1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_engine_regs.h"
41 #include "gt/intel_gpu_commands.h"
42 #include "gt/intel_gt_regs.h"
43 #include "gt/intel_lrc.h"
44 #include "gt/intel_ring.h"
45 #include "gt/intel_gt_requests.h"
46 #include "gt/shmem_utils.h"
47 #include "gvt.h"
48 #include "i915_pvinfo.h"
49 #include "trace.h"
50
51 #include "gem/i915_gem_context.h"
52 #include "gem/i915_gem_pm.h"
53 #include "gt/intel_context.h"
54
55 #define INVALID_OP (~0U)
56
57 #define OP_LEN_MI 9
58 #define OP_LEN_2D 10
59 #define OP_LEN_3D_MEDIA 16
60 #define OP_LEN_MFX_VC 16
61 #define OP_LEN_VEBOX 16
62
63 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
64
65 struct sub_op_bits {
66 int hi;
67 int low;
68 };
69 struct decode_info {
70 const char *name;
71 int op_len;
72 int nr_sub_op;
73 const struct sub_op_bits *sub_op;
74 };
75
76 #define MAX_CMD_BUDGET 0x7fffffff
77 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
78 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
79 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
80
81 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
82 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
83 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
84
85 /* Render Command Map */
86
87 /* MI_* command Opcode (28:23) */
88 #define OP_MI_NOOP 0x0
89 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
90 #define OP_MI_USER_INTERRUPT 0x2
91 #define OP_MI_WAIT_FOR_EVENT 0x3
92 #define OP_MI_FLUSH 0x4
93 #define OP_MI_ARB_CHECK 0x5
94 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
95 #define OP_MI_REPORT_HEAD 0x7
96 #define OP_MI_ARB_ON_OFF 0x8
97 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
98 #define OP_MI_BATCH_BUFFER_END 0xA
99 #define OP_MI_SUSPEND_FLUSH 0xB
100 #define OP_MI_PREDICATE 0xC /* IVB+ */
101 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
102 #define OP_MI_SET_APPID 0xE /* IVB+ */
103 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
104 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
105 #define OP_MI_DISPLAY_FLIP 0x14
106 #define OP_MI_SEMAPHORE_MBOX 0x16
107 #define OP_MI_SET_CONTEXT 0x18
108 #define OP_MI_MATH 0x1A
109 #define OP_MI_URB_CLEAR 0x19
110 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
111 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
112
113 #define OP_MI_STORE_DATA_IMM 0x20
114 #define OP_MI_STORE_DATA_INDEX 0x21
115 #define OP_MI_LOAD_REGISTER_IMM 0x22
116 #define OP_MI_UPDATE_GTT 0x23
117 #define OP_MI_STORE_REGISTER_MEM 0x24
118 #define OP_MI_FLUSH_DW 0x26
119 #define OP_MI_CLFLUSH 0x27
120 #define OP_MI_REPORT_PERF_COUNT 0x28
121 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
122 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
123 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
124 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
125 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
126 #define OP_MI_2E 0x2E /* BDW+ */
127 #define OP_MI_2F 0x2F /* BDW+ */
128 #define OP_MI_BATCH_BUFFER_START 0x31
129
130 /* Bit definition for dword 0 */
131 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
132
133 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
134
135 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
136 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
137 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
138 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
139
140 /* 2D command: Opcode (28:22) */
141 #define OP_2D(x) ((2<<7) | x)
142
143 #define OP_XY_SETUP_BLT OP_2D(0x1)
144 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
145 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
146 #define OP_XY_PIXEL_BLT OP_2D(0x24)
147 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
148 #define OP_XY_TEXT_BLT OP_2D(0x26)
149 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
150 #define OP_XY_COLOR_BLT OP_2D(0x50)
151 #define OP_XY_PAT_BLT OP_2D(0x51)
152 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
153 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
154 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
155 #define OP_XY_FULL_BLT OP_2D(0x55)
156 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
157 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
158 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
159 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
160 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
161 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
162 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
163 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
164 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
165 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
166 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
167
168 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
169 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
170 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
171
172 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
173
174 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
175 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
176 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
177 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03)
178
179 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
180
181 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
182
183 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
184 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
185 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
186 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
187 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
188 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
189
190 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
191 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
192 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
193 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
194
195 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
196 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
197 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
198 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
199 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
200 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
201 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
202 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
203 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
204 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
205 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
206 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
207 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
208 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
209 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
210 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
211 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
212 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
213 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
214 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
215 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
216 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
217 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
218 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
219 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
220 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
221 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
222 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
223 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
224 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
225 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
226 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
237 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
238 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
239 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
240 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
252 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
253 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
254 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
255 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
261
262 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
263 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
264 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
265 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
266 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
267 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
268 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
269 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
270 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
271 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
272 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
273
274 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
275 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
276 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
277 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
278 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
279 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
280 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
281 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
282 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
283 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
284 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
285 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
286 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
287 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
288 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
294 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
295 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
296 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
297 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
298 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
299 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
300 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
301 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
302
303 /* VCCP Command Parser */
304
305 /*
306 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
307 * git://anongit.freedesktop.org/vaapi/intel-driver
308 * src/i965_defines.h
309 *
310 */
311
312 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
313 (3 << 13 | \
314 (pipeline) << 11 | \
315 (op) << 8 | \
316 (sub_opa) << 5 | \
317 (sub_opb))
318
319 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
320 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
321 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
322 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
323 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
324 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
325 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
326 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
327 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
328 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
329 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
330
331 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
332
333 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
334 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
335 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
336 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
337 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
338 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
339 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
340 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
341 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
342 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
343 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
344 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
345
346 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
347 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
348 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
349 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
350 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
351
352 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
353 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
354 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
355 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
356 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
357
358 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
359 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
360 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
361
362 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
363 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
364 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
365
366 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
367 (3 << 13 | \
368 (pipeline) << 11 | \
369 (op) << 8 | \
370 (sub_opa) << 5 | \
371 (sub_opb))
372
373 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
374 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
375 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
376
377 struct parser_exec_state;
378
379 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
380
381 #define GVT_CMD_HASH_BITS 7
382
383 /* which DWords need address fix */
384 #define ADDR_FIX_1(x1) (1 << (x1))
385 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
386 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
387 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
388 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
389
390 #define DWORD_FIELD(dword, end, start) \
391 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
392
393 #define OP_LENGTH_BIAS 2
394 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
395
gvt_check_valid_cmd_length(int len,int valid_len)396 static int gvt_check_valid_cmd_length(int len, int valid_len)
397 {
398 if (valid_len != len) {
399 gvt_err("len is not valid: len=%u valid_len=%u\n",
400 len, valid_len);
401 return -EFAULT;
402 }
403 return 0;
404 }
405
406 struct cmd_info {
407 const char *name;
408 u32 opcode;
409
410 #define F_LEN_MASK 3U
411 #define F_LEN_CONST 1U
412 #define F_LEN_VAR 0U
413 /* value is const although LEN maybe variable */
414 #define F_LEN_VAR_FIXED (1<<1)
415
416 /*
417 * command has its own ip advance logic
418 * e.g. MI_BATCH_START, MI_BATCH_END
419 */
420 #define F_IP_ADVANCE_CUSTOM (1<<2)
421 u32 flag;
422
423 #define R_RCS BIT(RCS0)
424 #define R_VCS1 BIT(VCS0)
425 #define R_VCS2 BIT(VCS1)
426 #define R_VCS (R_VCS1 | R_VCS2)
427 #define R_BCS BIT(BCS0)
428 #define R_VECS BIT(VECS0)
429 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
430 /* rings that support this cmd: BLT/RCS/VCS/VECS */
431 intel_engine_mask_t rings;
432
433 /* devices that support this cmd: SNB/IVB/HSW/... */
434 u16 devices;
435
436 /* which DWords are address that need fix up.
437 * bit 0 means a 32-bit non address operand in command
438 * bit 1 means address operand, which could be 32-bit
439 * or 64-bit depending on different architectures.(
440 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
441 * No matter the address length, each address only takes
442 * one bit in the bitmap.
