trans_y_tile_min =
5652 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5653 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
5654 } else {
5655 blocks = wm0_blocks + trans_offset;
5656 }
5657 blocks++;
5658
5659 /*
5660 * Just assume we can enable the transition watermark. After
5661 * computing the DDB we'll come back and disable it if that
5662 * assumption turns out to be false.
5663 */
5664 trans_wm->blocks = blocks;
5665 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
5666 trans_wm->enable = true;
5667 }
5668
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane,int color_plane)5669 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5670 const struct intel_plane_state *plane_state,
5671 struct intel_plane *plane, int color_plane)
5672 {
5673 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5674 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5675 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
5676 struct skl_wm_params wm_params;
5677 int ret;
5678
5679 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5680 &wm_params, color_plane);
5681 if (ret)
5682 return ret;
5683
5684 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
5685
5686 skl_compute_transition_wm(dev_priv, &wm->trans_wm,
5687 &wm->wm[0], &wm_params);
5688
5689 if (DISPLAY_VER(dev_priv) >= 12) {
5690 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
5691
5692 skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
5693 &wm->sagv.wm0, &wm_params);
5694 }
5695
5696 return 0;
5697 }
5698
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane)5699 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5700 const struct intel_plane_state *plane_state,
5701 struct intel_plane *plane)
5702 {
5703 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
5704 struct skl_wm_params wm_params;
5705 int ret;
5706
5707 wm->is_planar = true;
5708
5709 /* uv plane watermarks must also be validated for NV12/Planar */
5710 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5711 &wm_params, 1);
5712 if (ret)
5713 return ret;
5714
5715 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
5716
5717 return 0;
5718 }
5719
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5720 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5721 const struct intel_plane_state *plane_state)
5722 {
5723 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5724 enum plane_id plane_id = plane->id;
5725 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5726 const struct drm_framebuffer *fb = plane_state->hw.fb;
5727 int ret;
5728
5729 memset(wm, 0, sizeof(*wm));
5730
5731 if (!intel_wm_plane_visible(crtc_state, plane_state))
5732 return 0;
5733
5734 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5735 plane, 0);
5736 if (ret)
5737 return ret;
5738
5739 if (fb->format->is_yuv && fb->format->num_planes > 1) {
5740 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5741 plane);
5742 if (ret)
5743 return ret;
5744 }
5745
5746 return 0;
5747 }
5748
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5749 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5750 const struct intel_plane_state *plane_state)
5751 {
5752 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5753 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5754 enum plane_id plane_id = plane->id;
5755 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5756 int ret;
5757
5758 /* Watermarks calculated in master */
5759 if (plane_state->planar_slave)
5760 return 0;
5761
5762 memset(wm, 0, sizeof(*wm));
5763
5764 if (plane_state->planar_linked_plane) {
5765 const struct drm_framebuffer *fb = plane_state->hw.fb;
5766
5767 drm_WARN_ON(&dev_priv->drm,
5768 !intel_wm_plane_visible(crtc_state, plane_state));
5769 drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5770 fb->format->num_planes == 1);
5771
5772 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5773 plane_state->planar_linked_plane, 0);
5774 if (ret)
5775 return ret;
5776
5777 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5778 plane, 1);
5779 if (ret)
5780 return ret;
5781 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5782 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5783 plane, 0);
5784 if (ret)
5785 return ret;
5786 }
5787
5788 return 0;
5789 }
5790
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)5791 static int skl_build_pipe_wm(struct intel_atomic_state *state,
5792 struct intel_crtc *crtc)
5793 {
5794 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5795 struct intel_crtc_state *crtc_state =
5796 intel_atomic_get_new_crtc_state(state, crtc);
5797 const struct intel_plane_state *plane_state;
5798 struct intel_plane *plane;
5799 int ret, i;
5800
5801 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5802 /*
5803 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5804 * instead but we don't populate that correctly for NV12 Y
5805 * planes so for now hack this.
5806 */
5807 if (plane->pipe != crtc->pipe)
5808 continue;
5809
5810 if (DISPLAY_VER(dev_priv) >= 11)
5811 ret = icl_build_plane_wm(crtc_state, plane_state);
5812 else
5813 ret = skl_build_plane_wm(crtc_state, plane_state);
5814 if (ret)
5815 return ret;
5816 }
5817
5818 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
5819
5820 return 0;
5821 }
5822
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5823 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5824 i915_reg_t reg,
5825 const struct skl_ddb_entry *entry)
5826 {
5827 if (entry->end)
5828 intel_de_write_fw(dev_priv, reg,
5829 PLANE_BUF_END(entry->end - 1) |
5830 PLANE_BUF_START(entry->start));
5831 else
5832 intel_de_write_fw(dev_priv, reg, 0);
5833 }
5834
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5835 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5836 i915_reg_t reg,
5837 const struct skl_wm_level *level)
5838 {
5839 u32 val = 0;
5840
5841 if (level->enable)
5842 val |= PLANE_WM_EN;
5843 if (level->ignore_lines)
5844 val |= PLANE_WM_IGNORE_LINES;
5845 val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
5846 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
5847
5848 intel_de_write_fw(dev_priv, reg, val);
5849 }
5850
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5851 void skl_write_plane_wm(struct intel_plane *plane,
5852 const struct intel_crtc_state *crtc_state)
5853 {
5854 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5855 int level, max_level = ilk_wm_max_level(dev_priv);
5856 enum plane_id plane_id = plane->id;
5857 enum pipe pipe = plane->pipe;
5858 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5859 const struct skl_ddb_entry *ddb =
5860 &crtc_state->wm.skl.plane_ddb[plane_id];
5861 const struct skl_ddb_entry *ddb_y =
5862 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5863
5864 for (level = 0; level <= max_level; level++)
5865 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5866 skl_plane_wm_level(pipe_wm, plane_id, level));
5867
5868 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5869 skl_plane_trans_wm(pipe_wm, plane_id));
5870
5871 if (HAS_HW_SAGV_WM(dev_priv)) {
5872 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5873
5874 skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
5875 &wm->sagv.wm0);
5876 skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
5877 &wm->sagv.trans_wm);
5878 }
5879
5880 skl_ddb_entry_write(dev_priv,
5881 PLANE_BUF_CFG(pipe, plane_id), ddb);
5882
5883 if (DISPLAY_VER(dev_priv) < 11)
5884 skl_ddb_entry_write(dev_priv,
5885 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
5886 }
5887
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5888 void skl_write_cursor_wm(struct intel_plane *plane,
5889 const struct intel_crtc_state *crtc_state)
5890 {
5891 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5892 int level, max_level = ilk_wm_max_level(dev_priv);
5893 enum plane_id plane_id = plane->id;
5894 enum pipe pipe = plane->pipe;
5895 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5896 const struct skl_ddb_entry *ddb =
5897 &crtc_state->wm.skl.plane_ddb[plane_id];
5898
5899 for (level = 0; level <= max_level; level++)
5900 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5901 skl_plane_wm_level(pipe_wm, plane_id, level));
5902
5903 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
5904 skl_plane_trans_wm(pipe_wm, plane_id));
5905
5906 if (HAS_HW_SAGV_WM(dev_priv)) {
5907 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5908
5909 skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
5910 &wm->sagv.wm0);
5911 skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
5912 &wm->sagv.trans_wm);
5913 }
5914
5915 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5916 }
5917
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5918 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5919 const struct skl_wm_level *l2)
5920 {
5921 return l1->enable == l2->enable &&
5922 l1->ignore_lines == l2->ignore_lines &&
5923 l1->lines == l2->lines &&
5924 l1->blocks == l2->blocks;
5925 }
5926
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5927 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5928 const struct skl_plane_wm *wm1,
5929 const struct skl_plane_wm *wm2)
5930 {
5931 int level, max_level = ilk_wm_max_level(dev_priv);
5932
5933 for (level = 0; level <= max_level; level++) {
5934 /*
5935 * We don't check uv_wm as the hardware doesn't actually
5936 * use it. It only gets used for calculating the required
5937 * ddb allocation.
5938 */
5939 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5940 return false;
5941 }
5942
5943 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5944 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
5945 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5946 }
5947
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5948 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5949 const struct skl_ddb_entry *b)
5950 {
5951 return a->start < b->end && b->start < a->end;
5952 }
5953
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5954 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
5955 const struct skl_ddb_entry *b)
5956 {
5957 if (a->end && b->end) {
5958 a->start = min(a->start, b->start);
5959 a->end = max(a->end, b->end);
5960 } else if (b->end) {
5961 a->start = b->start;
5962 a->end = b->end;
5963 }
5964 }
5965
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)5966 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5967 const struct skl_ddb_entry *entries,
5968 int num_entries, int ignore_idx)
5969 {
5970 int i;
5971
5972 for (i = 0; i < num_entries; i++) {
5973 if (i != ignore_idx &&
5974 skl_ddb_entries_overlap(ddb, &entries[i]))
5975 return true;
5976 }
5977
5978 return false;
5979 }
5980
5981 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)5982 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5983 struct intel_crtc_state *new_crtc_state)
5984 {
5985 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5986 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5987 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5988 struct intel_plane *plane;
5989
5990 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5991 struct intel_plane_state *plane_state;
5992 enum plane_id plane_id = plane->id;
5993
5994 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
5995 &new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
5996 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5997 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
5998 continue;
5999
6000 plane_state = intel_atomic_get_plane_state(state, plane);
6001 if (IS_ERR(plane_state))
6002 return PTR_ERR(plane_state);
6003
6004 new_crtc_state->update_planes |= BIT(plane_id);
6005 }
6006
6007 return 0;
6008 }
6009
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)6010 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
6011 {
6012 struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
6013 u8 enabled_slices;
6014 enum pipe pipe;
6015
6016 /*
6017 * FIXME: For now we always enable slice S1 as per
6018 * the Bspec display initialization sequence.
