1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gt/gen8_engine_cs.h"
10 #include "gt/intel_breadcrumbs.h"
11 #include "gt/intel_context.h"
12 #include "gt/intel_engine_heartbeat.h"
13 #include "gt/intel_engine_pm.h"
14 #include "gt/intel_engine_regs.h"
15 #include "gt/intel_gpu_commands.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_clock_utils.h"
18 #include "gt/intel_gt_irq.h"
19 #include "gt/intel_gt_pm.h"
20 #include "gt/intel_gt_regs.h"
21 #include "gt/intel_gt_requests.h"
22 #include "gt/intel_lrc.h"
23 #include "gt/intel_lrc_reg.h"
24 #include "gt/intel_mocs.h"
25 #include "gt/intel_ring.h"
26
27 #include "intel_guc_ads.h"
28 #include "intel_guc_capture.h"
29 #include "intel_guc_submission.h"
30
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33
34 /**
35 * DOC: GuC-based command submission
36 *
37 * The Scratch registers:
38 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
39 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
40 * triggers an interrupt on the GuC via another register write (0xC4C8).
41 * Firmware writes a success/fail code back to the action register after
42 * processes the request. The kernel driver polls waiting for this update and
43 * then proceeds.
44 *
45 * Command Transport buffers (CTBs):
46 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
47 * - G2H) are a message interface between the i915 and GuC.
48 *
49 * Context registration:
50 * Before a context can be submitted it must be registered with the GuC via a
51 * H2G. A unique guc_id is associated with each context. The context is either
52 * registered at request creation time (normal operation) or at submission time
53 * (abnormal operation, e.g. after a reset).
54 *
55 * Context submission:
56 * The i915 updates the LRC tail value in memory. The i915 must enable the
57 * scheduling of the context within the GuC for the GuC to actually consider it.
58 * Therefore, the first time a disabled context is submitted we use a schedule
59 * enable H2G, while follow up submissions are done via the context submit H2G,
60 * which informs the GuC that a previously enabled context has new work
61 * available.
62 *
63 * Context unpin:
64 * To unpin a context a H2G is used to disable scheduling. When the
65 * corresponding G2H returns indicating the scheduling disable operation has
66 * completed it is safe to unpin the context. While a disable is in flight it
67 * isn't safe to resubmit the context so a fence is used to stall all future
68 * requests of that context until the G2H is returned.
69 *
70 * Context deregistration:
71 * Before a context can be destroyed or if we steal its guc_id we must
72 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
73 * safe to submit anything to this guc_id until the deregister completes so a
74 * fence is used to stall all requests associated with this guc_id until the
75 * corresponding G2H returns indicating the guc_id has been deregistered.
76 *
77 * submission_state.guc_ids:
78 * Unique number associated with private GuC context data passed in during
79 * context registration / submission / deregistration. 64k available. Simple ida
80 * is used for allocation.
81 *
82 * Stealing guc_ids:
83 * If no guc_ids are available they can be stolen from another context at
84 * request creation time if that context is unpinned. If a guc_id can't be found
85 * we punt this problem to the user as we believe this is near impossible to hit
86 * during normal use cases.
87 *
88 * Locking:
89 * In the GuC submission code we have 3 basic spin locks which protect
90 * everything. Details about each below.
91 *
92 * sched_engine->lock
93 * This is the submission lock for all contexts that share an i915 schedule
94 * engine (sched_engine), thus only one of the contexts which share a
95 * sched_engine can be submitting at a time. Currently only one sched_engine is
96 * used for all of GuC submission but that could change in the future.
97 *
98 * guc->submission_state.lock
99 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
100 * list.
101 *
102 * ce->guc_state.lock
103 * Protects everything under ce->guc_state. Ensures that a context is in the
104 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
105 * on a disabled context (bad idea), we don't issue a schedule enable when a
106 * schedule disable is in flight, etc... Also protects list of inflight requests
107 * on the context and the priority management state. Lock is individual to each
108 * context.
109 *
110 * Lock ordering rules:
111 * sched_engine->lock -> ce->guc_state.lock
112 * guc->submission_state.lock -> ce->guc_state.lock
113 *
114 * Reset races:
115 * When a full GT reset is triggered it is assumed that some G2H responses to
116 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
117 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
118 * contexts, release guc_ids, etc...). When this occurs we can scrub the
119 * context state and cleanup appropriately, however this is quite racey.
120 * To avoid races, the reset code must disable submission before scrubbing for
121 * the missing G2H, while the submission code must check for submission being
122 * disabled and skip sending H2Gs and updating context states when it is. Both
123 * sides must also make sure to hold the relevant locks.
124 */
125
126 /* GuC Virtual Engine */
127 struct guc_virtual_engine {
128 struct intel_engine_cs base;
129 struct intel_context context;
130 };
131
132 static struct intel_context *
133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
134 unsigned long flags);
135
136 static struct intel_context *
137 guc_create_parallel(struct intel_engine_cs **engines,
138 unsigned int num_siblings,
139 unsigned int width);
140
141 #define GUC_REQUEST_SIZE 64 /* bytes */
142
143 /*
144 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
145 * per the GuC submission interface. A different allocation algorithm is used
146 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
147 * partition the guc_id space. We believe the number of multi-lrc contexts in
148 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
149 * multi-lrc.
150 */
151 #define NUMBER_MULTI_LRC_GUC_ID(guc) \
152 ((guc)->submission_state.num_guc_ids / 16)
153
154 /*
155 * Below is a set of functions which control the GuC scheduling state which
156 * require a lock.
157 */
158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
159 #define SCHED_STATE_DESTROYED BIT(1)
160 #define SCHED_STATE_PENDING_DISABLE BIT(2)
161 #define SCHED_STATE_BANNED BIT(3)
162 #define SCHED_STATE_ENABLED BIT(4)
163 #define SCHED_STATE_PENDING_ENABLE BIT(5)
164 #define SCHED_STATE_REGISTERED BIT(6)
165 #define SCHED_STATE_POLICY_REQUIRED BIT(7)
166 #define SCHED_STATE_BLOCKED_SHIFT 8
167 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
168 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
169
init_sched_state(struct intel_context * ce)170 static inline void init_sched_state(struct intel_context *ce)
171 {
172 lockdep_assert_held(&ce->guc_state.lock);
173 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
174 }
175
176 __maybe_unused
sched_state_is_init(struct intel_context * ce)177 static bool sched_state_is_init(struct intel_context *ce)
178 {
179 /* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
180 return !(ce->guc_state.sched_state &
181 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
182 }
183
184 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)185 context_wait_for_deregister_to_register(struct intel_context *ce)
186 {
187 return ce->guc_state.sched_state &
188 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
189 }
190
191 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)192 set_context_wait_for_deregister_to_register(struct intel_context *ce)
193 {
194 lockdep_assert_held(&ce->guc_state.lock);
195 ce->guc_state.sched_state |=
196 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
197 }
198
199 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)200 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
201 {
202 lockdep_assert_held(&ce->guc_state.lock);
203 ce->guc_state.sched_state &=
204 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
205 }
206
207 static inline bool
context_destroyed(struct intel_context * ce)208 context_destroyed(struct intel_context *ce)
209 {
210 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
211 }
212
213 static inline void
set_context_destroyed(struct intel_context * ce)214 set_context_destroyed(struct intel_context *ce)
215 {
216 lockdep_assert_held(&ce->guc_state.lock);
217 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
218 }
219
context_pending_disable(struct intel_context * ce)220 static inline bool context_pending_disable(struct intel_context *ce)
221 {
222 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
223 }
224
set_context_pending_disable(struct intel_context * ce)225 static inline void set_context_pending_disable(struct intel_context *ce)
226 {
227 lockdep_assert_held(&ce->guc_state.lock);
228 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
229 }
230
clr_context_pending_disable(struct intel_context * ce)231 static inline void clr_context_pending_disable(struct intel_context *ce)
232 {
233 lockdep_assert_held(&ce->guc_state.lock);
234 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
235 }
236
context_banned(struct intel_context * ce)237 static inline bool context_banned(struct intel_context *ce)
238 {
239 return ce->guc_state.sched_state & SCHED_STATE_BANNED;
240 }
241
set_context_banned(struct intel_context * ce)242 static inline void set_context_banned(struct intel_context *ce)
243 {
244 lockdep_assert_held(&ce->guc_state.lock);
245 ce->guc_state.sched_state |= SCHED_STATE_BANNED;
246 }
247
clr_context_banned(struct intel_context * ce)248 static inline void clr_context_banned(struct intel_context *ce)
249 {
250 lockdep_assert_held(&ce->guc_state.lock);
251 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
252 }
253
context_enabled(struct intel_context * ce)254 static inline bool context_enabled(struct intel_context *ce)
255 {
256 return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
257 }
258
set_context_enabled(struct intel_context * ce)259 static inline void set_context_enabled(struct intel_context *ce)
260 {
261 lockdep_assert_held(&ce->guc_state.lock);
262 ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
263 }
264
clr_context_enabled(struct intel_context * ce)265 static inline void clr_context_enabled(struct intel_context *ce)
266 {
267 lockdep_assert_held(&ce->guc_state.lock);
268 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
269 }
270
context_pending_enable(struct intel_context * ce)271 static inline bool context_pending_enable(struct intel_context *ce)
272 {
273 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
274 }
275
set_context_pending_enable(struct intel_context * ce)276 static inline void set_context_pending_enable(struct intel_context *ce)
277 {
278 lockdep_assert_held(&ce->guc_state.lock);
279 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
280 }
281
clr_context_pending_enable(struct intel_context * ce)282 static inline void clr_context_pending_enable(struct intel_context *ce)
283 {
284 lockdep_assert_held(&ce->guc_state.lock);
285 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
286 }
287
context_registered(struct intel_context * ce)288 static inline bool context_registered(struct intel_context *ce)
289 {
290 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
291 }
292
set_context_registered(struct intel_context * ce)293 static inline void set_context_registered(struct intel_context *ce)
294 {
295 lockdep_assert_held(&ce->guc_state.lock);
296 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
297 }
298
clr_context_registered(struct intel_context * ce)299 static inline void clr_context_registered(struct intel_context *ce)
300 {
301 lockdep_assert_held(&ce->guc_state.lock);
302 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
303 }
304
context_policy_required(struct intel_context * ce)305 static inline bool context_policy_required(struct intel_context *ce)
306 {
307 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
308 }
309
set_context_policy_required(struct intel_context * ce)310 static inline void set_context_policy_required(struct intel_context *ce)
311 {
312 lockdep_assert_held(&ce->guc_state.lock);
313 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
314 }
315
clr_context_policy_required(struct intel_context * ce)316 static inline void clr_context_policy_required(struct intel_context *ce)
317 {
318 lockdep_assert_held(&ce->guc_state.lock);
319 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
320 }
321
context_blocked(struct intel_context * ce)322 static inline u32 context_blocked(struct intel_context *ce)
323 {
324 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
325 SCHED_STATE_BLOCKED_SHIFT;
326 }
327
incr_context_blocked(struct intel_context * ce)328 static inline void incr_context_blocked(struct intel_context *ce)
329 {
330 lockdep_assert_held(&ce->guc_state.lock);
331
332 ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
333
334 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
335 }
336
decr_context_blocked(struct intel_context * ce)337 static inline void decr_context_blocked(struct intel_context *ce)
338 {
339 lockdep_assert_held(&ce->guc_state.lock);
340
341 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
342
343 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
344 }
345
context_has_committed_requests(struct intel_context * ce)346 static inline bool context_has_committed_requests(struct intel_context *ce)
347 {
348 return !!ce->guc_state.number_committed_requests;
349 }
350
incr_context_committed_requests(struct intel_context * ce)351 static inline void incr_context_committed_requests(struct intel_context *ce)
352 {
353 lockdep_assert_held(&ce->guc_state.lock);
354 ++ce->guc_state.number_committed_requests;
355 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
356 }
357
decr_context_committed_requests(struct intel_context * ce)358 static inline void decr_context_committed_requests(struct intel_context *ce)
359 {
360 lockdep_assert_held(&ce->guc_state.lock);
361 --ce->guc_state.number_committed_requests;
362 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
363 }
364
365 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)366 request_to_scheduling_context(struct i915_request *rq)
367 {
368 return intel_context_to_parent(rq->context);
369 }
370
context_guc_id_invalid(struct intel_context * ce)371 static inline bool context_guc_id_invalid(struct intel_context *ce)
372 {
373 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
374 }
375
set_context_guc_id_invalid(struct intel_context * ce)376 static inline void set_context_guc_id_invalid(struct intel_context *ce)
377 {
378 ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
379 }
380
ce_to_guc(struct intel_context * ce)381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
382 {
383 return &ce->engine->gt->uc.guc;
384 }
385
to_priolist(struct rb_node * rb)386 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
387 {
388 return rb_entry(rb, struct i915_priolist, node);
389 }
390
391 /*
392 * When using multi-lrc submission a scratch memory area is reserved in the
393 * parent's context state for the process descriptor, work queue, and handshake
394 * between the parent + children contexts to insert safe preemption points
395 * between each of the BBs. Currently the scratch area is sized to a page.
396 *
397 * The layout of this scratch area is below:
398 * 0 guc_process_desc
399 * + sizeof(struct guc_process_desc) child go
400 * + CACHELINE_BYTES child join[0]
401 * ...
402 * + CACHELINE_BYTES child join[n - 1]
403 * ... unused
404 * PARENT_SCRATCH_SIZE / 2 work queue start
405 * ... work queue
406 * PARENT_SCRATCH_SIZE - 1 work queue end
407 */
408 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2)
409 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE)
410
411 struct sync_semaphore {
412 u32 semaphore;
413 u8 unused[CACHELINE_BYTES - sizeof(u32)];
414 };
415
416 struct parent_scratch {
417 union guc_descs {
418 struct guc_sched_wq_desc wq_desc;
419 struct guc_process_desc_v69 pdesc;
420 } descs;
421
422 struct sync_semaphore go;
423 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
424
425 u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
426 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
427
428 u32 wq[WQ_SIZE / sizeof(u32)];
429 };
430
__get_parent_scratch_offset(struct intel_context * ce)431 static u32 __get_parent_scratch_offset(struct intel_context *ce)
432 {
433 GEM_BUG_ON(!ce->parallel.guc.parent_page);
434
435 return ce->parallel.guc.parent_page * PAGE_SIZE;
436 }
437
__get_wq_offset(struct intel_context * ce)438 static u32 __get_wq_offset(struct intel_context *ce)
439 {
440 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
441
442 return __get_parent_scratch_offset(ce) + WQ_OFFSET;
443 }
444
445 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)446 __get_parent_scratch(struct intel_context *ce)
447 {
448 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
449 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
450
451 /*
452 * Need to subtract LRC_STATE_OFFSET here as the
453 * parallel.guc.parent_page is the offset into ce->state while
454 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
455 */
456 return (struct parent_scratch *)
457 (ce->lrc_reg_state +
458 ((__get_parent_scratch_offset(ce) -
459 LRC_STATE_OFFSET) / sizeof(u32)));
460 }
461
462 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)463 __get_process_desc_v69(struct intel_context *ce)
464 {
465 struct parent_scratch *ps = __get_parent_scratch(ce);
466
467 return &ps->descs.pdesc;
468 }
469
470 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)471 __get_wq_desc_v70(struct intel_context *ce)
472 {
473 struct parent_scratch *ps = __get_parent_scratch(ce);
474
475 return &ps->descs.wq_desc;
476 }
477
get_wq_pointer(struct intel_context * ce,u32 wqi_size)478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
479 {
480 /*
481 * Check for space in work queue. Caching a value of head pointer in
482 * intel_context structure in order reduce the number accesses to shared
483 * GPU memory which may be across a PCIe bus.
484 */
485 #define AVAILABLE_SPACE \
486 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
487 if (wqi_size > AVAILABLE_SPACE) {
488 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
489
490 if (wqi_size > AVAILABLE_SPACE)
491 return NULL;
492 }
493 #undef AVAILABLE_SPACE
494
495 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
496 }
497
__get_context(struct intel_guc * guc,u32 id)498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
499 {
500 struct intel_context *ce = xa_load(&guc->context_lookup, id);
501
502 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
503
504 return ce;
505 }
506
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
508 {
509 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
510
511 if (!base)
512 return NULL;
513
514 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
515
516 return &base[index];
517 }
518
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
520 {
521 u32 size;
522 int ret;
523
524 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
525 GUC_MAX_CONTEXT_ID);
526 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
527 (void **)&guc->lrc_desc_pool_vaddr_v69);
528 if (ret)
529 return ret;
530
531 return 0;
532 }
533
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
535 {
536 if (!guc->lrc_desc_pool_vaddr_v69)
537 return;
538
539 guc->lrc_desc_pool_vaddr_v69 = NULL;
540 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
541 }
542
guc_submission_initialized(struct intel_guc * guc)543 static inline bool guc_submission_initialized(struct intel_guc *guc)
544 {
545 return guc->submission_initialized;
546 }
547
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
549 {
550 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
551
552 if (desc)
553 memset(desc, 0, sizeof(*desc));
554 }
555
ctx_id_mapped(struct intel_guc * guc,u32 id)556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
557 {
558 return __get_context(guc, id);
559 }
560
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
562 struct intel_context *ce)
563 {
564 unsigned long flags;
565
566 /*
567 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
568 * lower level functions directly.
569 */
570 xa_lock_irqsave(&guc->context_lookup, flags);
571 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
572 xa_unlock_irqrestore(&guc->context_lookup, flags);
573 }
574
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
576 {
577 unsigned long flags;
578
579 if (unlikely(!guc_submission_initialized(guc)))
580 return;
581
582 _reset_lrc_desc_v69(guc, id);
583
584 /*
585 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
586 * the lower level functions directly.
587 */
588 xa_lock_irqsave(&guc->context_lookup, flags);
589 __xa_erase(&guc->context_lookup, id);
590 xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
decr_outstanding_submission_g2h(struct intel_guc * guc)593 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
594 {
595 if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
596 wake_up_all(&guc->ct.wq);
597 }
598
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)599 static int guc_submission_send_busy_loop(struct intel_guc *guc,
600 const u32 *action,
601 u32 len,
602 u32 g2h_len_dw,
603 bool loop)
604 {
605 /*
606 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
607 * so we don't handle the case where we don't get a reply because we
608 * aborted the send due to the channel being busy.