443 */
444 u16 addr_bitmap;
445
446 /* flag == F_LEN_CONST : command length
447 * flag == F_LEN_VAR : length bias bits
448 * Note: length is in DWord
449 */
450 u32 len;
451
452 parser_cmd_handler handler;
453
454 /* valid length in DWord */
455 u32 valid_len;
456 };
457
458 struct cmd_entry {
459 struct hlist_node hlist;
460 const struct cmd_info *info;
461 };
462
463 enum {
464 RING_BUFFER_INSTRUCTION,
465 BATCH_BUFFER_INSTRUCTION,
466 BATCH_BUFFER_2ND_LEVEL,
467 RING_BUFFER_CTX,
468 };
469
470 enum {
471 GTT_BUFFER,
472 PPGTT_BUFFER
473 };
474
475 struct parser_exec_state {
476 struct intel_vgpu *vgpu;
477 const struct intel_engine_cs *engine;
478
479 int buf_type;
480
481 /* batch buffer address type */
482 int buf_addr_type;
483
484 /* graphics memory address of ring buffer start */
485 unsigned long ring_start;
486 unsigned long ring_size;
487 unsigned long ring_head;
488 unsigned long ring_tail;
489
490 /* instruction graphics memory address */
491 unsigned long ip_gma;
492
493 /* mapped va of the instr_gma */
494 void *ip_va;
495 void *rb_va;
496
497 void *ret_bb_va;
498 /* next instruction when return from batch buffer to ring buffer */
499 unsigned long ret_ip_gma_ring;
500
501 /* next instruction when return from 2nd batch buffer to batch buffer */
502 unsigned long ret_ip_gma_bb;
503
504 /* batch buffer address type (GTT or PPGTT)
505 * used when ret from 2nd level batch buffer
506 */
507 int saved_buf_addr_type;
508 bool is_ctx_wa;
509 bool is_init_ctx;
510
511 const struct cmd_info *info;
512
513 struct intel_vgpu_workload *workload;
514 };
515
516 #define gmadr_dw_number(s) \
517 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
518
519 static unsigned long bypass_scan_mask = 0;
520
521 /* ring ALL, type = 0 */
522 static const struct sub_op_bits sub_op_mi[] = {
523 {31, 29},
524 {28, 23},
525 };
526
527 static const struct decode_info decode_info_mi = {
528 "MI",
529 OP_LEN_MI,
530 ARRAY_SIZE(sub_op_mi),
531 sub_op_mi,
532 };
533
534 /* ring RCS, command type 2 */
535 static const struct sub_op_bits sub_op_2d[] = {
536 {31, 29},
537 {28, 22},
538 };
539
540 static const struct decode_info decode_info_2d = {
541 "2D",
542 OP_LEN_2D,
543 ARRAY_SIZE(sub_op_2d),
544 sub_op_2d,
545 };
546
547 /* ring RCS, command type 3 */
548 static const struct sub_op_bits sub_op_3d_media[] = {
549 {31, 29},
550 {28, 27},
551 {26, 24},
552 {23, 16},
553 };
554
555 static const struct decode_info decode_info_3d_media = {
556 "3D_Media",
557 OP_LEN_3D_MEDIA,
558 ARRAY_SIZE(sub_op_3d_media),
559 sub_op_3d_media,
560 };
561
562 /* ring VCS, command type 3 */
563 static const struct sub_op_bits sub_op_mfx_vc[] = {
564 {31, 29},
565 {28, 27},
566 {26, 24},
567 {23, 21},
568 {20, 16},
569 };
570
571 static const struct decode_info decode_info_mfx_vc = {
572 "MFX_VC",
573 OP_LEN_MFX_VC,
574 ARRAY_SIZE(sub_op_mfx_vc),
575 sub_op_mfx_vc,
576 };
577
578 /* ring VECS, command type 3 */
579 static const struct sub_op_bits sub_op_vebox[] = {
580 {31, 29},
581 {28, 27},
582 {26, 24},
583 {23, 21},
584 {20, 16},
585 };
586
587 static const struct decode_info decode_info_vebox = {
588 "VEBOX",
589 OP_LEN_VEBOX,
590 ARRAY_SIZE(sub_op_vebox),
591 sub_op_vebox,
592 };
593
594 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
595 [RCS0] = {
596 &decode_info_mi,
597 NULL,
598 NULL,
599 &decode_info_3d_media,
600 NULL,
601 NULL,
602 NULL,
603 NULL,
604 },
605
606 [VCS0] = {
607 &decode_info_mi,
608 NULL,
609 NULL,
610 &decode_info_mfx_vc,
611 NULL,
612 NULL,
613 NULL,
614 NULL,
615 },
616
617 [BCS0] = {
618 &decode_info_mi,
619 NULL,
620 &decode_info_2d,
621 NULL,
622 NULL,
623 NULL,
624 NULL,
625 NULL,
626 },
627
628 [VECS0] = {
629 &decode_info_mi,
630 NULL,
631 NULL,
632 &decode_info_vebox,
633 NULL,
634 NULL,
635 NULL,
636 NULL,
637 },
638
639 [VCS1] = {
640 &decode_info_mi,
641 NULL,
642 NULL,
643 &decode_info_mfx_vc,
644 NULL,
645 NULL,
646 NULL,
647 NULL,
648 },
649 };
650
get_opcode(u32 cmd,const struct intel_engine_cs * engine)651 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
652 {
653 const struct decode_info *d_info;
654
655 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
656 if (d_info == NULL)
657 return INVALID_OP;
658
659 return cmd >> (32 - d_info->op_len);
660 }
661
662 static inline const struct cmd_info *
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,const struct intel_engine_cs * engine)663 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
664 const struct intel_engine_cs *engine)
665 {
666 struct cmd_entry *e;
667
668 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
669 if (opcode == e->info->opcode &&
670 e->info->rings & engine->mask)
671 return e->info;
672 }
673 return NULL;
674 }
675
676 static inline const struct cmd_info *
get_cmd_info(struct intel_gvt * gvt,u32 cmd,const struct intel_engine_cs * engine)677 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
678 const struct intel_engine_cs *engine)
679 {
680 u32 opcode;
681
682 opcode = get_opcode(cmd, engine);
683 if (opcode == INVALID_OP)
684 return NULL;
685
686 return find_cmd_entry(gvt, opcode, engine);
687 }
688
sub_op_val(u32 cmd,u32 hi,u32 low)689 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
690 {
691 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
692 }
693
print_opcode(u32 cmd,const struct intel_engine_cs * engine)694 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
695 {
696 const struct decode_info *d_info;
697 int i;
698
699 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
700 if (d_info == NULL)
701 return;
702
703 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
704 cmd >> (32 - d_info->op_len), d_info->name);
705
706 for (i = 0; i < d_info->nr_sub_op; i++)
707 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
708 d_info->sub_op[i].low));
709
710 pr_err("\n");
711 }
712
cmd_ptr(struct parser_exec_state * s,int index)713 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
714 {
715 return s->ip_va + (index << 2);
716 }
717
cmd_val(struct parser_exec_state * s,int index)718 static inline u32 cmd_val(struct parser_exec_state *s, int index)
719 {
720 return *cmd_ptr(s, index);
721 }
722
is_init_ctx(struct parser_exec_state * s)723 static inline bool is_init_ctx(struct parser_exec_state *s)
724 {
725 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
726 }
727
parser_exec_state_dump(struct parser_exec_state * s)728 static void parser_exec_state_dump(struct parser_exec_state *s)
729 {
730 int cnt = 0;
731 int i;
732
733 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
734 " ring_head(%08lx) ring_tail(%08lx)\n",
735 s->vgpu->id, s->engine->name,
736 s->ring_start, s->ring_start + s->ring_size,
737 s->ring_head, s->ring_tail);
738
739 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
740 s->buf_type == RING_BUFFER_INSTRUCTION ?
741 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
742 "CTX_BUFFER" : "BATCH_BUFFER"),
743 s->buf_addr_type == GTT_BUFFER ?
744 "GTT" : "PPGTT", s->ip_gma);
745
746 if (s->ip_va == NULL) {
747 gvt_dbg_cmd(" ip_va(NULL)");
748 return;
749 }
750
751 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
752 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
753 cmd_val(s, 2), cmd_val(s, 3));
754
755 print_opcode(cmd_val(s, 0), s->engine);
756
757 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
758
759 while (cnt < 1024) {
760 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
761 for (i = 0; i < 8; i++)
762 gvt_dbg_cmd("%08x ", cmd_val(s, i));
763 gvt_dbg_cmd("\n");
764
765 s->ip_va += 8 * sizeof(u32);
766 cnt += 8;
767 }
768 }
769
update_ip_va(struct parser_exec_state * s)770 static inline void update_ip_va(struct parser_exec_state *s)
771 {
772 unsigned long len = 0;
773
774 if (WARN_ON(s->ring_head == s->ring_tail))
775 return;
776
777 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
778 s->buf_type == RING_BUFFER_CTX) {
779 unsigned long ring_top = s->ring_start + s->ring_size;
780
781 if (s->ring_head > s->ring_tail) {
782 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
783 len = (s->ip_gma - s->ring_head);
784 else if (s->ip_gma >= s->ring_start &&
785 s->ip_gma <= s->ring_tail)
786 len = (ring_top - s->ring_head) +
787 (s->ip_gma - s->ring_start);
788 } else
789 len = (s->ip_gma - s->ring_head);
790
791 s->ip_va = s->rb_va + len;
792 } else {/* shadow batch buffer */
793 s->ip_va = s->ret_bb_va;
794 }
795 }
796
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)797 static inline int ip_gma_set(struct parser_exec_state *s,
798 unsigned long ip_gma)
799 {
800 WARN_ON(!IS_ALIGNED(ip_gma, 4));
801
802 s->ip_gma = ip_gma;
803 update_ip_va(s);
804 return 0;
805 }
806
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)807 static inline int ip_gma_advance(struct parser_exec_state *s,
808 unsigned int dw_len)
809 {
810 s->ip_gma += (dw_len << 2);
811
812 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
813 if (s->ip_gma >= s->ring_start + s->ring_size)
814 s->ip_gma -= s->ring_size;
815 update_ip_va(s);
816 } else {
817 s->ip_va += (dw_len << 2);
818 }
819
820 return 0;
821 }
822
get_cmd_length(const struct cmd_info * info,u32 cmd)823 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
824 {
825 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
826 return info->len;
827 else
828 return (cmd & ((1U << info->len) - 1)) + 2;
829 return 0;
830 }
831
cmd_length(struct parser_exec_state * s)832 static inline int cmd_length(struct parser_exec_state *s)
833 {
834 return get_cmd_length(s->info, cmd_val(s, 0));
835 }
836
837 /* do not remove this, some platform may need clflush here */
838 #define patch_value(s, addr, val) do { \
839 *addr = val; \
840 } while (0)
841
is_mocs_mmio(unsigned int offset)842 static inline bool is_mocs_mmio(unsigned int offset)
843 {
844 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
845 ((offset >= 0xb020) && (offset <= 0xb0a0));
846 }
847
is_cmd_update_pdps(unsigned int offset,struct parser_exec_state * s)848 static int is_cmd_update_pdps(unsigned int offset,
849 struct parser_exec_state *s)
850 {
851 u32 base = s->workload->engine->mmio_base;
852 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
853 }
854
cmd_pdp_mmio_update_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)855 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
856 unsigned int offset, unsigned int index)
857 {
858 struct intel_vgpu *vgpu = s->vgpu;
859 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
860 struct intel_vgpu_mm *mm;
861 u64 pdps[GEN8_3LVL_PDPES];
862
863 if (shadow_mm->ppgtt_mm.root_entry_type ==
864 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
865 pdps[0] = (u64)cmd_val(s, 2) << 32;
866 pdps[0] |= cmd_val(s, 4);
867
868 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
869 if (!mm) {
870 gvt_vgpu_err("failed to get the 4-level shadow vm\n");
871 return -EINVAL;
872 }
873 intel_vgpu_mm_get(mm);
874 list_add_tail(&mm->ppgtt_mm.link,
