1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_regs.h"
27 #include "intel_pcode.h"
28
29 #define KEY_LOAD_TRIES 5
30 #define HDCP2_LC_RETRY_CNT 3
31
intel_conn_to_vcpi(struct intel_connector * connector)32 static int intel_conn_to_vcpi(struct intel_connector *connector)
33 {
34 struct drm_dp_mst_topology_mgr *mgr;
35 struct drm_dp_mst_atomic_payload *payload;
36 struct drm_dp_mst_topology_state *mst_state;
37 int vcpi = 0;
38
39 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
40 if (!connector->port)
41 return 0;
42 mgr = connector->port->mgr;
43
44 drm_modeset_lock(&mgr->base.lock, NULL);
45 mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
46 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
47 if (drm_WARN_ON(mgr->dev, !payload))
48 goto out;
49
50 vcpi = payload->vcpi;
51 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
52 vcpi = 0;
53 goto out;
54 }
55 out:
56 drm_modeset_unlock(&mgr->base.lock);
57 return vcpi;
58 }
59
60 /*
61 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
62 * content_type for all streams in DP MST topology because security f/w doesn't
63 * have any provision to mark content_type for each stream separately, it marks
64 * all available streams with the content_type proivided at the time of port
65 * authentication. This may prohibit the userspace to use type1 content on
66 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
67 * DP MST topology. Though it is not compulsory, security fw should change its
68 * policy to mark different content_types for different streams.
69 */
70 static int
intel_hdcp_required_content_stream(struct intel_digital_port * dig_port)71 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
72 {
73 struct drm_connector_list_iter conn_iter;
74 struct intel_digital_port *conn_dig_port;
75 struct intel_connector *connector;
76 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
77 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
78 bool enforce_type0 = false;
79 int k;
80
81 data->k = 0;
82
83 if (dig_port->hdcp_auth_status)
84 return 0;
85
86 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
87 for_each_intel_connector_iter(connector, &conn_iter) {
88 if (connector->base.status == connector_status_disconnected)
89 continue;
90
91 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
92 continue;
93
94 conn_dig_port = intel_attached_dig_port(connector);
95 if (conn_dig_port != dig_port)
96 continue;
97
98 if (!enforce_type0 && !dig_port->hdcp_mst_type1_capable)
99 enforce_type0 = true;
100
101 data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
102 data->k++;
103
104 /* if there is only one active stream */
105 if (dig_port->dp.active_mst_links <= 1)
106 break;
107 }
108 drm_connector_list_iter_end(&conn_iter);
109
110 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
111 return -EINVAL;
112
113 /*
114 * Apply common protection level across all streams in DP MST Topology.
115 * Use highest supported content type for all streams in DP MST Topology.
116 */
117 for (k = 0; k < data->k; k++)
118 data->streams[k].stream_type =
119 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
120
121 return 0;
122 }
123
intel_hdcp_prepare_streams(struct intel_connector * connector)124 static int intel_hdcp_prepare_streams(struct intel_connector *connector)
125 {
126 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
127 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
128 struct intel_hdcp *hdcp = &connector->hdcp;
129 int ret;
130
131 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
132 data->k = 1;
133 data->streams[0].stream_type = hdcp->content_type;
134 } else {
135 ret = intel_hdcp_required_content_stream(dig_port);
136 if (ret)
137 return ret;
138 }
139
140 return 0;
141 }
142
143 static
intel_hdcp_is_ksv_valid(u8 * ksv)144 bool intel_hdcp_is_ksv_valid(u8 *ksv)
145 {
146 int i, ones = 0;
147 /* KSV has 20 1's and 20 0's */
148 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
149 ones += hweight8(ksv[i]);
150 if (ones != 20)
151 return false;
152
153 return true;
154 }
155
156 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)157 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
158 const struct intel_hdcp_shim *shim, u8 *bksv)
159 {
160 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
161 int ret, i, tries = 2;
162
163 /* HDCP spec states that we must retry the bksv if it is invalid */
164 for (i = 0; i < tries; i++) {
165 ret = shim->read_bksv(dig_port, bksv);
166 if (ret)
167 return ret;
168 if (intel_hdcp_is_ksv_valid(bksv))
169 break;
170 }
171 if (i == tries) {
172 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
173 return -ENODEV;
174 }
175
176 return 0;
177 }
178
179 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_capable(struct intel_connector * connector)180 bool intel_hdcp_capable(struct intel_connector *connector)
181 {
182 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
183 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
184 bool capable = false;
185 u8 bksv[5];
186
187 if (!shim)
188 return capable;
189
190 if (shim->hdcp_capable) {
191 shim->hdcp_capable(dig_port, &capable);
192 } else {
193 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
194 capable = true;
195 }
196
197 return capable;
198 }
199
200 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_capable(struct intel_connector * connector)201 bool intel_hdcp2_capable(struct intel_connector *connector)
202 {
203 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
204 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
205 struct intel_hdcp *hdcp = &connector->hdcp;
206 bool capable = false;
207
208 /* I915 support for HDCP2.2 */
209 if (!hdcp->hdcp2_supported)
210 return false;
211
212 /* MEI interface is solid */
213 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
214 if (!dev_priv->display.hdcp.comp_added || !dev_priv->display.hdcp.master) {
215 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
216 return false;
217 }
218 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
219
220 /* Sink's capability for HDCP2.2 */
221 hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
222
223 return capable;
224 }
225
intel_hdcp_in_use(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,enum port port)226 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
227 enum transcoder cpu_transcoder, enum port port)
228 {
229 return intel_de_read(dev_priv,
230 HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
231 HDCP_STATUS_ENC;
232 }
233
intel_hdcp2_in_use(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,enum port port)234 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
235 enum transcoder cpu_transcoder, enum port port)
236 {
237 return intel_de_read(dev_priv,
238 HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
239 LINK_ENCRYPTION_STATUS;
240 }
241
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)242 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
243 const struct intel_hdcp_shim *shim)
244 {
245 int ret, read_ret;
246 bool ksv_ready;
247
248 /* Poll for ksv list ready (spec says max time allowed is 5s) */
249 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
250 &ksv_ready),
251 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
252 100 * 1000);
253 if (ret)
254 return ret;
255 if (read_ret)
256 return read_ret;
257 if (!ksv_ready)
258 return -ETIMEDOUT;
259
260 return 0;
261 }
262
hdcp_key_loadable(struct drm_i915_private * dev_priv)263 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
264 {
265 enum i915_power_well_id id;
266 intel_wakeref_t wakeref;
267 bool enabled = false;
268
269 /*
270 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
271 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
272 */
273 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
274 id = HSW_DISP_PW_GLOBAL;
275 else
276 id = SKL_DISP_PW_1;
277
278 /* PG1 (power well #1) needs to be enabled */
279 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
280 enabled = intel_display_power_well_is_enabled(dev_priv, id);
281
282 /*
283 * Another req for hdcp key loadability is enabled state of pll for
284 * cdclk. Without active crtc we wont land here. So we are assuming that
285 * cdclk is already on.
286 */
287
288 return enabled;
289 }
290
intel_hdcp_clear_keys(struct drm_i915_private * dev_priv)291 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
292 {
293 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
294 intel_de_write(dev_priv, HDCP_KEY_STATUS,
295 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
296 }
297
intel_hdcp_load_keys(struct drm_i915_private * dev_priv)298 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
299 {
300 int ret;
301 u32 val;
302
303 val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
304 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
305 return 0;
306
307 /*
308 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
309 * out of reset. So if Key is not already loaded, its an error state.
310 */
311 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
312 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
313 return -ENXIO;
314
315 /*
316 * Initiate loading the HDCP key from fuses.
317 *
318 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
319 * version 9 platforms (minus BXT) differ in the key load trigger
320 * process from other platforms. These platforms use the GT Driver
321 * Mailbox interface.