609 */
610 GEM_BUG_ON(g2h_len_dw && !loop);
611
612 if (g2h_len_dw)
613 atomic_inc(&guc->outstanding_submission_g2h);
614
615 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
616 }
617
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
619 atomic_t *wait_var,
620 bool interruptible,
621 long timeout)
622 {
623 const int state = interruptible ?
624 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
625 DEFINE_WAIT(wait);
626
627 might_sleep();
628 GEM_BUG_ON(timeout < 0);
629
630 if (!atomic_read(wait_var))
631 return 0;
632
633 if (!timeout)
634 return -ETIME;
635
636 for (;;) {
637 prepare_to_wait(&guc->ct.wq, &wait, state);
638
639 if (!atomic_read(wait_var))
640 break;
641
642 if (signal_pending_state(state, current)) {
643 timeout = -EINTR;
644 break;
645 }
646
647 if (!timeout) {
648 timeout = -ETIME;
649 break;
650 }
651
652 timeout = io_schedule_timeout(timeout);
653 }
654 finish_wait(&guc->ct.wq, &wait);
655
656 return (timeout < 0) ? timeout : 0;
657 }
658
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
660 {
661 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
662 return 0;
663
664 return intel_guc_wait_for_pending_msg(guc,
665 &guc->outstanding_submission_g2h,
666 true, timeout);
667 }
668
669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
670 static int try_context_registration(struct intel_context *ce, bool loop);
671
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
673 {
674 int err = 0;
675 struct intel_context *ce = request_to_scheduling_context(rq);
676 u32 action[3];
677 int len = 0;
678 u32 g2h_len_dw = 0;
679 bool enabled;
680
681 lockdep_assert_held(&rq->engine->sched_engine->lock);
682
683 /*
684 * Corner case where requests were sitting in the priority list or a
685 * request resubmitted after the context was banned.
686 */
687 if (unlikely(intel_context_is_banned(ce))) {
688 i915_request_put(i915_request_mark_eio(rq));
689 intel_engine_signal_breadcrumbs(ce->engine);
690 return 0;
691 }
692
693 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
694 GEM_BUG_ON(context_guc_id_invalid(ce));
695
696 if (context_policy_required(ce)) {
697 err = guc_context_policy_init_v70(ce, false);
698 if (err)
699 return err;
700 }
701
702 spin_lock(&ce->guc_state.lock);
703
704 /*
705 * The request / context will be run on the hardware when scheduling
706 * gets enabled in the unblock. For multi-lrc we still submit the
707 * context to move the LRC tails.
708 */
709 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
710 goto out;
711
712 enabled = context_enabled(ce) || context_blocked(ce);
713
714 if (!enabled) {
715 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
716 action[len++] = ce->guc_id.id;
717 action[len++] = GUC_CONTEXT_ENABLE;
718 set_context_pending_enable(ce);
719 intel_context_get(ce);
720 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
721 } else {
722 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
723 action[len++] = ce->guc_id.id;
724 }
725
726 err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
727 if (!enabled && !err) {
728 trace_intel_context_sched_enable(ce);
729 atomic_inc(&guc->outstanding_submission_g2h);
730 set_context_enabled(ce);
731
732 /*
733 * Without multi-lrc KMD does the submission step (moving the
734 * lrc tail) so enabling scheduling is sufficient to submit the
735 * context. This isn't the case in multi-lrc submission as the
736 * GuC needs to move the tails, hence the need for another H2G
737 * to submit a multi-lrc context after enabling scheduling.
738 */
739 if (intel_context_is_parent(ce)) {
740 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
741 err = intel_guc_send_nb(guc, action, len - 1, 0);
742 }
743 } else if (!enabled) {
744 clr_context_pending_enable(ce);
745 intel_context_put(ce);
746 }
747 if (likely(!err))
748 trace_i915_request_guc_submit(rq);
749
750 out:
751 spin_unlock(&ce->guc_state.lock);
752 return err;
753 }
754
guc_add_request(struct intel_guc * guc,struct i915_request * rq)755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
756 {
757 int ret = __guc_add_request(guc, rq);
758
759 if (unlikely(ret == -EBUSY)) {
760 guc->stalled_request = rq;
761 guc->submission_stall_reason = STALL_ADD_REQUEST;
762 }
763
764 return ret;
765 }
766
guc_set_lrc_tail(struct i915_request * rq)767 static inline void guc_set_lrc_tail(struct i915_request *rq)
768 {
769 rq->context->lrc_reg_state[CTX_RING_TAIL] =
770 intel_ring_set_tail(rq->ring, rq->tail);
771 }
772
rq_prio(const struct i915_request * rq)773 static inline int rq_prio(const struct i915_request *rq)
774 {
775 return rq->sched.attr.priority;
776 }
777
is_multi_lrc_rq(struct i915_request * rq)778 static bool is_multi_lrc_rq(struct i915_request *rq)
779 {
780 return intel_context_is_parallel(rq->context);
781 }
782
can_merge_rq(struct i915_request * rq,struct i915_request * last)783 static bool can_merge_rq(struct i915_request *rq,
784 struct i915_request *last)
785 {
786 return request_to_scheduling_context(rq) ==
787 request_to_scheduling_context(last);
788 }
789
wq_space_until_wrap(struct intel_context * ce)790 static u32 wq_space_until_wrap(struct intel_context *ce)
791 {
792 return (WQ_SIZE - ce->parallel.guc.wqi_tail);
793 }
794
write_wqi(struct intel_context * ce,u32 wqi_size)795 static void write_wqi(struct intel_context *ce, u32 wqi_size)
796 {
797 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
798
799 /*
800 * Ensure WQI are visible before updating tail
801 */
802 intel_guc_write_barrier(ce_to_guc(ce));
803
804 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
805 (WQ_SIZE - 1);
806 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
807 }
808
guc_wq_noop_append(struct intel_context * ce)809 static int guc_wq_noop_append(struct intel_context *ce)
810 {
811 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
812 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
813
814 if (!wqi)
815 return -EBUSY;
816
817 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
818
819 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
820 FIELD_PREP(WQ_LEN_MASK, len_dw);
821 ce->parallel.guc.wqi_tail = 0;
822
823 return 0;
824 }
825
__guc_wq_item_append(struct i915_request * rq)826 static int __guc_wq_item_append(struct i915_request *rq)
827 {
828 struct intel_context *ce = request_to_scheduling_context(rq);
829 struct intel_context *child;
830 unsigned int wqi_size = (ce->parallel.number_children + 4) *
831 sizeof(u32);
832 u32 *wqi;
833 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
834 int ret;
835
836 /* Ensure context is in correct state updating work queue */
837 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
838 GEM_BUG_ON(context_guc_id_invalid(ce));
839 GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
840 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
841
842 /* Insert NOOP if this work queue item will wrap the tail pointer. */
843 if (wqi_size > wq_space_until_wrap(ce)) {
844 ret = guc_wq_noop_append(ce);
845 if (ret)
846 return ret;
847 }
848
849 wqi = get_wq_pointer(ce, wqi_size);
850 if (!wqi)
851 return -EBUSY;
852
853 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
854
855 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
856 FIELD_PREP(WQ_LEN_MASK, len_dw);
857 *wqi++ = ce->lrc.lrca;
858 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
859 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
860 *wqi++ = 0; /* fence_id */
861 for_each_child(ce, child)
862 *wqi++ = child->ring->tail / sizeof(u64);
863
864 write_wqi(ce, wqi_size);
865
866 return 0;
867 }
868
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)869 static int guc_wq_item_append(struct intel_guc *guc,
870 struct i915_request *rq)
871 {
872 struct intel_context *ce = request_to_scheduling_context(rq);
873 int ret = 0;
874
875 if (likely(!intel_context_is_banned(ce))) {
876 ret = __guc_wq_item_append(rq);
877
878 if (unlikely(ret == -EBUSY)) {
879 guc->stalled_request = rq;
880 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
881 }
882 }
883
884 return ret;
885 }
886
multi_lrc_submit(struct i915_request * rq)887 static bool multi_lrc_submit(struct i915_request *rq)
888 {
889 struct intel_context *ce = request_to_scheduling_context(rq);
890
891 intel_ring_set_tail(rq->ring, rq->tail);
892
893 /*
894 * We expect the front end (execbuf IOCTL) to set this flag on the last
895 * request generated from a multi-BB submission. This indicates to the
896 * backend (GuC interface) that we should submit this context thus
897 * submitting all the requests generated in parallel.
898 */
899 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
900 intel_context_is_banned(ce);
901 }
902
guc_dequeue_one_context(struct intel_guc * guc)903 static int guc_dequeue_one_context(struct intel_guc *guc)
904 {
905 struct i915_sched_engine * const sched_engine = guc->sched_engine;
906 struct i915_request *last = NULL;
907 bool submit = false;
908 struct rb_node *rb;
909 int ret;
910
911 lockdep_assert_held(&sched_engine->lock);
912
913 if (guc->stalled_request) {
914 submit = true;
915 last = guc->stalled_request;
916
917 switch (guc->submission_stall_reason) {
918 case STALL_REGISTER_CONTEXT:
919 goto register_context;
920 case STALL_MOVE_LRC_TAIL:
921 goto move_lrc_tail;
922 case STALL_ADD_REQUEST:
923 goto add_request;
924 default:
925 MISSING_CASE(guc->submission_stall_reason);
926 }
927 }
928
929 while ((rb = rb_first_cached(&sched_engine->queue))) {
930 struct i915_priolist *p = to_priolist(rb);
931 struct i915_request *rq, *rn;
932
933 priolist_for_each_request_consume(rq, rn, p) {
934 if (last && !can_merge_rq(rq, last))
935 goto register_context;
936
937 list_del_init(&rq->sched.link);
938
939 __i915_request_submit(rq);
940
941 trace_i915_request_in(rq, 0);
942 last = rq;
943
944 if (is_multi_lrc_rq(rq)) {
945 /*
946 * We need to coalesce all multi-lrc requests in
947 * a relationship into a single H2G. We are
948 * guaranteed that all of these requests will be
949 * submitted sequentially.
950 */
951 if (multi_lrc_submit(rq)) {
952 submit = true;
953 goto register_context;
954 }
955 } else {
956 submit = true;
957 }
958 }
959
960 rb_erase_cached(&p->node, &sched_engine->queue);
961 i915_priolist_free(p);
962 }
963
964 register_context:
965 if (submit) {
966 struct intel_context *ce = request_to_scheduling_context(last);
967
968 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
969 !intel_context_is_banned(ce))) {
970 ret = try_context_registration(ce, false);
971 if (unlikely(ret == -EPIPE)) {
972 goto deadlk;
973 } else if (ret == -EBUSY) {
974 guc->stalled_request = last;
975 guc->submission_stall_reason =
976 STALL_REGISTER_CONTEXT;
977 goto schedule_tasklet;
978 } else if (ret != 0) {
979 GEM_WARN_ON(ret); /* Unexpected */
980 goto deadlk;
981 }
982 }
983
984 move_lrc_tail:
985 if (is_multi_lrc_rq(last)) {
986 ret = guc_wq_item_append(guc, last);
987 if (ret == -EBUSY) {
988 goto schedule_tasklet;
989 } else if (ret != 0) {
990 GEM_WARN_ON(ret); /* Unexpected */
991 goto deadlk;
992 }
993 } else {
994 guc_set_lrc_tail(last);
995 }
996
997 add_request:
998 ret = guc_add_request(guc, last);
999 if (unlikely(ret == -EPIPE)) {
1000 goto deadlk;
1001 } else if (ret == -EBUSY) {
1002 goto schedule_tasklet;
1003 } else if (ret != 0) {
1004 GEM_WARN_ON(ret); /* Unexpected */
1005 goto deadlk;
1006 }
1007 }
1008
1009 guc->stalled_request = NULL;
1010 guc->submission_stall_reason = STALL_NONE;
1011 return submit;
1012
1013 deadlk:
1014 sched_engine->tasklet.callback = NULL;
1015 tasklet_disable_nosync(&sched_engine->tasklet);
1016 return false;
1017
1018 schedule_tasklet:
1019 tasklet_schedule(&sched_engine->tasklet);
1020 return false;
1021 }
1022
guc_submission_tasklet(struct tasklet_struct * t)1023 static void guc_submission_tasklet(struct tasklet_struct *t)
1024 {
1025 struct i915_sched_engine *sched_engine =
1026 from_tasklet(sched_engine, t, tasklet);
1027 unsigned long flags;
1028 bool loop;
1029
1030 spin_lock_irqsave(&sched_engine->lock, flags);
1031
1032 do {
1033 loop = guc_dequeue_one_context(sched_engine->private_data);
1034 } while (loop);
1035
1036 i915_sched_engine_reset_on_empty(sched_engine);
1037
1038 spin_unlock_irqrestore(&sched_engine->lock, flags);
1039 }
1040
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1042 {
1043 if (iir & GT_RENDER_USER_INTERRUPT)
1044 intel_engine_signal_breadcrumbs(engine);
1045 }
1046
1047 static void __guc_context_destroy(struct intel_context *ce);
1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1049 static void guc_signal_context_fence(struct intel_context *ce);
1050 static void guc_cancel_context_requests(struct intel_context *ce);
1051 static void guc_blocked_fence_complete(struct intel_context *ce);
1052
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1054 {
1055 struct intel_context *ce;
1056 unsigned long index, flags;
1057 bool pending_disable, pending_enable, deregister, destroyed, banned;
1058
1059 xa_lock_irqsave(&guc->context_lookup, flags);
1060 xa_for_each(&guc->context_lookup, index, ce) {
1061 /*
1062 * Corner case where the ref count on the object is zero but and
1063 * deregister G2H was lost. In this case we don't touch the ref
1064 * count and finish the destroy of the context.
1065 */
1066 bool do_put = kref_get_unless_zero(&ce->ref);
1067
1068 xa_unlock(&guc->context_lookup);
1069
1070 spin_lock(&ce->guc_state.lock);
1071
1072 /*
1073 * Once we are at this point submission_disabled() is guaranteed
1074 * to be visible to all callers who set the below flags (see above
1075 * flush and flushes in reset_prepare). If submission_disabled()
1076 * is set, the caller shouldn't set these flags.
1077 */
1078
1079 destroyed = context_destroyed(ce);
1080 pending_enable = context_pending_enable(ce);
1081 pending_disable = context_pending_disable(ce);
1082 deregister = context_wait_for_deregister_to_register(ce);
1083 banned = context_banned(ce);
1084 init_sched_state(ce);
1085
1086 spin_unlock(&ce->guc_state.lock);
1087
1088 if (pending_enable || destroyed || deregister) {
1089 decr_outstanding_submission_g2h(guc);
1090 if (deregister)
1091 guc_signal_context_fence(ce);
1092 if (destroyed) {
1093 intel_gt_pm_put_async(guc_to_gt(guc));
1094 release_guc_id(guc, ce);
1095 __guc_context_destroy(ce);
1096 }
1097 if (pending_enable || deregister)
1098 intel_context_put(ce);
1099 }
1100
1101 /* Not mutualy exclusive with above if statement. */
1102 if (pending_disable) {
1103 guc_signal_context_fence(ce);
1104 if (banned) {
1105 guc_cancel_context_requests(ce);
1106 intel_engine_signal_breadcrumbs(ce->engine);
1107 }
1108 intel_context_sched_disable_unpin(ce);
1109 decr_outstanding_submission_g2h(guc);
1110
1111 spin_lock(&ce->guc_state.lock);
1112 guc_blocked_fence_complete(ce);
1113 spin_unlock(&ce->guc_state.lock);
1114
1115 intel_context_put(ce);
1116 }
1117
1118 if (do_put)
1119 intel_context_put(ce);
1120 xa_lock(&guc->context_lookup);
1121 }
1122 xa_unlock_irqrestore(&guc->context_lookup, flags);
1123 }
1124
1125 /*
1126 * GuC stores busyness stats for each engine at context in/out boundaries. A
1127 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1128 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1129 * GuC.
1130 *
1131 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1132 * is valid (!= ~0) and start is non-zero, the engine is considered to be
1133 * active. For an active engine total busyness = total + (now - start), where
1134 * 'now' is the time at which the busyness is sampled. For inactive engine,
1135 * total busyness = total.
1136 *
1137 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1138 *
1139 * The start and total values provided by GuC are 32 bits and wrap around in a
1140 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1141 * increasing ns values, there is a need for this implementation to account for
1142 * overflows and extend the GuC provided values to 64 bits before returning
1143 * busyness to the user. In order to do that, a worker runs periodically at
1144 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1145 * 27 seconds for a gt clock frequency of 19.2 MHz).
1146 */
1147
1148 #define WRAP_TIME_CLKS U32_MAX
1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1150
1151 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1153 {
1154 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1155 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1156
1157 if (new_start == lower_32_bits(*prev_start))
1158 return;
1159
1160 /*
1161 * When gt is unparked, we update the gt timestamp and start the ping
1162 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1163 * is unparked, all switched in contexts will have a start time that is
1164 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1165 *
1166 * If neither gt_stamp nor new_start has rolled over, then the
1167 * gt_stamp_hi does not need to be adjusted, however if one of them has
1168 * rolled over, we need to adjust gt_stamp_hi accordingly.
1169 *
1170 * The below conditions address the cases of new_start rollover and
1171 * gt_stamp_last rollover respectively.
1172 */
1173 if (new_start < gt_stamp_last &&
1174 (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1175 gt_stamp_hi++;
1176
1177 if (new_start > gt_stamp_last &&
1178 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1179 gt_stamp_hi--;
1180
1181 *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1182 }
1183
1184 #define record_read(map_, field_) \
1185 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1186
1187 /*
1188 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1189 * we run into a race where the value read is inconsistent. Sometimes the
1190 * inconsistency is in reading the upper MSB bytes of the last_in value when
1191 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1192 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1193 * determine validity of these values. Instead we read the values multiple times
1194 * until they are consistent. In test runs, 3 attempts results in consistent
1195 * values. The upper bound is set to 6 attempts and may need to be tuned as per
1196 * any new occurences.