6019 */
6020 enabled_slices = BIT(DBUF_S1);
6021
6022 for_each_pipe(dev_priv, pipe)
6023 enabled_slices |= dbuf_state->slices[pipe];
6024
6025 return enabled_slices;
6026 }
6027
6028 static int
skl_compute_ddb(struct intel_atomic_state * state)6029 skl_compute_ddb(struct intel_atomic_state *state)
6030 {
6031 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6032 const struct intel_dbuf_state *old_dbuf_state;
6033 struct intel_dbuf_state *new_dbuf_state = NULL;
6034 const struct intel_crtc_state *old_crtc_state;
6035 struct intel_crtc_state *new_crtc_state;
6036 struct intel_crtc *crtc;
6037 int ret, i;
6038
6039 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6040 new_dbuf_state = intel_atomic_get_dbuf_state(state);
6041 if (IS_ERR(new_dbuf_state))
6042 return PTR_ERR(new_dbuf_state);
6043
6044 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6045 break;
6046 }
6047
6048 if (!new_dbuf_state)
6049 return 0;
6050
6051 new_dbuf_state->active_pipes =
6052 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6053
6054 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
6055 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6056 if (ret)
6057 return ret;
6058 }
6059
6060 if (HAS_MBUS_JOINING(dev_priv))
6061 new_dbuf_state->joined_mbus =
6062 adlp_check_mbus_joined(new_dbuf_state->active_pipes);
6063
6064 for_each_intel_crtc(&dev_priv->drm, crtc) {
6065 enum pipe pipe = crtc->pipe;
6066
6067 new_dbuf_state->slices[pipe] =
6068 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
6069 new_dbuf_state->joined_mbus);
6070
6071 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
6072 continue;
6073
6074 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6075 if (ret)
6076 return ret;
6077 }
6078
6079 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
6080
6081 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
6082 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6083 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
6084 if (ret)
6085 return ret;
6086
6087 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6088 /* TODO: Implement vblank synchronized MBUS joining changes */
6089 ret = intel_modeset_all_pipes(state);
6090 if (ret)
6091 return ret;
6092 }
6093
6094 drm_dbg_kms(&dev_priv->drm,
6095 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
6096 old_dbuf_state->enabled_slices,
6097 new_dbuf_state->enabled_slices,
6098 INTEL_INFO(dev_priv)->dbuf.slice_mask,
6099 str_yes_no(old_dbuf_state->joined_mbus),
6100 str_yes_no(new_dbuf_state->joined_mbus));
6101 }
6102
6103 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6104 enum pipe pipe = crtc->pipe;
6105
6106 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
6107
6108 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
6109 continue;
6110
6111 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6112 if (ret)
6113 return ret;
6114 }
6115
6116 for_each_intel_crtc(&dev_priv->drm, crtc) {
6117 ret = skl_crtc_allocate_ddb(state, crtc);
6118 if (ret)
6119 return ret;
6120 }
6121
6122 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6123 new_crtc_state, i) {
6124 ret = skl_crtc_allocate_plane_ddb(state, crtc);
6125 if (ret)
6126 return ret;
6127
6128 ret = skl_ddb_add_affected_planes(old_crtc_state,
6129 new_crtc_state);
6130 if (ret)
6131 return ret;
6132 }
6133
6134 return 0;
6135 }
6136
enast(bool enable)6137 static char enast(bool enable)
6138 {
6139 return enable ? '*' : ' ';
6140 }
6141
6142 static void
skl_print_wm_changes(struct intel_atomic_state * state)6143 skl_print_wm_changes(struct intel_atomic_state *state)
6144 {
6145 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6146 const struct intel_crtc_state *old_crtc_state;
6147 const struct intel_crtc_state *new_crtc_state;
6148 struct intel_plane *plane;
6149 struct intel_crtc *crtc;
6150 int i;
6151
6152 if (!drm_debug_enabled(DRM_UT_KMS))
6153 return;
6154
6155 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6156 new_crtc_state, i) {
6157 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
6158
6159 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
6160 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
6161
6162 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6163 enum plane_id plane_id = plane->id;
6164 const struct skl_ddb_entry *old, *new;
6165
6166 old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
6167 new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
6168
6169 if (skl_ddb_entry_equal(old, new))
6170 continue;
6171
6172 drm_dbg_kms(&dev_priv->drm,
6173 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
6174 plane->base.base.id, plane->base.name,
6175 old->start, old->end, new->start, new->end,
6176 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
6177 }
6178
6179 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6180 enum plane_id plane_id = plane->id;
6181 const struct skl_plane_wm *old_wm, *new_wm;
6182
6183 old_wm = &old_pipe_wm->planes[plane_id];
6184 new_wm = &new_pipe_wm->planes[plane_id];
6185
6186 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
6187 continue;
6188
6189 drm_dbg_kms(&dev_priv->drm,
6190 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
6191 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
6192 plane->base.base.id, plane->base.name,
6193 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
6194 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
6195 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
6196 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
6197 enast(old_wm->trans_wm.enable),
6198 enast(old_wm->sagv.wm0.enable),
6199 enast(old_wm->sagv.trans_wm.enable),
6200 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
6201 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
6202 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
6203 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
6204 enast(new_wm->trans_wm.enable),
6205 enast(new_wm->sagv.wm0.enable),
6206 enast(new_wm->sagv.trans_wm.enable));
6207
6208 drm_dbg_kms(&dev_priv->drm,
6209 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
6210 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
6211 plane->base.base.id, plane->base.name,
6212 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
6213 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
6214 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
6215 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
6216 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
6217 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
6218 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
6219 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
6220 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
6221 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
6222 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
6223 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
6224 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
6225 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
6226 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
6227 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
6228 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
6229 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
6230 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
6231 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
6232 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
6233 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
6234
6235 drm_dbg_kms(&dev_priv->drm,
6236 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6237 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6238 plane->base.base.id, plane->base.name,
6239 old_wm->wm[0].blocks, old_wm->wm[1].blocks,
6240 old_wm->wm[2].blocks, old_wm->wm[3].blocks,
6241 old_wm->wm[4].blocks, old_wm->wm[5].blocks,
6242 old_wm->wm[6].blocks, old_wm->wm[7].blocks,
6243 old_wm->trans_wm.blocks,
6244 old_wm->sagv.wm0.blocks,
6245 old_wm->sagv.trans_wm.blocks,
6246 new_wm->wm[0].blocks, new_wm->wm[1].blocks,
6247 new_wm->wm[2].blocks, new_wm->wm[3].blocks,
6248 new_wm->wm[4].blocks, new_wm->wm[5].blocks,
6249 new_wm->wm[6].blocks, new_wm->wm[7].blocks,
6250 new_wm->trans_wm.blocks,
6251 new_wm->sagv.wm0.blocks,
6252 new_wm->sagv.trans_wm.blocks);
6253
6254 drm_dbg_kms(&dev_priv->drm,
6255 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6256 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6257 plane->base.base.id, plane->base.name,
6258 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
6259 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
6260 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
6261 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
6262 old_wm->trans_wm.min_ddb_alloc,
6263 old_wm->sagv.wm0.min_ddb_alloc,
6264 old_wm->sagv.trans_wm.min_ddb_alloc,
6265 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
6266 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
6267 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
6268 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
6269 new_wm->trans_wm.min_ddb_alloc,
6270 new_wm->sagv.wm0.min_ddb_alloc,
6271 new_wm->sagv.trans_wm.min_ddb_alloc);
6272 }
6273 }
6274 }
6275
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)6276 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
6277 const struct skl_pipe_wm *old_pipe_wm,
6278 const struct skl_pipe_wm *new_pipe_wm)
6279 {
6280 struct drm_i915_private *i915 = to_i915(plane->base.dev);
6281 int level, max_level = ilk_wm_max_level(i915);
6282
6283 for (level = 0; level <= max_level; level++) {
6284 /*
6285 * We don't check uv_wm as the hardware doesn't actually
6286 * use it. It only gets used for calculating the required
6287 * ddb allocation.
6288 */
6289 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
6290 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
6291 return false;
6292 }
6293
6294 if (HAS_HW_SAGV_WM(i915)) {
6295 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
6296 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
6297
6298 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
6299 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
6300 return false;
6301 }
6302
6303 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
6304 skl_plane_trans_wm(new_pipe_wm, plane->id));
6305 }
6306
6307 /*
6308 * To make sure the cursor watermark registers are always consistent
6309 * with our computed state the following scenario needs special
6310 * treatment:
6311 *
6312 * 1. enable cursor
6313 * 2. move cursor entirely offscreen
6314 * 3. disable cursor
6315 *
6316 * Step 2. does call .disable_plane() but does not zero the watermarks
6317 * (since we consider an offscreen cursor still active for the purposes
6318 * of watermarks). Step 3. would not normally call .disable_plane()
6319 * because the actual plane visibility isn't changing, and we don't
6320 * deallocate the cursor ddb until the pipe gets disabled. So we must
6321 * force step 3. to call .disable_plane() to update the watermark
6322 * registers properly.
6323 *
6324 * Other planes do not suffer from this issues as their watermarks are
6325 * calculated based on the actual plane visibility. The only time this
6326 * can trigger for the other planes is during the initial readout as the
6327 * default value of the watermarks registers is not zero.
6328 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6329 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6330 struct intel_crtc *crtc)
6331 {
6332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6333 const struct intel_crtc_state *old_crtc_state =
6334 intel_atomic_get_old_crtc_state(state, crtc);
6335 struct intel_crtc_state *new_crtc_state =
6336 intel_atomic_get_new_crtc_state(state, crtc);
6337 struct intel_plane *plane;
6338
6339 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6340 struct intel_plane_state *plane_state;
6341 enum plane_id plane_id = plane->id;
6342
6343 /*
6344 * Force a full wm update for every plane on modeset.
6345 * Required because the reset value of the wm registers
6346 * is non-zero, whereas we want all disabled planes to
6347 * have zero watermarks. So if we turn off the relevant
6348 * power well the hardware state will go out of sync
6349 * with the software state.