322 */
323 if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
324 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
325 if (ret) {
326 drm_err(&dev_priv->drm,
327 "Failed to initiate HDCP key load (%d)\n",
328 ret);
329 return ret;
330 }
331 } else {
332 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
333 }
334
335 /* Wait for the keys to load (500us) */
336 ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
337 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
338 10, 1, &val);
339 if (ret)
340 return ret;
341 else if (!(val & HDCP_KEY_LOAD_STATUS))
342 return -ENXIO;
343
344 /* Send Aksv over to PCH display for use in authentication */
345 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
346
347 return 0;
348 }
349
350 /* Returns updated SHA-1 index */
intel_write_sha_text(struct drm_i915_private * dev_priv,u32 sha_text)351 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
352 {
353 intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
354 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
355 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
356 return -ETIMEDOUT;
357 }
358 return 0;
359 }
360
361 static
intel_hdcp_get_repeater_ctl(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,enum port port)362 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
363 enum transcoder cpu_transcoder, enum port port)
364 {
365 if (DISPLAY_VER(dev_priv) >= 12) {
366 switch (cpu_transcoder) {
367 case TRANSCODER_A:
368 return HDCP_TRANSA_REP_PRESENT |
369 HDCP_TRANSA_SHA1_M0;
370 case TRANSCODER_B:
371 return HDCP_TRANSB_REP_PRESENT |
372 HDCP_TRANSB_SHA1_M0;
373 case TRANSCODER_C:
374 return HDCP_TRANSC_REP_PRESENT |
375 HDCP_TRANSC_SHA1_M0;
376 case TRANSCODER_D:
377 return HDCP_TRANSD_REP_PRESENT |
378 HDCP_TRANSD_SHA1_M0;
379 default:
380 drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
381 cpu_transcoder);
382 return -EINVAL;
383 }
384 }
385
386 switch (port) {
387 case PORT_A:
388 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
389 case PORT_B:
390 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
391 case PORT_C:
392 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
393 case PORT_D:
394 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
395 case PORT_E:
396 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
397 default:
398 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
399 return -EINVAL;
400 }
401 }
402
403 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)404 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
405 const struct intel_hdcp_shim *shim,
406 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
407 {
408 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
409 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
410 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
411 enum port port = dig_port->base.port;
412 u32 vprime, sha_text, sha_leftovers, rep_ctl;
413 int ret, i, j, sha_idx;
414
415 /* Process V' values from the receiver */
416 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
417 ret = shim->read_v_prime_part(dig_port, i, &vprime);
418 if (ret)
419 return ret;
420 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
421 }
422
423 /*
424 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
425 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
426 * stream is written via the HDCP_SHA_TEXT register in 32-bit
427 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
428 * index will keep track of our progress through the 64 bytes as well as
429 * helping us work the 40-bit KSVs through our 32-bit register.
430 *
431 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
432 */
433 sha_idx = 0;
434 sha_text = 0;
435 sha_leftovers = 0;
436 rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
437 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
438 for (i = 0; i < num_downstream; i++) {
439 unsigned int sha_empty;
440 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
441
442 /* Fill up the empty slots in sha_text and write it out */
443 sha_empty = sizeof(sha_text) - sha_leftovers;
444 for (j = 0; j < sha_empty; j++) {
445 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
446 sha_text |= ksv[j] << off;
447 }
448
449 ret = intel_write_sha_text(dev_priv, sha_text);
450 if (ret < 0)
451 return ret;
452
453 /* Programming guide writes this every 64 bytes */
454 sha_idx += sizeof(sha_text);
455 if (!(sha_idx % 64))
456 intel_de_write(dev_priv, HDCP_REP_CTL,
457 rep_ctl | HDCP_SHA1_TEXT_32);
458
459 /* Store the leftover bytes from the ksv in sha_text */
460 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
461 sha_text = 0;
462 for (j = 0; j < sha_leftovers; j++)
463 sha_text |= ksv[sha_empty + j] <<
464 ((sizeof(sha_text) - j - 1) * 8);
465
466 /*
467 * If we still have room in sha_text for more data, continue.
468 * Otherwise, write it out immediately.
469 */
470 if (sizeof(sha_text) > sha_leftovers)
471 continue;
472
473 ret = intel_write_sha_text(dev_priv, sha_text);
474 if (ret < 0)
475 return ret;
476 sha_leftovers = 0;
477 sha_text = 0;
478 sha_idx += sizeof(sha_text);
479 }
480
481 /*
482 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
483 * bytes are leftover from the last ksv, we might be able to fit them
484 * all in sha_text (first 2 cases), or we might need to split them up
485 * into 2 writes (last 2 cases).
486 */
487 if (sha_leftovers == 0) {
488 /* Write 16 bits of text, 16 bits of M0 */
489 intel_de_write(dev_priv, HDCP_REP_CTL,
490 rep_ctl | HDCP_SHA1_TEXT_16);
491 ret = intel_write_sha_text(dev_priv,
492 bstatus[0] << 8 | bstatus[1]);
493 if (ret < 0)
494 return ret;
495 sha_idx += sizeof(sha_text);
496
497 /* Write 32 bits of M0 */
498 intel_de_write(dev_priv, HDCP_REP_CTL,
499 rep_ctl | HDCP_SHA1_TEXT_0);
500 ret = intel_write_sha_text(dev_priv, 0);
501 if (ret < 0)
502 return ret;
503 sha_idx += sizeof(sha_text);
504
505 /* Write 16 bits of M0 */
506 intel_de_write(dev_priv, HDCP_REP_CTL,
507 rep_ctl | HDCP_SHA1_TEXT_16);
508 ret = intel_write_sha_text(dev_priv, 0);
509 if (ret < 0)
510 return ret;
511 sha_idx += sizeof(sha_text);
512
513 } else if (sha_leftovers == 1) {
514 /* Write 24 bits of text, 8 bits of M0 */
515 intel_de_write(dev_priv, HDCP_REP_CTL,
516 rep_ctl | HDCP_SHA1_TEXT_24);
517 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
518 /* Only 24-bits of data, must be in the LSB */
519 sha_text = (sha_text & 0xffffff00) >> 8;
520 ret = intel_write_sha_text(dev_priv, sha_text);
521 if (ret < 0)
522 return ret;
523 sha_idx += sizeof(sha_text);
524
525 /* Write 32 bits of M0 */
526 intel_de_write(dev_priv, HDCP_REP_CTL,
527 rep_ctl | HDCP_SHA1_TEXT_0);
528 ret = intel_write_sha_text(dev_priv, 0);
529 if (ret < 0)
530 return ret;
531 sha_idx += sizeof(sha_text);
532
533 /* Write 24 bits of M0 */
534 intel_de_write(dev_priv, HDCP_REP_CTL,
535 rep_ctl | HDCP_SHA1_TEXT_8);
536 ret = intel_write_sha_text(dev_priv, 0);
537 if (ret < 0)
538 return ret;
539 sha_idx += sizeof(sha_text);
540
541 } else if (sha_leftovers == 2) {
542 /* Write 32 bits of text */
543 intel_de_write(dev_priv, HDCP_REP_CTL,
544 rep_ctl | HDCP_SHA1_TEXT_32);
545 sha_text |= bstatus[0] << 8 | bstatus[1];
546 ret = intel_write_sha_text(dev_priv, sha_text);
547 if (ret < 0)
548 return ret;
549 sha_idx += sizeof(sha_text);
550
551 /* Write 64 bits of M0 */
552 intel_de_write(dev_priv, HDCP_REP_CTL,
553 rep_ctl | HDCP_SHA1_TEXT_0);
554 for (i = 0; i < 2; i++) {
555 ret = intel_write_sha_text(dev_priv, 0);
556 if (ret < 0)
557 return ret;
558 sha_idx += sizeof(sha_text);
559 }
560
561 /*
562 * Terminate the SHA-1 stream by hand. For the other leftover
563 * cases this is appended by the hardware.
564 */
565 intel_de_write(dev_priv, HDCP_REP_CTL,
566 rep_ctl | HDCP_SHA1_TEXT_32);
567 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
568 ret = intel_write_sha_text(dev_priv, sha_text);
569 if (ret < 0)
570 return ret;
571 sha_idx += sizeof(sha_text);
572 } else if (sha_leftovers == 3) {
573 /* Write 32 bits of text (filled from LSB) */
574 intel_de_write(dev_priv, HDCP_REP_CTL,
575 rep_ctl | HDCP_SHA1_TEXT_32);
576 sha_text |= bstatus[0];
577 ret = intel_write_sha_text(dev_priv, sha_text);
578 if (ret < 0)
579 return ret;
580 sha_idx += sizeof(sha_text);
581
582 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
583 intel_de_write(dev_priv, HDCP_REP_CTL,
584 rep_ctl | HDCP_SHA1_TEXT_8);
585 ret = intel_write_sha_text(dev_priv, bstatus[1]);
586 if (ret < 0)
587 return ret;
588 sha_idx += sizeof(sha_text);
589
590 /* Write 32 bits of M0 */
591 intel_de_write(dev_priv, HDCP_REP_CTL,
592 rep_ctl | HDCP_SHA1_TEXT_0);
593 ret = intel_write_sha_text(dev_priv, 0);
594 if (ret < 0)
595 return ret;
596 sha_idx += sizeof(sha_text);
597
598 /* Write 8 bits of M0 */
599 intel_de_write(dev_priv, HDCP_REP_CTL,
600 rep_ctl | HDCP_SHA1_TEXT_24);
601 ret = intel_write_sha_text(dev_priv, 0);
602 if (ret < 0)
603 return ret;
604 sha_idx += sizeof(sha_text);
605 } else {
606 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
607 sha_leftovers);
608 return -EINVAL;
609 }
610
611 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
612 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
613 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
614 ret = intel_write_sha_text(dev_priv, 0);
615 if (ret < 0)
616 return ret;
617 sha_idx += sizeof(sha_text);
618 }
619
620 /*
621 * Last write gets the length of the concatenation in bits. That is:
622 * - 5 bytes per device
623 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
624 */
625 sha_text = (num_downstream * 5 + 10) * 8;
626 ret = intel_write_sha_text(dev_priv, sha_text);
627 if (ret < 0)
628 return ret;
629
630 /* Tell the HW we're done with the hash and wait for it to ACK */
631 intel_de_write(dev_priv, HDCP_REP_CTL,
632 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
633 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
634 HDCP_SHA1_COMPLETE, 1)) {
635 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
636 return -ETIMEDOUT;
637 }
638 if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
639 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
640 return -ENXIO;
641 }
642
643 return 0;
644 }
645
646 /* Implements Part 2 of the HDCP authorization procedure */
647 static
intel_hdcp_auth_downstream(struct intel_connector * connector)648 int intel_hdcp_auth_downstream(struct intel_connector *connector)
649 {
650 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
651 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
652 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
653 u8 bstatus[2], num_downstream, *ksv_fifo;
654 int ret, i, tries = 3;
655
656 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
657 if (ret) {
658 drm_dbg_kms(&dev_priv->drm,
659 "KSV list failed to become ready (%d)\n", ret);
660 return ret;
661 }
662
663 ret = shim->read_bstatus(dig_port, bstatus);
664 if (ret)
665 return ret;
666
667 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
668 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
669 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
670 return -EPERM;
671 }
672
673 /*
674 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
675 * the HDCP encryption. That implies that repeater can't have its own
676 * display. As there is no consumption of encrypted content in the
677 * repeater with 0 downstream devices, we are failing the
678 * authentication.