875 &s->workload->lri_shadow_mm);
876 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
877 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
878 } else {
879 /* Currently all guests use PML4 table and now can't
880 * have a guest with 3-level table but uses LRI for
881 * PPGTT update. So this is simply un-testable. */
882 GEM_BUG_ON(1);
883 gvt_vgpu_err("invalid shared shadow vm type\n");
884 return -EINVAL;
885 }
886 return 0;
887 }
888
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)889 static int cmd_reg_handler(struct parser_exec_state *s,
890 unsigned int offset, unsigned int index, char *cmd)
891 {
892 struct intel_vgpu *vgpu = s->vgpu;
893 struct intel_gvt *gvt = vgpu->gvt;
894 u32 ctx_sr_ctl;
895 u32 *vreg, vreg_old;
896
897 if (offset + 4 > gvt->device_info.mmio_size) {
898 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
899 cmd, offset);
900 return -EFAULT;
901 }
902
903 if (is_init_ctx(s)) {
904 struct intel_gvt_mmio_info *mmio_info;
905
906 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
907 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
908 if (mmio_info && mmio_info->write)
909 intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
910 return 0;
911 }
912
913 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
914 gvt_vgpu_err("%s access to non-render register (%x)\n",
915 cmd, offset);
916 return -EBADRQC;
917 }
918
919 if (!strncmp(cmd, "srm", 3) ||
920 !strncmp(cmd, "lrm", 3)) {
921 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
922 offset == 0x21f0 ||
923 (IS_BROADWELL(gvt->gt->i915) &&
924 offset == i915_mmio_reg_offset(INSTPM)))
925 return 0;
926 else {
927 gvt_vgpu_err("%s access to register (%x)\n",
928 cmd, offset);
929 return -EPERM;
930 }
931 }
932
933 if (!strncmp(cmd, "lrr-src", 7) ||
934 !strncmp(cmd, "lrr-dst", 7)) {
935 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
936 return 0;
937 else {
938 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
939 return -EPERM;
940 }
941 }
942
943 if (!strncmp(cmd, "pipe_ctrl", 9)) {
944 /* TODO: add LRI POST logic here */
945 return 0;
946 }
947
948 if (strncmp(cmd, "lri", 3))
949 return -EPERM;
950
951 /* below are all lri handlers */
952 vreg = &vgpu_vreg(s->vgpu, offset);
953
954 if (is_cmd_update_pdps(offset, s) &&
955 cmd_pdp_mmio_update_handler(s, offset, index))
956 return -EINVAL;
957
958 if (offset == i915_mmio_reg_offset(DERRMR) ||
959 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
960 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
961 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
962 }
963
964 if (is_mocs_mmio(offset))
965 *vreg = cmd_val(s, index + 1);
966
967 vreg_old = *vreg;
968
969 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
970 u32 cmdval_new, cmdval;
971 struct intel_gvt_mmio_info *mmio_info;
972
973 cmdval = cmd_val(s, index + 1);
974
975 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
976 if (!mmio_info) {
977 cmdval_new = cmdval;
978 } else {
979 u64 ro_mask = mmio_info->ro_mask;
980 int ret;
981
982 if (likely(!ro_mask))
983 ret = mmio_info->write(s->vgpu, offset,
984 &cmdval, 4);
985 else {
986 gvt_vgpu_err("try to write RO reg %x\n",
987 offset);
988 ret = -EBADRQC;
989 }
990 if (ret)
991 return ret;
992 cmdval_new = *vreg;
993 }
994 if (cmdval_new != cmdval)
995 patch_value(s, cmd_ptr(s, index+1), cmdval_new);
996 }
997
998 /* only patch cmd. restore vreg value if changed in mmio write handler*/
999 *vreg = vreg_old;
1000
1001 /* TODO
1002 * In order to let workload with inhibit context to generate
1003 * correct image data into memory, vregs values will be loaded to
1004 * hw via LRIs in the workload with inhibit context. But as
1005 * indirect context is loaded prior to LRIs in workload, we don't
1006 * want reg values specified in indirect context overwritten by
1007 * LRIs in workloads. So, when scanning an indirect context, we
1008 * update reg values in it into vregs, so LRIs in workload with
1009 * inhibit context will restore with correct values
1010 */
1011 if (GRAPHICS_VER(s->engine->i915) == 9 &&
1012 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1013 !strncmp(cmd, "lri", 3)) {
1014 intel_gvt_read_gpa(s->vgpu,
1015 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1016 /* check inhibit context */
1017 if (ctx_sr_ctl & 1) {
1018 u32 data = cmd_val(s, index + 1);
1019
1020 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1021 intel_vgpu_mask_mmio_write(vgpu,
1022 offset, &data, 4);
1023 else
1024 vgpu_vreg(vgpu, offset) = data;
1025 }
1026 }
1027
1028 return 0;
1029 }
1030
1031 #define cmd_reg(s, i) \
1032 (cmd_val(s, i) & GENMASK(22, 2))
1033
1034 #define cmd_reg_inhibit(s, i) \
1035 (cmd_val(s, i) & GENMASK(22, 18))
1036
1037 #define cmd_gma(s, i) \
1038 (cmd_val(s, i) & GENMASK(31, 2))
1039
1040 #define cmd_gma_hi(s, i) \
1041 (cmd_val(s, i) & GENMASK(15, 0))
1042
cmd_handler_lri(struct parser_exec_state * s)1043 static int cmd_handler_lri(struct parser_exec_state *s)
1044 {
1045 int i, ret = 0;
1046 int cmd_len = cmd_length(s);
1047
1048 for (i = 1; i < cmd_len; i += 2) {
1049 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1050 if (s->engine->id == BCS0 &&
1051 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1052 ret |= 0;
1053 else
1054 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1055 }
1056 if (ret)
1057 break;
1058 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1059 if (ret)
1060 break;
1061 }
1062 return ret;
1063 }
1064
cmd_handler_lrr(struct parser_exec_state * s)1065 static int cmd_handler_lrr(struct parser_exec_state *s)
1066 {
1067 int i, ret = 0;
1068 int cmd_len = cmd_length(s);
1069
1070 for (i = 1; i < cmd_len; i += 2) {
1071 if (IS_BROADWELL(s->engine->i915))
1072 ret |= ((cmd_reg_inhibit(s, i) ||
1073 (cmd_reg_inhibit(s, i + 1)))) ?
1074 -EBADRQC : 0;
1075 if (ret)
1076 break;
1077 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1078 if (ret)
1079 break;
1080 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1081 if (ret)
1082 break;
1083 }
1084 return ret;
1085 }
1086
1087 static inline int cmd_address_audit(struct parser_exec_state *s,
1088 unsigned long guest_gma, int op_size, bool index_mode);
1089
cmd_handler_lrm(struct parser_exec_state * s)1090 static int cmd_handler_lrm(struct parser_exec_state *s)
1091 {
1092 struct intel_gvt *gvt = s->vgpu->gvt;
1093 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1094 unsigned long gma;
1095 int i, ret = 0;
1096 int cmd_len = cmd_length(s);
1097
1098 for (i = 1; i < cmd_len;) {
1099 if (IS_BROADWELL(s->engine->i915))
1100 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1101 if (ret)
1102 break;
1103 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1104 if (ret)
1105 break;
1106 if (cmd_val(s, 0) & (1 << 22)) {
1107 gma = cmd_gma(s, i + 1);
1108 if (gmadr_bytes == 8)
1109 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1110 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1111 if (ret)
1112 break;
1113 }
1114 i += gmadr_dw_number(s) + 1;
1115 }
1116 return ret;
1117 }
1118
cmd_handler_srm(struct parser_exec_state * s)1119 static int cmd_handler_srm(struct parser_exec_state *s)
1120 {
1121 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1122 unsigned long gma;
1123 int i, ret = 0;
1124 int cmd_len = cmd_length(s);
1125
1126 for (i = 1; i < cmd_len;) {
1127 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1128 if (ret)
1129 break;
1130 if (cmd_val(s, 0) & (1 << 22)) {
1131 gma = cmd_gma(s, i + 1);
1132 if (gmadr_bytes == 8)
1133 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1134 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1135 if (ret)
1136 break;
1137 }
1138 i += gmadr_dw_number(s) + 1;
1139 }
1140 return ret;
1141 }
1142
1143 struct cmd_interrupt_event {
1144 int pipe_control_notify;
1145 int mi_flush_dw;
1146 int mi_user_interrupt;
1147 };
1148
1149 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1150 [RCS0] = {
1151 .pipe_control_notify = RCS_PIPE_CONTROL,
1152 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1153 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1154 },
1155 [BCS0] = {
1156 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1157 .mi_flush_dw = BCS_MI_FLUSH_DW,
1158 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1159 },
1160 [VCS0] = {
1161 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1162 .mi_flush_dw = VCS_MI_FLUSH_DW,
1163 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1164 },
1165 [VCS1] = {
1166 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1167 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1168 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1169 },
1170 [VECS0] = {
1171 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1172 .mi_flush_dw = VECS_MI_FLUSH_DW,
1173 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1174 },
1175 };
1176
cmd_handler_pipe_control(struct parser_exec_state * s)1177 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1178 {
1179 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1180 unsigned long gma;
1181 bool index_mode = false;
1182 unsigned int post_sync;
1183 int ret = 0;
1184 u32 hws_pga, val;
1185
1186 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1187
1188 /* LRI post sync */
1189 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1190 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1191 /* post sync */
1192 else if (post_sync) {
1193 if (post_sync == 2)
1194 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1195 else if (post_sync == 3)
1196 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1197 else if (post_sync == 1) {
1198 /* check ggtt*/
1199 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1200 gma = cmd_val(s, 2) & GENMASK(31, 3);
1201 if (gmadr_bytes == 8)
1202 gma |= (cmd_gma_hi(s, 3)) << 32;
1203 /* Store Data Index */
1204 if (cmd_val(s, 1) & (1 << 21))
1205 index_mode = true;
1206 ret |= cmd_address_audit(s, gma, sizeof(u64),
1207 index_mode);
1208 if (ret)
1209 return ret;
1210 if (index_mode) {
1211 hws_pga = s->vgpu->hws_pga[s->engine->id];
1212 gma = hws_pga + gma;
1213 patch_value(s, cmd_ptr(s, 2), gma);
1214 val = cmd_val(s, 1) & (~(1 << 21));
1215 patch_value(s, cmd_ptr(s, 1), val);
1216 }
1217 }
1218 }
1219 }
1220
1221 if (ret)
1222 return ret;
1223
1224 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1225 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1226 s->workload->pending_events);
1227 return 0;
1228 }
1229
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1230 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1231 {
1232 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1233 s->workload->pending_events);
1234 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1235 return 0;
1236 }
1237
cmd_advance_default(struct parser_exec_state * s)1238 static int cmd_advance_default(struct parser_exec_state *s)
1239 {
1240 return ip_gma_advance(s, cmd_length(s));