6350 */
6351 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6352 skl_plane_selected_wm_equals(plane,
6353 &old_crtc_state->wm.skl.optimal,
6354 &new_crtc_state->wm.skl.optimal))
6355 continue;
6356
6357 plane_state = intel_atomic_get_plane_state(state, plane);
6358 if (IS_ERR(plane_state))
6359 return PTR_ERR(plane_state);
6360
6361 new_crtc_state->update_planes |= BIT(plane_id);
6362 }
6363
6364 return 0;
6365 }
6366
6367 static int
skl_compute_wm(struct intel_atomic_state * state)6368 skl_compute_wm(struct intel_atomic_state *state)
6369 {
6370 struct intel_crtc *crtc;
6371 struct intel_crtc_state *new_crtc_state;
6372 int ret, i;
6373
6374 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6375 ret = skl_build_pipe_wm(state, crtc);
6376 if (ret)
6377 return ret;
6378 }
6379
6380 ret = skl_compute_ddb(state);
6381 if (ret)
6382 return ret;
6383
6384 ret = intel_compute_sagv_mask(state);
6385 if (ret)
6386 return ret;
6387
6388 /*
6389 * skl_compute_ddb() will have adjusted the final watermarks
6390 * based on how much ddb is available. Now we can actually
6391 * check if the final watermarks changed.
6392 */
6393 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6394 ret = skl_wm_add_affected_planes(state, crtc);
6395 if (ret)
6396 return ret;
6397 }
6398
6399 skl_print_wm_changes(state);
6400
6401 return 0;
6402 }
6403
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)6404 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6405 struct intel_wm_config *config)
6406 {
6407 struct intel_crtc *crtc;
6408
6409 /* Compute the currently _active_ config */
6410 for_each_intel_crtc(&dev_priv->drm, crtc) {
6411 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6412
6413 if (!wm->pipe_enabled)
6414 continue;
6415
6416 config->sprites_enabled |= wm->sprites_enabled;
6417 config->sprites_scaled |= wm->sprites_scaled;
6418 config->num_pipes_active++;
6419 }
6420 }
6421
ilk_program_watermarks(struct drm_i915_private * dev_priv)6422 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6423 {
6424 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6425 struct ilk_wm_maximums max;
6426 struct intel_wm_config config = {};
6427 struct ilk_wm_values results = {};
6428 enum intel_ddb_partitioning partitioning;
6429
6430 ilk_compute_wm_config(dev_priv, &config);
6431
6432 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6433 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6434
6435 /* 5/6 split only in single pipe config on IVB+ */
6436 if (DISPLAY_VER(dev_priv) >= 7 &&
6437 config.num_pipes_active == 1 && config.sprites_enabled) {
6438 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6439 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6440
6441 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6442 } else {
6443 best_lp_wm = &lp_wm_1_2;
6444 }
6445
6446 partitioning = (best_lp_wm == &lp_wm_1_2) ?
6447 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6448
6449 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6450
6451 ilk_write_wm_values(dev_priv, &results);
6452 }
6453
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6454 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6455 struct intel_crtc *crtc)
6456 {
6457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6458 const struct intel_crtc_state *crtc_state =
6459 intel_atomic_get_new_crtc_state(state, crtc);
6460
6461 mutex_lock(&dev_priv->wm.wm_mutex);
6462 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6463 ilk_program_watermarks(dev_priv);
6464 mutex_unlock(&dev_priv->wm.wm_mutex);
6465 }
6466
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6467 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6468 struct intel_crtc *crtc)
6469 {
6470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6471 const struct intel_crtc_state *crtc_state =
6472 intel_atomic_get_new_crtc_state(state, crtc);
6473
6474 if (!crtc_state->wm.need_postvbl_update)
6475 return;
6476
6477 mutex_lock(&dev_priv->wm.wm_mutex);
6478 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6479 ilk_program_watermarks(dev_priv);
6480 mutex_unlock(&dev_priv->wm.wm_mutex);
6481 }
6482
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)6483 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6484 {
6485 level->enable = val & PLANE_WM_EN;
6486 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6487 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
6488 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
6489 }
6490
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)6491 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6492 struct skl_pipe_wm *out)
6493 {
6494 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6495 enum pipe pipe = crtc->pipe;
6496 int level, max_level;
6497 enum plane_id plane_id;
6498 u32 val;
6499
6500 max_level = ilk_wm_max_level(dev_priv);
6501
6502 for_each_plane_id_on_crtc(crtc, plane_id) {
6503 struct skl_plane_wm *wm = &out->planes[plane_id];
6504
6505 for (level = 0; level <= max_level; level++) {
6506 if (plane_id != PLANE_CURSOR)
6507 val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6508 else
6509 val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6510
6511 skl_wm_level_from_reg_val(val, &wm->wm[level]);
6512 }
6513
6514 if (plane_id != PLANE_CURSOR)
6515 val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6516 else
6517 val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6518
6519 skl_wm_level_from_reg_val(val, &wm->trans_wm);
6520
6521 if (HAS_HW_SAGV_WM(dev_priv)) {
6522 if (plane_id != PLANE_CURSOR)
6523 val = intel_uncore_read(&dev_priv->uncore,
6524 PLANE_WM_SAGV(pipe, plane_id));
6525 else
6526 val = intel_uncore_read(&dev_priv->uncore,
6527 CUR_WM_SAGV(pipe));
6528
6529 skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
6530
6531 if (plane_id != PLANE_CURSOR)
6532 val = intel_uncore_read(&dev_priv->uncore,
6533 PLANE_WM_SAGV_TRANS(pipe, plane_id));
6534 else
6535 val = intel_uncore_read(&dev_priv->uncore,
6536 CUR_WM_SAGV_TRANS(pipe));
6537
6538 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
6539 } else if (DISPLAY_VER(dev_priv) >= 12) {
6540 wm->sagv.wm0 = wm->wm[0];
6541 wm->sagv.trans_wm = wm->trans_wm;
6542 }
6543 }
6544 }
6545
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)6546 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6547 {
6548 struct intel_dbuf_state *dbuf_state =
6549 to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6550 struct intel_crtc *crtc;
6551
6552 if (HAS_MBUS_JOINING(dev_priv))
6553 dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
6554
6555 for_each_intel_crtc(&dev_priv->drm, crtc) {
6556 struct intel_crtc_state *crtc_state =
6557 to_intel_crtc_state(crtc->base.state);
6558 enum pipe pipe = crtc->pipe;
6559 unsigned int mbus_offset;
6560 enum plane_id plane_id;
6561 u8 slices;
6562
6563 memset(&crtc_state->wm.skl.optimal, 0,
6564 sizeof(crtc_state->wm.skl.optimal));
6565 if (crtc_state->hw.active)
6566 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6567 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6568
6569 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
6570
6571 for_each_plane_id_on_crtc(crtc, plane_id) {
6572 struct skl_ddb_entry *ddb =
6573 &crtc_state->wm.skl.plane_ddb[plane_id];
6574 struct skl_ddb_entry *ddb_y =
6575 &crtc_state->wm.skl.plane_ddb_y[plane_id];
6576
6577 if (!crtc_state->hw.active)
6578 continue;
6579
6580 skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
6581 plane_id, ddb, ddb_y);
6582
6583 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
6584 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
6585 }
6586
6587 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
6588
6589 /*
6590 * Used for checking overlaps, so we need absolute
6591 * offsets instead of MBUS relative offsets.
6592 */
6593 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
6594 dbuf_state->joined_mbus);
6595 mbus_offset = mbus_ddb_offset(dev_priv, slices);
6596 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
6597 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
6598
6599 /* The slices actually used by the planes on the pipe */
6600 dbuf_state->slices[pipe] =
6601 skl_ddb_dbuf_slice_mask(dev_priv, &crtc_state->wm.skl.ddb);
6602
6603 drm_dbg_kms(&dev_priv->drm,
6604 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
6605 crtc->base.base.id, crtc->base.name,
6606 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
6607 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
6608 str_yes_no(dbuf_state->joined_mbus));
6609 }
6610
6611 dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6612 }
6613
skl_dbuf_is_misconfigured(struct drm_i915_private * i915)6614 static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
6615 {
6616 const struct intel_dbuf_state *dbuf_state =
6617 to_intel_dbuf_state(i915->dbuf.obj.state);
6618 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
6619 struct intel_crtc *crtc;
6620
6621 for_each_intel_crtc(&i915->drm, crtc) {
6622 const struct intel_crtc_state *crtc_state =
6623 to_intel_crtc_state(crtc->base.state);
6624
6625 entries[crtc->pipe] = crtc_state->wm.skl.ddb;
6626 }
6627
6628 for_each_intel_crtc(&i915->drm, crtc) {
6629 const struct intel_crtc_state *crtc_state =
6630 to_intel_crtc_state(crtc->base.state);
6631 u8 slices;
6632
6633 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
6634 dbuf_state->joined_mbus);
6635 if (dbuf_state->slices[crtc->pipe] & ~slices)
6636 return true;
6637
6638 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
6639 I915_MAX_PIPES, crtc->pipe))
6640 return true;
6641 }
6642
6643 return false;
6644 }
6645
skl_wm_sanitize(struct drm_i915_private * i915)6646 void skl_wm_sanitize(struct drm_i915_private *i915)
6647 {
6648 struct intel_crtc *crtc;
6649
6650 /*
6651 * On TGL/RKL (at least) the BIOS likes to assign the planes
6652 * to the wrong DBUF slices. This will cause an infinite loop
6653 * in skl_commit_modeset_enables() as it can't find a way to
6654 * transition between the old bogus DBUF layout to the new
6655 * proper DBUF layout without DBUF allocation overlaps between
6656 * the planes (which cannot be allowed or else the hardware
6657 * may hang). If we detect a bogus DBUF layout just turn off
6658 * all the planes so that skl_commit_modeset_enables() can
6659 * simply ignore them.
6660 */
6661 if (!skl_dbuf_is_misconfigured(i915))
6662 return;
6663
6664 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
6665
6666 for_each_intel_crtc(&i915->drm, crtc) {
6667 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6668 const struct intel_plane_state *plane_state =
6669 to_intel_plane_state(plane->base.state);
6670 struct intel_crtc_state *crtc_state =
6671 to_intel_crtc_state(crtc->base.state);
6672
6673 if (plane_state->uapi.visible)
6674 intel_plane_disable_noatomic(crtc, plane);
6675
6676 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
6677
6678 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
6679 }
6680 }
6681
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)6682 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6683 {
6684 struct drm_device *dev = crtc->base.dev;
6685 struct drm_i915_private *dev_priv = to_i915(dev);
6686 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6687 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6688 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6689 enum pipe pipe = crtc->pipe;
6690
6691 hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6692
6693 memset(active, 0, sizeof(*active));
6694
6695 active->pipe_enabled = crtc->active;
6696
6697 if (active->pipe_enabled) {
6698 u32 tmp = hw->wm_pipe[pipe];
6699
6700 /*
6701 * For active pipes LP0 watermark is marked as
6702 * enabled, and LP1+ watermaks as disabled since
6703 * we can't really reverse compute them in case
6704 * multiple pipes are active.