679 */
680 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
681 if (num_downstream == 0) {
682 drm_dbg_kms(&dev_priv->drm,
683 "Repeater with zero downstream devices\n");
684 return -EINVAL;
685 }
686
687 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
688 if (!ksv_fifo) {
689 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
690 return -ENOMEM;
691 }
692
693 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
694 if (ret)
695 goto err;
696
697 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
698 num_downstream) > 0) {
699 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
700 ret = -EPERM;
701 goto err;
702 }
703
704 /*
705 * When V prime mismatches, DP Spec mandates re-read of
706 * V prime atleast twice.
707 */
708 for (i = 0; i < tries; i++) {
709 ret = intel_hdcp_validate_v_prime(connector, shim,
710 ksv_fifo, num_downstream,
711 bstatus);
712 if (!ret)
713 break;
714 }
715
716 if (i == tries) {
717 drm_dbg_kms(&dev_priv->drm,
718 "V Prime validation failed.(%d)\n", ret);
719 goto err;
720 }
721
722 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
723 num_downstream);
724 ret = 0;
725 err:
726 kfree(ksv_fifo);
727 return ret;
728 }
729
730 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)731 static int intel_hdcp_auth(struct intel_connector *connector)
732 {
733 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
734 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
735 struct intel_hdcp *hdcp = &connector->hdcp;
736 const struct intel_hdcp_shim *shim = hdcp->shim;
737 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
738 enum port port = dig_port->base.port;
739 unsigned long r0_prime_gen_start;
740 int ret, i, tries = 2;
741 union {
742 u32 reg[2];
743 u8 shim[DRM_HDCP_AN_LEN];
744 } an;
745 union {
746 u32 reg[2];
747 u8 shim[DRM_HDCP_KSV_LEN];
748 } bksv;
749 union {
750 u32 reg;
751 u8 shim[DRM_HDCP_RI_LEN];
752 } ri;
753 bool repeater_present, hdcp_capable;
754
755 /*
756 * Detects whether the display is HDCP capable. Although we check for
757 * valid Bksv below, the HDCP over DP spec requires that we check
758 * whether the display supports HDCP before we write An. For HDMI
759 * displays, this is not necessary.
760 */
761 if (shim->hdcp_capable) {
762 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
763 if (ret)
764 return ret;
765 if (!hdcp_capable) {
766 drm_dbg_kms(&dev_priv->drm,
767 "Panel is not HDCP capable\n");
768 return -EINVAL;
769 }
770 }
771
772 /* Initialize An with 2 random values and acquire it */
773 for (i = 0; i < 2; i++)
774 intel_de_write(dev_priv,
775 HDCP_ANINIT(dev_priv, cpu_transcoder, port),
776 get_random_u32());
777 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
778 HDCP_CONF_CAPTURE_AN);
779
780 /* Wait for An to be acquired */
781 if (intel_de_wait_for_set(dev_priv,
782 HDCP_STATUS(dev_priv, cpu_transcoder, port),
783 HDCP_STATUS_AN_READY, 1)) {
784 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
785 return -ETIMEDOUT;
786 }
787
788 an.reg[0] = intel_de_read(dev_priv,
789 HDCP_ANLO(dev_priv, cpu_transcoder, port));
790 an.reg[1] = intel_de_read(dev_priv,
791 HDCP_ANHI(dev_priv, cpu_transcoder, port));
792 ret = shim->write_an_aksv(dig_port, an.shim);
793 if (ret)
794 return ret;
795
796 r0_prime_gen_start = jiffies;
797
798 memset(&bksv, 0, sizeof(bksv));
799
800 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
801 if (ret < 0)
802 return ret;
803
804 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
805 drm_err(&dev_priv->drm, "BKSV is revoked\n");
806 return -EPERM;
807 }
808
809 intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
810 bksv.reg[0]);
811 intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
812 bksv.reg[1]);
813
814 ret = shim->repeater_present(dig_port, &repeater_present);
815 if (ret)
816 return ret;
817 if (repeater_present)
818 intel_de_write(dev_priv, HDCP_REP_CTL,
819 intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
820
821 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
822 if (ret)
823 return ret;
824
825 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
826 HDCP_CONF_AUTH_AND_ENC);
827
828 /* Wait for R0 ready */
829 if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
830 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
831 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
832 return -ETIMEDOUT;
833 }
834
835 /*
836 * Wait for R0' to become available. The spec says 100ms from Aksv, but
837 * some monitors can take longer than this. We'll set the timeout at
838 * 300ms just to be sure.
839 *
840 * On DP, there's an R0_READY bit available but no such bit
841 * exists on HDMI. Since the upper-bound is the same, we'll just do
842 * the stupid thing instead of polling on one and not the other.
843 */
844 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
845
846 tries = 3;
847
848 /*
849 * DP HDCP Spec mandates the two more reattempt to read R0, incase
850 * of R0 mismatch.
851 */
852 for (i = 0; i < tries; i++) {
853 ri.reg = 0;
854 ret = shim->read_ri_prime(dig_port, ri.shim);
855 if (ret)
856 return ret;
857 intel_de_write(dev_priv,
858 HDCP_RPRIME(dev_priv, cpu_transcoder, port),
859 ri.reg);
860
861 /* Wait for Ri prime match */
862 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
863 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
864 break;
865 }
866
867 if (i == tries) {
868 drm_dbg_kms(&dev_priv->drm,
869 "Timed out waiting for Ri prime match (%x)\n",
870 intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
871 cpu_transcoder, port)));
872 return -ETIMEDOUT;
873 }
874
875 /* Wait for encryption confirmation */
876 if (intel_de_wait_for_set(dev_priv,
877 HDCP_STATUS(dev_priv, cpu_transcoder, port),
878 HDCP_STATUS_ENC,
879 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
880 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
881 return -ETIMEDOUT;
882 }
883
884 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
885 if (shim->stream_encryption) {
886 ret = shim->stream_encryption(connector, true);
887 if (ret) {
888 drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
889 connector->base.name, connector->base.base.id);
890 return ret;
891 }
892 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
893 transcoder_name(hdcp->stream_transcoder));
894 }
895
896 if (repeater_present)
897 return intel_hdcp_auth_downstream(connector);
898
899 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
900 return 0;
901 }
902
_intel_hdcp_disable(struct intel_connector * connector)903 static int _intel_hdcp_disable(struct intel_connector *connector)
904 {
905 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
906 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
907 struct intel_hdcp *hdcp = &connector->hdcp;
908 enum port port = dig_port->base.port;
909 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
910 u32 repeater_ctl;
911 int ret;
912
913 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
914 connector->base.name, connector->base.base.id);
915
916 if (hdcp->shim->stream_encryption) {
917 ret = hdcp->shim->stream_encryption(connector, false);
918 if (ret) {
919 drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
920 connector->base.name, connector->base.base.id);
921 return ret;
922 }
923 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
924 transcoder_name(hdcp->stream_transcoder));
925 /*
926 * If there are other connectors on this port using HDCP,
927 * don't disable it until it disabled HDCP encryption for
928 * all connectors in MST topology.