1241 }
1242
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1243 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1244 {
1245 int ret;
1246
1247 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1248 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1249 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1250 s->buf_addr_type = s->saved_buf_addr_type;
1251 } else if (s->buf_type == RING_BUFFER_CTX) {
1252 ret = ip_gma_set(s, s->ring_tail);
1253 } else {
1254 s->buf_type = RING_BUFFER_INSTRUCTION;
1255 s->buf_addr_type = GTT_BUFFER;
1256 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1257 s->ret_ip_gma_ring -= s->ring_size;
1258 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1259 }
1260 return ret;
1261 }
1262
1263 struct mi_display_flip_command_info {
1264 int pipe;
1265 int plane;
1266 int event;
1267 i915_reg_t stride_reg;
1268 i915_reg_t ctrl_reg;
1269 i915_reg_t surf_reg;
1270 u64 stride_val;
1271 u64 tile_val;
1272 u64 surf_val;
1273 bool async_flip;
1274 };
1275
1276 struct plane_code_mapping {
1277 int pipe;
1278 int plane;
1279 int event;
1280 };
1281
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1282 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1283 struct mi_display_flip_command_info *info)
1284 {
1285 struct drm_i915_private *dev_priv = s->engine->i915;
1286 struct plane_code_mapping gen8_plane_code[] = {
1287 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1288 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1289 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1290 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1291 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1292 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1293 };
1294 u32 dword0, dword1, dword2;
1295 u32 v;
1296
1297 dword0 = cmd_val(s, 0);
1298 dword1 = cmd_val(s, 1);
1299 dword2 = cmd_val(s, 2);
1300
1301 v = (dword0 & GENMASK(21, 19)) >> 19;
1302 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1303 return -EBADRQC;
1304
1305 info->pipe = gen8_plane_code[v].pipe;
1306 info->plane = gen8_plane_code[v].plane;
1307 info->event = gen8_plane_code[v].event;
1308 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1309 info->tile_val = (dword1 & 0x1);
1310 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1311 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1312
1313 if (info->plane == PLANE_A) {
1314 info->ctrl_reg = DSPCNTR(info->pipe);
1315 info->stride_reg = DSPSTRIDE(info->pipe);
1316 info->surf_reg = DSPSURF(info->pipe);
1317 } else if (info->plane == PLANE_B) {
1318 info->ctrl_reg = SPRCTL(info->pipe);
1319 info->stride_reg = SPRSTRIDE(info->pipe);
1320 info->surf_reg = SPRSURF(info->pipe);
1321 } else {
1322 drm_WARN_ON(&dev_priv->drm, 1);
1323 return -EBADRQC;
1324 }
1325 return 0;
1326 }
1327
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1328 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1329 struct mi_display_flip_command_info *info)
1330 {
1331 struct drm_i915_private *dev_priv = s->engine->i915;
1332 struct intel_vgpu *vgpu = s->vgpu;
1333 u32 dword0 = cmd_val(s, 0);
1334 u32 dword1 = cmd_val(s, 1);
1335 u32 dword2 = cmd_val(s, 2);
1336 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1337
1338 info->plane = PRIMARY_PLANE;
1339
1340 switch (plane) {
1341 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1342 info->pipe = PIPE_A;
1343 info->event = PRIMARY_A_FLIP_DONE;
1344 break;
1345 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1346 info->pipe = PIPE_B;
1347 info->event = PRIMARY_B_FLIP_DONE;
1348 break;
1349 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1350 info->pipe = PIPE_C;
1351 info->event = PRIMARY_C_FLIP_DONE;
1352 break;
1353
1354 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1355 info->pipe = PIPE_A;
1356 info->event = SPRITE_A_FLIP_DONE;
1357 info->plane = SPRITE_PLANE;
1358 break;
1359 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1360 info->pipe = PIPE_B;
1361 info->event = SPRITE_B_FLIP_DONE;
1362 info->plane = SPRITE_PLANE;
1363 break;
1364 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1365 info->pipe = PIPE_C;
1366 info->event = SPRITE_C_FLIP_DONE;
1367 info->plane = SPRITE_PLANE;
1368 break;
1369
1370 default:
1371 gvt_vgpu_err("unknown plane code %d\n", plane);
1372 return -EBADRQC;
1373 }
1374
1375 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1376 info->tile_val = (dword1 & GENMASK(2, 0));
1377 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1378 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1379
1380 info->ctrl_reg = DSPCNTR(info->pipe);
1381 info->stride_reg = DSPSTRIDE(info->pipe);
1382 info->surf_reg = DSPSURF(info->pipe);
1383
1384 return 0;
1385 }
1386
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1387 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1388 struct mi_display_flip_command_info *info)
1389 {
1390 u32 stride, tile;
1391
1392 if (!info->async_flip)
1393 return 0;
1394
1395 if (GRAPHICS_VER(s->engine->i915) >= 9) {
1396 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1397 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1398 GENMASK(12, 10)) >> 10;
1399 } else {
1400 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1401 GENMASK(15, 6)) >> 6;
1402 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1403 }
1404
1405 if (stride != info->stride_val)
1406 gvt_dbg_cmd("cannot change stride during async flip\n");
1407
1408 if (tile != info->tile_val)
1409 gvt_dbg_cmd("cannot change tile during async flip\n");
1410
1411 return 0;
1412 }
1413
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1414 static int gen8_update_plane_mmio_from_mi_display_flip(
1415 struct parser_exec_state *s,
1416 struct mi_display_flip_command_info *info)
1417 {
1418 struct drm_i915_private *dev_priv = s->engine->i915;
1419 struct intel_vgpu *vgpu = s->vgpu;
1420
1421 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1422 info->surf_val << 12);
1423 if (GRAPHICS_VER(dev_priv) >= 9) {
1424 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1425 info->stride_val);
1426 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1427 info->tile_val << 10);
1428 } else {
1429 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1430 info->stride_val << 6);
1431 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1432 info->tile_val << 10);
1433 }
1434
1435 if (info->plane == PLANE_PRIMARY)
1436 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1437
1438 if (info->async_flip)
1439 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1440 else
1441 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1442
1443 return 0;
1444 }
1445
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1446 static int decode_mi_display_flip(struct parser_exec_state *s,
1447 struct mi_display_flip_command_info *info)
1448 {
1449 if (IS_BROADWELL(s->engine->i915))
1450 return gen8_decode_mi_display_flip(s, info);
1451 if (GRAPHICS_VER(s->engine->i915) >= 9)
1452 return skl_decode_mi_display_flip(s, info);
1453
1454 return -ENODEV;
1455 }
1456
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1457 static int check_mi_display_flip(struct parser_exec_state *s,
1458 struct mi_display_flip_command_info *info)
1459 {
1460 return gen8_check_mi_display_flip(s, info);
1461 }
1462
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1463 static int update_plane_mmio_from_mi_display_flip(
1464 struct parser_exec_state *s,
1465 struct mi_display_flip_command_info *info)
1466 {
1467 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1468 }
1469
cmd_handler_mi_display_flip(struct parser_exec_state * s)1470 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1471 {
1472 struct mi_display_flip_command_info info;
1473 struct intel_vgpu *vgpu = s->vgpu;
1474 int ret;
1475 int i;
1476 int len = cmd_length(s);
1477 u32 valid_len = CMD_LEN(1);
1478
1479 /* Flip Type == Stereo 3D Flip */
1480 if (DWORD_FIELD(2, 1, 0) == 2)
1481 valid_len++;
1482 ret = gvt_check_valid_cmd_length(cmd_length(s),
1483 valid_len);
1484 if (ret)
1485 return ret;
1486
1487 ret = decode_mi_display_flip(s, &info);
1488 if (ret) {
1489 gvt_vgpu_err("fail to decode MI display flip command\n");
1490 return ret;
1491 }
1492
1493 ret = check_mi_display_flip(s, &info);
1494 if (ret) {
1495 gvt_vgpu_err("invalid MI display flip command\n");
1496 return ret;
1497 }
1498
1499 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1500 if (ret) {
1501 gvt_vgpu_err("fail to update plane mmio\n");
1502 return ret;
1503 }
1504
1505 for (i = 0; i < len; i++)
1506 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1507 return 0;
1508 }
1509
is_wait_for_flip_pending(u32 cmd)1510 static bool is_wait_for_flip_pending(u32 cmd)
1511 {
1512 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1513 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1514 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1515 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1516 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1517 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1518 }
1519
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1520 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1521 {
1522 u32 cmd = cmd_val(s, 0);
1523
1524 if (!is_wait_for_flip_pending(cmd))
1525 return 0;
1526
1527 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1528 return 0;
1529 }
1530
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1531 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1532 {
1533 unsigned long addr;
1534 unsigned long gma_high, gma_low;
1535 struct intel_vgpu *vgpu = s->vgpu;
1536 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1537
1538 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1539 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1540 return INTEL_GVT_INVALID_ADDR;
1541 }
1542
1543 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1544 if (gmadr_bytes == 4) {
1545 addr = gma_low;
1546 } else {
1547 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1548 addr = (((unsigned long)gma_high) << 32) | gma_low;
1549 }
1550 return addr;
1551 }
1552
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1553 static inline int cmd_address_audit(struct parser_exec_state *s,
1554 unsigned long guest_gma, int op_size, bool index_mode)
1555 {
1556 struct intel_vgpu *vgpu = s->vgpu;
1557 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1558 int i;
1559 int ret;
1560
1561 if (op_size > max_surface_size) {
1562 gvt_vgpu_err("command address audit fail name %s\n",
1563 s->info->name);
1564 return -EFAULT;
1565 }
1566
1567 if (index_mode) {
1568 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1569 ret = -EFAULT;
1570 goto err;
1571 }
1572 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1573 ret = -EFAULT;
1574 goto err;
1575 }
1576
1577 return 0;
1578
1579 err:
1580 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1581 s->info->name, guest_gma, op_size);