1197 */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1198 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1199 u32 *last_in, u32 *id, u32 *total)
1200 {
1201 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1202 int i = 0;
1203
1204 do {
1205 *last_in = record_read(&rec_map, last_switch_in_stamp);
1206 *id = record_read(&rec_map, current_context_index);
1207 *total = record_read(&rec_map, total_runtime);
1208
1209 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1210 record_read(&rec_map, current_context_index) == *id &&
1211 record_read(&rec_map, total_runtime) == *total)
1212 break;
1213 } while (++i < 6);
1214 }
1215
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1217 {
1218 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1219 struct intel_guc *guc = &engine->gt->uc.guc;
1220 u32 last_switch, ctx_id, total;
1221
1222 lockdep_assert_held(&guc->timestamp.lock);
1223
1224 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1225
1226 stats->running = ctx_id != ~0U && last_switch;
1227 if (stats->running)
1228 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1229
1230 /*
1231 * Instead of adjusting the total for overflow, just add the
1232 * difference from previous sample stats->total_gt_clks
1233 */
1234 if (total && total != ~0U) {
1235 stats->total_gt_clks += (u32)(total - stats->prev_total);
1236 stats->prev_total = total;
1237 }
1238 }
1239
gpm_timestamp_shift(struct intel_gt * gt)1240 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1241 {
1242 intel_wakeref_t wakeref;
1243 u32 reg, shift;
1244
1245 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1246 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1247
1248 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1249 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1250
1251 return 3 - shift;
1252 }
1253
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1255 {
1256 struct intel_gt *gt = guc_to_gt(guc);
1257 u32 gt_stamp_lo, gt_stamp_hi;
1258 u64 gpm_ts;
1259
1260 lockdep_assert_held(&guc->timestamp.lock);
1261
1262 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1263 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1264 MISC_STATUS1) >> guc->timestamp.shift;
1265 gt_stamp_lo = lower_32_bits(gpm_ts);
1266 *now = ktime_get();
1267
1268 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1269 gt_stamp_hi++;
1270
1271 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1272 }
1273
1274 /*
1275 * Unlike the execlist mode of submission total and active times are in terms of
1276 * gt clocks. The *now parameter is retained to return the cpu time at which the
1277 * busyness was sampled.
1278 */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1280 {
1281 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1282 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1283 struct intel_gt *gt = engine->gt;
1284 struct intel_guc *guc = >->uc.guc;
1285 u64 total, gt_stamp_saved;
1286 unsigned long flags;
1287 u32 reset_count;
1288 bool in_reset;
1289
1290 spin_lock_irqsave(&guc->timestamp.lock, flags);
1291
1292 /*
1293 * If a reset happened, we risk reading partially updated engine
1294 * busyness from GuC, so we just use the driver stored copy of busyness.
1295 * Synchronize with gt reset using reset_count and the
1296 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1297 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1298 * usable by checking the flag afterwards.
1299 */
1300 reset_count = i915_reset_count(gpu_error);
1301 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags);
1302
1303 *now = ktime_get();
1304
1305 /*
1306 * The active busyness depends on start_gt_clk and gt_stamp.
1307 * gt_stamp is updated by i915 only when gt is awake and the
1308 * start_gt_clk is derived from GuC state. To get a consistent
1309 * view of activity, we query the GuC state only if gt is awake.
1310 */
1311 if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1312 stats_saved = *stats;
1313 gt_stamp_saved = guc->timestamp.gt_stamp;
1314 /*
1315 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1316 * start_gt_clk' calculation below for active engines.
1317 */
1318 guc_update_engine_gt_clks(engine);
1319 guc_update_pm_timestamp(guc, now);
1320 intel_gt_pm_put_async(gt);
1321 if (i915_reset_count(gpu_error) != reset_count) {
1322 *stats = stats_saved;
1323 guc->timestamp.gt_stamp = gt_stamp_saved;
1324 }
1325 }
1326
1327 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1328 if (stats->running) {
1329 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1330
1331 total += intel_gt_clock_interval_to_ns(gt, clk);
1332 }
1333
1334 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1335
1336 return ns_to_ktime(total);
1337 }
1338
__reset_guc_busyness_stats(struct intel_guc * guc)1339 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1340 {
1341 struct intel_gt *gt = guc_to_gt(guc);
1342 struct intel_engine_cs *engine;
1343 enum intel_engine_id id;
1344 unsigned long flags;
1345 ktime_t unused;
1346
1347 cancel_delayed_work_sync(&guc->timestamp.work);
1348
1349 spin_lock_irqsave(&guc->timestamp.lock, flags);
1350
1351 guc_update_pm_timestamp(guc, &unused);
1352 for_each_engine(engine, gt, id) {
1353 guc_update_engine_gt_clks(engine);
1354 engine->stats.guc.prev_total = 0;
1355 }
1356
1357 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1358 }
1359
__update_guc_busyness_stats(struct intel_guc * guc)1360 static void __update_guc_busyness_stats(struct intel_guc *guc)
1361 {
1362 struct intel_gt *gt = guc_to_gt(guc);
1363 struct intel_engine_cs *engine;
1364 enum intel_engine_id id;
1365 unsigned long flags;
1366 ktime_t unused;
1367
1368 spin_lock_irqsave(&guc->timestamp.lock, flags);
1369
1370 guc_update_pm_timestamp(guc, &unused);
1371 for_each_engine(engine, gt, id)
1372 guc_update_engine_gt_clks(engine);
1373
1374 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1375 }
1376
guc_timestamp_ping(struct work_struct * wrk)1377 static void guc_timestamp_ping(struct work_struct *wrk)
1378 {
1379 struct intel_guc *guc = container_of(wrk, typeof(*guc),
1380 timestamp.work.work);
1381 struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1382 struct intel_gt *gt = guc_to_gt(guc);
1383 intel_wakeref_t wakeref;
1384 int srcu, ret;
1385
1386 /*
1387 * Synchronize with gt reset to make sure the worker does not
1388 * corrupt the engine/guc stats.
1389 */
1390 ret = intel_gt_reset_trylock(gt, &srcu);
1391 if (ret)
1392 return;
1393
1394 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
1395 __update_guc_busyness_stats(guc);
1396
1397 intel_gt_reset_unlock(gt, srcu);
1398
1399 mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1400 guc->timestamp.ping_delay);
1401 }
1402
guc_action_enable_usage_stats(struct intel_guc * guc)1403 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1404 {
1405 u32 offset = intel_guc_engine_usage_offset(guc);
1406 u32 action[] = {
1407 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1408 offset,
1409 0,
1410 };
1411
1412 return intel_guc_send(guc, action, ARRAY_SIZE(action));
1413 }
1414
guc_init_engine_stats(struct intel_guc * guc)1415 static void guc_init_engine_stats(struct intel_guc *guc)
1416 {
1417 struct intel_gt *gt = guc_to_gt(guc);
1418 intel_wakeref_t wakeref;
1419
1420 mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1421 guc->timestamp.ping_delay);
1422
1423 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) {
1424 int ret = guc_action_enable_usage_stats(guc);
1425
1426 if (ret)
1427 drm_err(>->i915->drm,
1428 "Failed to enable usage stats: %d!\n", ret);
1429 }
1430 }
1431
intel_guc_busyness_park(struct intel_gt * gt)1432 void intel_guc_busyness_park(struct intel_gt *gt)
1433 {
1434 struct intel_guc *guc = >->uc.guc;
1435
1436 if (!guc_submission_initialized(guc))
1437 return;
1438
1439 cancel_delayed_work(&guc->timestamp.work);
1440 __update_guc_busyness_stats(guc);
1441 }
1442
intel_guc_busyness_unpark(struct intel_gt * gt)1443 void intel_guc_busyness_unpark(struct intel_gt *gt)
1444 {
1445 struct intel_guc *guc = >->uc.guc;
1446 unsigned long flags;
1447 ktime_t unused;
1448
1449 if (!guc_submission_initialized(guc))
1450 return;
1451
1452 spin_lock_irqsave(&guc->timestamp.lock, flags);
1453 guc_update_pm_timestamp(guc, &unused);
1454 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1455 mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1456 guc->timestamp.ping_delay);
1457 }
1458
1459 static inline bool
submission_disabled(struct intel_guc * guc)1460 submission_disabled(struct intel_guc *guc)
1461 {
1462 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1463
1464 return unlikely(!sched_engine ||
1465 !__tasklet_is_enabled(&sched_engine->tasklet) ||
1466 intel_gt_is_wedged(guc_to_gt(guc)));
1467 }
1468
disable_submission(struct intel_guc * guc)1469 static void disable_submission(struct intel_guc *guc)
1470 {
1471 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1472
1473 if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1474 GEM_BUG_ON(!guc->ct.enabled);
1475 __tasklet_disable_sync_once(&sched_engine->tasklet);
1476 sched_engine->tasklet.callback = NULL;
1477 }
1478 }
1479
enable_submission(struct intel_guc * guc)1480 static void enable_submission(struct intel_guc *guc)
1481 {
1482 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&guc->sched_engine->lock, flags);
1486 sched_engine->tasklet.callback = guc_submission_tasklet;
1487 wmb(); /* Make sure callback visible */
1488 if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1489 __tasklet_enable(&sched_engine->tasklet)) {
1490 GEM_BUG_ON(!guc->ct.enabled);
1491
1492 /* And kick in case we missed a new request submission. */
1493 tasklet_hi_schedule(&sched_engine->tasklet);
1494 }
1495 spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1496 }
1497
guc_flush_submissions(struct intel_guc * guc)1498 static void guc_flush_submissions(struct intel_guc *guc)
1499 {
1500 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1501 unsigned long flags;
1502
1503 spin_lock_irqsave(&sched_engine->lock, flags);
1504 spin_unlock_irqrestore(&sched_engine->lock, flags);
1505 }
1506
1507 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1508
intel_guc_submission_reset_prepare(struct intel_guc * guc)1509 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1510 {
1511 if (unlikely(!guc_submission_initialized(guc))) {
1512 /* Reset called during driver load? GuC not yet initialised! */
1513 return;
1514 }
1515
1516 intel_gt_park_heartbeats(guc_to_gt(guc));
1517 disable_submission(guc);
1518 guc->interrupts.disable(guc);
1519 __reset_guc_busyness_stats(guc);
1520
1521 /* Flush IRQ handler */
1522 spin_lock_irq(&guc_to_gt(guc)->irq_lock);
1523 spin_unlock_irq(&guc_to_gt(guc)->irq_lock);
1524
1525 guc_flush_submissions(guc);
1526 guc_flush_destroyed_contexts(guc);
1527 flush_work(&guc->ct.requests.worker);
1528
1529 scrub_guc_desc_for_outstanding_g2h(guc);
1530 }
1531
1532 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1533 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1534 {
1535 struct intel_engine_cs *engine;
1536 intel_engine_mask_t tmp, mask = ve->mask;
1537 unsigned int num_siblings = 0;
1538
1539 for_each_engine_masked(engine, ve->gt, mask, tmp)
1540 if (num_siblings++ == sibling)
1541 return engine;
1542
1543 return NULL;
1544 }
1545
1546 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1547 __context_to_physical_engine(struct intel_context *ce)
1548 {
1549 struct intel_engine_cs *engine = ce->engine;
1550
1551 if (intel_engine_is_virtual(engine))
1552 engine = guc_virtual_get_sibling(engine, 0);
1553
1554 return engine;
1555 }
1556
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1557 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1558 {
1559 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1560
1561 if (intel_context_is_banned(ce))
1562 return;
1563
1564 GEM_BUG_ON(!intel_context_is_pinned(ce));
1565
1566 /*
1567 * We want a simple context + ring to execute the breadcrumb update.
1568 * We cannot rely on the context being intact across the GPU hang,
1569 * so clear it and rebuild just what we need for the breadcrumb.
1570 * All pending requests for this context will be zapped, and any
1571 * future request will be after userspace has had the opportunity
1572 * to recreate its own state.
1573 */
1574 if (scrub)
1575 lrc_init_regs(ce, engine, true);
1576
1577 /* Rerun the request; its payload has been neutered (if guilty). */
1578 lrc_update_regs(ce, engine, head);
1579 }
1580
guc_engine_reset_prepare(struct intel_engine_cs * engine)1581 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1582 {
1583 if (!IS_GRAPHICS_VER(engine->i915, 11, 12))
1584 return;
1585
1586 intel_engine_stop_cs(engine);
1587
1588 /*
1589 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
1590 * to wait for any pending mi force wakeups
1591 */
1592 intel_engine_wait_for_pending_mi_fw(engine);
1593 }
1594
guc_reset_nop(struct intel_engine_cs * engine)1595 static void guc_reset_nop(struct intel_engine_cs *engine)
1596 {
1597 }
1598
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1599 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1600 {
1601 }
1602
1603 static void
__unwind_incomplete_requests(struct intel_context * ce)1604 __unwind_incomplete_requests(struct intel_context *ce)
1605 {
1606 struct i915_request *rq, *rn;
1607 struct list_head *pl;
1608 int prio = I915_PRIORITY_INVALID;
1609 struct i915_sched_engine * const sched_engine =
1610 ce->engine->sched_engine;
1611 unsigned long flags;
1612
1613 spin_lock_irqsave(&sched_engine->lock, flags);
1614 spin_lock(&ce->guc_state.lock);
1615 list_for_each_entry_safe_reverse(rq, rn,
1616 &ce->guc_state.requests,
1617 sched.link) {
1618 if (i915_request_completed(rq))
1619 continue;
1620
1621 list_del_init(&rq->sched.link);
1622 __i915_request_unsubmit(rq);
1623
1624 /* Push the request back into the queue for later resubmission. */
1625 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1626 if (rq_prio(rq) != prio) {
1627 prio = rq_prio(rq);
1628 pl = i915_sched_lookup_priolist(sched_engine, prio);
1629 }
1630 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1631
1632 list_add(&rq->sched.link, pl);
1633 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1634 }
1635 spin_unlock(&ce->guc_state.lock);
1636 spin_unlock_irqrestore(&sched_engine->lock, flags);
1637 }
1638
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1639 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1640 {
1641 bool guilty;
1642 struct i915_request *rq;
1643 unsigned long flags;
1644 u32 head;
1645 int i, number_children = ce->parallel.number_children;
1646 struct intel_context *parent = ce;
1647
1648 GEM_BUG_ON(intel_context_is_child(ce));
1649
1650 intel_context_get(ce);
1651
1652 /*
1653 * GuC will implicitly mark the context as non-schedulable when it sends
1654 * the reset notification. Make sure our state reflects this change. The
1655 * context will be marked enabled on resubmission.
1656 */
1657 spin_lock_irqsave(&ce->guc_state.lock, flags);
1658 clr_context_enabled(ce);
1659 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1660
1661 /*
1662 * For each context in the relationship find the hanging request
1663 * resetting each context / request as needed
1664 */
1665 for (i = 0; i < number_children + 1; ++i) {
1666 if (!intel_context_is_pinned(ce))
1667 goto next_context;
1668
1669 guilty = false;
1670 rq = intel_context_find_active_request(ce);
1671 if (!rq) {
1672 head = ce->ring->tail;
1673 goto out_replay;
1674 }
1675
1676 if (i915_request_started(rq))
1677 guilty = stalled & ce->engine->mask;
1678
1679 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1680 head = intel_ring_wrap(ce->ring, rq->head);
1681
1682 __i915_request_reset(rq, guilty);
1683 out_replay:
1684 guc_reset_state(ce, head, guilty);
1685 next_context:
1686 if (i != number_children)
1687 ce = list_next_entry(ce, parallel.child_link);
1688 }
1689
1690 __unwind_incomplete_requests(parent);
1691 intel_context_put(parent);
1692 }
1693
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1694 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1695 {
1696 struct intel_context *ce;
1697 unsigned long index;
1698 unsigned long flags;
1699
1700 if (unlikely(!guc_submission_initialized(guc))) {
1701 /* Reset called during driver load? GuC not yet initialised! */
1702 return;
1703 }
1704
1705 xa_lock_irqsave(&guc->context_lookup, flags);
1706 xa_for_each(&guc->context_lookup, index, ce) {
1707 if (!kref_get_unless_zero(&ce->ref))
1708 continue;
1709
1710 xa_unlock(&guc->context_lookup);
1711
1712 if (intel_context_is_pinned(ce) &&
1713 !intel_context_is_child(ce))
1714 __guc_reset_context(ce, stalled);
1715
1716 intel_context_put(ce);
1717
1718 xa_lock(&guc->context_lookup);
1719 }
1720 xa_unlock_irqrestore(&guc->context_lookup, flags);
1721
1722 /* GuC is blown away, drop all references to contexts */
1723 xa_destroy(&guc->context_lookup);
1724 }
1725
guc_cancel_context_requests(struct intel_context * ce)1726 static void guc_cancel_context_requests(struct intel_context *ce)
1727 {
1728 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1729 struct i915_request *rq;
1730 unsigned long flags;
1731
1732 /* Mark all executing requests as skipped. */
1733 spin_lock_irqsave(&sched_engine->lock, flags);
1734 spin_lock(&ce->guc_state.lock);
1735 list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1736 i915_request_put(i915_request_mark_eio(rq));
1737 spin_unlock(&ce->guc_state.lock);
1738 spin_unlock_irqrestore(&sched_engine->lock, flags);
1739 }
1740
1741 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1742 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1743 {
1744 struct i915_request *rq, *rn;
1745 struct rb_node *rb;
1746 unsigned long flags;
1747
1748 /* Can be called during boot if GuC fails to load */
1749 if (!sched_engine)
1750 return;
1751
1752 /*
1753 * Before we call engine->cancel_requests(), we should have exclusive
1754 * access to the submission state. This is arranged for us by the
1755 * caller disabling the interrupt generation, the tasklet and other
1756 * threads that may then access the same state, giving us a free hand
1757 * to reset state. However, we still need to let lockdep be aware that
1758 * we know this state may be accessed in hardirq context, so we
1759 * disable the irq around this manipulation and we want to keep
1760 * the spinlock focused on its duties and not accidentally conflate
1761 * coverage to the submission's irq state. (Similarly, although we
1762 * shouldn't need to disable irq around the manipulation of the
1763 * submission's irq state, we also wish to remind ourselves that
1764 * it is irq state.)