929 */
930 if (dig_port->num_hdcp_streams > 0)
931 return 0;
932 }
933
934 hdcp->hdcp_encrypted = false;
935 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
936 if (intel_de_wait_for_clear(dev_priv,
937 HDCP_STATUS(dev_priv, cpu_transcoder, port),
938 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
939 drm_err(&dev_priv->drm,
940 "Failed to disable HDCP, timeout clearing status\n");
941 return -ETIMEDOUT;
942 }
943
944 repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
945 port);
946 intel_de_write(dev_priv, HDCP_REP_CTL,
947 intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
948
949 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
950 if (ret) {
951 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
952 return ret;
953 }
954
955 drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
956 return 0;
957 }
958
_intel_hdcp_enable(struct intel_connector * connector)959 static int _intel_hdcp_enable(struct intel_connector *connector)
960 {
961 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
962 struct intel_hdcp *hdcp = &connector->hdcp;
963 int i, ret, tries = 3;
964
965 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
966 connector->base.name, connector->base.base.id);
967
968 if (!hdcp_key_loadable(dev_priv)) {
969 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
970 return -ENXIO;
971 }
972
973 for (i = 0; i < KEY_LOAD_TRIES; i++) {
974 ret = intel_hdcp_load_keys(dev_priv);
975 if (!ret)
976 break;
977 intel_hdcp_clear_keys(dev_priv);
978 }
979 if (ret) {
980 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
981 ret);
982 return ret;
983 }
984
985 /* Incase of authentication failures, HDCP spec expects reauth. */
986 for (i = 0; i < tries; i++) {
987 ret = intel_hdcp_auth(connector);
988 if (!ret) {
989 hdcp->hdcp_encrypted = true;
990 return 0;
991 }
992
993 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
994
995 /* Ensuring HDCP encryption and signalling are stopped. */
996 _intel_hdcp_disable(connector);
997 }
998
999 drm_dbg_kms(&dev_priv->drm,
1000 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1001 return ret;
1002 }
1003
intel_hdcp_to_connector(struct intel_hdcp * hdcp)1004 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1005 {
1006 return container_of(hdcp, struct intel_connector, hdcp);
1007 }
1008
intel_hdcp_update_value(struct intel_connector * connector,u64 value,bool update_property)1009 static void intel_hdcp_update_value(struct intel_connector *connector,
1010 u64 value, bool update_property)
1011 {
1012 struct drm_device *dev = connector->base.dev;
1013 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1014 struct intel_hdcp *hdcp = &connector->hdcp;
1015
1016 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1017
1018 if (hdcp->value == value)
1019 return;
1020
1021 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1022
1023 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1024 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1025 dig_port->num_hdcp_streams--;
1026 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1027 dig_port->num_hdcp_streams++;
1028 }
1029
1030 hdcp->value = value;
1031 if (update_property) {
1032 drm_connector_get(&connector->base);
1033 schedule_work(&hdcp->prop_work);
1034 }
1035 }
1036
1037 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)1038 static int intel_hdcp_check_link(struct intel_connector *connector)
1039 {
1040 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1041 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1042 struct intel_hdcp *hdcp = &connector->hdcp;
1043 enum port port = dig_port->base.port;
1044 enum transcoder cpu_transcoder;
1045 int ret = 0;
1046
1047 mutex_lock(&hdcp->mutex);
1048 mutex_lock(&dig_port->hdcp_mutex);
1049
1050 cpu_transcoder = hdcp->cpu_transcoder;
1051
1052 /* Check_link valid only when HDCP1.4 is enabled */
1053 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1054 !hdcp->hdcp_encrypted) {
1055 ret = -EINVAL;
1056 goto out;
1057 }
1058
1059 if (drm_WARN_ON(&dev_priv->drm,
1060 !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1061 drm_err(&dev_priv->drm,
1062 "%s:%d HDCP link stopped encryption,%x\n",
1063 connector->base.name, connector->base.base.id,
1064 intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1065 ret = -ENXIO;
1066 intel_hdcp_update_value(connector,
1067 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1068 true);
1069 goto out;
1070 }
1071
1072 if (hdcp->shim->check_link(dig_port, connector)) {
1073 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1074 intel_hdcp_update_value(connector,
1075 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1076 }
1077 goto out;
1078 }
1079
1080 drm_dbg_kms(&dev_priv->drm,
1081 "[%s:%d] HDCP link failed, retrying authentication\n",
1082 connector->base.name, connector->base.base.id);
1083
1084 ret = _intel_hdcp_disable(connector);
1085 if (ret) {
1086 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1087 intel_hdcp_update_value(connector,
1088 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1089 true);
1090 goto out;
1091 }
1092
1093 ret = _intel_hdcp_enable(connector);
1094 if (ret) {
1095 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1096 intel_hdcp_update_value(connector,
1097 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1098 true);
1099 goto out;
1100 }
1101
1102 out:
1103 mutex_unlock(&dig_port->hdcp_mutex);
1104 mutex_unlock(&hdcp->mutex);
1105 return ret;
1106 }
1107
intel_hdcp_prop_work(struct work_struct * work)1108 static void intel_hdcp_prop_work(struct work_struct *work)
1109 {
1110 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1111 prop_work);
1112 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1113 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1114
1115 drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1116 mutex_lock(&hdcp->mutex);
1117
1118 /*
1119 * This worker is only used to flip between ENABLED/DESIRED. Either of
1120 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1121 * we're running just after hdcp has been disabled, so just exit
1122 */
1123 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1124 drm_hdcp_update_content_protection(&connector->base,
1125 hdcp->value);
1126
1127 mutex_unlock(&hdcp->mutex);
1128 drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1129
1130 drm_connector_put(&connector->base);
1131 }
1132
is_hdcp_supported(struct drm_i915_private * dev_priv,enum port port)1133 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1134 {
1135 return RUNTIME_INFO(dev_priv)->has_hdcp &&
1136 (DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1137 }
1138
1139 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)1140 hdcp2_prepare_ake_init(struct intel_connector *connector,
1141 struct hdcp2_ake_init *ake_data)
1142 {
1143 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1144 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1145 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1146 struct i915_hdcp_comp_master *comp;
1147 int ret;
1148
1149 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1150 comp = dev_priv->display.hdcp.master;
1151
1152 if (!comp || !comp->ops) {
1153 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1154 return -EINVAL;
1155 }
1156
1157 ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1158 if (ret)
1159 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1160 ret);
1161 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1162
1163 return ret;
1164 }
1165
1166 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)1167 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1168 struct hdcp2_ake_send_cert *rx_cert,
1169 bool *paired,
1170 struct hdcp2_ake_no_stored_km *ek_pub_km,
1171 size_t *msg_sz)
1172 {
1173 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1176 struct i915_hdcp_comp_master *comp;
1177 int ret;
1178
1179 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1180 comp = dev_priv->display.hdcp.master;
1181
1182 if (!comp || !comp->ops) {
1183 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1184 return -EINVAL;
1185 }
1186
1187 ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1188 rx_cert, paired,
1189 ek_pub_km, msg_sz);
1190 if (ret < 0)
1191 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1192 ret);
1193 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1194
1195 return ret;
1196 }
1197
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)1198 static int hdcp2_verify_hprime(struct intel_connector *connector,
1199 struct hdcp2_ake_send_hprime *rx_hprime)
1200 {
1201 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1202 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1203 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1204 struct i915_hdcp_comp_master *comp;
1205 int ret;
1206
1207 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1208 comp = dev_priv->display.hdcp.master;
1209
1210 if (!comp || !comp->ops) {
1211 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1212 return -EINVAL;
1213 }
1214
1215 ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1216 if (ret < 0)
1217 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1218 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1219
1220 return ret;
1221 }
1222
1223 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1224 hdcp2_store_pairing_info(struct intel_connector *connector,
1225 struct hdcp2_ake_send_pairing_info *pairing_info)
1226 {
1227 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1228 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1229 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1230 struct i915_hdcp_comp_master *comp;
1231 int ret;
1232
1233 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1234 comp = dev_priv->display.hdcp.master;
1235
1236 if (!comp || !comp->ops) {
1237 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1238 return -EINVAL;
1239 }
1240
1241 ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1242 if (ret < 0)
1243 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1244 ret);
1245 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1246
1247 return ret;
1248 }
1249
1250 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1251 hdcp2_prepare_lc_init(struct intel_connector *connector,
1252 struct hdcp2_lc_init *lc_init)
1253 {
1254 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1255 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1256 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1257 struct i915_hdcp_comp_master *comp;
1258 int ret;
1259
1260 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1261 comp = dev_priv->display.hdcp.master;