1582
1583 pr_err("cmd dump: ");
1584 for (i = 0; i < cmd_length(s); i++) {
1585 if (!(i % 4))
1586 pr_err("\n%08x ", cmd_val(s, i));
1587 else
1588 pr_err("%08x ", cmd_val(s, i));
1589 }
1590 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1591 vgpu->id,
1592 vgpu_aperture_gmadr_base(vgpu),
1593 vgpu_aperture_gmadr_end(vgpu),
1594 vgpu_hidden_gmadr_base(vgpu),
1595 vgpu_hidden_gmadr_end(vgpu));
1596 return ret;
1597 }
1598
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1599 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1600 {
1601 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1602 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1603 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1604 unsigned long gma, gma_low, gma_high;
1605 u32 valid_len = CMD_LEN(2);
1606 int ret = 0;
1607
1608 /* check ppggt */
1609 if (!(cmd_val(s, 0) & (1 << 22)))
1610 return 0;
1611
1612 /* check if QWORD */
1613 if (DWORD_FIELD(0, 21, 21))
1614 valid_len++;
1615 ret = gvt_check_valid_cmd_length(cmd_length(s),
1616 valid_len);
1617 if (ret)
1618 return ret;
1619
1620 gma = cmd_val(s, 2) & GENMASK(31, 2);
1621
1622 if (gmadr_bytes == 8) {
1623 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1624 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1625 gma = (gma_high << 32) | gma_low;
1626 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1627 }
1628 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1629 return ret;
1630 }
1631
unexpected_cmd(struct parser_exec_state * s)1632 static inline int unexpected_cmd(struct parser_exec_state *s)
1633 {
1634 struct intel_vgpu *vgpu = s->vgpu;
1635
1636 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1637
1638 return -EBADRQC;
1639 }
1640
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1641 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1642 {
1643 return unexpected_cmd(s);
1644 }
1645
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1646 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1647 {
1648 return unexpected_cmd(s);
1649 }
1650
cmd_handler_mi_op_2e(struct parser_exec_state * s)1651 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1652 {
1653 return unexpected_cmd(s);
1654 }
1655
cmd_handler_mi_op_2f(struct parser_exec_state * s)1656 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1657 {
1658 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1659 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1660 sizeof(u32);
1661 unsigned long gma, gma_high;
1662 u32 valid_len = CMD_LEN(1);
1663 int ret = 0;
1664
1665 if (!(cmd_val(s, 0) & (1 << 22)))
1666 return ret;
1667
1668 /* check inline data */
1669 if (cmd_val(s, 0) & BIT(18))
1670 valid_len = CMD_LEN(9);
1671 ret = gvt_check_valid_cmd_length(cmd_length(s),
1672 valid_len);
1673 if (ret)
1674 return ret;
1675
1676 gma = cmd_val(s, 1) & GENMASK(31, 2);
1677 if (gmadr_bytes == 8) {
1678 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1679 gma = (gma_high << 32) | gma;
1680 }
1681 ret = cmd_address_audit(s, gma, op_size, false);
1682 return ret;
1683 }
1684
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1685 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1686 {
1687 return unexpected_cmd(s);
1688 }
1689
cmd_handler_mi_clflush(struct parser_exec_state * s)1690 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1691 {
1692 return unexpected_cmd(s);
1693 }
1694
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1695 static int cmd_handler_mi_conditional_batch_buffer_end(
1696 struct parser_exec_state *s)
1697 {
1698 return unexpected_cmd(s);
1699 }
1700
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1701 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1702 {
1703 return unexpected_cmd(s);
1704 }
1705
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1706 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1707 {
1708 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1709 unsigned long gma;
1710 bool index_mode = false;
1711 int ret = 0;
1712 u32 hws_pga, val;
1713 u32 valid_len = CMD_LEN(2);
1714
1715 ret = gvt_check_valid_cmd_length(cmd_length(s),
1716 valid_len);
1717 if (ret) {
1718 /* Check again for Qword */
1719 ret = gvt_check_valid_cmd_length(cmd_length(s),
1720 ++valid_len);
1721 return ret;
1722 }
1723
1724 /* Check post-sync and ppgtt bit */
1725 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1726 gma = cmd_val(s, 1) & GENMASK(31, 3);
1727 if (gmadr_bytes == 8)
1728 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1729 /* Store Data Index */
1730 if (cmd_val(s, 0) & (1 << 21))
1731 index_mode = true;
1732 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1733 if (ret)
1734 return ret;
1735 if (index_mode) {
1736 hws_pga = s->vgpu->hws_pga[s->engine->id];
1737 gma = hws_pga + gma;
1738 patch_value(s, cmd_ptr(s, 1), gma);
1739 val = cmd_val(s, 0) & (~(1 << 21));
1740 patch_value(s, cmd_ptr(s, 0), val);
1741 }
1742 }
1743 /* Check notify bit */
1744 if ((cmd_val(s, 0) & (1 << 8)))
1745 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1746 s->workload->pending_events);
1747 return ret;
1748 }
1749
addr_type_update_snb(struct parser_exec_state * s)1750 static void addr_type_update_snb(struct parser_exec_state *s)
1751 {
1752 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1753 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1754 s->buf_addr_type = PPGTT_BUFFER;
1755 }
1756 }
1757
1758
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1759 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1760 unsigned long gma, unsigned long end_gma, void *va)
1761 {
1762 unsigned long copy_len, offset;
1763 unsigned long len = 0;
1764 unsigned long gpa;
1765
1766 while (gma != end_gma) {
1767 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1768 if (gpa == INTEL_GVT_INVALID_ADDR) {
1769 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1770 return -EFAULT;
1771 }
1772
1773 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1774
1775 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1776 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1777
1778 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1779
1780 len += copy_len;
1781 gma += copy_len;
1782 }
1783 return len;
1784 }
1785
1786
1787 /*
1788 * Check whether a batch buffer needs to be scanned. Currently
1789 * the only criteria is based on privilege.
1790 */
batch_buffer_needs_scan(struct parser_exec_state * s)1791 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1792 {
1793 /* Decide privilege based on address space */
1794 if (cmd_val(s, 0) & BIT(8) &&
1795 !(s->vgpu->scan_nonprivbb & s->engine->mask))
1796 return 0;
1797
1798 return 1;
1799 }
1800
repr_addr_type(unsigned int type)1801 static const char *repr_addr_type(unsigned int type)
1802 {
1803 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1804 }
1805
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1806 static int find_bb_size(struct parser_exec_state *s,
1807 unsigned long *bb_size,
1808 unsigned long *bb_end_cmd_offset)
1809 {
1810 unsigned long gma = 0;
1811 const struct cmd_info *info;
1812 u32 cmd_len = 0;
1813 bool bb_end = false;
1814 struct intel_vgpu *vgpu = s->vgpu;
1815 u32 cmd;
1816 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1817 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1818
1819 *bb_size = 0;
1820 *bb_end_cmd_offset = 0;
1821
1822 /* get the start gm address of the batch buffer */
1823 gma = get_gma_bb_from_cmd(s, 1);
1824 if (gma == INTEL_GVT_INVALID_ADDR)
1825 return -EFAULT;
1826
1827 cmd = cmd_val(s, 0);
1828 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1829 if (info == NULL) {
1830 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1831 cmd, get_opcode(cmd, s->engine),
1832 repr_addr_type(s->buf_addr_type),
1833 s->engine->name, s->workload);
1834 return -EBADRQC;
1835 }
1836 do {
1837 if (copy_gma_to_hva(s->vgpu, mm,
1838 gma, gma + 4, &cmd) < 0)
1839 return -EFAULT;
1840 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1841 if (info == NULL) {
1842 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1843 cmd, get_opcode(cmd, s->engine),
1844 repr_addr_type(s->buf_addr_type),
1845 s->engine->name, s->workload);
1846 return -EBADRQC;
1847 }
1848
1849 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1850 bb_end = true;
1851 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1852 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1853 /* chained batch buffer */
1854 bb_end = true;
1855 }
1856
1857 if (bb_end)
1858 *bb_end_cmd_offset = *bb_size;
1859
1860 cmd_len = get_cmd_length(info, cmd) << 2;
1861 *bb_size += cmd_len;
1862 gma += cmd_len;
1863 } while (!bb_end);
1864
1865 return 0;
1866 }
1867
audit_bb_end(struct parser_exec_state * s,void * va)1868 static int audit_bb_end(struct parser_exec_state *s, void *va)
1869 {
1870 struct intel_vgpu *vgpu = s->vgpu;
1871 u32 cmd = *(u32 *)va;
1872 const struct cmd_info *info;
1873
1874 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1875 if (info == NULL) {
1876 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1877 cmd, get_opcode(cmd, s->engine),
1878 repr_addr_type(s->buf_addr_type),
1879 s->engine->name, s->workload);
1880 return -EBADRQC;
1881 }
1882
1883 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1884 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1885 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1886 return 0;
1887
1888 return -EBADRQC;
1889 }
1890
perform_bb_shadow(struct parser_exec_state * s)1891 static int perform_bb_shadow(struct parser_exec_state *s)
1892 {
1893 struct intel_vgpu *vgpu = s->vgpu;
1894 struct intel_vgpu_shadow_bb *bb;
1895 unsigned long gma = 0;
1896 unsigned long bb_size;
1897 unsigned long bb_end_cmd_offset;
1898 int ret = 0;
1899 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1900 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1901 unsigned long start_offset = 0;
1902
1903 /* get the start gm address of the batch buffer */
1904 gma = get_gma_bb_from_cmd(s, 1);
1905 if (gma == INTEL_GVT_INVALID_ADDR)
1906 return -EFAULT;
1907
1908 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1909 if (ret)
1910 return ret;
1911
1912 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1913 if (!bb)
1914 return -ENOMEM;
1915
1916 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1917
1918 /* the start_offset stores the batch buffer's start gma's
1919 * offset relative to page boundary. so for non-privileged batch
1920 * buffer, the shadowed gem object holds exactly the same page
1921 * layout as original gem object. This is for the convience of
1922 * replacing the whole non-privilged batch buffer page to this
1923 * shadowed one in PPGTT at the same gma address. (this replacing
1924 * action is not implemented yet now, but may be necessary in
1925 * future).
1926 * for prileged batch buffer, we just change start gma address to
1927 * that of shadowed page.