1765 */
1766 spin_lock_irqsave(&sched_engine->lock, flags);
1767
1768 /* Flush the queued requests to the timeline list (for retiring). */
1769 while ((rb = rb_first_cached(&sched_engine->queue))) {
1770 struct i915_priolist *p = to_priolist(rb);
1771
1772 priolist_for_each_request_consume(rq, rn, p) {
1773 list_del_init(&rq->sched.link);
1774
1775 __i915_request_submit(rq);
1776
1777 i915_request_put(i915_request_mark_eio(rq));
1778 }
1779
1780 rb_erase_cached(&p->node, &sched_engine->queue);
1781 i915_priolist_free(p);
1782 }
1783
1784 /* Remaining _unready_ requests will be nop'ed when submitted */
1785
1786 sched_engine->queue_priority_hint = INT_MIN;
1787 sched_engine->queue = RB_ROOT_CACHED;
1788
1789 spin_unlock_irqrestore(&sched_engine->lock, flags);
1790 }
1791
intel_guc_submission_cancel_requests(struct intel_guc * guc)1792 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1793 {
1794 struct intel_context *ce;
1795 unsigned long index;
1796 unsigned long flags;
1797
1798 xa_lock_irqsave(&guc->context_lookup, flags);
1799 xa_for_each(&guc->context_lookup, index, ce) {
1800 if (!kref_get_unless_zero(&ce->ref))
1801 continue;
1802
1803 xa_unlock(&guc->context_lookup);
1804
1805 if (intel_context_is_pinned(ce) &&
1806 !intel_context_is_child(ce))
1807 guc_cancel_context_requests(ce);
1808
1809 intel_context_put(ce);
1810
1811 xa_lock(&guc->context_lookup);
1812 }
1813 xa_unlock_irqrestore(&guc->context_lookup, flags);
1814
1815 guc_cancel_sched_engine_requests(guc->sched_engine);
1816
1817 /* GuC is blown away, drop all references to contexts */
1818 xa_destroy(&guc->context_lookup);
1819 }
1820
intel_guc_submission_reset_finish(struct intel_guc * guc)1821 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1822 {
1823 /* Reset called during driver load or during wedge? */
1824 if (unlikely(!guc_submission_initialized(guc) ||
1825 intel_gt_is_wedged(guc_to_gt(guc)))) {
1826 return;
1827 }
1828
1829 /*
1830 * Technically possible for either of these values to be non-zero here,
1831 * but very unlikely + harmless. Regardless let's add a warn so we can
1832 * see in CI if this happens frequently / a precursor to taking down the
1833 * machine.
1834 */
1835 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1836 atomic_set(&guc->outstanding_submission_g2h, 0);
1837
1838 intel_guc_global_policies_update(guc);
1839 enable_submission(guc);
1840 intel_gt_unpark_heartbeats(guc_to_gt(guc));
1841 }
1842
1843 static void destroyed_worker_func(struct work_struct *w);
1844 static void reset_fail_worker_func(struct work_struct *w);
1845
1846 /*
1847 * Set up the memory resources to be shared with the GuC (via the GGTT)
1848 * at firmware loading time.
1849 */
intel_guc_submission_init(struct intel_guc * guc)1850 int intel_guc_submission_init(struct intel_guc *guc)
1851 {
1852 struct intel_gt *gt = guc_to_gt(guc);
1853 int ret;
1854
1855 if (guc->submission_initialized)
1856 return 0;
1857
1858 if (guc->fw.major_ver_found < 70) {
1859 ret = guc_lrc_desc_pool_create_v69(guc);
1860 if (ret)
1861 return ret;
1862 }
1863
1864 guc->submission_state.guc_ids_bitmap =
1865 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1866 if (!guc->submission_state.guc_ids_bitmap) {
1867 ret = -ENOMEM;
1868 goto destroy_pool;
1869 }
1870
1871 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1872 guc->timestamp.shift = gpm_timestamp_shift(gt);
1873 guc->submission_initialized = true;
1874
1875 return 0;
1876
1877 destroy_pool:
1878 guc_lrc_desc_pool_destroy_v69(guc);
1879
1880 return ret;
1881 }
1882
intel_guc_submission_fini(struct intel_guc * guc)1883 void intel_guc_submission_fini(struct intel_guc *guc)
1884 {
1885 if (!guc->submission_initialized)
1886 return;
1887
1888 guc_flush_destroyed_contexts(guc);
1889 guc_lrc_desc_pool_destroy_v69(guc);
1890 i915_sched_engine_put(guc->sched_engine);
1891 bitmap_free(guc->submission_state.guc_ids_bitmap);
1892 guc->submission_initialized = false;
1893 }
1894
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)1895 static inline void queue_request(struct i915_sched_engine *sched_engine,
1896 struct i915_request *rq,
1897 int prio)
1898 {
1899 GEM_BUG_ON(!list_empty(&rq->sched.link));
1900 list_add_tail(&rq->sched.link,
1901 i915_sched_lookup_priolist(sched_engine, prio));
1902 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1903 tasklet_hi_schedule(&sched_engine->tasklet);
1904 }
1905
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)1906 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1907 struct i915_request *rq)
1908 {
1909 int ret = 0;
1910
1911 __i915_request_submit(rq);
1912
1913 trace_i915_request_in(rq, 0);
1914
1915 if (is_multi_lrc_rq(rq)) {
1916 if (multi_lrc_submit(rq)) {
1917 ret = guc_wq_item_append(guc, rq);
1918 if (!ret)
1919 ret = guc_add_request(guc, rq);
1920 }
1921 } else {
1922 guc_set_lrc_tail(rq);
1923 ret = guc_add_request(guc, rq);
1924 }
1925
1926 if (unlikely(ret == -EPIPE))
1927 disable_submission(guc);
1928
1929 return ret;
1930 }
1931
need_tasklet(struct intel_guc * guc,struct i915_request * rq)1932 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1933 {
1934 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1935 struct intel_context *ce = request_to_scheduling_context(rq);
1936
1937 return submission_disabled(guc) || guc->stalled_request ||
1938 !i915_sched_engine_is_empty(sched_engine) ||
1939 !ctx_id_mapped(guc, ce->guc_id.id);
1940 }
1941
guc_submit_request(struct i915_request * rq)1942 static void guc_submit_request(struct i915_request *rq)
1943 {
1944 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1945 struct intel_guc *guc = &rq->engine->gt->uc.guc;
1946 unsigned long flags;
1947
1948 /* Will be called from irq-context when using foreign fences. */
1949 spin_lock_irqsave(&sched_engine->lock, flags);
1950
1951 if (need_tasklet(guc, rq))
1952 queue_request(sched_engine, rq, rq_prio(rq));
1953 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1954 tasklet_hi_schedule(&sched_engine->tasklet);
1955
1956 spin_unlock_irqrestore(&sched_engine->lock, flags);
1957 }
1958
new_guc_id(struct intel_guc * guc,struct intel_context * ce)1959 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1960 {
1961 int ret;
1962
1963 GEM_BUG_ON(intel_context_is_child(ce));
1964
1965 if (intel_context_is_parent(ce))
1966 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1967 NUMBER_MULTI_LRC_GUC_ID(guc),
1968 order_base_2(ce->parallel.number_children
1969 + 1));
1970 else
1971 ret = ida_simple_get(&guc->submission_state.guc_ids,
1972 NUMBER_MULTI_LRC_GUC_ID(guc),
1973 guc->submission_state.num_guc_ids,
1974 GFP_KERNEL | __GFP_RETRY_MAYFAIL |
1975 __GFP_NOWARN);
1976 if (unlikely(ret < 0))
1977 return ret;
1978
1979 ce->guc_id.id = ret;
1980 return 0;
1981 }
1982
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)1983 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
1984 {
1985 GEM_BUG_ON(intel_context_is_child(ce));
1986
1987 if (!context_guc_id_invalid(ce)) {
1988 if (intel_context_is_parent(ce))
1989 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
1990 ce->guc_id.id,
1991 order_base_2(ce->parallel.number_children
1992 + 1));
1993 else
1994 ida_simple_remove(&guc->submission_state.guc_ids,
1995 ce->guc_id.id);
1996 clr_ctx_id_mapping(guc, ce->guc_id.id);
1997 set_context_guc_id_invalid(ce);
1998 }
1999 if (!list_empty(&ce->guc_id.link))
2000 list_del_init(&ce->guc_id.link);
2001 }
2002
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2003 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2004 {
2005 unsigned long flags;
2006
2007 spin_lock_irqsave(&guc->submission_state.lock, flags);
2008 __release_guc_id(guc, ce);
2009 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2010 }
2011
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2012 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2013 {
2014 struct intel_context *cn;
2015
2016 lockdep_assert_held(&guc->submission_state.lock);
2017 GEM_BUG_ON(intel_context_is_child(ce));
2018 GEM_BUG_ON(intel_context_is_parent(ce));
2019
2020 if (!list_empty(&guc->submission_state.guc_id_list)) {
2021 cn = list_first_entry(&guc->submission_state.guc_id_list,
2022 struct intel_context,
2023 guc_id.link);
2024
2025 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2026 GEM_BUG_ON(context_guc_id_invalid(cn));
2027 GEM_BUG_ON(intel_context_is_child(cn));
2028 GEM_BUG_ON(intel_context_is_parent(cn));
2029
2030 list_del_init(&cn->guc_id.link);
2031 ce->guc_id.id = cn->guc_id.id;
2032
2033 spin_lock(&cn->guc_state.lock);
2034 clr_context_registered(cn);
2035 spin_unlock(&cn->guc_state.lock);
2036
2037 set_context_guc_id_invalid(cn);
2038
2039 #ifdef CONFIG_DRM_I915_SELFTEST
2040 guc->number_guc_id_stolen++;
2041 #endif
2042
2043 return 0;
2044 } else {
2045 return -EAGAIN;
2046 }
2047 }
2048
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2049 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2050 {
2051 int ret;
2052
2053 lockdep_assert_held(&guc->submission_state.lock);
2054 GEM_BUG_ON(intel_context_is_child(ce));
2055
2056 ret = new_guc_id(guc, ce);
2057 if (unlikely(ret < 0)) {
2058 if (intel_context_is_parent(ce))
2059 return -ENOSPC;
2060
2061 ret = steal_guc_id(guc, ce);
2062 if (ret < 0)
2063 return ret;
2064 }
2065
2066 if (intel_context_is_parent(ce)) {
2067 struct intel_context *child;
2068 int i = 1;
2069
2070 for_each_child(ce, child)
2071 child->guc_id.id = ce->guc_id.id + i++;
2072 }
2073
2074 return 0;
2075 }
2076
2077 #define PIN_GUC_ID_TRIES 4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2078 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2079 {
2080 int ret = 0;
2081 unsigned long flags, tries = PIN_GUC_ID_TRIES;
2082
2083 GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2084
2085 try_again:
2086 spin_lock_irqsave(&guc->submission_state.lock, flags);
2087
2088 might_lock(&ce->guc_state.lock);
2089
2090 if (context_guc_id_invalid(ce)) {
2091 ret = assign_guc_id(guc, ce);
2092 if (ret)
2093 goto out_unlock;
2094 ret = 1; /* Indidcates newly assigned guc_id */
2095 }
2096 if (!list_empty(&ce->guc_id.link))
2097 list_del_init(&ce->guc_id.link);
2098 atomic_inc(&ce->guc_id.ref);
2099
2100 out_unlock:
2101 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2102
2103 /*
2104 * -EAGAIN indicates no guc_id are available, let's retire any
2105 * outstanding requests to see if that frees up a guc_id. If the first
2106 * retire didn't help, insert a sleep with the timeslice duration before
2107 * attempting to retire more requests. Double the sleep period each
2108 * subsequent pass before finally giving up. The sleep period has max of
2109 * 100ms and minimum of 1ms.
2110 */
2111 if (ret == -EAGAIN && --tries) {
2112 if (PIN_GUC_ID_TRIES - tries > 1) {
2113 unsigned int timeslice_shifted =
2114 ce->engine->props.timeslice_duration_ms <<
2115 (PIN_GUC_ID_TRIES - tries - 2);
2116 unsigned int max = min_t(unsigned int, 100,
2117 timeslice_shifted);
2118
2119 msleep(max_t(unsigned int, max, 1));
2120 }
2121 intel_gt_retire_requests(guc_to_gt(guc));
2122 goto try_again;
2123 }
2124
2125 return ret;
2126 }
2127
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2128 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2129 {
2130 unsigned long flags;
2131
2132 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2133 GEM_BUG_ON(intel_context_is_child(ce));
2134
2135 if (unlikely(context_guc_id_invalid(ce) ||
2136 intel_context_is_parent(ce)))
2137 return;
2138
2139 spin_lock_irqsave(&guc->submission_state.lock, flags);
2140 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2141 !atomic_read(&ce->guc_id.ref))
2142 list_add_tail(&ce->guc_id.link,
2143 &guc->submission_state.guc_id_list);
2144 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2145 }
2146
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2147 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2148 struct intel_context *ce,
2149 u32 guc_id,
2150 u32 offset,
2151 bool loop)
2152 {
2153 struct intel_context *child;
2154 u32 action[4 + MAX_ENGINE_INSTANCE];
2155 int len = 0;
2156
2157 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2158
2159 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2160 action[len++] = guc_id;
2161 action[len++] = ce->parallel.number_children + 1;
2162 action[len++] = offset;
2163 for_each_child(ce, child) {
2164 offset += sizeof(struct guc_lrc_desc_v69);
2165 action[len++] = offset;
2166 }
2167
2168 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2169 }
2170
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2171 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2172 struct intel_context *ce,
2173 struct guc_ctxt_registration_info *info,
2174 bool loop)
2175 {
2176 struct intel_context *child;
2177 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2178 int len = 0;
2179 u32 next_id;
2180
2181 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2182
2183 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2184 action[len++] = info->flags;
2185 action[len++] = info->context_idx;
2186 action[len++] = info->engine_class;
2187 action[len++] = info->engine_submit_mask;
2188 action[len++] = info->wq_desc_lo;
2189 action[len++] = info->wq_desc_hi;
2190 action[len++] = info->wq_base_lo;
2191 action[len++] = info->wq_base_hi;
2192 action[len++] = info->wq_size;
2193 action[len++] = ce->parallel.number_children + 1;
2194 action[len++] = info->hwlrca_lo;
2195 action[len++] = info->hwlrca_hi;
2196
2197 next_id = info->context_idx + 1;
2198 for_each_child(ce, child) {
2199 GEM_BUG_ON(next_id++ != child->guc_id.id);
2200
2201 /*
2202 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2203 * only supports 32 bit currently.