1262
1263 if (!comp || !comp->ops) {
1264 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1265 return -EINVAL;
1266 }
1267
1268 ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1269 if (ret < 0)
1270 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1271 ret);
1272 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1273
1274 return ret;
1275 }
1276
1277 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1278 hdcp2_verify_lprime(struct intel_connector *connector,
1279 struct hdcp2_lc_send_lprime *rx_lprime)
1280 {
1281 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1282 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1283 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1284 struct i915_hdcp_comp_master *comp;
1285 int ret;
1286
1287 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1288 comp = dev_priv->display.hdcp.master;
1289
1290 if (!comp || !comp->ops) {
1291 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1292 return -EINVAL;
1293 }
1294
1295 ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1296 if (ret < 0)
1297 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1298 ret);
1299 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1300
1301 return ret;
1302 }
1303
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1304 static int hdcp2_prepare_skey(struct intel_connector *connector,
1305 struct hdcp2_ske_send_eks *ske_data)
1306 {
1307 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1308 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1309 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1310 struct i915_hdcp_comp_master *comp;
1311 int ret;
1312
1313 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1314 comp = dev_priv->display.hdcp.master;
1315
1316 if (!comp || !comp->ops) {
1317 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1318 return -EINVAL;
1319 }
1320
1321 ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1322 if (ret < 0)
1323 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1324 ret);
1325 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1326
1327 return ret;
1328 }
1329
1330 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1331 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1332 struct hdcp2_rep_send_receiverid_list
1333 *rep_topology,
1334 struct hdcp2_rep_send_ack *rep_send_ack)
1335 {
1336 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1337 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1338 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1339 struct i915_hdcp_comp_master *comp;
1340 int ret;
1341
1342 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1343 comp = dev_priv->display.hdcp.master;
1344
1345 if (!comp || !comp->ops) {
1346 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1347 return -EINVAL;
1348 }
1349
1350 ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1351 rep_topology,
1352 rep_send_ack);
1353 if (ret < 0)
1354 drm_dbg_kms(&dev_priv->drm,
1355 "Verify rep topology failed. %d\n", ret);
1356 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1357
1358 return ret;
1359 }
1360
1361 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1362 hdcp2_verify_mprime(struct intel_connector *connector,
1363 struct hdcp2_rep_stream_ready *stream_ready)
1364 {
1365 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1366 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1367 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1368 struct i915_hdcp_comp_master *comp;
1369 int ret;
1370
1371 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1372 comp = dev_priv->display.hdcp.master;
1373
1374 if (!comp || !comp->ops) {
1375 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1376 return -EINVAL;
1377 }
1378
1379 ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1380 if (ret < 0)
1381 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1382 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1383
1384 return ret;
1385 }
1386
hdcp2_authenticate_port(struct intel_connector * connector)1387 static int hdcp2_authenticate_port(struct intel_connector *connector)
1388 {
1389 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1390 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1391 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1392 struct i915_hdcp_comp_master *comp;
1393 int ret;
1394
1395 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1396 comp = dev_priv->display.hdcp.master;
1397
1398 if (!comp || !comp->ops) {
1399 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1400 return -EINVAL;
1401 }
1402
1403 ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1404 if (ret < 0)
1405 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1406 ret);
1407 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1408
1409 return ret;
1410 }
1411
hdcp2_close_mei_session(struct intel_connector * connector)1412 static int hdcp2_close_mei_session(struct intel_connector *connector)
1413 {
1414 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1415 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1416 struct i915_hdcp_comp_master *comp;
1417 int ret;
1418
1419 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1420 comp = dev_priv->display.hdcp.master;
1421
1422 if (!comp || !comp->ops) {
1423 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1424 return -EINVAL;
1425 }
1426
1427 ret = comp->ops->close_hdcp_session(comp->mei_dev,
1428 &dig_port->hdcp_port_data);
1429 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1430
1431 return ret;
1432 }
1433
hdcp2_deauthenticate_port(struct intel_connector * connector)1434 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1435 {
1436 return hdcp2_close_mei_session(connector);
1437 }
1438
1439 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1440 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1441 {
1442 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1443 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1444 struct intel_hdcp *hdcp = &connector->hdcp;
1445 union {
1446 struct hdcp2_ake_init ake_init;
1447 struct hdcp2_ake_send_cert send_cert;
1448 struct hdcp2_ake_no_stored_km no_stored_km;
1449 struct hdcp2_ake_send_hprime send_hprime;
1450 struct hdcp2_ake_send_pairing_info pairing_info;
1451 } msgs;
1452 const struct intel_hdcp_shim *shim = hdcp->shim;
1453 size_t size;
1454 int ret;
1455
1456 /* Init for seq_num */
1457 hdcp->seq_num_v = 0;
1458 hdcp->seq_num_m = 0;
1459
1460 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1461 if (ret < 0)
1462 return ret;
1463
1464 ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1465 sizeof(msgs.ake_init));
1466 if (ret < 0)
1467 return ret;
1468
1469 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1470 &msgs.send_cert, sizeof(msgs.send_cert));
1471 if (ret < 0)
1472 return ret;
1473
1474 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1475 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1476 return -EINVAL;
1477 }
1478
1479 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1480
1481 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1482 msgs.send_cert.cert_rx.receiver_id,
1483 1) > 0) {
1484 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1485 return -EPERM;
1486 }
1487
1488 /*
1489 * Here msgs.no_stored_km will hold msgs corresponding to the km
1490 * stored also.
1491 */
1492 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1493 &hdcp->is_paired,
1494 &msgs.no_stored_km, &size);
1495 if (ret < 0)
1496 return ret;
1497
1498 ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1499 if (ret < 0)
1500 return ret;
1501
1502 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1503 &msgs.send_hprime, sizeof(msgs.send_hprime));
1504 if (ret < 0)
1505 return ret;
1506
1507 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1508 if (ret < 0)
1509 return ret;
1510
1511 if (!hdcp->is_paired) {
1512 /* Pairing is required */
1513 ret = shim->read_2_2_msg(dig_port,
1514 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1515 &msgs.pairing_info,
1516 sizeof(msgs.pairing_info));
1517 if (ret < 0)
1518 return ret;
1519
1520 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1521 if (ret < 0)
1522 return ret;
1523 hdcp->is_paired = true;
1524 }
1525
1526 return 0;
1527 }
1528
hdcp2_locality_check(struct intel_connector * connector)1529 static int hdcp2_locality_check(struct intel_connector *connector)
1530 {
1531 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1532 struct intel_hdcp *hdcp = &connector->hdcp;
1533 union {
1534 struct hdcp2_lc_init lc_init;
1535 struct hdcp2_lc_send_lprime send_lprime;
1536 } msgs;
1537 const struct intel_hdcp_shim *shim = hdcp->shim;
1538 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1539
1540 for (i = 0; i < tries; i++) {
1541 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1542 if (ret < 0)
1543 continue;
1544
1545 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1546 sizeof(msgs.lc_init));
1547 if (ret < 0)
1548 continue;
1549
1550 ret = shim->read_2_2_msg(dig_port,
1551 HDCP_2_2_LC_SEND_LPRIME,
1552 &msgs.send_lprime,
1553 sizeof(msgs.send_lprime));
1554 if (ret < 0)
1555 continue;
1556
1557 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1558 if (!ret)
1559 break;
1560 }
1561
1562 return ret;
1563 }
1564
hdcp2_session_key_exchange(struct intel_connector * connector)1565 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1566 {
1567 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1568 struct intel_hdcp *hdcp = &connector->hdcp;
1569 struct hdcp2_ske_send_eks send_eks;
1570 int ret;
1571
1572 ret = hdcp2_prepare_skey(connector, &send_eks);
1573 if (ret < 0)
1574 return ret;
1575
1576 ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1577 sizeof(send_eks));
1578 if (ret < 0)
1579 return ret;
1580
1581 return 0;
1582 }
1583
1584 static
_hdcp2_propagate_stream_management_info(struct intel_connector * connector)1585 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1586 {
1587 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1588 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1589 struct intel_hdcp *hdcp = &connector->hdcp;
1590 union {
1591 struct hdcp2_rep_stream_manage stream_manage;
1592 struct hdcp2_rep_stream_ready stream_ready;
1593 } msgs;
1594 const struct intel_hdcp_shim *shim = hdcp->shim;
1595 int ret, streams_size_delta, i;
1596
1597 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1598 return -ERANGE;
1599
1600 /* Prepare RepeaterAuth_Stream_Manage msg */
1601 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1602 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1603