6705 */
6706 active->wm[0].enable = true;
6707 active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
6708 active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
6709 active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
6710 } else {
6711 int level, max_level = ilk_wm_max_level(dev_priv);
6712
6713 /*
6714 * For inactive pipes, all watermark levels
6715 * should be marked as enabled but zeroed,
6716 * which is what we'd compute them to.
6717 */
6718 for (level = 0; level <= max_level; level++)
6719 active->wm[level].enable = true;
6720 }
6721
6722 crtc->wm.active.ilk = *active;
6723 }
6724
6725 #define _FW_WM(value, plane) \
6726 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6727 #define _FW_WM_VLV(value, plane) \
6728 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6729
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)6730 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6731 struct g4x_wm_values *wm)
6732 {
6733 u32 tmp;
6734
6735 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6736 wm->sr.plane = _FW_WM(tmp, SR);
6737 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6738 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6739 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6740
6741 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6742 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6743 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6744 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6745 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6746 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6747 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6748
6749 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6750 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6751 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6752 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6753 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6754 }
6755
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)6756 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6757 struct vlv_wm_values *wm)
6758 {
6759 enum pipe pipe;
6760 u32 tmp;
6761
6762 for_each_pipe(dev_priv, pipe) {
6763 tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6764
6765 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6766 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6767 wm->ddl[pipe].plane[PLANE_CURSOR] =
6768 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6769 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6770 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6771 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6772 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6773 }
6774
6775 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6776 wm->sr.plane = _FW_WM(tmp, SR);
6777 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6778 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6779 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6780
6781 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6782 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6783 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6784 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6785
6786 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6787 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6788
6789 if (IS_CHERRYVIEW(dev_priv)) {
6790 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6791 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6792 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6793
6794 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6795 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6796 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6797
6798 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6799 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6800 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6801
6802 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6803 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6804 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6805 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6806 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6807 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6808 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6809 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6810 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6811 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6812 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6813 } else {
6814 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6815 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6816 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6817
6818 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6819 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6820 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6821 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6822 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6823 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6824 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6825 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6826 }
6827 }
6828
6829 #undef _FW_WM
6830 #undef _FW_WM_VLV
6831
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)6832 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6833 {
6834 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6835 struct intel_crtc *crtc;
6836
6837 g4x_read_wm_values(dev_priv, wm);
6838
6839 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6840
6841 for_each_intel_crtc(&dev_priv->drm, crtc) {
6842 struct intel_crtc_state *crtc_state =
6843 to_intel_crtc_state(crtc->base.state);
6844 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6845 struct g4x_pipe_wm *raw;
6846 enum pipe pipe = crtc->pipe;
6847 enum plane_id plane_id;
6848 int level, max_level;
6849
6850 active->cxsr = wm->cxsr;
6851 active->hpll_en = wm->hpll_en;
6852 active->fbc_en = wm->fbc_en;
6853
6854 active->sr = wm->sr;
6855 active->hpll = wm->hpll;
6856
6857 for_each_plane_id_on_crtc(crtc, plane_id) {
6858 active->wm.plane[plane_id] =
6859 wm->pipe[pipe].plane[plane_id];
6860 }
6861
6862 if (wm->cxsr && wm->hpll_en)
6863 max_level = G4X_WM_LEVEL_HPLL;
6864 else if (wm->cxsr)
6865 max_level = G4X_WM_LEVEL_SR;
6866 else
6867 max_level = G4X_WM_LEVEL_NORMAL;
6868
6869 level = G4X_WM_LEVEL_NORMAL;
6870 raw = &crtc_state->wm.g4x.raw[level];
6871 for_each_plane_id_on_crtc(crtc, plane_id)
6872 raw->plane[plane_id] = active->wm.plane[plane_id];
6873
6874 level = G4X_WM_LEVEL_SR;
6875 if (level > max_level)
6876 goto out;
6877
6878 raw = &crtc_state->wm.g4x.raw[level];
6879 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6880 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6881 raw->plane[PLANE_SPRITE0] = 0;
6882 raw->fbc = active->sr.fbc;
6883
6884 level = G4X_WM_LEVEL_HPLL;
6885 if (level > max_level)
6886 goto out;
6887
6888 raw = &crtc_state->wm.g4x.raw[level];
6889 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6890 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6891 raw->plane[PLANE_SPRITE0] = 0;
6892 raw->fbc = active->hpll.fbc;
6893
6894 level++;
6895 out:
6896 for_each_plane_id_on_crtc(crtc, plane_id)
6897 g4x_raw_plane_wm_set(crtc_state, level,
6898 plane_id, USHRT_MAX);
6899 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6900
6901 crtc_state->wm.g4x.optimal = *active;
6902 crtc_state->wm.g4x.intermediate = *active;
6903
6904 drm_dbg_kms(&dev_priv->drm,
6905 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6906 pipe_name(pipe),
6907 wm->pipe[pipe].plane[PLANE_PRIMARY],
6908 wm->pipe[pipe].plane[PLANE_CURSOR],
6909 wm->pipe[pipe].plane[PLANE_SPRITE0]);
6910 }
6911
6912 drm_dbg_kms(&dev_priv->drm,
6913 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6914 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6915 drm_dbg_kms(&dev_priv->drm,
6916 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6917 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6918 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6919 str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
6920 str_yes_no(wm->fbc_en));
6921 }
6922
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6923 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6924 {
6925 struct intel_plane *plane;
6926 struct intel_crtc *crtc;
6927
6928 mutex_lock(&dev_priv->wm.wm_mutex);
6929
6930 for_each_intel_plane(&dev_priv->drm, plane) {
6931 struct intel_crtc *crtc =
6932 intel_crtc_for_pipe(dev_priv, plane->pipe);
6933 struct intel_crtc_state *crtc_state =
6934 to_intel_crtc_state(crtc->base.state);
6935 struct intel_plane_state *plane_state =
6936 to_intel_plane_state(plane->base.state);
6937 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6938 enum plane_id plane_id = plane->id;
6939 int level;
6940
6941 if (plane_state->uapi.visible)
6942 continue;
6943
6944 for (level = 0; level < 3; level++) {
6945 struct g4x_pipe_wm *raw =
6946 &crtc_state->wm.g4x.raw[level];
6947
6948 raw->plane[plane_id] = 0;
6949 wm_state->wm.plane[plane_id] = 0;
6950 }
6951
6952 if (plane_id == PLANE_PRIMARY) {
6953 for (level = 0; level < 3; level++) {
6954 struct g4x_pipe_wm *raw =
6955 &crtc_state->wm.g4x.raw[level];
6956 raw->fbc = 0;
6957 }
6958
6959 wm_state->sr.fbc = 0;
6960 wm_state->hpll.fbc = 0;
6961 wm_state->fbc_en = false;
6962 }
6963 }
6964
6965 for_each_intel_crtc(&dev_priv->drm, crtc) {
6966 struct intel_crtc_state *crtc_state =
6967 to_intel_crtc_state(crtc->base.state);
6968
6969 crtc_state->wm.g4x.intermediate =
6970 crtc_state->wm.g4x.optimal;
6971 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6972 }
6973
6974 g4x_program_watermarks(dev_priv);
6975
6976 mutex_unlock(&dev_priv->wm.wm_mutex);
6977 }
6978
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6979 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6980 {
6981 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6982 struct intel_crtc *crtc;
6983 u32 val;
6984
6985 vlv_read_wm_values(dev_priv, wm);
6986
6987 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6988 wm->level = VLV_WM_LEVEL_PM2;
6989
6990 if (IS_CHERRYVIEW(dev_priv)) {
6991 vlv_punit_get(dev_priv);
6992
6993 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6994 if (val & DSP_MAXFIFO_PM5_ENABLE)
6995 wm->level = VLV_WM_LEVEL_PM5;
6996
6997 /*
6998 * If DDR DVFS is disabled in the BIOS, Punit
6999 * will never ack the request. So if that happens
7000 * assume we don't have to enable/disable DDR DVFS
7001 * dynamically. To test that just set the REQ_ACK
7002 * bit to poke the Punit, but don't change the
7003 * HIGH/LOW bits so that we don't actually change
7004 * the current state.