2204 */
2205 action[len++] = lower_32_bits(child->lrc.lrca);
2206 action[len++] = upper_32_bits(child->lrc.lrca);
2207 }
2208
2209 GEM_BUG_ON(len > ARRAY_SIZE(action));
2210
2211 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2212 }
2213
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2214 static int __guc_action_register_context_v69(struct intel_guc *guc,
2215 u32 guc_id,
2216 u32 offset,
2217 bool loop)
2218 {
2219 u32 action[] = {
2220 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2221 guc_id,
2222 offset,
2223 };
2224
2225 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2226 0, loop);
2227 }
2228
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2229 static int __guc_action_register_context_v70(struct intel_guc *guc,
2230 struct guc_ctxt_registration_info *info,
2231 bool loop)
2232 {
2233 u32 action[] = {
2234 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2235 info->flags,
2236 info->context_idx,
2237 info->engine_class,
2238 info->engine_submit_mask,
2239 info->wq_desc_lo,
2240 info->wq_desc_hi,
2241 info->wq_base_lo,
2242 info->wq_base_hi,
2243 info->wq_size,
2244 info->hwlrca_lo,
2245 info->hwlrca_hi,
2246 };
2247
2248 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2249 0, loop);
2250 }
2251
2252 static void prepare_context_registration_info_v69(struct intel_context *ce);
2253 static void prepare_context_registration_info_v70(struct intel_context *ce,
2254 struct guc_ctxt_registration_info *info);
2255
2256 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2257 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2258 {
2259 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2260 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2261
2262 prepare_context_registration_info_v69(ce);
2263
2264 if (intel_context_is_parent(ce))
2265 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2266 offset, loop);
2267 else
2268 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2269 offset, loop);
2270 }
2271
2272 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2273 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2274 {
2275 struct guc_ctxt_registration_info info;
2276
2277 prepare_context_registration_info_v70(ce, &info);
2278
2279 if (intel_context_is_parent(ce))
2280 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2281 else
2282 return __guc_action_register_context_v70(guc, &info, loop);
2283 }
2284
register_context(struct intel_context * ce,bool loop)2285 static int register_context(struct intel_context *ce, bool loop)
2286 {
2287 struct intel_guc *guc = ce_to_guc(ce);
2288 int ret;
2289
2290 GEM_BUG_ON(intel_context_is_child(ce));
2291 trace_intel_context_register(ce);
2292
2293 if (guc->fw.major_ver_found >= 70)
2294 ret = register_context_v70(guc, ce, loop);
2295 else
2296 ret = register_context_v69(guc, ce, loop);
2297
2298 if (likely(!ret)) {
2299 unsigned long flags;
2300
2301 spin_lock_irqsave(&ce->guc_state.lock, flags);
2302 set_context_registered(ce);
2303 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2304
2305 if (guc->fw.major_ver_found >= 70)
2306 guc_context_policy_init_v70(ce, loop);
2307 }
2308
2309 return ret;
2310 }
2311
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2312 static int __guc_action_deregister_context(struct intel_guc *guc,
2313 u32 guc_id)
2314 {
2315 u32 action[] = {
2316 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2317 guc_id,
2318 };
2319
2320 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2321 G2H_LEN_DW_DEREGISTER_CONTEXT,
2322 true);
2323 }
2324
deregister_context(struct intel_context * ce,u32 guc_id)2325 static int deregister_context(struct intel_context *ce, u32 guc_id)
2326 {
2327 struct intel_guc *guc = ce_to_guc(ce);
2328
2329 GEM_BUG_ON(intel_context_is_child(ce));
2330 trace_intel_context_deregister(ce);
2331
2332 return __guc_action_deregister_context(guc, guc_id);
2333 }
2334
clear_children_join_go_memory(struct intel_context * ce)2335 static inline void clear_children_join_go_memory(struct intel_context *ce)
2336 {
2337 struct parent_scratch *ps = __get_parent_scratch(ce);
2338 int i;
2339
2340 ps->go.semaphore = 0;
2341 for (i = 0; i < ce->parallel.number_children + 1; ++i)
2342 ps->join[i].semaphore = 0;
2343 }
2344
get_children_go_value(struct intel_context * ce)2345 static inline u32 get_children_go_value(struct intel_context *ce)
2346 {
2347 return __get_parent_scratch(ce)->go.semaphore;
2348 }
2349
get_children_join_value(struct intel_context * ce,u8 child_index)2350 static inline u32 get_children_join_value(struct intel_context *ce,
2351 u8 child_index)
2352 {
2353 return __get_parent_scratch(ce)->join[child_index].semaphore;
2354 }
2355
2356 struct context_policy {
2357 u32 count;
2358 struct guc_update_context_policy h2g;
2359 };
2360
__guc_context_policy_action_size(struct context_policy * policy)2361 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2362 {
2363 size_t bytes = sizeof(policy->h2g.header) +
2364 (sizeof(policy->h2g.klv[0]) * policy->count);
2365
2366 return bytes / sizeof(u32);
2367 }
2368
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2369 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2370 {
2371 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2372 policy->h2g.header.ctx_id = guc_id;
2373 policy->count = 0;
2374 }
2375
2376 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2377 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2378 { \
2379 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2380 policy->h2g.klv[policy->count].kl = \
2381 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2382 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2383 policy->h2g.klv[policy->count].value = data; \
2384 policy->count++; \
2385 }
2386
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2387 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2388 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2389 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2390 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2391
2392 #undef MAKE_CONTEXT_POLICY_ADD
2393
2394 static int __guc_context_set_context_policies(struct intel_guc *guc,
2395 struct context_policy *policy,
2396 bool loop)
2397 {
2398 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2399 __guc_context_policy_action_size(policy),
2400 0, loop);
2401 }
2402
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2403 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2404 {
2405 struct intel_engine_cs *engine = ce->engine;
2406 struct intel_guc *guc = &engine->gt->uc.guc;
2407 struct context_policy policy;
2408 u32 execution_quantum;
2409 u32 preemption_timeout;
2410 bool missing = false;
2411 unsigned long flags;
2412 int ret;
2413
2414 /* NB: For both of these, zero means disabled. */
2415 execution_quantum = engine->props.timeslice_duration_ms * 1000;
2416 preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2417
2418 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2419
2420 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2421 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2422 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2423
2424 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2425 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2426
2427 ret = __guc_context_set_context_policies(guc, &policy, loop);
2428 missing = ret != 0;
2429
2430 if (!missing && intel_context_is_parent(ce)) {
2431 struct intel_context *child;
2432
2433 for_each_child(ce, child) {
2434 __guc_context_policy_start_klv(&policy, child->guc_id.id);
2435
2436 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2437 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2438
2439 child->guc_state.prio = ce->guc_state.prio;
2440 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2441 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2442 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2443
2444 ret = __guc_context_set_context_policies(guc, &policy, loop);
2445 if (ret) {
2446 missing = true;
2447 break;
2448 }
2449 }
2450 }
2451
2452 spin_lock_irqsave(&ce->guc_state.lock, flags);
2453 if (missing)
2454 set_context_policy_required(ce);
2455 else
2456 clr_context_policy_required(ce);
2457 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2458
2459 return ret;
2460 }
2461
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2462 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2463 struct guc_lrc_desc_v69 *desc)
2464 {
2465 desc->policy_flags = 0;
2466
2467 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2468 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2469
2470 /* NB: For both of these, zero means disabled. */
2471 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2472 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2473 }
2474
map_guc_prio_to_lrc_desc_prio(u8 prio)2475 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2476 {
2477 /*
2478 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2479 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2480 */
2481 switch (prio) {
2482 default:
2483 MISSING_CASE(prio);
2484 fallthrough;
2485 case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2486 return GEN12_CTX_PRIORITY_NORMAL;
2487 case GUC_CLIENT_PRIORITY_NORMAL:
2488 return GEN12_CTX_PRIORITY_LOW;
2489 case GUC_CLIENT_PRIORITY_HIGH:
2490 case GUC_CLIENT_PRIORITY_KMD_HIGH:
2491 return GEN12_CTX_PRIORITY_HIGH;
2492 }
2493 }
2494
prepare_context_registration_info_v69(struct intel_context * ce)2495 static void prepare_context_registration_info_v69(struct intel_context *ce)
2496 {
2497 struct intel_engine_cs *engine = ce->engine;
2498 struct intel_guc *guc = &engine->gt->uc.guc;
2499 u32 ctx_id = ce->guc_id.id;
2500 struct guc_lrc_desc_v69 *desc;
2501 struct intel_context *child;
2502
2503 GEM_BUG_ON(!engine->mask);
2504
2505 /*
2506 * Ensure LRC + CT vmas are is same region as write barrier is done
2507 * based on CT vma region.
2508 */
2509 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2510 i915_gem_object_is_lmem(ce->ring->vma->obj));
2511
2512 desc = __get_lrc_desc_v69(guc, ctx_id);
2513 desc->engine_class = engine_class_to_guc_class(engine->class);
2514 desc->engine_submit_mask = engine->logical_mask;
2515 desc->hw_context_desc = ce->lrc.lrca;
2516 desc->priority = ce->guc_state.prio;
2517 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2518 guc_context_policy_init_v69(engine, desc);
2519
2520 /*
2521 * If context is a parent, we need to register a process descriptor
2522 * describing a work queue and register all child contexts.
2523 */
2524 if (intel_context_is_parent(ce)) {
2525 struct guc_process_desc_v69 *pdesc;
2526
2527 ce->parallel.guc.wqi_tail = 0;
2528 ce->parallel.guc.wqi_head = 0;
2529
2530 desc->process_desc = i915_ggtt_offset(ce->state) +
2531 __get_parent_scratch_offset(ce);
2532 desc->wq_addr = i915_ggtt_offset(ce->state) +
2533 __get_wq_offset(ce);
2534 desc->wq_size = WQ_SIZE;
2535
2536 pdesc = __get_process_desc_v69(ce);
2537 memset(pdesc, 0, sizeof(*(pdesc)));
2538 pdesc->stage_id = ce->guc_id.id;
2539 pdesc->wq_base_addr = desc->wq_addr;
2540 pdesc->wq_size_bytes = desc->wq_size;
2541 pdesc->wq_status = WQ_STATUS_ACTIVE;
2542
2543 ce->parallel.guc.wq_head = &pdesc->head;
2544 ce->parallel.guc.wq_tail = &pdesc->tail;
2545 ce->parallel.guc.wq_status = &pdesc->wq_status;
2546
2547 for_each_child(ce, child) {
2548 desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2549
2550 desc->engine_class =
2551 engine_class_to_guc_class(engine->class);
2552 desc->hw_context_desc = child->lrc.lrca;
2553 desc->priority = ce->guc_state.prio;
2554 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2555 guc_context_policy_init_v69(engine, desc);
2556 }
2557
2558 clear_children_join_go_memory(ce);
2559 }
2560 }
2561
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2562 static void prepare_context_registration_info_v70(struct intel_context *ce,
2563 struct guc_ctxt_registration_info *info)
2564 {
2565 struct intel_engine_cs *engine = ce->engine;
2566 struct intel_guc *guc = &engine->gt->uc.guc;
2567 u32 ctx_id = ce->guc_id.id;
2568
2569 GEM_BUG_ON(!engine->mask);
2570
2571 /*
2572 * Ensure LRC + CT vmas are is same region as write barrier is done
2573 * based on CT vma region.
2574 */
2575 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2576 i915_gem_object_is_lmem(ce->ring->vma->obj));
2577
2578 memset(info, 0, sizeof(*info));
2579 info->context_idx = ctx_id;
2580 info->engine_class = engine_class_to_guc_class(engine->class);
2581 info->engine_submit_mask = engine->logical_mask;
2582 /*
2583 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2584 * only supports 32 bit currently.
2585 */
2586 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2587 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2588 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2589 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2590 info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2591
2592 /*
2593 * If context is a parent, we need to register a process descriptor
2594 * describing a work queue and register all child contexts.
2595 */
2596 if (intel_context_is_parent(ce)) {
2597 struct guc_sched_wq_desc *wq_desc;
2598 u64 wq_desc_offset, wq_base_offset;
2599
2600 ce->parallel.guc.wqi_tail = 0;
2601 ce->parallel.guc.wqi_head = 0;
2602
2603 wq_desc_offset = i915_ggtt_offset(ce->state) +
2604 __get_parent_scratch_offset(ce);
2605 wq_base_offset = i915_ggtt_offset(ce->state) +
2606 __get_wq_offset(ce);
2607 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2608 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2609 info->wq_base_lo = lower_32_bits(wq_base_offset);
2610 info->wq_base_hi = upper_32_bits(wq_base_offset);
2611 info->wq_size = WQ_SIZE;
2612
2613 wq_desc = __get_wq_desc_v70(ce);
2614 memset(wq_desc, 0, sizeof(*wq_desc));
2615 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2616
2617 ce->parallel.guc.wq_head = &wq_desc->head;
2618 ce->parallel.guc.wq_tail = &wq_desc->tail;
2619 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2620
2621 clear_children_join_go_memory(ce);
2622 }
2623 }
2624
try_context_registration(struct intel_context * ce,bool loop)2625 static int try_context_registration(struct intel_context *ce, bool loop)
2626 {
2627 struct intel_engine_cs *engine = ce->engine;
2628 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2629 struct intel_guc *guc = &engine->gt->uc.guc;
2630 intel_wakeref_t wakeref;
2631 u32 ctx_id = ce->guc_id.id;
2632 bool context_registered;
2633 int ret = 0;
2634
2635 GEM_BUG_ON(!sched_state_is_init(ce));
2636
2637 context_registered = ctx_id_mapped(guc, ctx_id);
2638
2639 clr_ctx_id_mapping(guc, ctx_id);
2640 set_ctx_id_mapping(guc, ctx_id, ce);
2641
2642 /*
2643 * The context_lookup xarray is used to determine if the hardware
2644 * context is currently registered. There are two cases in which it
2645 * could be registered either the guc_id has been stolen from another
2646 * context or the lrc descriptor address of this context has changed. In
2647 * either case the context needs to be deregistered with the GuC before
2648 * registering this context.
2649 */
2650 if (context_registered) {
2651 bool disabled;
2652 unsigned long flags;
2653
2654 trace_intel_context_steal_guc_id(ce);
2655 GEM_BUG_ON(!loop);
2656
2657 /* Seal race with Reset */
2658 spin_lock_irqsave(&ce->guc_state.lock, flags);
2659 disabled = submission_disabled(guc);
2660 if (likely(!disabled)) {
2661 set_context_wait_for_deregister_to_register(ce);
2662 intel_context_get(ce);
2663 }
2664 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2665 if (unlikely(disabled)) {
2666 clr_ctx_id_mapping(guc, ctx_id);
2667 return 0; /* Will get registered later */
2668 }
2669
2670 /*
2671 * If stealing the guc_id, this ce has the same guc_id as the
2672 * context whose guc_id was stolen.
2673 */
2674 with_intel_runtime_pm(runtime_pm, wakeref)
2675 ret = deregister_context(ce, ce->guc_id.id);
2676 if (unlikely(ret == -ENODEV))
2677 ret = 0; /* Will get registered later */
2678 } else {
2679 with_intel_runtime_pm(runtime_pm, wakeref)
2680 ret = register_context(ce, loop);
2681 if (unlikely(ret == -EBUSY)) {
2682 clr_ctx_id_mapping(guc, ctx_id);
2683 } else if (unlikely(ret == -ENODEV)) {
2684 clr_ctx_id_mapping(guc, ctx_id);
2685 ret = 0; /* Will get registered later */
2686 }
2687 }
2688
2689 return ret;
2690 }
2691
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2692 static int __guc_context_pre_pin(struct intel_context *ce,
2693 struct intel_engine_cs *engine,
2694 struct i915_gem_ww_ctx *ww,
2695 void **vaddr)
2696 {
2697 return lrc_pre_pin(ce, engine, ww, vaddr);
2698 }
2699
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)2700 static int __guc_context_pin(struct intel_context *ce,
2701 struct intel_engine_cs *engine,
2702 void *vaddr)
2703 {
2704 if (i915_ggtt_offset(ce->state) !=
2705 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2706 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2707
2708 /*
2709 * GuC context gets pinned in guc_request_alloc. See that function for
2710 * explaination of why.
2711 */
2712
2713 return lrc_pin(ce, engine, vaddr);
2714 }
2715
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2716 static int guc_context_pre_pin(struct intel_context *ce,
2717 struct i915_gem_ww_ctx *ww,
2718 void **vaddr)
2719 {
2720 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2721 }
2722
guc_context_pin(struct intel_context * ce,void * vaddr)2723 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2724 {
2725 int ret = __guc_context_pin(ce, ce->engine, vaddr);
2726
2727 if (likely(!ret && !intel_context_is_barrier(ce)))
2728 intel_engine_pm_get(ce->engine);
2729
2730 return ret;
2731 }
2732
guc_context_unpin(struct intel_context * ce)2733 static void guc_context_unpin(struct intel_context *ce)
2734 {
2735 struct intel_guc *guc = ce_to_guc(ce);
2736
2737 unpin_guc_id(guc, ce);
2738 lrc_unpin(ce);
2739
2740 if (likely(!intel_context_is_barrier(ce)))
2741 intel_engine_pm_put_async(ce->engine);
2742 }
2743
guc_context_post_unpin(struct intel_context * ce)2744 static void guc_context_post_unpin(struct intel_context *ce)
2745 {
2746 lrc_post_unpin(ce);
2747 }
2748
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)2749 static void __guc_context_sched_enable(struct intel_guc *guc,
2750 struct intel_context *ce)
2751 {
2752 u32 action[] = {
2753 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2754 ce->guc_id.id,
2755 GUC_CONTEXT_ENABLE
2756 };
2757
2758 trace_intel_context_sched_enable(ce);
2759
2760 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2761 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2762 }
2763
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)2764 static void __guc_context_sched_disable(struct intel_guc *guc,
2765 struct intel_context *ce,
2766 u16 guc_id)
2767 {
2768 u32 action[] = {
2769 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2770 guc_id, /* ce->guc_id.id not stable */
2771 GUC_CONTEXT_DISABLE
2772 };
2773
2774 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2775
2776 GEM_BUG_ON(intel_context_is_child(ce));
2777 trace_intel_context_sched_disable(ce);
2778
2779 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2780 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2781 }
2782
guc_blocked_fence_complete(struct intel_context * ce)2783 static void guc_blocked_fence_complete(struct intel_context *ce)
2784 {
2785 lockdep_assert_held(&ce->guc_state.lock);
2786
2787 if (!i915_sw_fence_done(&ce->guc_state.blocked))
2788 i915_sw_fence_complete(&ce->guc_state.blocked);
2789 }
2790
guc_blocked_fence_reinit(struct intel_context * ce)2791 static void guc_blocked_fence_reinit(struct intel_context *ce)
2792 {
2793 lockdep_assert_held(&ce->guc_state.lock);
2794 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2795
2796 /*
2797 * This fence is always complete unless a pending schedule disable is
2798 * outstanding. We arm the fence here and complete it when we receive
2799 * the pending schedule disable complete message.
2800 */
2801 i915_sw_fence_fini(&ce->guc_state.blocked);
2802 i915_sw_fence_reinit(&ce->guc_state.blocked);
2803 i915_sw_fence_await(&ce->guc_state.blocked);
2804 i915_sw_fence_commit(&ce->guc_state.blocked);
2805 }
2806
prep_context_pending_disable(struct intel_context * ce)2807 static u16 prep_context_pending_disable(struct intel_context *ce)
2808 {
2809 lockdep_assert_held(&ce->guc_state.lock);
2810
2811 set_context_pending_disable(ce);
2812 clr_context_enabled(ce);
2813 guc_blocked_fence_reinit(ce);
2814 intel_context_get(ce);
2815
2816 return ce->guc_id.id;
2817 }
2818
guc_context_block(struct intel_context * ce)2819 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2820 {
2821 struct intel_guc *guc = ce_to_guc(ce);
2822 unsigned long flags;
2823 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2824 intel_wakeref_t wakeref;
2825 u16 guc_id;
2826 bool enabled;
2827
2828 GEM_BUG_ON(intel_context_is_child(ce));
2829
2830 spin_lock_irqsave(&ce->guc_state.lock, flags);
2831
2832 incr_context_blocked(ce);
2833
2834 enabled = context_enabled(ce);
2835 if (unlikely(!enabled || submission_disabled(guc))) {
2836 if (enabled)
2837 clr_context_enabled(ce);
2838 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2839 return &ce->guc_state.blocked;
2840 }
2841
2842 /*
2843 * We add +2 here as the schedule disable complete CTB handler calls
2844 * intel_context_sched_disable_unpin (-2 to pin_count).