1604 msgs.stream_manage.k = cpu_to_be16(data->k);
1605
1606 for (i = 0; i < data->k; i++) {
1607 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1608 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1609 }
1610
1611 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1612 sizeof(struct hdcp2_streamid_type);
1613 /* Send it to Repeater */
1614 ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1615 sizeof(msgs.stream_manage) - streams_size_delta);
1616 if (ret < 0)
1617 goto out;
1618
1619 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1620 &msgs.stream_ready, sizeof(msgs.stream_ready));
1621 if (ret < 0)
1622 goto out;
1623
1624 data->seq_num_m = hdcp->seq_num_m;
1625
1626 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1627
1628 out:
1629 hdcp->seq_num_m++;
1630
1631 return ret;
1632 }
1633
1634 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1635 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1636 {
1637 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1638 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1639 struct intel_hdcp *hdcp = &connector->hdcp;
1640 union {
1641 struct hdcp2_rep_send_receiverid_list recvid_list;
1642 struct hdcp2_rep_send_ack rep_ack;
1643 } msgs;
1644 const struct intel_hdcp_shim *shim = hdcp->shim;
1645 u32 seq_num_v, device_cnt;
1646 u8 *rx_info;
1647 int ret;
1648
1649 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1650 &msgs.recvid_list, sizeof(msgs.recvid_list));
1651 if (ret < 0)
1652 return ret;
1653
1654 rx_info = msgs.recvid_list.rx_info;
1655
1656 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1657 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1658 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1659 return -EINVAL;
1660 }
1661
1662 /*
1663 * MST topology is not Type 1 capable if it contains a downstream
1664 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1665 */
1666 dig_port->hdcp_mst_type1_capable =
1667 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1668 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1669
1670 /* Converting and Storing the seq_num_v to local variable as DWORD */
1671 seq_num_v =
1672 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1673
1674 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1675 drm_dbg_kms(&dev_priv->drm,
1676 "Non zero Seq_num_v at first RecvId_List msg\n");
1677 return -EINVAL;
1678 }
1679
1680 if (seq_num_v < hdcp->seq_num_v) {
1681 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1682 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1683 return -EINVAL;
1684 }
1685
1686 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1687 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1688 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1689 msgs.recvid_list.receiver_ids,
1690 device_cnt) > 0) {
1691 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1692 return -EPERM;
1693 }
1694
1695 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1696 &msgs.recvid_list,
1697 &msgs.rep_ack);
1698 if (ret < 0)
1699 return ret;
1700
1701 hdcp->seq_num_v = seq_num_v;
1702 ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1703 sizeof(msgs.rep_ack));
1704 if (ret < 0)
1705 return ret;
1706
1707 return 0;
1708 }
1709
hdcp2_authenticate_sink(struct intel_connector * connector)1710 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1711 {
1712 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1713 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1714 struct intel_hdcp *hdcp = &connector->hdcp;
1715 const struct intel_hdcp_shim *shim = hdcp->shim;
1716 int ret;
1717
1718 ret = hdcp2_authentication_key_exchange(connector);
1719 if (ret < 0) {
1720 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1721 return ret;
1722 }
1723
1724 ret = hdcp2_locality_check(connector);
1725 if (ret < 0) {
1726 drm_dbg_kms(&i915->drm,
1727 "Locality Check failed. Err : %d\n", ret);
1728 return ret;
1729 }
1730
1731 ret = hdcp2_session_key_exchange(connector);
1732 if (ret < 0) {
1733 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1734 return ret;
1735 }
1736
1737 if (shim->config_stream_type) {
1738 ret = shim->config_stream_type(dig_port,
1739 hdcp->is_repeater,
1740 hdcp->content_type);
1741 if (ret < 0)
1742 return ret;
1743 }
1744
1745 if (hdcp->is_repeater) {
1746 ret = hdcp2_authenticate_repeater_topology(connector);
1747 if (ret < 0) {
1748 drm_dbg_kms(&i915->drm,
1749 "Repeater Auth Failed. Err: %d\n", ret);
1750 return ret;
1751 }
1752 }
1753
1754 return ret;
1755 }
1756
hdcp2_enable_stream_encryption(struct intel_connector * connector)1757 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1758 {
1759 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1760 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1761 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1762 struct intel_hdcp *hdcp = &connector->hdcp;
1763 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1764 enum port port = dig_port->base.port;
1765 int ret = 0;
1766
1767 if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1768 LINK_ENCRYPTION_STATUS)) {
1769 drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1770 connector->base.name, connector->base.base.id);
1771 ret = -EPERM;
1772 goto link_recover;
1773 }
1774
1775 if (hdcp->shim->stream_2_2_encryption) {
1776 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1777 if (ret) {
1778 drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1779 connector->base.name, connector->base.base.id);
1780 return ret;
1781 }
1782 drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1783 transcoder_name(hdcp->stream_transcoder));
1784 }
1785
1786 return 0;
1787
1788 link_recover:
1789 if (hdcp2_deauthenticate_port(connector) < 0)
1790 drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1791
1792 dig_port->hdcp_auth_status = false;
1793 data->k = 0;
1794
1795 return ret;
1796 }
1797
hdcp2_enable_encryption(struct intel_connector * connector)1798 static int hdcp2_enable_encryption(struct intel_connector *connector)
1799 {
1800 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1801 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1802 struct intel_hdcp *hdcp = &connector->hdcp;
1803 enum port port = dig_port->base.port;
1804 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1805 int ret;
1806
1807 drm_WARN_ON(&dev_priv->drm,
1808 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1809 LINK_ENCRYPTION_STATUS);
1810 if (hdcp->shim->toggle_signalling) {
1811 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1812 true);
1813 if (ret) {
1814 drm_err(&dev_priv->drm,
1815 "Failed to enable HDCP signalling. %d\n",
1816 ret);
1817 return ret;
1818 }
1819 }
1820
1821 if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1822 LINK_AUTH_STATUS) {
1823 /* Link is Authenticated. Now set for Encryption */
1824 intel_de_write(dev_priv,
1825 HDCP2_CTL(dev_priv, cpu_transcoder, port),
1826 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1827 }
1828
1829 ret = intel_de_wait_for_set(dev_priv,
1830 HDCP2_STATUS(dev_priv, cpu_transcoder,
1831 port),
1832 LINK_ENCRYPTION_STATUS,
1833 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1834 dig_port->hdcp_auth_status = true;
1835
1836 return ret;
1837 }
1838
hdcp2_disable_encryption(struct intel_connector * connector)1839 static int hdcp2_disable_encryption(struct intel_connector *connector)
1840 {
1841 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1842 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1843 struct intel_hdcp *hdcp = &connector->hdcp;
1844 enum port port = dig_port->base.port;
1845 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1846 int ret;
1847
1848 drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1849 LINK_ENCRYPTION_STATUS));
1850
1851 intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1852 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1853
1854 ret = intel_de_wait_for_clear(dev_priv,
1855 HDCP2_STATUS(dev_priv, cpu_transcoder,
1856 port),
1857 LINK_ENCRYPTION_STATUS,
1858 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1859 if (ret == -ETIMEDOUT)
1860 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1861
1862 if (hdcp->shim->toggle_signalling) {
1863 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1864 false);
1865 if (ret) {
1866 drm_err(&dev_priv->drm,
1867 "Failed to disable HDCP signalling. %d\n",
1868 ret);
1869 return ret;
1870 }
1871 }
1872
1873 return ret;
1874 }
1875
1876 static int
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1877 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1878 {
1879 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1880 int i, tries = 3, ret;
1881
1882 if (!connector->hdcp.is_repeater)
1883 return 0;
1884
1885 for (i = 0; i < tries; i++) {
1886 ret = _hdcp2_propagate_stream_management_info(connector);
1887 if (!ret)
1888 break;
1889
1890 /* Lets restart the auth incase of seq_num_m roll over */
1891 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1892 drm_dbg_kms(&i915->drm,
1893 "seq_num_m roll over.(%d)\n", ret);
1894 break;
1895 }
1896
1897 drm_dbg_kms(&i915->drm,
1898 "HDCP2 stream management %d of %d Failed.(%d)\n",
1899 i + 1, tries, ret);
1900 }
1901
1902 return ret;
1903 }
1904
hdcp2_authenticate_and_encrypt(struct intel_connector * connector)1905 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1906 {
1907 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1908 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1909 int ret = 0, i, tries = 3;
1910
1911 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1912 ret = hdcp2_authenticate_sink(connector);
1913 if (!ret) {
1914 ret = intel_hdcp_prepare_streams(connector);
1915 if (ret) {
1916 drm_dbg_kms(&i915->drm,
1917 "Prepare streams failed.(%d)\n",
1918 ret);
1919 break;
1920 }
1921
1922 ret = hdcp2_propagate_stream_management_info(connector);
1923 if (ret) {
1924 drm_dbg_kms(&i915->drm,
1925 "Stream management failed.(%d)\n",
1926 ret);
1927 break;
1928 }
1929
1930 ret = hdcp2_authenticate_port(connector);
1931 if (!ret)
1932 break;
1933 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1934 ret);
1935 }
1936
1937 /* Clearing the mei hdcp session */
1938 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1939 i + 1, tries, ret);
1940 if (hdcp2_deauthenticate_port(connector) < 0)
1941 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1942 }
1943
1944 if (!ret && !dig_port->hdcp_auth_status) {
1945 /*
1946 * Ensuring the required 200mSec min time interval between
1947 * Session Key Exchange and encryption.