7005 */
7006 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
7007 val |= FORCE_DDR_FREQ_REQ_ACK;
7008 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
7009
7010 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
7011 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
7012 drm_dbg_kms(&dev_priv->drm,
7013 "Punit not acking DDR DVFS request, "
7014 "assuming DDR DVFS is disabled\n");
7015 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
7016 } else {
7017 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
7018 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
7019 wm->level = VLV_WM_LEVEL_DDR_DVFS;
7020 }
7021
7022 vlv_punit_put(dev_priv);
7023 }
7024
7025 for_each_intel_crtc(&dev_priv->drm, crtc) {
7026 struct intel_crtc_state *crtc_state =
7027 to_intel_crtc_state(crtc->base.state);
7028 struct vlv_wm_state *active = &crtc->wm.active.vlv;
7029 const struct vlv_fifo_state *fifo_state =
7030 &crtc_state->wm.vlv.fifo_state;
7031 enum pipe pipe = crtc->pipe;
7032 enum plane_id plane_id;
7033 int level;
7034
7035 vlv_get_fifo_size(crtc_state);
7036
7037 active->num_levels = wm->level + 1;
7038 active->cxsr = wm->cxsr;
7039
7040 for (level = 0; level < active->num_levels; level++) {
7041 struct g4x_pipe_wm *raw =
7042 &crtc_state->wm.vlv.raw[level];
7043
7044 active->sr[level].plane = wm->sr.plane;
7045 active->sr[level].cursor = wm->sr.cursor;
7046
7047 for_each_plane_id_on_crtc(crtc, plane_id) {
7048 active->wm[level].plane[plane_id] =
7049 wm->pipe[pipe].plane[plane_id];
7050
7051 raw->plane[plane_id] =
7052 vlv_invert_wm_value(active->wm[level].plane[plane_id],
7053 fifo_state->plane[plane_id]);
7054 }
7055 }
7056
7057 for_each_plane_id_on_crtc(crtc, plane_id)
7058 vlv_raw_plane_wm_set(crtc_state, level,
7059 plane_id, USHRT_MAX);
7060 vlv_invalidate_wms(crtc, active, level);
7061
7062 crtc_state->wm.vlv.optimal = *active;
7063 crtc_state->wm.vlv.intermediate = *active;
7064
7065 drm_dbg_kms(&dev_priv->drm,
7066 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
7067 pipe_name(pipe),
7068 wm->pipe[pipe].plane[PLANE_PRIMARY],
7069 wm->pipe[pipe].plane[PLANE_CURSOR],
7070 wm->pipe[pipe].plane[PLANE_SPRITE0],
7071 wm->pipe[pipe].plane[PLANE_SPRITE1]);
7072 }
7073
7074 drm_dbg_kms(&dev_priv->drm,
7075 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
7076 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
7077 }
7078
vlv_wm_sanitize(struct drm_i915_private * dev_priv)7079 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
7080 {
7081 struct intel_plane *plane;
7082 struct intel_crtc *crtc;
7083
7084 mutex_lock(&dev_priv->wm.wm_mutex);
7085
7086 for_each_intel_plane(&dev_priv->drm, plane) {
7087 struct intel_crtc *crtc =
7088 intel_crtc_for_pipe(dev_priv, plane->pipe);
7089 struct intel_crtc_state *crtc_state =
7090 to_intel_crtc_state(crtc->base.state);
7091 struct intel_plane_state *plane_state =
7092 to_intel_plane_state(plane->base.state);
7093 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
7094 const struct vlv_fifo_state *fifo_state =
7095 &crtc_state->wm.vlv.fifo_state;
7096 enum plane_id plane_id = plane->id;
7097 int level;
7098
7099 if (plane_state->uapi.visible)
7100 continue;
7101
7102 for (level = 0; level < wm_state->num_levels; level++) {
7103 struct g4x_pipe_wm *raw =
7104 &crtc_state->wm.vlv.raw[level];
7105
7106 raw->plane[plane_id] = 0;
7107
7108 wm_state->wm[level].plane[plane_id] =
7109 vlv_invert_wm_value(raw->plane[plane_id],
7110 fifo_state->plane[plane_id]);
7111 }
7112 }
7113
7114 for_each_intel_crtc(&dev_priv->drm, crtc) {
7115 struct intel_crtc_state *crtc_state =
7116 to_intel_crtc_state(crtc->base.state);
7117
7118 crtc_state->wm.vlv.intermediate =
7119 crtc_state->wm.vlv.optimal;
7120 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
7121 }
7122
7123 vlv_program_watermarks(dev_priv);
7124
7125 mutex_unlock(&dev_priv->wm.wm_mutex);
7126 }
7127
7128 /*
7129 * FIXME should probably kill this and improve
7130 * the real watermark readout/sanitation instead
7131 */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)7132 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7133 {
7134 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM_LP_ENABLE);
7135 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM_LP_ENABLE);
7136 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM_LP_ENABLE);
7137
7138 /*
7139 * Don't touch WM_LP_SPRITE_ENABLE here.
7140 * Doing so could cause underruns.
7141 */
7142 }
7143
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)7144 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
7145 {
7146 struct ilk_wm_values *hw = &dev_priv->wm.hw;
7147 struct intel_crtc *crtc;
7148
7149 ilk_init_lp_watermarks(dev_priv);
7150
7151 for_each_intel_crtc(&dev_priv->drm, crtc)
7152 ilk_pipe_wm_get_hw_state(crtc);
7153
7154 hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
7155 hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
7156 hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
7157
7158 hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
7159 if (DISPLAY_VER(dev_priv) >= 7) {
7160 hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
7161 hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
7162 }
7163
7164 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7165 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
7166 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7167 else if (IS_IVYBRIDGE(dev_priv))
7168 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
7169 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7170
7171 hw->enable_fbc_wm =
7172 !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
7173 }
7174
intel_enable_ipc(struct drm_i915_private * dev_priv)7175 void intel_enable_ipc(struct drm_i915_private *dev_priv)
7176 {
7177 u32 val;
7178
7179 if (!HAS_IPC(dev_priv))
7180 return;
7181
7182 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
7183
7184 if (dev_priv->ipc_enabled)
7185 val |= DISP_IPC_ENABLE;
7186 else
7187 val &= ~DISP_IPC_ENABLE;
7188
7189 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
7190 }
7191
intel_can_enable_ipc(struct drm_i915_private * dev_priv)7192 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
7193 {
7194 /* Display WA #0477 WaDisableIPC: skl */
7195 if (IS_SKYLAKE(dev_priv))
7196 return false;
7197
7198 /* Display WA #1141: SKL:all KBL:all CFL */
7199 if (IS_KABYLAKE(dev_priv) ||
7200 IS_COFFEELAKE(dev_priv) ||
7201 IS_COMETLAKE(dev_priv))
7202 return dev_priv->dram_info.symmetric_memory;
7203
7204 return true;
7205 }
7206
intel_init_ipc(struct drm_i915_private * dev_priv)7207 void intel_init_ipc(struct drm_i915_private *dev_priv)
7208 {
7209 if (!HAS_IPC(dev_priv))
7210 return;
7211
7212 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
7213
7214 intel_enable_ipc(dev_priv);
7215 }
7216
ibx_init_clock_gating(struct drm_i915_private * dev_priv)7217 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7218 {
7219 /*
7220 * On Ibex Peak and Cougar Point, we need to disable clock
7221 * gating for the panel power sequencer or it will fail to
7222 * start up when no ports are active.
7223 */
7224 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7225 }
7226
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)7227 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7228 {
7229 enum pipe pipe;
7230
7231 for_each_pipe(dev_priv, pipe) {
7232 intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
7233 intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
7234 DISP_TRICKLE_FEED_DISABLE);
7235
7236 intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
7237 intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
7238 }
7239 }
7240
ilk_init_clock_gating(struct drm_i915_private * dev_priv)7241 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7242 {
7243 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7244
7245 /*
7246 * Required for FBC
7247 * WaFbcDisableDpfcClockGating:ilk
7248 */
7249 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7250 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7251 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7252
7253 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
7254 MARIUNIT_CLOCK_GATE_DISABLE |
7255 SVSMUNIT_CLOCK_GATE_DISABLE);
7256 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
7257 VFMUNIT_CLOCK_GATE_DISABLE);
7258
7259 /*
7260 * According to the spec the following bits should be set in
7261 * order to enable memory self-refresh
7262 * The bit 22/21 of 0x42004
7263 * The bit 5 of 0x42020
7264 * The bit 15 of 0x45000
7265 */
7266 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7267 (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7268 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7269 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7270 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
7271 (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7272 DISP_FBC_WM_DIS));
7273
7274 /*
7275 * Based on the document from hardware guys the following bits
7276 * should be set unconditionally in order to enable FBC.
7277 * The bit 22 of 0x42000
7278 * The bit 22 of 0x42004
7279 * The bit 7,8,9 of 0x42020.
7280 */
7281 if (IS_IRONLAKE_M(dev_priv)) {
7282 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7283 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7284 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7285 ILK_FBCQ_DIS);
7286 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7287 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7288 ILK_DPARB_GATE);
7289 }
7290
7291 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7292
7293 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7294 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7295 ILK_ELPIN_409_SELECT);
7296
7297 g4x_disable_trickle_feed(dev_priv);
7298
7299 ibx_init_clock_gating(dev_priv);
7300 }
7301
cpt_init_clock_gating(struct drm_i915_private * dev_priv)7302 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7303 {
7304 enum pipe pipe;
7305 u32 val;
7306
7307 /*
7308 * On Ibex Peak and Cougar Point, we need to disable clock
7309 * gating for the panel power sequencer or it will fail to
7310 * start up when no ports are active.
7311 */
7312 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7313 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7314 PCH_CPUNIT_CLOCK_GATE_DISABLE);
7315 intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
7316 DPLS_EDP_PPS_FIX_DIS);
7317 /* The below fixes the weird display corruption, a few pixels shifted
7318 * downward, on (only) LVDS of some HP laptops with IVY.
7319 */
7320 for_each_pipe(dev_priv, pipe) {
7321 val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
7322 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7323 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7324 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7325 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7326 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7327 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7328 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
7329 }
7330 /* WADP0ClockGatingDisable */
7331 for_each_pipe(dev_priv, pipe) {
7332 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
7333 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7334 }
7335 }
7336
gen6_check_mch_setup(struct drm_i915_private * dev_priv)7337 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7338 {
7339 u32 tmp;
7340
7341 tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
7342 if (REG_FIELD_GET(SSKPD_WM0_MASK_SNB, tmp) != 12)
7343 drm_dbg_kms(&dev_priv->drm,
7344 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7345 tmp);
7346 }
7347
gen6_init_clock_gating(struct drm_i915_private * dev_priv)7348 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7349 {
7350 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7351
7352 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7353
7354 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7355 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7356 ILK_ELPIN_409_SELECT);
7357
7358 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7359 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7360 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7361 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7362
7363 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7364 * gating disable must be set. Failure to set it results in
7365 * flickering pixels due to Z write ordering failures after
7366 * some amount of runtime in the Mesa "fire" demo, and Unigine
7367 * Sanctuary and Tropics, and apparently anything else with
7368 * alpha test or pixel discard.
7369 *
7370 * According to the spec, bit 11 (RCCUNIT) must also be set,
7371 * but we didn't debug actual testcases to find it out.