2845 */
2846 atomic_add(2, &ce->pin_count);
2847
2848 guc_id = prep_context_pending_disable(ce);
2849
2850 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2851
2852 with_intel_runtime_pm(runtime_pm, wakeref)
2853 __guc_context_sched_disable(guc, ce, guc_id);
2854
2855 return &ce->guc_state.blocked;
2856 }
2857
2858 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2859 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2860 #define SCHED_STATE_NO_UNBLOCK \
2861 (SCHED_STATE_MULTI_BLOCKED_MASK | \
2862 SCHED_STATE_PENDING_DISABLE | \
2863 SCHED_STATE_BANNED)
2864
context_cant_unblock(struct intel_context * ce)2865 static bool context_cant_unblock(struct intel_context *ce)
2866 {
2867 lockdep_assert_held(&ce->guc_state.lock);
2868
2869 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2870 context_guc_id_invalid(ce) ||
2871 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2872 !intel_context_is_pinned(ce);
2873 }
2874
guc_context_unblock(struct intel_context * ce)2875 static void guc_context_unblock(struct intel_context *ce)
2876 {
2877 struct intel_guc *guc = ce_to_guc(ce);
2878 unsigned long flags;
2879 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2880 intel_wakeref_t wakeref;
2881 bool enable;
2882
2883 GEM_BUG_ON(context_enabled(ce));
2884 GEM_BUG_ON(intel_context_is_child(ce));
2885
2886 spin_lock_irqsave(&ce->guc_state.lock, flags);
2887
2888 if (unlikely(submission_disabled(guc) ||
2889 context_cant_unblock(ce))) {
2890 enable = false;
2891 } else {
2892 enable = true;
2893 set_context_pending_enable(ce);
2894 set_context_enabled(ce);
2895 intel_context_get(ce);
2896 }
2897
2898 decr_context_blocked(ce);
2899
2900 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2901
2902 if (enable) {
2903 with_intel_runtime_pm(runtime_pm, wakeref)
2904 __guc_context_sched_enable(guc, ce);
2905 }
2906 }
2907
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2908 static void guc_context_cancel_request(struct intel_context *ce,
2909 struct i915_request *rq)
2910 {
2911 struct intel_context *block_context =
2912 request_to_scheduling_context(rq);
2913
2914 if (i915_sw_fence_signaled(&rq->submit)) {
2915 struct i915_sw_fence *fence;
2916
2917 intel_context_get(ce);
2918 fence = guc_context_block(block_context);
2919 i915_sw_fence_wait(fence);
2920 if (!i915_request_completed(rq)) {
2921 __i915_request_skip(rq);
2922 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2923 true);
2924 }
2925
2926 guc_context_unblock(block_context);
2927 intel_context_put(ce);
2928 }
2929 }
2930
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)2931 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2932 u16 guc_id,
2933 u32 preemption_timeout)
2934 {
2935 if (guc->fw.major_ver_found >= 70) {
2936 struct context_policy policy;
2937
2938 __guc_context_policy_start_klv(&policy, guc_id);
2939 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2940 __guc_context_set_context_policies(guc, &policy, true);
2941 } else {
2942 u32 action[] = {
2943 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
2944 guc_id,
2945 preemption_timeout
2946 };
2947
2948 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
2949 }
2950 }
2951
guc_context_ban(struct intel_context * ce,struct i915_request * rq)2952 static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
2953 {
2954 struct intel_guc *guc = ce_to_guc(ce);
2955 struct intel_runtime_pm *runtime_pm =
2956 &ce->engine->gt->i915->runtime_pm;
2957 intel_wakeref_t wakeref;
2958 unsigned long flags;
2959
2960 GEM_BUG_ON(intel_context_is_child(ce));
2961
2962 guc_flush_submissions(guc);
2963
2964 spin_lock_irqsave(&ce->guc_state.lock, flags);
2965 set_context_banned(ce);
2966
2967 if (submission_disabled(guc) ||
2968 (!context_enabled(ce) && !context_pending_disable(ce))) {
2969 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2970
2971 guc_cancel_context_requests(ce);
2972 intel_engine_signal_breadcrumbs(ce->engine);
2973 } else if (!context_pending_disable(ce)) {
2974 u16 guc_id;
2975
2976 /*
2977 * We add +2 here as the schedule disable complete CTB handler
2978 * calls intel_context_sched_disable_unpin (-2 to pin_count).
2979 */
2980 atomic_add(2, &ce->pin_count);
2981
2982 guc_id = prep_context_pending_disable(ce);
2983 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2984
2985 /*
2986 * In addition to disabling scheduling, set the preemption
2987 * timeout to the minimum value (1 us) so the banned context
2988 * gets kicked off the HW ASAP.
2989 */
2990 with_intel_runtime_pm(runtime_pm, wakeref) {
2991 __guc_context_set_preemption_timeout(guc, guc_id, 1);
2992 __guc_context_sched_disable(guc, ce, guc_id);
2993 }
2994 } else {
2995 if (!context_guc_id_invalid(ce))
2996 with_intel_runtime_pm(runtime_pm, wakeref)
2997 __guc_context_set_preemption_timeout(guc,
2998 ce->guc_id.id,
2999 1);
3000 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3001 }
3002 }
3003
guc_context_sched_disable(struct intel_context * ce)3004 static void guc_context_sched_disable(struct intel_context *ce)
3005 {
3006 struct intel_guc *guc = ce_to_guc(ce);
3007 unsigned long flags;
3008 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3009 intel_wakeref_t wakeref;
3010 u16 guc_id;
3011
3012 GEM_BUG_ON(intel_context_is_child(ce));
3013
3014 spin_lock_irqsave(&ce->guc_state.lock, flags);
3015
3016 /*
3017 * We have to check if the context has been disabled by another thread,
3018 * check if submssion has been disabled to seal a race with reset and
3019 * finally check if any more requests have been committed to the
3020 * context ensursing that a request doesn't slip through the
3021 * 'context_pending_disable' fence.
3022 */
3023 if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
3024 context_has_committed_requests(ce))) {
3025 clr_context_enabled(ce);
3026 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3027 goto unpin;
3028 }
3029 guc_id = prep_context_pending_disable(ce);
3030
3031 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3032
3033 with_intel_runtime_pm(runtime_pm, wakeref)
3034 __guc_context_sched_disable(guc, ce, guc_id);
3035
3036 return;
3037 unpin:
3038 intel_context_sched_disable_unpin(ce);
3039 }
3040
guc_lrc_desc_unpin(struct intel_context * ce)3041 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3042 {
3043 struct intel_guc *guc = ce_to_guc(ce);
3044 struct intel_gt *gt = guc_to_gt(guc);
3045 unsigned long flags;
3046 bool disabled;
3047
3048 GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3049 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3050 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3051 GEM_BUG_ON(context_enabled(ce));
3052
3053 /* Seal race with Reset */
3054 spin_lock_irqsave(&ce->guc_state.lock, flags);
3055 disabled = submission_disabled(guc);
3056 if (likely(!disabled)) {
3057 __intel_gt_pm_get(gt);
3058 set_context_destroyed(ce);
3059 clr_context_registered(ce);
3060 }
3061 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3062 if (unlikely(disabled)) {
3063 release_guc_id(guc, ce);
3064 __guc_context_destroy(ce);
3065 return;
3066 }
3067
3068 deregister_context(ce, ce->guc_id.id);
3069 }
3070
__guc_context_destroy(struct intel_context * ce)3071 static void __guc_context_destroy(struct intel_context *ce)
3072 {
3073 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3074 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3075 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3076 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3077 GEM_BUG_ON(ce->guc_state.number_committed_requests);
3078
3079 lrc_fini(ce);
3080 intel_context_fini(ce);
3081
3082 if (intel_engine_is_virtual(ce->engine)) {
3083 struct guc_virtual_engine *ve =
3084 container_of(ce, typeof(*ve), context);
3085
3086 if (ve->base.breadcrumbs)
3087 intel_breadcrumbs_put(ve->base.breadcrumbs);
3088
3089 kfree(ve);
3090 } else {
3091 intel_context_free(ce);
3092 }
3093 }
3094
guc_flush_destroyed_contexts(struct intel_guc * guc)3095 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3096 {
3097 struct intel_context *ce;
3098 unsigned long flags;
3099
3100 GEM_BUG_ON(!submission_disabled(guc) &&
3101 guc_submission_initialized(guc));
3102
3103 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3104 spin_lock_irqsave(&guc->submission_state.lock, flags);
3105 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3106 struct intel_context,
3107 destroyed_link);
3108 if (ce)
3109 list_del_init(&ce->destroyed_link);
3110 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3111
3112 if (!ce)
3113 break;
3114
3115 release_guc_id(guc, ce);
3116 __guc_context_destroy(ce);
3117 }
3118 }
3119
deregister_destroyed_contexts(struct intel_guc * guc)3120 static void deregister_destroyed_contexts(struct intel_guc *guc)
3121 {
3122 struct intel_context *ce;
3123 unsigned long flags;
3124
3125 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3126 spin_lock_irqsave(&guc->submission_state.lock, flags);
3127 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3128 struct intel_context,
3129 destroyed_link);
3130 if (ce)
3131 list_del_init(&ce->destroyed_link);
3132 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3133
3134 if (!ce)
3135 break;
3136
3137 guc_lrc_desc_unpin(ce);
3138 }
3139 }
3140
destroyed_worker_func(struct work_struct * w)3141 static void destroyed_worker_func(struct work_struct *w)
3142 {
3143 struct intel_guc *guc = container_of(w, struct intel_guc,
3144 submission_state.destroyed_worker);
3145 struct intel_gt *gt = guc_to_gt(guc);
3146 int tmp;
3147
3148 with_intel_gt_pm(gt, tmp)
3149 deregister_destroyed_contexts(guc);
3150 }
3151
guc_context_destroy(struct kref * kref)3152 static void guc_context_destroy(struct kref *kref)
3153 {
3154 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3155 struct intel_guc *guc = ce_to_guc(ce);
3156 unsigned long flags;
3157 bool destroy;
3158
3159 /*
3160 * If the guc_id is invalid this context has been stolen and we can free
3161 * it immediately. Also can be freed immediately if the context is not
3162 * registered with the GuC or the GuC is in the middle of a reset.
3163 */
3164 spin_lock_irqsave(&guc->submission_state.lock, flags);
3165 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3166 !ctx_id_mapped(guc, ce->guc_id.id);
3167 if (likely(!destroy)) {
3168 if (!list_empty(&ce->guc_id.link))
3169 list_del_init(&ce->guc_id.link);
3170 list_add_tail(&ce->destroyed_link,
3171 &guc->submission_state.destroyed_contexts);
3172 } else {
3173 __release_guc_id(guc, ce);
3174 }
3175 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3176 if (unlikely(destroy)) {
3177 __guc_context_destroy(ce);
3178 return;
3179 }
3180
3181 /*
3182 * We use a worker to issue the H2G to deregister the context as we can
3183 * take the GT PM for the first time which isn't allowed from an atomic
3184 * context.
3185 */
3186 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3187 }
3188
guc_context_alloc(struct intel_context * ce)3189 static int guc_context_alloc(struct intel_context *ce)
3190 {
3191 return lrc_alloc(ce, ce->engine);
3192 }
3193
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3194 static void __guc_context_set_prio(struct intel_guc *guc,
3195 struct intel_context *ce)
3196 {
3197 if (guc->fw.major_ver_found >= 70) {
3198 struct context_policy policy;
3199
3200 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3201 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3202 __guc_context_set_context_policies(guc, &policy, true);
3203 } else {
3204 u32 action[] = {
3205 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3206 ce->guc_id.id,
3207 ce->guc_state.prio,
3208 };
3209
3210 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3211 }
3212 }
3213
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3214 static void guc_context_set_prio(struct intel_guc *guc,
3215 struct intel_context *ce,
3216 u8 prio)
3217 {
3218 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3219 prio > GUC_CLIENT_PRIORITY_NORMAL);
3220 lockdep_assert_held(&ce->guc_state.lock);
3221
3222 if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3223 !context_registered(ce)) {
3224 ce->guc_state.prio = prio;
3225 return;
3226 }
3227
3228 ce->guc_state.prio = prio;
3229 __guc_context_set_prio(guc, ce);
3230
3231 trace_intel_context_set_prio(ce);
3232 }
3233
map_i915_prio_to_guc_prio(int prio)3234 static inline u8 map_i915_prio_to_guc_prio(int prio)
3235 {
3236 if (prio == I915_PRIORITY_NORMAL)
3237 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3238 else if (prio < I915_PRIORITY_NORMAL)
3239 return GUC_CLIENT_PRIORITY_NORMAL;
3240 else if (prio < I915_PRIORITY_DISPLAY)
3241 return GUC_CLIENT_PRIORITY_HIGH;
3242 else
3243 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3244 }
3245
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3246 static inline void add_context_inflight_prio(struct intel_context *ce,
3247 u8 guc_prio)
3248 {
3249 lockdep_assert_held(&ce->guc_state.lock);
3250 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3251
3252 ++ce->guc_state.prio_count[guc_prio];
3253
3254 /* Overflow protection */
3255 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3256 }
3257
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3258 static inline void sub_context_inflight_prio(struct intel_context *ce,
3259 u8 guc_prio)
3260 {
3261 lockdep_assert_held(&ce->guc_state.lock);
3262 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3263
3264 /* Underflow protection */
3265 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3266
3267 --ce->guc_state.prio_count[guc_prio];
3268 }
3269
update_context_prio(struct intel_context * ce)3270 static inline void update_context_prio(struct intel_context *ce)
3271 {
3272 struct intel_guc *guc = &ce->engine->gt->uc.guc;
3273 int i;
3274
3275 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3276 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3277
3278 lockdep_assert_held(&ce->guc_state.lock);
3279
3280 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3281 if (ce->guc_state.prio_count[i]) {
3282 guc_context_set_prio(guc, ce, i);
3283 break;
3284 }
3285 }
3286 }
3287
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3288 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3289 {
3290 /* Lower value is higher priority */
3291 return new_guc_prio < old_guc_prio;
3292 }
3293
add_to_context(struct i915_request * rq)3294 static void add_to_context(struct i915_request *rq)
3295 {
3296 struct intel_context *ce = request_to_scheduling_context(rq);
3297 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3298
3299 GEM_BUG_ON(intel_context_is_child(ce));
3300 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3301
3302 spin_lock(&ce->guc_state.lock);
3303 list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3304
3305 if (rq->guc_prio == GUC_PRIO_INIT) {
3306 rq->guc_prio = new_guc_prio;
3307 add_context_inflight_prio(ce, rq->guc_prio);
3308 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3309 sub_context_inflight_prio(ce, rq->guc_prio);
3310 rq->guc_prio = new_guc_prio;
3311 add_context_inflight_prio(ce, rq->guc_prio);
3312 }
3313 update_context_prio(ce);
3314
3315 spin_unlock(&ce->guc_state.lock);
3316 }
3317
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3318 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3319 {
3320 lockdep_assert_held(&ce->guc_state.lock);
3321
3322 if (rq->guc_prio != GUC_PRIO_INIT &&
3323 rq->guc_prio != GUC_PRIO_FINI) {
3324 sub_context_inflight_prio(ce, rq->guc_prio);
3325 update_context_prio(ce);
3326 }
3327 rq->guc_prio = GUC_PRIO_FINI;
3328 }
3329
remove_from_context(struct i915_request * rq)3330 static void remove_from_context(struct i915_request *rq)
3331 {
3332 struct intel_context *ce = request_to_scheduling_context(rq);
3333
3334 GEM_BUG_ON(intel_context_is_child(ce));
3335
3336 spin_lock_irq(&ce->guc_state.lock);
3337
3338 list_del_init(&rq->sched.link);
3339 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3340
3341 /* Prevent further __await_execution() registering a cb, then flush */
3342 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3343
3344 guc_prio_fini(rq, ce);
3345
3346 decr_context_committed_requests(ce);
3347
3348 spin_unlock_irq(&ce->guc_state.lock);
3349
3350 atomic_dec(&ce->guc_id.ref);
3351 i915_request_notify_execute_cb_imm(rq);
3352 }
3353
3354 static const struct intel_context_ops guc_context_ops = {
3355 .alloc = guc_context_alloc,
3356
3357 .pre_pin = guc_context_pre_pin,
3358 .pin = guc_context_pin,
3359 .unpin = guc_context_unpin,
3360 .post_unpin = guc_context_post_unpin,
3361
3362 .ban = guc_context_ban,
3363
3364 .cancel_request = guc_context_cancel_request,
3365
3366 .enter = intel_context_enter_engine,
3367 .exit = intel_context_exit_engine,
3368
3369 .sched_disable = guc_context_sched_disable,
3370
3371 .reset = lrc_reset,
3372 .destroy = guc_context_destroy,
3373
3374 .create_virtual = guc_create_virtual,
3375 .create_parallel = guc_create_parallel,
3376 };
3377
submit_work_cb(struct irq_work * wrk)3378 static void submit_work_cb(struct irq_work *wrk)
3379 {
3380 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3381
3382 might_lock(&rq->engine->sched_engine->lock);
3383 i915_sw_fence_complete(&rq->submit);
3384 }
3385
__guc_signal_context_fence(struct intel_context * ce)3386 static void __guc_signal_context_fence(struct intel_context *ce)
3387 {
3388 struct i915_request *rq, *rn;
3389
3390 lockdep_assert_held(&ce->guc_state.lock);
3391
3392 if (!list_empty(&ce->guc_state.fences))
3393 trace_intel_context_fence_release(ce);
3394
3395 /*
3396 * Use an IRQ to ensure locking order of sched_engine->lock ->
3397 * ce->guc_state.lock is preserved.
3398 */
3399 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3400 guc_fence_link) {
3401 list_del(&rq->guc_fence_link);
3402 irq_work_queue(&rq->submit_work);
3403 }
3404
3405 INIT_LIST_HEAD(&ce->guc_state.fences);
3406 }
3407
guc_signal_context_fence(struct intel_context * ce)3408 static void guc_signal_context_fence(struct intel_context *ce)
3409 {
3410 unsigned long flags;
3411
3412 GEM_BUG_ON(intel_context_is_child(ce));
3413
3414 spin_lock_irqsave(&ce->guc_state.lock, flags);
3415 clr_context_wait_for_deregister_to_register(ce);
3416 __guc_signal_context_fence(ce);
3417 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3418 }
3419
context_needs_register(struct intel_context * ce,bool new_guc_id)3420 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3421 {
3422 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3423 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3424 !submission_disabled(ce_to_guc(ce));
3425 }
3426
guc_context_init(struct intel_context * ce)3427 static void guc_context_init(struct intel_context *ce)
3428 {
3429 const struct i915_gem_context *ctx;
3430 int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3431
3432 rcu_read_lock();
3433 ctx = rcu_dereference(ce->gem_context);
3434 if (ctx)
3435 prio = ctx->sched.priority;
3436 rcu_read_unlock();
3437
3438 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3439 set_bit(CONTEXT_GUC_INIT, &ce->flags);
3440 }
3441
guc_request_alloc(struct i915_request * rq)3442 static int guc_request_alloc(struct i915_request *rq)
3443 {
3444 struct intel_context *ce = request_to_scheduling_context(rq);
3445 struct intel_guc *guc = ce_to_guc(ce);
3446 unsigned long flags;
3447 int ret;
3448
3449 GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3450
3451 /*
3452 * Flush enough space to reduce the likelihood of waiting after
3453 * we start building the request - in which case we will just
3454 * have to repeat work.
3455 */
3456 rq->reserved_space += GUC_REQUEST_SIZE;
3457
3458 /*
3459 * Note that after this point, we have committed to using
3460 * this request as it is being used to both track the
3461 * state of engine initialisation and liveness of the
3462 * golden renderstate above. Think twice before you try
3463 * to cancel/unwind this request now.
3464 */
3465
3466 /* Unconditionally invalidate GPU caches and TLBs. */
3467 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3468 if (ret)
3469 return ret;
3470
3471 rq->reserved_space -= GUC_REQUEST_SIZE;
3472
3473 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3474 guc_context_init(ce);
3475
3476 /*
3477 * Call pin_guc_id here rather than in the pinning step as with
3478 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3479 * guc_id and creating horrible race conditions. This is especially bad
3480 * when guc_id are being stolen due to over subscription. By the time
3481 * this function is reached, it is guaranteed that the guc_id will be
3482 * persistent until the generated request is retired. Thus, sealing these
3483 * race conditions. It is still safe to fail here if guc_id are
3484 * exhausted and return -EAGAIN to the user indicating that they can try
3485 * again in the future.