1928 */
1929 if (bb->ppgtt)
1930 start_offset = gma & ~I915_GTT_PAGE_MASK;
1931
1932 bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1933 round_up(bb_size + start_offset,
1934 PAGE_SIZE));
1935 if (IS_ERR(bb->obj)) {
1936 ret = PTR_ERR(bb->obj);
1937 goto err_free_bb;
1938 }
1939
1940 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1941 if (IS_ERR(bb->va)) {
1942 ret = PTR_ERR(bb->va);
1943 goto err_free_obj;
1944 }
1945
1946 ret = copy_gma_to_hva(s->vgpu, mm,
1947 gma, gma + bb_size,
1948 bb->va + start_offset);
1949 if (ret < 0) {
1950 gvt_vgpu_err("fail to copy guest ring buffer\n");
1951 ret = -EFAULT;
1952 goto err_unmap;
1953 }
1954
1955 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1956 if (ret)
1957 goto err_unmap;
1958
1959 i915_gem_object_unlock(bb->obj);
1960 INIT_LIST_HEAD(&bb->list);
1961 list_add(&bb->list, &s->workload->shadow_bb);
1962
1963 bb->bb_start_cmd_va = s->ip_va;
1964
1965 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1966 bb->bb_offset = s->ip_va - s->rb_va;
1967 else
1968 bb->bb_offset = 0;
1969
1970 /*
1971 * ip_va saves the virtual address of the shadow batch buffer, while
1972 * ip_gma saves the graphics address of the original batch buffer.
1973 * As the shadow batch buffer is just a copy from the originial one,
1974 * it should be right to use shadow batch buffer'va and original batch
1975 * buffer's gma in pair. After all, we don't want to pin the shadow
1976 * buffer here (too early).
1977 */
1978 s->ip_va = bb->va + start_offset;
1979 s->ip_gma = gma;
1980 return 0;
1981 err_unmap:
1982 i915_gem_object_unpin_map(bb->obj);
1983 err_free_obj:
1984 i915_gem_object_put(bb->obj);
1985 err_free_bb:
1986 kfree(bb);
1987 return ret;
1988 }
1989
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1990 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1991 {
1992 bool second_level;
1993 int ret = 0;
1994 struct intel_vgpu *vgpu = s->vgpu;
1995
1996 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1997 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1998 return -EFAULT;
1999 }
2000
2001 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2002 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2003 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2004 return -EFAULT;
2005 }
2006
2007 s->saved_buf_addr_type = s->buf_addr_type;
2008 addr_type_update_snb(s);
2009 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2010 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2011 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2012 } else if (second_level) {
2013 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2014 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2015 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2016 }
2017
2018 if (batch_buffer_needs_scan(s)) {
2019 ret = perform_bb_shadow(s);
2020 if (ret < 0)
2021 gvt_vgpu_err("invalid shadow batch buffer\n");
2022 } else {
2023 /* emulate a batch buffer end to do return right */
2024 ret = cmd_handler_mi_batch_buffer_end(s);
2025 if (ret < 0)
2026 return ret;
2027 }
2028 return ret;
2029 }
2030
2031 static int mi_noop_index;
2032
2033 static const struct cmd_info cmd_info[] = {
2034 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2035
2036 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2037 0, 1, NULL},
2038
2039 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2040 0, 1, cmd_handler_mi_user_interrupt},
2041
2042 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2043 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2044
2045 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2046
2047 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2048 NULL},
2049
2050 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2051 NULL},
2052
2053 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2054 NULL},
2055
2056 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2057 NULL},
2058
2059 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2060 D_ALL, 0, 1, NULL},
2061
2062 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2063 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2064 cmd_handler_mi_batch_buffer_end},
2065
2066 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2067 0, 1, NULL},
2068
2069 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2070 NULL},
2071
2072 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2073 D_ALL, 0, 1, NULL},
2074
2075 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2076 NULL},
2077
2078 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2079 NULL},
2080
2081 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2082 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2083
2084 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2085 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2086
2087 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2088
2089 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2090 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2091
2092 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2093 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2094 NULL, CMD_LEN(0)},
2095
2096 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2097 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2098 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2099
2100 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2101 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2102
2103 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2104 0, 8, cmd_handler_mi_store_data_index},
2105
2106 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2107 D_ALL, 0, 8, cmd_handler_lri},
2108
2109 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2110 cmd_handler_mi_update_gtt},
2111
2112 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2113 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2114 cmd_handler_srm, CMD_LEN(2)},
2115
2116 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2117 cmd_handler_mi_flush_dw},
2118
2119 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2120 10, cmd_handler_mi_clflush},
2121
2122 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2123 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2124 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2125
2126 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2127 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2128 cmd_handler_lrm, CMD_LEN(2)},
2129
2130 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2131 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2132 cmd_handler_lrr, CMD_LEN(1)},
2133
2134 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2135 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2136 8, NULL, CMD_LEN(2)},
2137
2138 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2139 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2140
2141 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2142 ADDR_FIX_1(2), 8, NULL},
2143
2144 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2145 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2146
2147 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2148 8, cmd_handler_mi_op_2f},
2149
2150 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2151 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2152 cmd_handler_mi_batch_buffer_start},
2153
2154 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2155 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2156 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2157
2158 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2159 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2160
2161 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2162 ADDR_FIX_2(4, 7), 8, NULL},
2163
2164 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2165 0, 8, NULL},
2166
2167 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2168 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2169
2170 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2171
2172 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2173 0, 8, NULL},
2174
2175 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2176 ADDR_FIX_1(3), 8, NULL},
2177
2178 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2179 D_ALL, 0, 8, NULL},
2180
2181 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2182 ADDR_FIX_1(4), 8, NULL},
2183
2184 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2185 ADDR_FIX_2(4, 5), 8, NULL},
2186
2187 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2188 ADDR_FIX_1(4), 8, NULL},
2189
2190 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2191 ADDR_FIX_2(4, 7), 8, NULL},
2192
2193 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2194 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2195
2196 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2197
2198 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2199 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2200
2201 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2202 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2203
2204 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2205 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2206 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2207
2208 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2209 D_ALL, ADDR_FIX_1(4), 8, NULL},
2210
2211 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2212 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2213
2214 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2215 D_ALL, ADDR_FIX_1(4), 8, NULL},
2216
2217 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2218 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2219
2220 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2221 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2222
2223 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2224 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2225 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2226
2227 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2228 ADDR_FIX_2(4, 5), 8, NULL},
2229
2230 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2231 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2232
2233 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2234 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2235 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236
2237 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2238 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2239 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2240
2241 {"3DSTATE_BLEND_STATE_POINTERS",
2242 OP_3DSTATE_BLEND_STATE_POINTERS,
2243 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2244
2245 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2246 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2248
2249 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2250 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2251 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252
2253 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2254 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2255 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256
2257 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2258 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2259 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2260
2261 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2262 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2263 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2264
2265 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2266 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2270 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2272
2273 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2274 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276
2277 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2278 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2282 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2284
2285 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2286 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2287 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2288
2289 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2290 0, 8, NULL},
2291
2292 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2293 0, 8, NULL},
2294
2295 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2296 0, 8, NULL},
2297
2298 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2299 0, 8, NULL},
2300
2301 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2302 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2303
2304 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2305 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2306
2307 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2308 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2309
2310 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2311 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2312
2313 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2314 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2315
2316 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2317 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2318
2319 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2320 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2321
2322 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2323 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324
2325 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2326 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2327
2328 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2329 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2330
2331 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2332 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2333
2334 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2335 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336
2337 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2338 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2339
2340 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2341 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2342
2343 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2344 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2345
2346 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2347 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2348
2349 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2350 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2351