7372 *
7373 * WaDisableRCCUnitClockGating:snb
7374 * WaDisableRCPBUnitClockGating:snb
7375 */
7376 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7377 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7378 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7379
7380 /*
7381 * According to the spec the following bits should be
7382 * set in order to enable memory self-refresh and fbc:
7383 * The bit21 and bit22 of 0x42000
7384 * The bit21 and bit22 of 0x42004
7385 * The bit5 and bit7 of 0x42020
7386 * The bit14 of 0x70180
7387 * The bit14 of 0x71180
7388 *
7389 * WaFbcAsynchFlipDisableFbcQueue:snb
7390 */
7391 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7392 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7393 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7394 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7395 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7396 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7397 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
7398 intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7399 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7400 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7401
7402 g4x_disable_trickle_feed(dev_priv);
7403
7404 cpt_init_clock_gating(dev_priv);
7405
7406 gen6_check_mch_setup(dev_priv);
7407 }
7408
lpt_init_clock_gating(struct drm_i915_private * dev_priv)7409 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7410 {
7411 /*
7412 * TODO: this bit should only be enabled when really needed, then
7413 * disabled when not needed anymore in order to save power.
7414 */
7415 if (HAS_PCH_LPT_LP(dev_priv))
7416 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
7417 intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7418 PCH_LP_PARTITION_LEVEL_DISABLE);
7419
7420 /* WADPOClockGatingDisable:hsw */
7421 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
7422 intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7423 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7424 }
7425
lpt_suspend_hw(struct drm_i915_private * dev_priv)7426 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7427 {
7428 if (HAS_PCH_LPT_LP(dev_priv)) {
7429 u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7430
7431 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7432 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7433 }
7434 }
7435
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)7436 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7437 int general_prio_credits,
7438 int high_prio_credits)
7439 {
7440 u32 misccpctl;
7441 u32 val;
7442
7443 /* WaTempDisableDOPClkGating:bdw */
7444 misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
7445 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7446
7447 val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7448 val &= ~L3_PRIO_CREDITS_MASK;
7449 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7450 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7451 intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7452
7453 /*
7454 * Wait at least 100 clocks before re-enabling clock gating.
7455 * See the definition of L3SQCREG1 in BSpec.
7456 */
7457 intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7458 udelay(1);
7459 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7460 }
7461
icl_init_clock_gating(struct drm_i915_private * dev_priv)7462 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7463 {
7464 /* Wa_1409120013:icl,ehl */
7465 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7466 DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7467
7468 /*Wa_14010594013:icl, ehl */
7469 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7470 0, ICL_DELAY_PMRSP);
7471 }
7472
gen12lp_init_clock_gating(struct drm_i915_private * dev_priv)7473 static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7474 {
7475 /* Wa_1409120013:tgl,rkl,adl-s,dg1,dg2 */
7476 if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
7477 IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_DG2(dev_priv))
7478 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7479 DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7480
7481 /* Wa_1409825376:tgl (pre-prod)*/
7482 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
7483 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7484 TGL_VRH_GATING_DIS);
7485
7486 /* Wa_14013723622:tgl,rkl,dg1,adl-s */
7487 if (DISPLAY_VER(dev_priv) == 12)
7488 intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
7489 CLKREQ_POLICY_MEM_UP_OVRD, 0);
7490 }
7491
adlp_init_clock_gating(struct drm_i915_private * dev_priv)7492 static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
7493 {
7494 gen12lp_init_clock_gating(dev_priv);
7495
7496 /* Wa_22011091694:adlp */
7497 intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
7498
7499 /* Bspec/49189 Initialize Sequence */
7500 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, DDI_CLOCK_REG_ACCESS, 0);
7501 }
7502
dg1_init_clock_gating(struct drm_i915_private * dev_priv)7503 static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7504 {
7505 gen12lp_init_clock_gating(dev_priv);
7506
7507 /* Wa_1409836686:dg1[a0] */
7508 if (IS_DG1_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
7509 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7510 DPT_GATING_DIS);
7511 }
7512
xehpsdv_init_clock_gating(struct drm_i915_private * dev_priv)7513 static void xehpsdv_init_clock_gating(struct drm_i915_private *dev_priv)
7514 {
7515 /* Wa_22010146351:xehpsdv */
7516 if (IS_XEHPSDV_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
7517 intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS);
7518 }
7519
dg2_init_clock_gating(struct drm_i915_private * i915)7520 static void dg2_init_clock_gating(struct drm_i915_private *i915)
7521 {
7522 /* Wa_22010954014:dg2_g10 */
7523 if (IS_DG2_G10(i915))
7524 intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
7525 SGSI_SIDECLK_DIS);
7526
7527 /*
7528 * Wa_14010733611:dg2_g10
7529 * Wa_22010146351:dg2_g10
7530 */
7531 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
7532 intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
7533 SGR_DIS | SGGI_DIS);
7534 }
7535
cnp_init_clock_gating(struct drm_i915_private * dev_priv)7536 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7537 {
7538 if (!HAS_PCH_CNP(dev_priv))
7539 return;
7540
7541 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7542 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7543 CNP_PWM_CGE_GATING_DISABLE);
7544 }
7545
cfl_init_clock_gating(struct drm_i915_private * dev_priv)7546 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7547 {
7548 cnp_init_clock_gating(dev_priv);
7549 gen9_init_clock_gating(dev_priv);
7550
7551 /* WAC6entrylatency:cfl */
7552 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7553 FBC_LLC_FULLY_OPEN);
7554
7555 /*
7556 * WaFbcTurnOffFbcWatermark:cfl
7557 * Display WA #0562: cfl
7558 */
7559 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7560 DISP_FBC_WM_DIS);
7561
7562 /*
7563 * WaFbcNukeOnHostModify:cfl
7564 * Display WA #0873: cfl
7565 */
7566 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7567 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7568 DPFC_NUKE_ON_ANY_MODIFICATION);
7569 }
7570
kbl_init_clock_gating(struct drm_i915_private * dev_priv)7571 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7572 {
7573 gen9_init_clock_gating(dev_priv);
7574
7575 /* WAC6entrylatency:kbl */
7576 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7577 FBC_LLC_FULLY_OPEN);
7578
7579 /* WaDisableSDEUnitClockGating:kbl */
7580 if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
7581 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7582 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7583
7584 /* WaDisableGamClockGating:kbl */
7585 if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
7586 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7587 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7588
7589 /*
7590 * WaFbcTurnOffFbcWatermark:kbl
7591 * Display WA #0562: kbl
7592 */
7593 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7594 DISP_FBC_WM_DIS);
7595
7596 /*
7597 * WaFbcNukeOnHostModify:kbl
7598 * Display WA #0873: kbl
7599 */
7600 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7601 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7602 DPFC_NUKE_ON_ANY_MODIFICATION);
7603 }
7604
skl_init_clock_gating(struct drm_i915_private * dev_priv)7605 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7606 {
7607 gen9_init_clock_gating(dev_priv);
7608
7609 /* WaDisableDopClockGating:skl */
7610 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7611 ~GEN7_DOP_CLOCK_GATE_ENABLE);
7612
7613 /* WAC6entrylatency:skl */
7614 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7615 FBC_LLC_FULLY_OPEN);
7616
7617 /*
7618 * WaFbcTurnOffFbcWatermark:skl
7619 * Display WA #0562: skl
7620 */
7621 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7622 DISP_FBC_WM_DIS);
7623
7624 /*
7625 * WaFbcNukeOnHostModify:skl
7626 * Display WA #0873: skl
7627 */
7628 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7629 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7630 DPFC_NUKE_ON_ANY_MODIFICATION);
7631
7632 /*
7633 * WaFbcHighMemBwCorruptionAvoidance:skl
7634 * Display WA #0883: skl
7635 */
7636 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7637 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7638 DPFC_DISABLE_DUMMY0);
7639 }
7640
bdw_init_clock_gating(struct drm_i915_private * dev_priv)7641 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7642 {
7643 enum pipe pipe;
7644
7645 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7646 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7647 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7648 HSW_FBCQ_DIS);
7649
7650 /* WaSwitchSolVfFArbitrationPriority:bdw */
7651 intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7652
7653 /* WaPsrDPAMaskVBlankInSRD:bdw */
7654 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
7655 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7656
7657 for_each_pipe(dev_priv, pipe) {
7658 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7659 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7660 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7661 BDW_DPRS_MASK_VBLANK_SRD);
7662 }
7663
7664 /* WaVSRefCountFullforceMissDisable:bdw */
7665 /* WaDSRefCountFullforceMissDisable:bdw */
7666 intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7667 intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7668 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7669
7670 intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
7671 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7672
7673 /* WaDisableSDEUnitClockGating:bdw */
7674 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7675 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7676
7677 /* WaProgramL3SqcReg1Default:bdw */
7678 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7679
7680 /* WaKVMNotificationOnConfigChange:bdw */
7681 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7682 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7683
7684 lpt_init_clock_gating(dev_priv);
7685
7686 /* WaDisableDopClockGating:bdw
7687 *
7688 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7689 * clock gating.
7690 */
7691 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7692 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7693 }
7694
hsw_init_clock_gating(struct drm_i915_private * dev_priv)7695 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7696 {
7697 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7698 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7699 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7700 HSW_FBCQ_DIS);
7701
7702 /* This is required by WaCatErrorRejectionIssue:hsw */
7703 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7704 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7705 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7706
7707 /* WaSwitchSolVfFArbitrationPriority:hsw */
7708 intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7709
7710 lpt_init_clock_gating(dev_priv);
7711 }
7712
ivb_init_clock_gating(struct drm_i915_private * dev_priv)7713 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7714 {
7715 u32 snpcr;
7716
7717 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7718
7719 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
7720 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7721 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7722 ILK_FBCQ_DIS);
7723
7724 /* WaDisableBackToBackFlipFix:ivb */
7725 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7726 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7727 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7728
7729 if (IS_IVB_GT1(dev_priv))
7730 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7731 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7732 else {
7733 /* must write both registers */
7734 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7735 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7736 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7737 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7738 }
7739
7740 /*
7741 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7742 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7743 */
7744 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7745 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7746
7747 /* This is required by WaCatErrorRejectionIssue:ivb */
7748 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7749 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7750 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7751
7752 g4x_disable_trickle_feed(dev_priv);
7753
7754 snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7755 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7756 snpcr |= GEN6_MBC_SNPCR_MED;
7757 intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7758
7759 if (!HAS_PCH_NOP(dev_priv))
7760 cpt_init_clock_gating(dev_priv);
7761
7762 gen6_check_mch_setup(dev_priv);
7763 }
7764
vlv_init_clock_gating(struct drm_i915_private * dev_priv)7765 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7766 {
7767 /* WaDisableBackToBackFlipFix:vlv */
7768 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7769 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7770 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7771
7772 /* WaDisableDopClockGating:vlv */
7773 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7774 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7775
7776 /* This is required by WaCatErrorRejectionIssue:vlv */
7777 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7778 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7779 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7780
7781 /*
7782 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7783 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7784 */
7785 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7786 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7787
7788 /* WaDisableL3Bank2xClockGate:vlv
7789 * Disabling L3 clock gating- MMIO 940c[25] = 1
7790 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7791 intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
7792 intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7793
7794 /*
7795 * WaDisableVLVClockGating_VBIIssue:vlv
7796 * Disable clock gating on th GCFG unit to prevent a delay
7797 * in the reporting of vblank events.