3486 *
3487 * There is no need for a lock here as the timeline mutex ensures at
3488 * most one context can be executing this code path at once. The
3489 * guc_id_ref is incremented once for every request in flight and
3490 * decremented on each retire. When it is zero, a lock around the
3491 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3492 */
3493 if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3494 goto out;
3495
3496 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
3497 if (unlikely(ret < 0))
3498 return ret;
3499 if (context_needs_register(ce, !!ret)) {
3500 ret = try_context_registration(ce, true);
3501 if (unlikely(ret)) { /* unwind */
3502 if (ret == -EPIPE) {
3503 disable_submission(guc);
3504 goto out; /* GPU will be reset */
3505 }
3506 atomic_dec(&ce->guc_id.ref);
3507 unpin_guc_id(guc, ce);
3508 return ret;
3509 }
3510 }
3511
3512 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3513
3514 out:
3515 /*
3516 * We block all requests on this context if a G2H is pending for a
3517 * schedule disable or context deregistration as the GuC will fail a
3518 * schedule enable or context registration if either G2H is pending
3519 * respectfully. Once a G2H returns, the fence is released that is
3520 * blocking these requests (see guc_signal_context_fence).
3521 */
3522 spin_lock_irqsave(&ce->guc_state.lock, flags);
3523 if (context_wait_for_deregister_to_register(ce) ||
3524 context_pending_disable(ce)) {
3525 init_irq_work(&rq->submit_work, submit_work_cb);
3526 i915_sw_fence_await(&rq->submit);
3527
3528 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3529 }
3530 incr_context_committed_requests(ce);
3531 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3532
3533 return 0;
3534 }
3535
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3536 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3537 struct i915_gem_ww_ctx *ww,
3538 void **vaddr)
3539 {
3540 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3541
3542 return __guc_context_pre_pin(ce, engine, ww, vaddr);
3543 }
3544
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3545 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3546 {
3547 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3548 int ret = __guc_context_pin(ce, engine, vaddr);
3549 intel_engine_mask_t tmp, mask = ce->engine->mask;
3550
3551 if (likely(!ret))
3552 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3553 intel_engine_pm_get(engine);
3554
3555 return ret;
3556 }
3557
guc_virtual_context_unpin(struct intel_context * ce)3558 static void guc_virtual_context_unpin(struct intel_context *ce)
3559 {
3560 intel_engine_mask_t tmp, mask = ce->engine->mask;
3561 struct intel_engine_cs *engine;
3562 struct intel_guc *guc = ce_to_guc(ce);
3563
3564 GEM_BUG_ON(context_enabled(ce));
3565 GEM_BUG_ON(intel_context_is_barrier(ce));
3566
3567 unpin_guc_id(guc, ce);
3568 lrc_unpin(ce);
3569
3570 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3571 intel_engine_pm_put_async(engine);
3572 }
3573
guc_virtual_context_enter(struct intel_context * ce)3574 static void guc_virtual_context_enter(struct intel_context *ce)
3575 {
3576 intel_engine_mask_t tmp, mask = ce->engine->mask;
3577 struct intel_engine_cs *engine;
3578
3579 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3580 intel_engine_pm_get(engine);
3581
3582 intel_timeline_enter(ce->timeline);
3583 }
3584
guc_virtual_context_exit(struct intel_context * ce)3585 static void guc_virtual_context_exit(struct intel_context *ce)
3586 {
3587 intel_engine_mask_t tmp, mask = ce->engine->mask;
3588 struct intel_engine_cs *engine;
3589
3590 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3591 intel_engine_pm_put(engine);
3592
3593 intel_timeline_exit(ce->timeline);
3594 }
3595
guc_virtual_context_alloc(struct intel_context * ce)3596 static int guc_virtual_context_alloc(struct intel_context *ce)
3597 {
3598 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3599
3600 return lrc_alloc(ce, engine);
3601 }
3602
3603 static const struct intel_context_ops virtual_guc_context_ops = {
3604 .alloc = guc_virtual_context_alloc,
3605
3606 .pre_pin = guc_virtual_context_pre_pin,
3607 .pin = guc_virtual_context_pin,
3608 .unpin = guc_virtual_context_unpin,
3609 .post_unpin = guc_context_post_unpin,
3610
3611 .ban = guc_context_ban,
3612
3613 .cancel_request = guc_context_cancel_request,
3614
3615 .enter = guc_virtual_context_enter,
3616 .exit = guc_virtual_context_exit,
3617
3618 .sched_disable = guc_context_sched_disable,
3619
3620 .destroy = guc_context_destroy,
3621
3622 .get_sibling = guc_virtual_get_sibling,
3623 };
3624
guc_parent_context_pin(struct intel_context * ce,void * vaddr)3625 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3626 {
3627 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3628 struct intel_guc *guc = ce_to_guc(ce);
3629 int ret;
3630
3631 GEM_BUG_ON(!intel_context_is_parent(ce));
3632 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3633
3634 ret = pin_guc_id(guc, ce);
3635 if (unlikely(ret < 0))
3636 return ret;
3637
3638 return __guc_context_pin(ce, engine, vaddr);
3639 }
3640
guc_child_context_pin(struct intel_context * ce,void * vaddr)3641 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3642 {
3643 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3644
3645 GEM_BUG_ON(!intel_context_is_child(ce));
3646 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3647
3648 __intel_context_pin(ce->parallel.parent);
3649 return __guc_context_pin(ce, engine, vaddr);
3650 }
3651
guc_parent_context_unpin(struct intel_context * ce)3652 static void guc_parent_context_unpin(struct intel_context *ce)
3653 {
3654 struct intel_guc *guc = ce_to_guc(ce);
3655
3656 GEM_BUG_ON(context_enabled(ce));
3657 GEM_BUG_ON(intel_context_is_barrier(ce));
3658 GEM_BUG_ON(!intel_context_is_parent(ce));
3659 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3660
3661 unpin_guc_id(guc, ce);
3662 lrc_unpin(ce);
3663 }
3664
guc_child_context_unpin(struct intel_context * ce)3665 static void guc_child_context_unpin(struct intel_context *ce)
3666 {
3667 GEM_BUG_ON(context_enabled(ce));
3668 GEM_BUG_ON(intel_context_is_barrier(ce));
3669 GEM_BUG_ON(!intel_context_is_child(ce));
3670 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3671
3672 lrc_unpin(ce);
3673 }
3674
guc_child_context_post_unpin(struct intel_context * ce)3675 static void guc_child_context_post_unpin(struct intel_context *ce)
3676 {
3677 GEM_BUG_ON(!intel_context_is_child(ce));
3678 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3679 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3680
3681 lrc_post_unpin(ce);
3682 intel_context_unpin(ce->parallel.parent);
3683 }
3684
guc_child_context_destroy(struct kref * kref)3685 static void guc_child_context_destroy(struct kref *kref)
3686 {
3687 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3688
3689 __guc_context_destroy(ce);
3690 }
3691
3692 static const struct intel_context_ops virtual_parent_context_ops = {
3693 .alloc = guc_virtual_context_alloc,
3694
3695 .pre_pin = guc_context_pre_pin,
3696 .pin = guc_parent_context_pin,
3697 .unpin = guc_parent_context_unpin,
3698 .post_unpin = guc_context_post_unpin,
3699
3700 .ban = guc_context_ban,
3701
3702 .cancel_request = guc_context_cancel_request,
3703
3704 .enter = guc_virtual_context_enter,
3705 .exit = guc_virtual_context_exit,
3706
3707 .sched_disable = guc_context_sched_disable,
3708
3709 .destroy = guc_context_destroy,
3710
3711 .get_sibling = guc_virtual_get_sibling,
3712 };
3713
3714 static const struct intel_context_ops virtual_child_context_ops = {
3715 .alloc = guc_virtual_context_alloc,
3716
3717 .pre_pin = guc_context_pre_pin,
3718 .pin = guc_child_context_pin,
3719 .unpin = guc_child_context_unpin,
3720 .post_unpin = guc_child_context_post_unpin,
3721
3722 .cancel_request = guc_context_cancel_request,
3723
3724 .enter = guc_virtual_context_enter,
3725 .exit = guc_virtual_context_exit,
3726
3727 .destroy = guc_child_context_destroy,
3728
3729 .get_sibling = guc_virtual_get_sibling,
3730 };
3731
3732 /*
3733 * The below override of the breadcrumbs is enabled when the user configures a
3734 * context for parallel submission (multi-lrc, parent-child).
3735 *
3736 * The overridden breadcrumbs implements an algorithm which allows the GuC to
3737 * safely preempt all the hw contexts configured for parallel submission
3738 * between each BB. The contract between the i915 and GuC is if the parent
3739 * context can be preempted, all the children can be preempted, and the GuC will
3740 * always try to preempt the parent before the children. A handshake between the
3741 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3742 * creating a window to preempt between each set of BBs.
3743 */
3744 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3745 u64 offset, u32 len,
3746 const unsigned int flags);
3747 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3748 u64 offset, u32 len,
3749 const unsigned int flags);
3750 static u32 *
3751 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3752 u32 *cs);
3753 static u32 *
3754 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3755 u32 *cs);
3756
3757 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)3758 guc_create_parallel(struct intel_engine_cs **engines,
3759 unsigned int num_siblings,
3760 unsigned int width)
3761 {
3762 struct intel_engine_cs **siblings = NULL;
3763 struct intel_context *parent = NULL, *ce, *err;
3764 int i, j;
3765
3766 siblings = kmalloc_array(num_siblings,
3767 sizeof(*siblings),
3768 GFP_KERNEL);
3769 if (!siblings)
3770 return ERR_PTR(-ENOMEM);
3771
3772 for (i = 0; i < width; ++i) {
3773 for (j = 0; j < num_siblings; ++j)
3774 siblings[j] = engines[i * num_siblings + j];
3775
3776 ce = intel_engine_create_virtual(siblings, num_siblings,
3777 FORCE_VIRTUAL);
3778 if (IS_ERR(ce)) {
3779 err = ERR_CAST(ce);
3780 goto unwind;
3781 }
3782
3783 if (i == 0) {
3784 parent = ce;
3785 parent->ops = &virtual_parent_context_ops;
3786 } else {
3787 ce->ops = &virtual_child_context_ops;
3788 intel_context_bind_parent_child(parent, ce);
3789 }
3790 }
3791
3792 parent->parallel.fence_context = dma_fence_context_alloc(1);
3793
3794 parent->engine->emit_bb_start =
3795 emit_bb_start_parent_no_preempt_mid_batch;
3796 parent->engine->emit_fini_breadcrumb =
3797 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3798 parent->engine->emit_fini_breadcrumb_dw =
3799 12 + 4 * parent->parallel.number_children;
3800 for_each_child(parent, ce) {
3801 ce->engine->emit_bb_start =
3802 emit_bb_start_child_no_preempt_mid_batch;
3803 ce->engine->emit_fini_breadcrumb =
3804 emit_fini_breadcrumb_child_no_preempt_mid_batch;
3805 ce->engine->emit_fini_breadcrumb_dw = 16;
3806 }
3807
3808 kfree(siblings);
3809 return parent;
3810
3811 unwind:
3812 if (parent)
3813 intel_context_put(parent);
3814 kfree(siblings);
3815 return err;
3816 }
3817
3818 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)3819 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3820 {
3821 struct intel_engine_cs *sibling;
3822 intel_engine_mask_t tmp, mask = b->engine_mask;
3823 bool result = false;
3824
3825 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3826 result |= intel_engine_irq_enable(sibling);
3827
3828 return result;
3829 }
3830
3831 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)3832 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3833 {
3834 struct intel_engine_cs *sibling;
3835 intel_engine_mask_t tmp, mask = b->engine_mask;
3836
3837 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3838 intel_engine_irq_disable(sibling);
3839 }
3840
guc_init_breadcrumbs(struct intel_engine_cs * engine)3841 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3842 {
3843 int i;
3844
3845 /*
3846 * In GuC submission mode we do not know which physical engine a request
3847 * will be scheduled on, this creates a problem because the breadcrumb
3848 * interrupt is per physical engine. To work around this we attach
3849 * requests and direct all breadcrumb interrupts to the first instance
3850 * of an engine per class. In addition all breadcrumb interrupts are
3851 * enabled / disabled across an engine class in unison.
3852 */
3853 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3854 struct intel_engine_cs *sibling =
3855 engine->gt->engine_class[engine->class][i];
3856
3857 if (sibling) {
3858 if (engine->breadcrumbs != sibling->breadcrumbs) {
3859 intel_breadcrumbs_put(engine->breadcrumbs);
3860 engine->breadcrumbs =
3861 intel_breadcrumbs_get(sibling->breadcrumbs);
3862 }
3863 break;
3864 }
3865 }
3866
3867 if (engine->breadcrumbs) {
3868 engine->breadcrumbs->engine_mask |= engine->mask;
3869 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3870 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3871 }
3872 }
3873
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)3874 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3875 int prio)
3876 {
3877 struct intel_context *ce = request_to_scheduling_context(rq);
3878 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3879
3880 /* Short circuit function */
3881 if (prio < I915_PRIORITY_NORMAL ||
3882 rq->guc_prio == GUC_PRIO_FINI ||
3883 (rq->guc_prio != GUC_PRIO_INIT &&
3884 !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
3885 return;
3886
3887 spin_lock(&ce->guc_state.lock);
3888 if (rq->guc_prio != GUC_PRIO_FINI) {
3889 if (rq->guc_prio != GUC_PRIO_INIT)
3890 sub_context_inflight_prio(ce, rq->guc_prio);
3891 rq->guc_prio = new_guc_prio;
3892 add_context_inflight_prio(ce, rq->guc_prio);
3893 update_context_prio(ce);
3894 }
3895 spin_unlock(&ce->guc_state.lock);
3896 }
3897
guc_retire_inflight_request_prio(struct i915_request * rq)3898 static void guc_retire_inflight_request_prio(struct i915_request *rq)
3899 {
3900 struct intel_context *ce = request_to_scheduling_context(rq);
3901
3902 spin_lock(&ce->guc_state.lock);
3903 guc_prio_fini(rq, ce);
3904 spin_unlock(&ce->guc_state.lock);
3905 }
3906
sanitize_hwsp(struct intel_engine_cs * engine)3907 static void sanitize_hwsp(struct intel_engine_cs *engine)
3908 {
3909 struct intel_timeline *tl;
3910
3911 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
3912 intel_timeline_reset_seqno(tl);
3913 }
3914
guc_sanitize(struct intel_engine_cs * engine)3915 static void guc_sanitize(struct intel_engine_cs *engine)
3916 {
3917 /*
3918 * Poison residual state on resume, in case the suspend didn't!
3919 *
3920 * We have to assume that across suspend/resume (or other loss
3921 * of control) that the contents of our pinned buffers has been
3922 * lost, replaced by garbage. Since this doesn't always happen,
3923 * let's poison such state so that we more quickly spot when
3924 * we falsely assume it has been preserved.
3925 */
3926 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3927 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3928
3929 /*
3930 * The kernel_context HWSP is stored in the status_page. As above,
3931 * that may be lost on resume/initialisation, and so we need to
3932 * reset the value in the HWSP.
3933 */
3934 sanitize_hwsp(engine);
3935
3936 /* And scrub the dirty cachelines for the HWSP */
3937 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
3938
3939 intel_engine_reset_pinned_contexts(engine);
3940 }
3941
setup_hwsp(struct intel_engine_cs * engine)3942 static void setup_hwsp(struct intel_engine_cs *engine)
3943 {
3944 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3945
3946 ENGINE_WRITE_FW(engine,
3947 RING_HWS_PGA,
3948 i915_ggtt_offset(engine->status_page.vma));
3949 }
3950
start_engine(struct intel_engine_cs * engine)3951 static void start_engine(struct intel_engine_cs *engine)
3952 {
3953 ENGINE_WRITE_FW(engine,
3954 RING_MODE_GEN7,
3955 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
3956
3957 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3958 ENGINE_POSTING_READ(engine, RING_MI_MODE);
3959 }
3960
guc_resume(struct intel_engine_cs * engine)3961 static int guc_resume(struct intel_engine_cs *engine)
3962 {
3963 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
3964
3965 intel_mocs_init_engine(engine);
3966
3967 intel_breadcrumbs_reset(engine->breadcrumbs);
3968
3969 setup_hwsp(engine);
3970 start_engine(engine);
3971
3972 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3973 xehp_enable_ccs_engines(engine);
3974
3975 return 0;
3976 }
3977
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)3978 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
3979 {
3980 return !sched_engine->tasklet.callback;
3981 }
3982
guc_set_default_submission(struct intel_engine_cs * engine)3983 static void guc_set_default_submission(struct intel_engine_cs *engine)
3984 {
3985 engine->submit_request = guc_submit_request;
3986 }
3987
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)3988 static inline void guc_kernel_context_pin(struct intel_guc *guc,
3989 struct intel_context *ce)
3990 {
3991 /*
3992 * Note: we purposefully do not check the returns below because
3993 * the registration can only fail if a reset is just starting.
3994 * This is called at the end of reset so presumably another reset
3995 * isn't happening and even it did this code would be run again.
3996 */
3997
3998 if (context_guc_id_invalid(ce))
3999 pin_guc_id(guc, ce);
4000
4001 try_context_registration(ce, true);
4002 }
4003
guc_init_lrc_mapping(struct intel_guc * guc)4004 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
4005 {
4006 struct intel_gt *gt = guc_to_gt(guc);
4007 struct intel_engine_cs *engine;
4008 enum intel_engine_id id;
4009
4010 /* make sure all descriptors are clean... */
4011 xa_destroy(&guc->context_lookup);
4012
4013 /*
4014 * A reset might have occurred while we had a pending stalled request,
4015 * so make sure we clean that up.
4016 */
4017 guc->stalled_request = NULL;
4018 guc->submission_stall_reason = STALL_NONE;
4019
4020 /*
4021 * Some contexts might have been pinned before we enabled GuC
4022 * submission, so we need to add them to the GuC bookeeping.