2352 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2353 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2354
2355 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2356 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2357
2358 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2359 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2360
2361 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2362 D_BDW_PLUS, 0, 8, NULL},
2363
2364 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2365 NULL},
2366
2367 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2368 D_BDW_PLUS, 0, 8, NULL},
2369
2370 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2371 D_BDW_PLUS, 0, 8, NULL},
2372
2373 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2374 8, NULL},
2375
2376 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2377 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2378
2379 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2380 8, NULL},
2381
2382 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2383 NULL},
2384
2385 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2386 NULL},
2387
2388 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2389 NULL},
2390
2391 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2392 D_BDW_PLUS, 0, 8, NULL},
2393
2394 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2395 R_RCS, D_ALL, 0, 8, NULL},
2396
2397 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2398 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2399
2400 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2401 R_RCS, D_ALL, 0, 1, NULL},
2402
2403 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2404
2405 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2406 R_RCS, D_ALL, 0, 8, NULL},
2407
2408 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2409 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410
2411 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416
2417 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2418 D_BDW_PLUS, 0, 8, NULL},
2419
2420 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2421 D_BDW_PLUS, 0, 8, NULL},
2422
2423 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2424 D_ALL, 0, 8, NULL},
2425
2426 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2427 D_BDW_PLUS, 0, 8, NULL},
2428
2429 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2430 D_BDW_PLUS, 0, 8, NULL},
2431
2432 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437
2438 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2439 D_ALL, 0, 8, NULL},
2440
2441 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442
2443 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2446 R_RCS, D_ALL, 0, 8, NULL},
2447
2448 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2449 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2450
2451 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2452 0, 8, NULL},
2453
2454 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2455 D_ALL, ADDR_FIX_1(2), 8, NULL},
2456
2457 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2458 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2459
2460 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2461 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2462
2463 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2464 D_ALL, 0, 8, NULL},
2465
2466 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2467 D_ALL, 0, 8, NULL},
2468
2469 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2470 D_ALL, 0, 8, NULL},
2471
2472 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2473 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2474
2475 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2476 D_BDW_PLUS, 0, 8, NULL},
2477
2478 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2479 D_ALL, ADDR_FIX_1(2), 8, NULL},
2480
2481 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2482 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2483
2484 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2485 R_RCS, D_ALL, 0, 8, NULL},
2486
2487 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2488 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2489
2490 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2491 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2492
2493 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2494 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2495
2496 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2497 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2498
2499 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2500 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2501
2502 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2503 R_RCS, D_ALL, 0, 8, NULL},
2504
2505 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2506 D_ALL, 0, 9, NULL},
2507
2508 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2509 ADDR_FIX_2(2, 4), 8, NULL},
2510
2511 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2512 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2513 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2514
2515 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2516 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2517
2518 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2519 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2520 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2521
2522 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2523 D_BDW_PLUS, 0, 8, NULL},
2524
2525 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2526 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2527
2528 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2529
2530 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2531 1, NULL},
2532
2533 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2534 ADDR_FIX_1(1), 8, NULL},
2535
2536 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2537
2538 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2539 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2540
2541 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2542 ADDR_FIX_1(1), 8, NULL},
2543
2544 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2545 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2546
2547 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2548
2549 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550
2551 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2552 0, 8, NULL},
2553
2554 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2555 D_SKL_PLUS, 0, 8, NULL},
2556
2557 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2558 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2559
2560 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2561 0, 16, NULL},
2562
2563 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2564 0, 16, NULL},
2565
2566 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2567 0, 16, NULL},
2568
2569 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2570
2571 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2572 0, 16, NULL},
2573
2574 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2575 0, 16, NULL},
2576
2577 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2578 0, 16, NULL},
2579
2580 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2581 0, 8, NULL},
2582
2583 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2584 NULL},
2585
2586 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2587 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2588
2589 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2590 R_VCS, D_ALL, 0, 12, NULL},
2591
2592 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2593 R_VCS, D_ALL, 0, 12, NULL},
2594
2595 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2596 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2597
2598 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2599 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2600
2601 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2602 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2603
2604 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2605
2606 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2607 R_VCS, D_ALL, 0, 12, NULL},
2608
2609 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2610 R_VCS, D_ALL, 0, 12, NULL},
2611
2612 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2613 R_VCS, D_ALL, 0, 12, NULL},
2614
2615 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2616 R_VCS, D_ALL, 0, 12, NULL},
2617
2618 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2619 R_VCS, D_ALL, 0, 12, NULL},
2620
2621 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2622 R_VCS, D_ALL, 0, 12, NULL},
2623
2624 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2625 R_VCS, D_ALL, 0, 6, NULL},
2626
2627 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2628 R_VCS, D_ALL, 0, 12, NULL},
2629
2630 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2631 R_VCS, D_ALL, 0, 12, NULL},
2632
2633 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2634 R_VCS, D_ALL, 0, 12, NULL},
2635
2636 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2637 R_VCS, D_ALL, 0, 12, NULL},
2638
2639 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2640 R_VCS, D_ALL, 0, 12, NULL},
2641
2642 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2643 R_VCS, D_ALL, 0, 12, NULL},
2644
2645 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2646 R_VCS, D_ALL, 0, 12, NULL},
2647 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2648 R_VCS, D_ALL, 0, 12, NULL},
2649
2650 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2651 R_VCS, D_ALL, 0, 12, NULL},
2652
2653 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2654 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2655
2656 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2657 R_VCS, D_ALL, 0, 12, NULL},
2658
2659 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2660 R_VCS, D_ALL, 0, 12, NULL},
2661
2662 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2663 R_VCS, D_ALL, 0, 12, NULL},
2664
2665 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2666 R_VCS, D_ALL, 0, 12, NULL},
2667
2668 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2669 R_VCS, D_ALL, 0, 12, NULL},
2670
2671 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2672 R_VCS, D_ALL, 0, 12, NULL},
2673
2674 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2675 R_VCS, D_ALL, 0, 12, NULL},
2676
2677 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2678 R_VCS, D_ALL, 0, 12, NULL},
2679
2680 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2681 R_VCS, D_ALL, 0, 12, NULL},
2682
2683 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2684 R_VCS, D_ALL, 0, 12, NULL},
2685
2686 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2687 R_VCS, D_ALL, 0, 12, NULL},
2688
2689 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2690 0, 16, NULL},
2691
2692 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2693
2694 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2695
2696 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2697 R_VCS, D_ALL, 0, 12, NULL},
2698
2699 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2700 R_VCS, D_ALL, 0, 12, NULL},
2701
2702 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2703 R_VCS, D_ALL, 0, 12, NULL},
2704
2705 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2706
2707 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2708 0, 12, NULL},
2709
2710 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2711 0, 12, NULL},
2712 };
2713
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2714 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2715 {
2716 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2717 }
2718
2719 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2720 static int cmd_parser_exec(struct parser_exec_state *s)
2721 {
2722 struct intel_vgpu *vgpu = s->vgpu;
2723 const struct cmd_info *info;
2724 u32 cmd;
2725 int ret = 0;
2726
2727 cmd = cmd_val(s, 0);
2728
2729 /* fastpath for MI_NOOP */
2730 if (cmd == MI_NOOP)
2731 info = &cmd_info[mi_noop_index];
2732 else
2733 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2734
2735 if (info == NULL) {
2736 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2737 cmd, get_opcode(cmd, s->engine),
2738 repr_addr_type(s->buf_addr_type),
2739 s->engine->name, s->workload);
2740 return -EBADRQC;
2741 }
2742
2743 s->info = info;
2744
2745 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2746 cmd_length(s), s->buf_type, s->buf_addr_type,
2747 s->workload, info->name);
2748
2749 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2750 ret = gvt_check_valid_cmd_length(cmd_length(s),
2751 info->valid_len);
2752 if (ret)
2753 return ret;
2754 }
2755
2756 if (info->handler) {
2757 ret = info->handler(s);
2758 if (ret < 0) {
2759 gvt_vgpu_err("%s handler error\n", info->name);
2760 return ret;
2761 }
2762 }
2763
2764 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2765 ret = cmd_advance_default(s);
2766 if (ret) {
2767 gvt_vgpu_err("%s IP advance error\n", info->name);
2768 return ret;
2769 }
2770 }
2771 return 0;
2772 }
2773
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2774 static inline bool gma_out_of_range(unsigned long gma,
2775 unsigned long gma_head, unsigned int gma_tail)
2776 {
2777 if (gma_tail >= gma_head)
2778 return (gma < gma_head) || (gma > gma_tail);
2779 else
2780 return (gma > gma_tail) && (gma < gma_head);
2781 }
2782
2783 /* Keep the consistent return type, e.g EBADRQC for unknown
2784 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2785 * works as the input of VM healthy status.
2786 */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2787 static int command_scan(struct parser_exec_state *s,
2788 unsigned long rb_head, unsigned long rb_tail,
2789 unsigned long rb_start, unsigned long rb_len)
2790 {
2791
2792 unsigned long gma_head, gma_tail, gma_bottom;
2793 int ret = 0;
2794 struct intel_vgpu *vgpu = s->vgpu;
2795
2796 gma_head = rb_start + rb_head;
2797 gma_tail = rb_start + rb_tail;
2798 gma_bottom = rb_start + rb_len;
2799
2800 while (s->ip_gma != gma_tail) {
2801 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2802 s->buf_type == RING_BUFFER_CTX) {
2803 if (!(s->ip_gma >= rb_start) ||
2804 !(s->ip_gma < gma_bottom)) {
2805 gvt_vgpu_err("ip_gma %lx out of ring scope."
2806 "(base:0x%lx, bottom: 0x%lx)\n",
2807 s->ip_gma, rb_start,
2808 gma_bottom);
2809 parser_exec_state_dump(s);
2810 return -EFAULT;
2811 }
2812 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2813 gvt_vgpu_err("ip_gma %lx out of range."