1948 */
1949 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1950 ret = hdcp2_enable_encryption(connector);
1951 if (ret < 0) {
1952 drm_dbg_kms(&i915->drm,
1953 "Encryption Enable Failed.(%d)\n", ret);
1954 if (hdcp2_deauthenticate_port(connector) < 0)
1955 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1956 }
1957 }
1958
1959 if (!ret)
1960 ret = hdcp2_enable_stream_encryption(connector);
1961
1962 return ret;
1963 }
1964
_intel_hdcp2_enable(struct intel_connector * connector)1965 static int _intel_hdcp2_enable(struct intel_connector *connector)
1966 {
1967 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1968 struct intel_hdcp *hdcp = &connector->hdcp;
1969 int ret;
1970
1971 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1972 connector->base.name, connector->base.base.id,
1973 hdcp->content_type);
1974
1975 ret = hdcp2_authenticate_and_encrypt(connector);
1976 if (ret) {
1977 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
1978 hdcp->content_type, ret);
1979 return ret;
1980 }
1981
1982 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1983 connector->base.name, connector->base.base.id,
1984 hdcp->content_type);
1985
1986 hdcp->hdcp2_encrypted = true;
1987 return 0;
1988 }
1989
1990 static int
_intel_hdcp2_disable(struct intel_connector * connector,bool hdcp2_link_recovery)1991 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1992 {
1993 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1994 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1995 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1996 struct intel_hdcp *hdcp = &connector->hdcp;
1997 int ret;
1998
1999 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
2000 connector->base.name, connector->base.base.id);
2001
2002 if (hdcp->shim->stream_2_2_encryption) {
2003 ret = hdcp->shim->stream_2_2_encryption(connector, false);
2004 if (ret) {
2005 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
2006 connector->base.name, connector->base.base.id);
2007 return ret;
2008 }
2009 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2010 transcoder_name(hdcp->stream_transcoder));
2011
2012 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2013 return 0;
2014 }
2015
2016 ret = hdcp2_disable_encryption(connector);
2017
2018 if (hdcp2_deauthenticate_port(connector) < 0)
2019 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2020
2021 connector->hdcp.hdcp2_encrypted = false;
2022 dig_port->hdcp_auth_status = false;
2023 data->k = 0;
2024
2025 return ret;
2026 }
2027
2028 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)2029 static int intel_hdcp2_check_link(struct intel_connector *connector)
2030 {
2031 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2032 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2033 struct intel_hdcp *hdcp = &connector->hdcp;
2034 enum port port = dig_port->base.port;
2035 enum transcoder cpu_transcoder;
2036 int ret = 0;
2037
2038 mutex_lock(&hdcp->mutex);
2039 mutex_lock(&dig_port->hdcp_mutex);
2040 cpu_transcoder = hdcp->cpu_transcoder;
2041
2042 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2043 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2044 !hdcp->hdcp2_encrypted) {
2045 ret = -EINVAL;
2046 goto out;
2047 }
2048
2049 if (drm_WARN_ON(&dev_priv->drm,
2050 !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2051 drm_err(&dev_priv->drm,
2052 "HDCP2.2 link stopped the encryption, %x\n",
2053 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2054 ret = -ENXIO;
2055 _intel_hdcp2_disable(connector, true);
2056 intel_hdcp_update_value(connector,
2057 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2058 true);
2059 goto out;
2060 }
2061
2062 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2063 if (ret == HDCP_LINK_PROTECTED) {
2064 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2065 intel_hdcp_update_value(connector,
2066 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2067 true);
2068 }
2069 goto out;
2070 }
2071
2072 if (ret == HDCP_TOPOLOGY_CHANGE) {
2073 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2074 goto out;
2075
2076 drm_dbg_kms(&dev_priv->drm,
2077 "HDCP2.2 Downstream topology change\n");
2078 ret = hdcp2_authenticate_repeater_topology(connector);
2079 if (!ret) {
2080 intel_hdcp_update_value(connector,
2081 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2082 true);
2083 goto out;
2084 }
2085 drm_dbg_kms(&dev_priv->drm,
2086 "[%s:%d] Repeater topology auth failed.(%d)\n",
2087 connector->base.name, connector->base.base.id,
2088 ret);
2089 } else {
2090 drm_dbg_kms(&dev_priv->drm,
2091 "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2092 connector->base.name, connector->base.base.id);
2093 }
2094
2095 ret = _intel_hdcp2_disable(connector, true);
2096 if (ret) {
2097 drm_err(&dev_priv->drm,
2098 "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2099 connector->base.name, connector->base.base.id, ret);
2100 intel_hdcp_update_value(connector,
2101 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2102 goto out;
2103 }
2104
2105 ret = _intel_hdcp2_enable(connector);
2106 if (ret) {
2107 drm_dbg_kms(&dev_priv->drm,
2108 "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2109 connector->base.name, connector->base.base.id,
2110 ret);
2111 intel_hdcp_update_value(connector,
2112 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2113 true);
2114 goto out;
2115 }
2116
2117 out:
2118 mutex_unlock(&dig_port->hdcp_mutex);
2119 mutex_unlock(&hdcp->mutex);
2120 return ret;
2121 }
2122
intel_hdcp_check_work(struct work_struct * work)2123 static void intel_hdcp_check_work(struct work_struct *work)
2124 {
2125 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2126 struct intel_hdcp,
2127 check_work);
2128 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2129
2130 if (drm_connector_is_unregistered(&connector->base))
2131 return;
2132
2133 if (!intel_hdcp2_check_link(connector))
2134 schedule_delayed_work(&hdcp->check_work,
2135 DRM_HDCP2_CHECK_PERIOD_MS);
2136 else if (!intel_hdcp_check_link(connector))
2137 schedule_delayed_work(&hdcp->check_work,
2138 DRM_HDCP_CHECK_PERIOD_MS);
2139 }
2140
i915_hdcp_component_bind(struct device * i915_kdev,struct device * mei_kdev,void * data)2141 static int i915_hdcp_component_bind(struct device *i915_kdev,
2142 struct device *mei_kdev, void *data)
2143 {
2144 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2145
2146 drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2147 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2148 dev_priv->display.hdcp.master = (struct i915_hdcp_comp_master *)data;
2149 dev_priv->display.hdcp.master->mei_dev = mei_kdev;
2150 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2151
2152 return 0;
2153 }
2154
i915_hdcp_component_unbind(struct device * i915_kdev,struct device * mei_kdev,void * data)2155 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2156 struct device *mei_kdev, void *data)
2157 {
2158 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2159
2160 drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2161 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2162 dev_priv->display.hdcp.master = NULL;
2163 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2164 }
2165
2166 static const struct component_ops i915_hdcp_component_ops = {
2167 .bind = i915_hdcp_component_bind,
2168 .unbind = i915_hdcp_component_unbind,
2169 };
2170
intel_get_mei_fw_ddi_index(enum port port)2171 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2172 {
2173 switch (port) {
2174 case PORT_A:
2175 return MEI_DDI_A;
2176 case PORT_B ... PORT_F:
2177 return (enum mei_fw_ddi)port;
2178 default:
2179 return MEI_DDI_INVALID_PORT;
2180 }
2181 }
2182
intel_get_mei_fw_tc(enum transcoder cpu_transcoder)2183 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2184 {
2185 switch (cpu_transcoder) {
2186 case TRANSCODER_A ... TRANSCODER_D:
2187 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2188 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2189 return MEI_INVALID_TRANSCODER;
2190 }
2191 }
2192
initialize_hdcp_port_data(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2193 static int initialize_hdcp_port_data(struct intel_connector *connector,
2194 struct intel_digital_port *dig_port,
2195 const struct intel_hdcp_shim *shim)
2196 {
2197 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2198 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2199 struct intel_hdcp *hdcp = &connector->hdcp;
2200 enum port port = dig_port->base.port;
2201
2202 if (DISPLAY_VER(dev_priv) < 12)
2203 data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2204 else
2205 /*
2206 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2207 * with zero(INVALID PORT index).
2208 */
2209 data->fw_ddi = MEI_DDI_INVALID_PORT;
2210
2211 /*
2212 * As associated transcoder is set and modified at modeset, here fw_tc
2213 * is initialized to zero (invalid transcoder index). This will be
2214 * retained for <Gen12 forever.
2215 */
2216 data->fw_tc = MEI_INVALID_TRANSCODER;
2217
2218 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2219 data->protocol = (u8)shim->protocol;
2220
2221 if (!data->streams)
2222 data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2223 sizeof(struct hdcp2_streamid_type),
2224 GFP_KERNEL);
2225 if (!data->streams) {
2226 drm_err(&dev_priv->drm, "Out of Memory\n");
2227 return -ENOMEM;
2228 }
2229 /* For SST */
2230 data->streams[0].stream_id = 0;
2231 data->streams[0].stream_type = hdcp->content_type;
2232
2233 return 0;
2234 }
2235
is_hdcp2_supported(struct drm_i915_private * dev_priv)2236 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2237 {
2238 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2239 return false;
2240
2241 return (DISPLAY_VER(dev_priv) >= 10 ||
2242 IS_KABYLAKE(dev_priv) ||
2243 IS_COFFEELAKE(dev_priv) ||
2244 IS_COMETLAKE(dev_priv));
2245 }
2246
intel_hdcp_component_init(struct drm_i915_private * dev_priv)2247 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2248 {
2249 int ret;
2250
2251 if (!is_hdcp2_supported(dev_priv))
2252 return;
2253
2254 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2255 drm_WARN_ON(&dev_priv->drm, dev_priv->display.hdcp.comp_added);
2256
2257 dev_priv->display.hdcp.comp_added = true;
2258 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2259 ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2260 I915_COMPONENT_HDCP);
2261 if (ret < 0) {
2262 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2263 ret);
2264 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2265 dev_priv->display.hdcp.comp_added = false;
2266 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2267 return;
2268 }
2269 }
2270
intel_hdcp2_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2271 static void intel_hdcp2_init(struct intel_connector *connector,
2272 struct intel_digital_port *dig_port,
2273 const struct intel_hdcp_shim *shim)
2274 {
2275 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2276 struct intel_hdcp *hdcp = &connector->hdcp;
2277 int ret;
2278
2279 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2280 if (ret) {
2281 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2282 return;
2283 }
2284
2285 hdcp->hdcp2_supported = true;
2286 }
2287
intel_hdcp_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2288 int intel_hdcp_init(struct intel_connector *connector,
2289 struct intel_digital_port *dig_port,
2290 const struct intel_hdcp_shim *shim)
2291 {
2292 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2293 struct intel_hdcp *hdcp = &connector->hdcp;
2294 int ret;
2295
2296 if (!shim)
2297 return -EINVAL;
2298
2299 if (is_hdcp2_supported(dev_priv))
2300 intel_hdcp2_init(connector, dig_port, shim);
2301
2302 ret =
2303 drm_connector_attach_content_protection_property(&connector->base,
2304 hdcp->hdcp2_supported);
2305 if (ret) {
2306 hdcp->hdcp2_supported = false;
2307 kfree(dig_port->hdcp_port_data.streams);
2308 return ret;
2309 }
2310
2311 hdcp->shim = shim;
2312 mutex_init(&hdcp->mutex);
2313 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2314 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2315 init_waitqueue_head(&hdcp->cp_irq_queue);
2316
2317 return 0;
2318 }
2319
intel_hdcp_enable(struct intel_connector * connector,const struct intel_crtc_state * pipe_config,u8 content_type)2320 int intel_hdcp_enable(struct intel_connector *connector,
2321 const struct intel_crtc_state *pipe_config, u8 content_type)
2322 {
2323 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2324 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2325 struct intel_hdcp *hdcp = &connector->hdcp;
2326 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2327 int ret = -EINVAL;
2328
2329 if (!hdcp->shim)
2330 return -ENOENT;
2331
2332 if (!connector->encoder) {
2333 drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2334 connector->base.name, connector->base.base.id);
2335 return -ENODEV;
2336 }
2337
2338 mutex_lock(&hdcp->mutex);
2339 mutex_lock(&dig_port->hdcp_mutex);
2340 drm_WARN_ON(&dev_priv->drm,
2341 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2342 hdcp->content_type = content_type;
2343
2344 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2345 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2346 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2347 } else {
2348 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2349 hdcp->stream_transcoder = INVALID_TRANSCODER;
2350 }
2351
2352 if (DISPLAY_VER(dev_priv) >= 12)
2353 dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2354
2355 /*
2356 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2357 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2358 */
2359 if (intel_hdcp2_capable(connector)) {
2360 ret = _intel_hdcp2_enable(connector);
2361 if (!ret)
2362 check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2363 }
2364
2365 /*
2366 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2367 * be attempted.