7798 */
7799 intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7800 }
7801
chv_init_clock_gating(struct drm_i915_private * dev_priv)7802 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7803 {
7804 /* WaVSRefCountFullforceMissDisable:chv */
7805 /* WaDSRefCountFullforceMissDisable:chv */
7806 intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7807 intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7808 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7809
7810 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7811 intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
7812 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7813
7814 /* WaDisableCSUnitClockGating:chv */
7815 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7816 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7817
7818 /* WaDisableSDEUnitClockGating:chv */
7819 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7820 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7821
7822 /*
7823 * WaProgramL3SqcReg1Default:chv
7824 * See gfxspecs/Related Documents/Performance Guide/
7825 * LSQC Setting Recommendations.
7826 */
7827 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7828 }
7829
g4x_init_clock_gating(struct drm_i915_private * dev_priv)7830 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7831 {
7832 u32 dspclk_gate;
7833
7834 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
7835 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7836 GS_UNIT_CLOCK_GATE_DISABLE |
7837 CL_UNIT_CLOCK_GATE_DISABLE);
7838 intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7839 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7840 OVRUNIT_CLOCK_GATE_DISABLE |
7841 OVCUNIT_CLOCK_GATE_DISABLE;
7842 if (IS_GM45(dev_priv))
7843 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7844 intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7845
7846 g4x_disable_trickle_feed(dev_priv);
7847 }
7848
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)7849 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7850 {
7851 struct intel_uncore *uncore = &dev_priv->uncore;
7852
7853 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7854 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7855 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7856 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7857 intel_uncore_write16(uncore, DEUC, 0);
7858 intel_uncore_write(uncore,
7859 MI_ARB_STATE,
7860 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7861 }
7862
i965g_init_clock_gating(struct drm_i915_private * dev_priv)7863 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7864 {
7865 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7866 I965_RCC_CLOCK_GATE_DISABLE |
7867 I965_RCPB_CLOCK_GATE_DISABLE |
7868 I965_ISC_CLOCK_GATE_DISABLE |
7869 I965_FBC_CLOCK_GATE_DISABLE);
7870 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
7871 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7872 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7873 }
7874
gen3_init_clock_gating(struct drm_i915_private * dev_priv)7875 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7876 {
7877 u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7878
7879 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7880 DSTATE_DOT_CLOCK_GATING;
7881 intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7882
7883 if (IS_PINEVIEW(dev_priv))
7884 intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
7885 _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7886
7887 /* IIR "flip pending" means done if this bit is set */
7888 intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
7889 _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7890
7891 /* interrupts should cause a wake up from C3 */
7892 intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7893
7894 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7895 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7896
7897 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7898 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7899 }
7900
i85x_init_clock_gating(struct drm_i915_private * dev_priv)7901 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7902 {
7903 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7904
7905 /* interrupts should cause a wake up from C3 */
7906 intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7907 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7908
7909 intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7910 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7911
7912 /*
7913 * Have FBC ignore 3D activity since we use software
7914 * render tracking, and otherwise a pure 3D workload
7915 * (even if it just renders a single frame and then does
7916 * abosultely nothing) would not allow FBC to recompress
7917 * until a 2D blit occurs.
7918 */
7919 intel_uncore_write(&dev_priv->uncore, SCPD0,
7920 _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7921 }
7922
i830_init_clock_gating(struct drm_i915_private * dev_priv)7923 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7924 {
7925 intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7926 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7927 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7928 }
7929
intel_init_clock_gating(struct drm_i915_private * dev_priv)7930 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7931 {
7932 dev_priv->clock_gating_funcs->init_clock_gating(dev_priv);
7933 }
7934
intel_suspend_hw(struct drm_i915_private * dev_priv)7935 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7936 {
7937 if (HAS_PCH_LPT(dev_priv))
7938 lpt_suspend_hw(dev_priv);
7939 }
7940
nop_init_clock_gating(struct drm_i915_private * dev_priv)7941 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7942 {
7943 drm_dbg_kms(&dev_priv->drm,
7944 "No clock gating settings or workarounds applied.\n");
7945 }
7946
7947 #define CG_FUNCS(platform) \
7948 static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \
7949 .init_clock_gating = platform##_init_clock_gating, \
7950 }
7951
7952 CG_FUNCS(dg2);
7953 CG_FUNCS(xehpsdv);
7954 CG_FUNCS(adlp);
7955 CG_FUNCS(dg1);
7956 CG_FUNCS(gen12lp);
7957 CG_FUNCS(icl);
7958 CG_FUNCS(cfl);
7959 CG_FUNCS(skl);
7960 CG_FUNCS(kbl);
7961 CG_FUNCS(bxt);
7962 CG_FUNCS(glk);
7963 CG_FUNCS(bdw);
7964 CG_FUNCS(chv);
7965 CG_FUNCS(hsw);
7966 CG_FUNCS(ivb);
7967 CG_FUNCS(vlv);
7968 CG_FUNCS(gen6);
7969 CG_FUNCS(ilk);
7970 CG_FUNCS(g4x);
7971 CG_FUNCS(i965gm);
7972 CG_FUNCS(i965g);
7973 CG_FUNCS(gen3);
7974 CG_FUNCS(i85x);
7975 CG_FUNCS(i830);
7976 CG_FUNCS(nop);
7977 #undef CG_FUNCS
7978
7979 /**
7980 * intel_init_clock_gating_hooks - setup the clock gating hooks
7981 * @dev_priv: device private
7982 *
7983 * Setup the hooks that configure which clocks of a given platform can be
7984 * gated and also apply various GT and display specific workarounds for these
7985 * platforms. Note that some GT specific workarounds are applied separately
7986 * when GPU contexts or batchbuffers start their execution.
7987 */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)7988 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7989 {
7990 if (IS_DG2(dev_priv))
7991 dev_priv->clock_gating_funcs = &dg2_clock_gating_funcs;
7992 else if (IS_XEHPSDV(dev_priv))
7993 dev_priv->clock_gating_funcs = &xehpsdv_clock_gating_funcs;
7994 else if (IS_ALDERLAKE_P(dev_priv))
7995 dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs;
7996 else if (IS_DG1(dev_priv))
7997 dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs;
7998 else if (GRAPHICS_VER(dev_priv) == 12)
7999 dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs;
8000 else if (GRAPHICS_VER(dev_priv) == 11)
8001 dev_priv->clock_gating_funcs = &icl_clock_gating_funcs;
8002 else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
8003 dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs;
8004 else if (IS_SKYLAKE(dev_priv))
8005 dev_priv->clock_gating_funcs = &skl_clock_gating_funcs;
8006 else if (IS_KABYLAKE(dev_priv))
8007 dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs;
8008 else if (IS_BROXTON(dev_priv))
8009 dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs;
8010 else if (IS_GEMINILAKE(dev_priv))
8011 dev_priv->clock_gating_funcs = &glk_clock_gating_funcs;
8012 else if (IS_BROADWELL(dev_priv))
8013 dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs;
8014 else if (IS_CHERRYVIEW(dev_priv))
8015 dev_priv->clock_gating_funcs = &chv_clock_gating_funcs;
8016 else if (IS_HASWELL(dev_priv))
8017 dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs;
8018 else if (IS_IVYBRIDGE(dev_priv))
8019 dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs;
8020 else if (IS_VALLEYVIEW(dev_priv))
8021 dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs;
8022 else if (GRAPHICS_VER(dev_priv) == 6)
8023 dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs;
8024 else if (GRAPHICS_VER(dev_priv) == 5)
8025 dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs;
8026 else if (IS_G4X(dev_priv))
8027 dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs;
8028 else if (IS_I965GM(dev_priv))
8029 dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs;
8030 else if (IS_I965G(dev_priv))
8031 dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs;
8032 else if (GRAPHICS_VER(dev_priv) == 3)
8033 dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs;
8034 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8035 dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs;
8036 else if (GRAPHICS_VER(dev_priv) == 2)
8037 dev_priv->clock_gating_funcs = &i830_clock_gating_funcs;
8038 else {
8039 MISSING_CASE(INTEL_DEVID(dev_priv));
8040 dev_priv->clock_gating_funcs = &nop_clock_gating_funcs;
8041 }
8042 }
8043
8044 static const struct drm_i915_wm_disp_funcs skl_wm_funcs = {
8045 .compute_global_watermarks = skl_compute_wm,
8046 };
8047
8048 static const struct drm_i915_wm_disp_funcs ilk_wm_funcs = {
8049 .compute_pipe_wm = ilk_compute_pipe_wm,