2814 "base 0x%lx head 0x%lx tail 0x%lx\n",
2815 s->ip_gma, rb_start,
2816 rb_head, rb_tail);
2817 parser_exec_state_dump(s);
2818 break;
2819 }
2820 }
2821 ret = cmd_parser_exec(s);
2822 if (ret) {
2823 gvt_vgpu_err("cmd parser error\n");
2824 parser_exec_state_dump(s);
2825 break;
2826 }
2827 }
2828
2829 return ret;
2830 }
2831
scan_workload(struct intel_vgpu_workload * workload)2832 static int scan_workload(struct intel_vgpu_workload *workload)
2833 {
2834 unsigned long gma_head, gma_tail, gma_bottom;
2835 struct parser_exec_state s;
2836 int ret = 0;
2837
2838 /* ring base is page aligned */
2839 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2840 return -EINVAL;
2841
2842 gma_head = workload->rb_start + workload->rb_head;
2843 gma_tail = workload->rb_start + workload->rb_tail;
2844 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2845
2846 s.buf_type = RING_BUFFER_INSTRUCTION;
2847 s.buf_addr_type = GTT_BUFFER;
2848 s.vgpu = workload->vgpu;
2849 s.engine = workload->engine;
2850 s.ring_start = workload->rb_start;
2851 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2852 s.ring_head = gma_head;
2853 s.ring_tail = gma_tail;
2854 s.rb_va = workload->shadow_ring_buffer_va;
2855 s.workload = workload;
2856 s.is_ctx_wa = false;
2857
2858 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2859 return 0;
2860
2861 ret = ip_gma_set(&s, gma_head);
2862 if (ret)
2863 goto out;
2864
2865 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2866 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2867
2868 out:
2869 return ret;
2870 }
2871
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2872 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2873 {
2874
2875 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2876 struct parser_exec_state s;
2877 int ret = 0;
2878 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2879 struct intel_vgpu_workload,
2880 wa_ctx);
2881
2882 /* ring base is page aligned */
2883 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2884 I915_GTT_PAGE_SIZE)))
2885 return -EINVAL;
2886
2887 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2888 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2889 PAGE_SIZE);
2890 gma_head = wa_ctx->indirect_ctx.guest_gma;
2891 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2892 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2893
2894 s.buf_type = RING_BUFFER_INSTRUCTION;
2895 s.buf_addr_type = GTT_BUFFER;
2896 s.vgpu = workload->vgpu;
2897 s.engine = workload->engine;
2898 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2899 s.ring_size = ring_size;
2900 s.ring_head = gma_head;
2901 s.ring_tail = gma_tail;
2902 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2903 s.workload = workload;
2904 s.is_ctx_wa = true;
2905
2906 ret = ip_gma_set(&s, gma_head);
2907 if (ret)
2908 goto out;
2909
2910 ret = command_scan(&s, 0, ring_tail,
2911 wa_ctx->indirect_ctx.guest_gma, ring_size);
2912 out:
2913 return ret;
2914 }
2915
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2916 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2917 {
2918 struct intel_vgpu *vgpu = workload->vgpu;
2919 struct intel_vgpu_submission *s = &vgpu->submission;
2920 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2921 void *shadow_ring_buffer_va;
2922 int ret;
2923
2924 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2925
2926 /* calculate workload ring buffer size */
2927 workload->rb_len = (workload->rb_tail + guest_rb_size -
2928 workload->rb_head) % guest_rb_size;
2929
2930 gma_head = workload->rb_start + workload->rb_head;
2931 gma_tail = workload->rb_start + workload->rb_tail;
2932 gma_top = workload->rb_start + guest_rb_size;
2933
2934 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2935 void *p;
2936
2937 /* realloc the new ring buffer if needed */
2938 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2939 workload->rb_len, GFP_KERNEL);
2940 if (!p) {
2941 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2942 return -ENOMEM;
2943 }
2944 s->ring_scan_buffer[workload->engine->id] = p;
2945 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2946 }
2947
2948 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2949
2950 /* get shadow ring buffer va */
2951 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2952
2953 /* head > tail --> copy head <-> top */
2954 if (gma_head > gma_tail) {
2955 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2956 gma_head, gma_top, shadow_ring_buffer_va);
2957 if (ret < 0) {
2958 gvt_vgpu_err("fail to copy guest ring buffer\n");
2959 return ret;
2960 }
2961 shadow_ring_buffer_va += ret;
2962 gma_head = workload->rb_start;
2963 }
2964
2965 /* copy head or start <-> tail */
2966 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2967 shadow_ring_buffer_va);
2968 if (ret < 0) {
2969 gvt_vgpu_err("fail to copy guest ring buffer\n");
2970 return ret;
2971 }
2972 return 0;
2973 }
2974
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2975 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2976 {
2977 int ret;
2978 struct intel_vgpu *vgpu = workload->vgpu;
2979
2980 ret = shadow_workload_ring_buffer(workload);
2981 if (ret) {
2982 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2983 return ret;
2984 }
2985
2986 ret = scan_workload(workload);
2987 if (ret) {
2988 gvt_vgpu_err("scan workload error\n");
2989 return ret;
2990 }
2991 return 0;
2992 }
2993
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)2994 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2995 {
2996 int ctx_size = wa_ctx->indirect_ctx.size;
2997 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2998 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2999 struct intel_vgpu_workload,
3000 wa_ctx);
3001 struct intel_vgpu *vgpu = workload->vgpu;
3002 struct drm_i915_gem_object *obj;
3003 int ret = 0;
3004 void *map;
3005
3006 obj = i915_gem_object_create_shmem(workload->engine->i915,
3007 roundup(ctx_size + CACHELINE_BYTES,
3008 PAGE_SIZE));
3009 if (IS_ERR(obj))
3010 return PTR_ERR(obj);
3011
3012 /* get the va of the shadow batch buffer */
3013 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3014 if (IS_ERR(map)) {
3015 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016 ret = PTR_ERR(map);
3017 goto put_obj;
3018 }
3019
3020 i915_gem_object_lock(obj, NULL);
3021 ret = i915_gem_object_set_to_cpu_domain(obj, false);
3022 i915_gem_object_unlock(obj);
3023 if (ret) {
3024 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3025 goto unmap_src;
3026 }
3027
3028 ret = copy_gma_to_hva(workload->vgpu,
3029 workload->vgpu->gtt.ggtt_mm,
3030 guest_gma, guest_gma + ctx_size,
3031 map);
3032 if (ret < 0) {
3033 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3034 goto unmap_src;
3035 }
3036
3037 wa_ctx->indirect_ctx.obj = obj;
3038 wa_ctx->indirect_ctx.shadow_va = map;
3039 return 0;
3040
3041 unmap_src:
3042 i915_gem_object_unpin_map(obj);
3043 put_obj:
3044 i915_gem_object_put(obj);
3045 return ret;
3046 }
3047
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3048 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3049 {
3050 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3051 unsigned char *bb_start_sva;
3052
3053 if (!wa_ctx->per_ctx.valid)
3054 return 0;
3055
3056 per_ctx_start[0] = 0x18800001;
3057 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3058
3059 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3060 wa_ctx->indirect_ctx.size;
3061
3062 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063
3064 return 0;
3065 }
3066
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3067 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3068 {
3069 int ret;
3070 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3071 struct intel_vgpu_workload,
3072 wa_ctx);
3073 struct intel_vgpu *vgpu = workload->vgpu;
3074
3075 if (wa_ctx->indirect_ctx.size == 0)
3076 return 0;
3077
3078 ret = shadow_indirect_ctx(wa_ctx);
3079 if (ret) {
3080 gvt_vgpu_err("fail to shadow indirect ctx\n");
3081 return ret;
3082 }
3083
3084 combine_wa_ctx(wa_ctx);
3085
3086 ret = scan_wa_ctx(wa_ctx);
3087 if (ret) {
3088 gvt_vgpu_err("scan wa ctx error\n");
3089 return ret;
3090 }
3091
3092 return 0;
3093 }
3094
3095 /* generate dummy contexts by sending empty requests to HW, and let
3096 * the HW to fill Engine Contexts. This dummy contexts are used for
3097 * initialization purpose (update reg whitelist), so referred to as
3098 * init context here
3099 */
intel_gvt_update_reg_whitelist(struct intel_vgpu * vgpu)3100 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3101 {
3102 const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3103 struct intel_gvt *gvt = vgpu->gvt;
3104 struct intel_engine_cs *engine;
3105 enum intel_engine_id id;
3106
3107 if (gvt->is_reg_whitelist_updated)
3108 return;
3109
3110 /* scan init ctx to update cmd accessible list */
3111 for_each_engine(engine, gvt->gt, id) {
3112 struct parser_exec_state s;
3113 void *vaddr;
3114 int ret;
3115
3116 if (!engine->default_state)
3117 continue;
3118
3119 vaddr = shmem_pin_map(engine->default_state);
3120 if (!vaddr) {
3121 gvt_err("failed to map %s->default state\n",
3122 engine->name);
3123 return;
3124 }
3125
3126 s.buf_type = RING_BUFFER_CTX;
3127 s.buf_addr_type = GTT_BUFFER;
3128 s.vgpu = vgpu;
3129 s.engine = engine;
3130 s.ring_start = 0;
3131 s.ring_size = engine->context_size - start;
3132 s.ring_head = 0;
3133 s.ring_tail = s.ring_size;
3134 s.rb_va = vaddr + start;
3135 s.workload = NULL;
3136 s.is_ctx_wa = false;
3137 s.is_init_ctx = true;
3138
3139 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3140 ret = ip_gma_set(&s, RING_CTX_SIZE);
3141 if (ret == 0) {
3142 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3143 if (ret)
3144 gvt_err("Scan init ctx error\n");
3145 }
3146
3147 shmem_unpin_map(engine->default_state, vaddr);
3148 if (ret)
3149 return;
3150 }
3151
3152 gvt->is_reg_whitelist_updated = true;
3153 }
3154
intel_gvt_scan_engine_context(struct intel_vgpu_workload * workload)3155 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3156 {
3157 struct intel_vgpu *vgpu = workload->vgpu;
3158 unsigned long gma_head, gma_tail, gma_start, ctx_size;
3159 struct parser_exec_state s;
3160 int ring_id = workload->engine->id;
3161 struct intel_context *ce = vgpu->submission.shadow[ring_id];
3162 int ret;
3163
3164 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3165
3166 ctx_size = workload->engine->context_size - PAGE_SIZE;
3167
3168 /* Only ring contxt is loaded to HW for inhibit context, no need to
3169 * scan engine context
3170 */
3171 if (is_inhibit_context(ce))
3172 return 0;
3173
3174 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3175 gma_head = 0;
3176 gma_tail = ctx_size;
3177
3178 s.buf_type = RING_BUFFER_CTX;
3179 s.buf_addr_type = GTT_BUFFER;
3180 s.vgpu = workload->vgpu;
3181 s.engine = workload->engine;
3182 s.ring_start = gma_start;
3183 s.ring_size = ctx_size;
3184 s.ring_head = gma_start + gma_head;
3185 s.ring_tail = gma_start + gma_tail;
3186 s.rb_va = ce->lrc_reg_state;
3187 s.workload = workload;
3188 s.is_ctx_wa = false;
3189 s.is_init_ctx = false;
3190
3191 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3192 * context
3193 */
3194 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3195 if (ret)
3196 goto out;
3197
3198 ret = command_scan(&s, gma_head, gma_tail,
3199 gma_start, ctx_size);
3200 out:
3201 if (ret)
3202 gvt_vgpu_err("scan shadow ctx error\n");
3203
3204 return ret;
3205 }
3206
init_cmd_table(struct intel_gvt * gvt)3207 static int init_cmd_table(struct intel_gvt *gvt)
3208 {
3209 unsigned int gen_type = intel_gvt_get_device_type(gvt);
3210 int i;
3211
3212 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3213 struct cmd_entry *e;
3214
3215 if (!(cmd_info[i].devices & gen_type))
3216 continue;
3217
3218 e = kzalloc(sizeof(*e), GFP_KERNEL);
3219 if (!e)
3220 return -ENOMEM;
3221
3222 e->info = &cmd_info[i];
3223 if (cmd_info[i].opcode == OP_MI_NOOP)
3224 mi_noop_index = i;
3225
3226 INIT_HLIST_NODE(&e->hlist);
3227 add_cmd_entry(gvt, e);
3228 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3229 e->info->name, e->info->opcode, e->info->flag,
3230 e->info->devices, e->info->rings);
3231 }
3232
3233 return 0;
3234 }
3235
clean_cmd_table(struct intel_gvt * gvt)3236 static void clean_cmd_table(struct intel_gvt *gvt)
3237 {
3238 struct hlist_node *tmp;
3239 struct cmd_entry *e;
3240 int i;
3241
3242 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3243 kfree(e);
3244
3245 hash_init(gvt->cmd_table);
3246 }
3247
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3248 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3249 {
3250 clean_cmd_table(gvt);
3251 }
3252
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3253 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3254 {
3255 int ret;
3256
3257 ret = init_cmd_table(gvt);
3258 if (ret) {
3259 intel_gvt_clean_cmd_parser(gvt);
3260 return ret;
3261 }
3262 return 0;
3263 }
3264