2368 */
2369 if (ret && intel_hdcp_capable(connector) &&
2370 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2371 ret = _intel_hdcp_enable(connector);
2372 }
2373
2374 if (!ret) {
2375 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2376 intel_hdcp_update_value(connector,
2377 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2378 true);
2379 }
2380
2381 mutex_unlock(&dig_port->hdcp_mutex);
2382 mutex_unlock(&hdcp->mutex);
2383 return ret;
2384 }
2385
intel_hdcp_disable(struct intel_connector * connector)2386 int intel_hdcp_disable(struct intel_connector *connector)
2387 {
2388 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2389 struct intel_hdcp *hdcp = &connector->hdcp;
2390 int ret = 0;
2391
2392 if (!hdcp->shim)
2393 return -ENOENT;
2394
2395 mutex_lock(&hdcp->mutex);
2396 mutex_lock(&dig_port->hdcp_mutex);
2397
2398 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2399 goto out;
2400
2401 intel_hdcp_update_value(connector,
2402 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2403 if (hdcp->hdcp2_encrypted)
2404 ret = _intel_hdcp2_disable(connector, false);
2405 else if (hdcp->hdcp_encrypted)
2406 ret = _intel_hdcp_disable(connector);
2407
2408 out:
2409 mutex_unlock(&dig_port->hdcp_mutex);
2410 mutex_unlock(&hdcp->mutex);
2411 cancel_delayed_work_sync(&hdcp->check_work);
2412 return ret;
2413 }
2414
intel_hdcp_update_pipe(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2415 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2416 struct intel_encoder *encoder,
2417 const struct intel_crtc_state *crtc_state,
2418 const struct drm_connector_state *conn_state)
2419 {
2420 struct intel_connector *connector =
2421 to_intel_connector(conn_state->connector);
2422 struct intel_hdcp *hdcp = &connector->hdcp;
2423 bool content_protection_type_changed, desired_and_not_enabled = false;
2424
2425 if (!connector->hdcp.shim)
2426 return;
2427
2428 content_protection_type_changed =
2429 (conn_state->hdcp_content_type != hdcp->content_type &&
2430 conn_state->content_protection !=
2431 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2432
2433 /*
2434 * During the HDCP encryption session if Type change is requested,
2435 * disable the HDCP and reenable it with new TYPE value.
2436 */
2437 if (conn_state->content_protection ==
2438 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2439 content_protection_type_changed)
2440 intel_hdcp_disable(connector);
2441
2442 /*
2443 * Mark the hdcp state as DESIRED after the hdcp disable of type
2444 * change procedure.
2445 */
2446 if (content_protection_type_changed) {
2447 mutex_lock(&hdcp->mutex);
2448 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2449 drm_connector_get(&connector->base);
2450 schedule_work(&hdcp->prop_work);
2451 mutex_unlock(&hdcp->mutex);
2452 }
2453
2454 if (conn_state->content_protection ==
2455 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2456 mutex_lock(&hdcp->mutex);
2457 /* Avoid enabling hdcp, if it already ENABLED */
2458 desired_and_not_enabled =
2459 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2460 mutex_unlock(&hdcp->mutex);
2461 /*
2462 * If HDCP already ENABLED and CP property is DESIRED, schedule
2463 * prop_work to update correct CP property to user space.
2464 */
2465 if (!desired_and_not_enabled && !content_protection_type_changed) {
2466 drm_connector_get(&connector->base);
2467 schedule_work(&hdcp->prop_work);
2468 }
2469 }
2470
2471 if (desired_and_not_enabled || content_protection_type_changed)
2472 intel_hdcp_enable(connector,
2473 crtc_state,
2474 (u8)conn_state->hdcp_content_type);
2475 }
2476
intel_hdcp_component_fini(struct drm_i915_private * dev_priv)2477 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2478 {
2479 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2480 if (!dev_priv->display.hdcp.comp_added) {
2481 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2482 return;
2483 }
2484
2485 dev_priv->display.hdcp.comp_added = false;
2486 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2487
2488 component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2489 }
2490
intel_hdcp_cleanup(struct intel_connector * connector)2491 void intel_hdcp_cleanup(struct intel_connector *connector)
2492 {
2493 struct intel_hdcp *hdcp = &connector->hdcp;
2494
2495 if (!hdcp->shim)
2496 return;
2497
2498 /*
2499 * If the connector is registered, it's possible userspace could kick
2500 * off another HDCP enable, which would re-spawn the workers.
2501 */
2502 drm_WARN_ON(connector->base.dev,
2503 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2504
2505 /*
2506 * Now that the connector is not registered, check_work won't be run,
2507 * but cancel any outstanding instances of it
2508 */
2509 cancel_delayed_work_sync(&hdcp->check_work);
2510
2511 /*
2512 * We don't cancel prop_work in the same way as check_work since it
2513 * requires connection_mutex which could be held while calling this
2514 * function. Instead, we rely on the connector references grabbed before
2515 * scheduling prop_work to ensure the connector is alive when prop_work
2516 * is run. So if we're in the destroy path (which is where this
2517 * function should be called), we're "guaranteed" that prop_work is not
2518 * active (tl;dr This Should Never Happen).
2519 */
2520 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2521
2522 mutex_lock(&hdcp->mutex);
2523 hdcp->shim = NULL;
2524 mutex_unlock(&hdcp->mutex);
2525 }
2526
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2527 void intel_hdcp_atomic_check(struct drm_connector *connector,
2528 struct drm_connector_state *old_state,
2529 struct drm_connector_state *new_state)
2530 {
2531 u64 old_cp = old_state->content_protection;
2532 u64 new_cp = new_state->content_protection;
2533 struct drm_crtc_state *crtc_state;
2534
2535 if (!new_state->crtc) {
2536 /*
2537 * If the connector is being disabled with CP enabled, mark it
2538 * desired so it's re-enabled when the connector is brought back
2539 */
2540 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2541 new_state->content_protection =
2542 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2543 return;
2544 }
2545
2546 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2547 new_state->crtc);
2548 /*
2549 * Fix the HDCP uapi content protection state in case of modeset.
2550 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2551 * need to be sent if there is transition from ENABLED->DESIRED.
2552 */
2553 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2554 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2555 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2556 new_state->content_protection =
2557 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2558
2559 /*
2560 * Nothing to do if the state didn't change, or HDCP was activated since
2561 * the last commit. And also no change in hdcp content type.
2562 */
2563 if (old_cp == new_cp ||
2564 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2565 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2566 if (old_state->hdcp_content_type ==
2567 new_state->hdcp_content_type)
2568 return;
2569 }
2570
2571 crtc_state->mode_changed = true;
2572 }
2573
2574 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2575 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2576 {
2577 struct intel_hdcp *hdcp = &connector->hdcp;
2578
2579 if (!hdcp->shim)
2580 return;
2581
2582 atomic_inc(&connector->hdcp.cp_irq_count);
2583 wake_up_all(&connector->hdcp.cp_irq_queue);
2584
2585 schedule_delayed_work(&hdcp->check_work, 0);
2586 }
2587