8050 .compute_intermediate_wm = ilk_compute_intermediate_wm,
8051 .initial_watermarks = ilk_initial_watermarks,
8052 .optimize_watermarks = ilk_optimize_watermarks,
8053 };
8054
8055 static const struct drm_i915_wm_disp_funcs vlv_wm_funcs = {
8056 .compute_pipe_wm = vlv_compute_pipe_wm,
8057 .compute_intermediate_wm = vlv_compute_intermediate_wm,
8058 .initial_watermarks = vlv_initial_watermarks,
8059 .optimize_watermarks = vlv_optimize_watermarks,
8060 .atomic_update_watermarks = vlv_atomic_update_fifo,
8061 };
8062
8063 static const struct drm_i915_wm_disp_funcs g4x_wm_funcs = {
8064 .compute_pipe_wm = g4x_compute_pipe_wm,
8065 .compute_intermediate_wm = g4x_compute_intermediate_wm,
8066 .initial_watermarks = g4x_initial_watermarks,
8067 .optimize_watermarks = g4x_optimize_watermarks,
8068 };
8069
8070 static const struct drm_i915_wm_disp_funcs pnv_wm_funcs = {
8071 .update_wm = pnv_update_wm,
8072 };
8073
8074 static const struct drm_i915_wm_disp_funcs i965_wm_funcs = {
8075 .update_wm = i965_update_wm,
8076 };
8077
8078 static const struct drm_i915_wm_disp_funcs i9xx_wm_funcs = {
8079 .update_wm = i9xx_update_wm,
8080 };
8081
8082 static const struct drm_i915_wm_disp_funcs i845_wm_funcs = {
8083 .update_wm = i845_update_wm,
8084 };
8085
8086 static const struct drm_i915_wm_disp_funcs nop_funcs = {
8087 };
8088
8089 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)8090 void intel_init_pm(struct drm_i915_private *dev_priv)
8091 {
8092 /* For cxsr */
8093 if (IS_PINEVIEW(dev_priv))
8094 pnv_get_mem_freq(dev_priv);
8095 else if (GRAPHICS_VER(dev_priv) == 5)
8096 ilk_get_mem_freq(dev_priv);
8097
8098 intel_sagv_init(dev_priv);
8099
8100 /* For FIFO watermark updates */
8101 if (DISPLAY_VER(dev_priv) >= 9) {
8102 skl_setup_wm_latency(dev_priv);
8103 dev_priv->wm_disp = &skl_wm_funcs;
8104 } else if (HAS_PCH_SPLIT(dev_priv)) {
8105 ilk_setup_wm_latency(dev_priv);
8106
8107 if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
8108 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8109 (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
8110 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8111 dev_priv->wm_disp = &ilk_wm_funcs;
8112 } else {
8113 drm_dbg_kms(&dev_priv->drm,
8114 "Failed to read display plane latency. "
8115 "Disable CxSR\n");
8116 dev_priv->wm_disp = &nop_funcs;
8117 }
8118 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8119 vlv_setup_wm_latency(dev_priv);
8120 dev_priv->wm_disp = &vlv_wm_funcs;
8121 } else if (IS_G4X(dev_priv)) {
8122 g4x_setup_wm_latency(dev_priv);
8123 dev_priv->wm_disp = &g4x_wm_funcs;
8124 } else if (IS_PINEVIEW(dev_priv)) {
8125 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
8126 dev_priv->is_ddr3,
8127 dev_priv->fsb_freq,
8128 dev_priv->mem_freq)) {
8129 drm_info(&dev_priv->drm,
8130 "failed to find known CxSR latency "
8131 "(found ddr%s fsb freq %d, mem freq %d), "
8132 "disabling CxSR\n",
8133 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8134 dev_priv->fsb_freq, dev_priv->mem_freq);
8135 /* Disable CxSR and never update its watermark again */
8136 intel_set_memory_cxsr(dev_priv, false);
8137 dev_priv->wm_disp = &nop_funcs;
8138 } else
8139 dev_priv->wm_disp = &pnv_wm_funcs;
8140 } else if (DISPLAY_VER(dev_priv) == 4) {
8141 dev_priv->wm_disp = &i965_wm_funcs;
8142 } else if (DISPLAY_VER(dev_priv) == 3) {
8143 dev_priv->wm_disp = &i9xx_wm_funcs;
8144 } else if (DISPLAY_VER(dev_priv) == 2) {
8145 if (INTEL_NUM_PIPES(dev_priv) == 1)
8146 dev_priv->wm_disp = &i845_wm_funcs;
8147 else
8148 dev_priv->wm_disp = &i9xx_wm_funcs;
8149 } else {
8150 drm_err(&dev_priv->drm,
8151 "unexpected fall-through in %s\n", __func__);
8152 dev_priv->wm_disp = &nop_funcs;
8153 }
8154 }
8155
intel_pm_setup(struct drm_i915_private * dev_priv)8156 void intel_pm_setup(struct drm_i915_private *dev_priv)
8157 {
8158 dev_priv->runtime_pm.suspended = false;
8159 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
8160 }
8161
intel_dbuf_duplicate_state(struct intel_global_obj * obj)8162 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
8163 {
8164 struct intel_dbuf_state *dbuf_state;
8165
8166 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
8167 if (!dbuf_state)
8168 return NULL;
8169
8170 return &dbuf_state->base;
8171 }
8172
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)8173 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
8174 struct intel_global_state *state)
8175 {
8176 kfree(state);
8177 }
8178
8179 static const struct intel_global_state_funcs intel_dbuf_funcs = {
8180 .atomic_duplicate_state = intel_dbuf_duplicate_state,
8181 .atomic_destroy_state = intel_dbuf_destroy_state,
8182 };
8183
8184 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)8185 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
8186 {
8187 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8188 struct intel_global_state *dbuf_state;
8189
8190 dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
8191 if (IS_ERR(dbuf_state))
8192 return ERR_CAST(dbuf_state);
8193
8194 return to_intel_dbuf_state(dbuf_state);
8195 }
8196
intel_dbuf_init(struct drm_i915_private * dev_priv)8197 int intel_dbuf_init(struct drm_i915_private *dev_priv)
8198 {
8199 struct intel_dbuf_state *dbuf_state;
8200
8201 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
8202 if (!dbuf_state)
8203 return -ENOMEM;
8204
8205 intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
8206 &dbuf_state->base, &intel_dbuf_funcs);
8207
8208 return 0;
8209 }
8210
8211 /*
8212 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
8213 * update the request state of all DBUS slices.
8214 */
update_mbus_pre_enable(struct intel_atomic_state * state)8215 static void update_mbus_pre_enable(struct intel_atomic_state *state)
8216 {
8217 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8218 u32 mbus_ctl, dbuf_min_tracker_val;
8219 enum dbuf_slice slice;
8220 const struct intel_dbuf_state *dbuf_state =
8221 intel_atomic_get_new_dbuf_state(state);
8222
8223 if (!HAS_MBUS_JOINING(dev_priv))
8224 return;
8225
8226 /*
8227 * TODO: Implement vblank synchronized MBUS joining changes.
8228 * Must be properly coordinated with dbuf reprogramming.
8229 */
8230 if (dbuf_state->joined_mbus) {
8231 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
8232 MBUS_JOIN_PIPE_SELECT_NONE;
8233 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
8234 } else {
8235 mbus_ctl = MBUS_HASHING_MODE_2x2 |
8236 MBUS_JOIN_PIPE_SELECT_NONE;
8237 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
8238 }
8239
8240 intel_de_rmw(dev_priv, MBUS_CTL,
8241 MBUS_HASHING_MODE_MASK | MBUS_JOIN |
8242 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
8243
8244 for_each_dbuf_slice(dev_priv, slice)
8245 intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
8246 DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
8247 dbuf_min_tracker_val);
8248 }
8249
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)8250 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
8251 {
8252 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8253 const struct intel_dbuf_state *new_dbuf_state =
8254 intel_atomic_get_new_dbuf_state(state);
8255 const struct intel_dbuf_state *old_dbuf_state =
8256 intel_atomic_get_old_dbuf_state(state);
8257
8258 if (!new_dbuf_state ||
8259 ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8260 && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8261 return;
8262
8263 WARN_ON(!new_dbuf_state->base.changed);
8264
8265 update_mbus_pre_enable(state);
8266 gen9_dbuf_slices_update(dev_priv,
8267 old_dbuf_state->enabled_slices |
8268 new_dbuf_state->enabled_slices);
8269 }
8270
intel_dbuf_post_plane_update(struct intel_atomic_state * state)8271 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
8272 {
8273 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8274 const struct intel_dbuf_state *new_dbuf_state =
8275 intel_atomic_get_new_dbuf_state(state);
8276 const struct intel_dbuf_state *old_dbuf_state =
8277 intel_atomic_get_old_dbuf_state(state);
8278
8279 if (!new_dbuf_state ||
8280 ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8281 && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8282 return;
8283
8284 WARN_ON(!new_dbuf_state->base.changed);
8285
8286 gen9_dbuf_slices_update(dev_priv,
8287 new_dbuf_state->enabled_slices);
8288 }
8289
intel_mbus_dbox_update(struct intel_atomic_state * state)8290 void intel_mbus_dbox_update(struct intel_atomic_state *state)
8291 {
8292 struct drm_i915_private *i915 = to_i915(state->base.dev);
8293 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
8294 const struct intel_crtc_state *new_crtc_state;
8295 const struct intel_crtc *crtc;
8296 u32 val = 0;
8297 int i;
8298
8299 if (DISPLAY_VER(i915) < 11)
8300 return;
8301
8302 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
8303 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
8304 if (!new_dbuf_state ||
8305 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
8306 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
8307 return;
8308
8309 if (DISPLAY_VER(i915) >= 12) {
8310 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
8311 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
8312 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
8313 }
8314
8315 /* Wa_22010947358:adl-p */
8316 if (IS_ALDERLAKE_P(i915))
8317 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
8318 MBUS_DBOX_A_CREDIT(4);
8319 else
8320 val |= MBUS_DBOX_A_CREDIT(2);
8321
8322 if (IS_ALDERLAKE_P(i915)) {
8323 val |= MBUS_DBOX_BW_CREDIT(2);
8324 val |= MBUS_DBOX_B_CREDIT(8);
8325 } else if (DISPLAY_VER(i915) >= 12) {
8326 val |= MBUS_DBOX_BW_CREDIT(2);
8327 val |= MBUS_DBOX_B_CREDIT(12);
8328 } else {
8329 val |= MBUS_DBOX_BW_CREDIT(1);
8330 val |= MBUS_DBOX_B_CREDIT(8);
8331 }
8332
8333 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
8334 if (!new_crtc_state->hw.active ||
8335 !intel_crtc_needs_modeset(new_crtc_state))
8336 continue;
8337
8338 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), val);
8339 }
8340 }
8341