4023 * Also, after a reset the of the GuC we want to make sure that the
4024 * information shared with GuC is properly reset. The kernel LRCs are
4025 * not attached to the gem_context, so they need to be added separately.
4026 */
4027 for_each_engine(engine, gt, id) {
4028 struct intel_context *ce;
4029
4030 list_for_each_entry(ce, &engine->pinned_contexts_list,
4031 pinned_contexts_link)
4032 guc_kernel_context_pin(guc, ce);
4033 }
4034 }
4035
guc_release(struct intel_engine_cs * engine)4036 static void guc_release(struct intel_engine_cs *engine)
4037 {
4038 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4039
4040 intel_engine_cleanup_common(engine);
4041 lrc_fini_wa_ctx(engine);
4042 }
4043
virtual_guc_bump_serial(struct intel_engine_cs * engine)4044 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4045 {
4046 struct intel_engine_cs *e;
4047 intel_engine_mask_t tmp, mask = engine->mask;
4048
4049 for_each_engine_masked(e, engine->gt, mask, tmp)
4050 e->serial++;
4051 }
4052
guc_default_vfuncs(struct intel_engine_cs * engine)4053 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4054 {
4055 /* Default vfuncs which can be overridden by each engine. */
4056
4057 engine->resume = guc_resume;
4058
4059 engine->cops = &guc_context_ops;
4060 engine->request_alloc = guc_request_alloc;
4061 engine->add_active_request = add_to_context;
4062 engine->remove_active_request = remove_from_context;
4063
4064 engine->sched_engine->schedule = i915_schedule;
4065
4066 engine->reset.prepare = guc_engine_reset_prepare;
4067 engine->reset.rewind = guc_rewind_nop;
4068 engine->reset.cancel = guc_reset_nop;
4069 engine->reset.finish = guc_reset_nop;
4070
4071 engine->emit_flush = gen8_emit_flush_xcs;
4072 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4073 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4074 if (GRAPHICS_VER(engine->i915) >= 12) {
4075 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4076 engine->emit_flush = gen12_emit_flush_xcs;
4077 }
4078 engine->set_default_submission = guc_set_default_submission;
4079 engine->busyness = guc_engine_busyness;
4080
4081 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4082 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4083 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4084
4085 /* Wa_14014475959:dg2 */
4086 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
4087 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4088
4089 /*
4090 * TODO: GuC supports timeslicing and semaphores as well, but they're
4091 * handled by the firmware so some minor tweaks are required before
4092 * enabling.
4093 *
4094 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4095 */
4096
4097 engine->emit_bb_start = gen8_emit_bb_start;
4098 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4099 engine->emit_bb_start = gen125_emit_bb_start;
4100 }
4101
rcs_submission_override(struct intel_engine_cs * engine)4102 static void rcs_submission_override(struct intel_engine_cs *engine)
4103 {
4104 switch (GRAPHICS_VER(engine->i915)) {
4105 case 12:
4106 engine->emit_flush = gen12_emit_flush_rcs;
4107 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4108 break;
4109 case 11:
4110 engine->emit_flush = gen11_emit_flush_rcs;
4111 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4112 break;
4113 default:
4114 engine->emit_flush = gen8_emit_flush_rcs;
4115 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4116 break;
4117 }
4118 }
4119
guc_default_irqs(struct intel_engine_cs * engine)4120 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4121 {
4122 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4123 intel_engine_set_irq_handler(engine, cs_irq_handler);
4124 }
4125
guc_sched_engine_destroy(struct kref * kref)4126 static void guc_sched_engine_destroy(struct kref *kref)
4127 {
4128 struct i915_sched_engine *sched_engine =
4129 container_of(kref, typeof(*sched_engine), ref);
4130 struct intel_guc *guc = sched_engine->private_data;
4131
4132 guc->sched_engine = NULL;
4133 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4134 kfree(sched_engine);
4135 }
4136
intel_guc_submission_setup(struct intel_engine_cs * engine)4137 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4138 {
4139 struct drm_i915_private *i915 = engine->i915;
4140 struct intel_guc *guc = &engine->gt->uc.guc;
4141
4142 /*
4143 * The setup relies on several assumptions (e.g. irqs always enabled)
4144 * that are only valid on gen11+
4145 */
4146 GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4147
4148 if (!guc->sched_engine) {
4149 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4150 if (!guc->sched_engine)
4151 return -ENOMEM;
4152
4153 guc->sched_engine->schedule = i915_schedule;
4154 guc->sched_engine->disabled = guc_sched_engine_disabled;
4155 guc->sched_engine->private_data = guc;
4156 guc->sched_engine->destroy = guc_sched_engine_destroy;
4157 guc->sched_engine->bump_inflight_request_prio =
4158 guc_bump_inflight_request_prio;
4159 guc->sched_engine->retire_inflight_request_prio =
4160 guc_retire_inflight_request_prio;
4161 tasklet_setup(&guc->sched_engine->tasklet,
4162 guc_submission_tasklet);
4163 }
4164 i915_sched_engine_put(engine->sched_engine);
4165 engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4166
4167 guc_default_vfuncs(engine);
4168 guc_default_irqs(engine);
4169 guc_init_breadcrumbs(engine);
4170
4171 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4172 rcs_submission_override(engine);
4173
4174 lrc_init_wa_ctx(engine);
4175
4176 /* Finally, take ownership and responsibility for cleanup! */
4177 engine->sanitize = guc_sanitize;
4178 engine->release = guc_release;
4179
4180 return 0;
4181 }
4182
intel_guc_submission_enable(struct intel_guc * guc)4183 void intel_guc_submission_enable(struct intel_guc *guc)
4184 {
4185 guc_init_lrc_mapping(guc);
4186 guc_init_engine_stats(guc);
4187 }
4188
intel_guc_submission_disable(struct intel_guc * guc)4189 void intel_guc_submission_disable(struct intel_guc *guc)
4190 {
4191 /* Note: By the time we're here, GuC may have already been reset */
4192 }
4193
__guc_submission_supported(struct intel_guc * guc)4194 static bool __guc_submission_supported(struct intel_guc *guc)
4195 {
4196 /* GuC submission is unavailable for pre-Gen11 */
4197 return intel_guc_is_supported(guc) &&
4198 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4199 }
4200
__guc_submission_selected(struct intel_guc * guc)4201 static bool __guc_submission_selected(struct intel_guc *guc)
4202 {
4203 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4204
4205 if (!intel_guc_submission_is_supported(guc))
4206 return false;
4207
4208 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4209 }
4210
intel_guc_submission_init_early(struct intel_guc * guc)4211 void intel_guc_submission_init_early(struct intel_guc *guc)
4212 {
4213 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4214
4215 spin_lock_init(&guc->submission_state.lock);
4216 INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4217 ida_init(&guc->submission_state.guc_ids);
4218 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4219 INIT_WORK(&guc->submission_state.destroyed_worker,
4220 destroyed_worker_func);
4221 INIT_WORK(&guc->submission_state.reset_fail_worker,
4222 reset_fail_worker_func);
4223
4224 spin_lock_init(&guc->timestamp.lock);
4225 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4226
4227 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4228 guc->submission_supported = __guc_submission_supported(guc);
4229 guc->submission_selected = __guc_submission_selected(guc);
4230 }
4231
4232 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4233 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4234 {
4235 struct intel_context *ce;
4236
4237 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4238 drm_err(&guc_to_gt(guc)->i915->drm,
4239 "Invalid ctx_id %u\n", ctx_id);
4240 return NULL;
4241 }
4242
4243 ce = __get_context(guc, ctx_id);
4244 if (unlikely(!ce)) {
4245 drm_err(&guc_to_gt(guc)->i915->drm,
4246 "Context is NULL, ctx_id %u\n", ctx_id);
4247 return NULL;
4248 }
4249
4250 if (unlikely(intel_context_is_child(ce))) {
4251 drm_err(&guc_to_gt(guc)->i915->drm,
4252 "Context is child, ctx_id %u\n", ctx_id);
4253 return NULL;
4254 }
4255
4256 return ce;
4257 }
4258
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4259 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4260 const u32 *msg,
4261 u32 len)
4262 {
4263 struct intel_context *ce;
4264 u32 ctx_id;
4265
4266 if (unlikely(len < 1)) {
4267 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4268 return -EPROTO;
4269 }
4270 ctx_id = msg[0];
4271
4272 ce = g2h_context_lookup(guc, ctx_id);
4273 if (unlikely(!ce))
4274 return -EPROTO;
4275
4276 trace_intel_context_deregister_done(ce);
4277
4278 #ifdef CONFIG_DRM_I915_SELFTEST
4279 if (unlikely(ce->drop_deregister)) {
4280 ce->drop_deregister = false;
4281 return 0;
4282 }
4283 #endif
4284
4285 if (context_wait_for_deregister_to_register(ce)) {
4286 struct intel_runtime_pm *runtime_pm =
4287 &ce->engine->gt->i915->runtime_pm;
4288 intel_wakeref_t wakeref;
4289
4290 /*
4291 * Previous owner of this guc_id has been deregistered, now safe
4292 * register this context.
4293 */
4294 with_intel_runtime_pm(runtime_pm, wakeref)
4295 register_context(ce, true);
4296 guc_signal_context_fence(ce);
4297 intel_context_put(ce);
4298 } else if (context_destroyed(ce)) {
4299 /* Context has been destroyed */
4300 intel_gt_pm_put_async(guc_to_gt(guc));
4301 release_guc_id(guc, ce);
4302 __guc_context_destroy(ce);
4303 }
4304
4305 decr_outstanding_submission_g2h(guc);
4306
4307 return 0;
4308 }
4309
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4310 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4311 const u32 *msg,
4312 u32 len)
4313 {
4314 struct intel_context *ce;
4315 unsigned long flags;
4316 u32 ctx_id;
4317
4318 if (unlikely(len < 2)) {
4319 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4320 return -EPROTO;
4321 }
4322 ctx_id = msg[0];
4323
4324 ce = g2h_context_lookup(guc, ctx_id);
4325 if (unlikely(!ce))
4326 return -EPROTO;
4327
4328 if (unlikely(context_destroyed(ce) ||
4329 (!context_pending_enable(ce) &&
4330 !context_pending_disable(ce)))) {
4331 drm_err(&guc_to_gt(guc)->i915->drm,
4332 "Bad context sched_state 0x%x, ctx_id %u\n",
4333 ce->guc_state.sched_state, ctx_id);
4334 return -EPROTO;
4335 }
4336
4337 trace_intel_context_sched_done(ce);
4338
4339 if (context_pending_enable(ce)) {
4340 #ifdef CONFIG_DRM_I915_SELFTEST
4341 if (unlikely(ce->drop_schedule_enable)) {
4342 ce->drop_schedule_enable = false;
4343 return 0;
4344 }
4345 #endif
4346
4347 spin_lock_irqsave(&ce->guc_state.lock, flags);
4348 clr_context_pending_enable(ce);
4349 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4350 } else if (context_pending_disable(ce)) {
4351 bool banned;
4352
4353 #ifdef CONFIG_DRM_I915_SELFTEST
4354 if (unlikely(ce->drop_schedule_disable)) {
4355 ce->drop_schedule_disable = false;
4356 return 0;
4357 }
4358 #endif
4359
4360 /*
4361 * Unpin must be done before __guc_signal_context_fence,
4362 * otherwise a race exists between the requests getting
4363 * submitted + retired before this unpin completes resulting in
4364 * the pin_count going to zero and the context still being
4365 * enabled.
4366 */
4367 intel_context_sched_disable_unpin(ce);
4368
4369 spin_lock_irqsave(&ce->guc_state.lock, flags);
4370 banned = context_banned(ce);
4371 clr_context_banned(ce);
4372 clr_context_pending_disable(ce);
4373 __guc_signal_context_fence(ce);
4374 guc_blocked_fence_complete(ce);
4375 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4376
4377 if (banned) {
4378 guc_cancel_context_requests(ce);
4379 intel_engine_signal_breadcrumbs(ce->engine);
4380 }
4381 }
4382
4383 decr_outstanding_submission_g2h(guc);
4384 intel_context_put(ce);
4385
4386 return 0;
4387 }
4388
capture_error_state(struct intel_guc * guc,struct intel_context * ce)4389 static void capture_error_state(struct intel_guc *guc,
4390 struct intel_context *ce)
4391 {
4392 struct intel_gt *gt = guc_to_gt(guc);
4393 struct drm_i915_private *i915 = gt->i915;
4394 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4395 intel_wakeref_t wakeref;
4396
4397 intel_engine_set_hung_context(engine, ce);
4398 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4399 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4400 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4401 }
4402
guc_context_replay(struct intel_context * ce)4403 static void guc_context_replay(struct intel_context *ce)
4404 {
4405 struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4406
4407 __guc_reset_context(ce, ce->engine->mask);
4408 tasklet_hi_schedule(&sched_engine->tasklet);
4409 }
4410
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)4411 static void guc_handle_context_reset(struct intel_guc *guc,
4412 struct intel_context *ce)
4413 {
4414 trace_intel_context_reset(ce);
4415
4416 if (likely(!intel_context_is_banned(ce))) {
4417 capture_error_state(guc, ce);
4418 guc_context_replay(ce);
4419 } else {
4420 drm_info(&guc_to_gt(guc)->i915->drm,
4421 "Ignoring context reset notification of banned context 0x%04X on %s",
4422 ce->guc_id.id, ce->engine->name);
4423 }
4424 }
4425
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4426 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4427 const u32 *msg, u32 len)
4428 {
4429 struct intel_context *ce;
4430 unsigned long flags;
4431 int ctx_id;
4432
4433 if (unlikely(len != 1)) {
4434 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4435 return -EPROTO;
4436 }
4437
4438 ctx_id = msg[0];
4439
4440 /*
4441 * The context lookup uses the xarray but lookups only require an RCU lock
4442 * not the full spinlock. So take the lock explicitly and keep it until the
4443 * context has been reference count locked to ensure it can't be destroyed
4444 * asynchronously until the reset is done.
4445 */
4446 xa_lock_irqsave(&guc->context_lookup, flags);
4447 ce = g2h_context_lookup(guc, ctx_id);
4448 if (ce)
4449 intel_context_get(ce);
4450 xa_unlock_irqrestore(&guc->context_lookup, flags);
4451
4452 if (unlikely(!ce))
4453 return -EPROTO;
4454
4455 guc_handle_context_reset(guc, ce);
4456 intel_context_put(ce);
4457
4458 return 0;
4459 }
4460
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4461 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4462 const u32 *msg, u32 len)
4463 {
4464 u32 status;
4465
4466 if (unlikely(len != 1)) {
4467 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4468 return -EPROTO;
4469 }
4470
4471 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4472 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4473 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4474
4475 intel_guc_capture_process(guc);
4476
4477 return 0;
4478 }
4479
4480 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)4481 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4482 {
4483 struct intel_gt *gt = guc_to_gt(guc);
4484 u8 engine_class = guc_class_to_engine_class(guc_class);
4485
4486 /* Class index is checked in class converter */
4487 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4488
4489 return gt->engine_class[engine_class][instance];
4490 }
4491
reset_fail_worker_func(struct work_struct * w)4492 static void reset_fail_worker_func(struct work_struct *w)
4493 {
4494 struct intel_guc *guc = container_of(w, struct intel_guc,
4495 submission_state.reset_fail_worker);
4496 struct intel_gt *gt = guc_to_gt(guc);
4497 intel_engine_mask_t reset_fail_mask;
4498 unsigned long flags;
4499
4500 spin_lock_irqsave(&guc->submission_state.lock, flags);
4501 reset_fail_mask = guc->submission_state.reset_fail_mask;
4502 guc->submission_state.reset_fail_mask = 0;
4503 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4504
4505 if (likely(reset_fail_mask))
4506 intel_gt_handle_error(gt, reset_fail_mask,
4507 I915_ERROR_CAPTURE,
4508 "GuC failed to reset engine mask=0x%x\n",
4509 reset_fail_mask);
4510 }
4511
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4512 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4513 const u32 *msg, u32 len)
4514 {
4515 struct intel_engine_cs *engine;
4516 struct intel_gt *gt = guc_to_gt(guc);
4517 u8 guc_class, instance;
4518 u32 reason;
4519 unsigned long flags;
4520
4521 if (unlikely(len != 3)) {
4522 drm_err(>->i915->drm, "Invalid length %u", len);
4523 return -EPROTO;
4524 }
4525
4526 guc_class = msg[0];
4527 instance = msg[1];
4528 reason = msg[2];
4529
4530 engine = intel_guc_lookup_engine(guc, guc_class, instance);
4531 if (unlikely(!engine)) {
4532 drm_err(>->i915->drm,
4533 "Invalid engine %d:%d", guc_class, instance);
4534 return -EPROTO;
4535 }
4536
4537 /*
4538 * This is an unexpected failure of a hardware feature. So, log a real
4539 * error message not just the informational that comes with the reset.
4540 */
4541 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4542 guc_class, instance, engine->name, reason);
4543
4544 spin_lock_irqsave(&guc->submission_state.lock, flags);
4545 guc->submission_state.reset_fail_mask |= engine->mask;
4546 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4547
4548 /*
4549 * A GT reset flushes this worker queue (G2H handler) so we must use
4550 * another worker to trigger a GT reset.
4551 */
4552 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4553
4554 return 0;
4555 }
4556
intel_guc_find_hung_context(struct intel_engine_cs * engine)4557 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4558 {
4559 struct intel_guc *guc = &engine->gt->uc.guc;
4560 struct intel_context *ce;
4561 struct i915_request *rq;
4562 unsigned long index;
4563 unsigned long flags;
4564
4565 /* Reset called during driver load? GuC not yet initialised! */
4566 if (unlikely(!guc_submission_initialized(guc)))
4567 return;
4568
4569 xa_lock_irqsave(&guc->context_lookup, flags);
4570 xa_for_each(&guc->context_lookup, index, ce) {
4571 if (!kref_get_unless_zero(&ce->ref))
4572 continue;
4573
4574 xa_unlock(&guc->context_lookup);
4575
4576 if (!intel_context_is_pinned(ce))
4577 goto next;
4578
4579 if (intel_engine_is_virtual(ce->engine)) {
4580 if (!(ce->engine->mask & engine->mask))
4581 goto next;
4582 } else {
4583 if (ce->engine != engine)
4584 goto next;
4585 }
4586
4587 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4588 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4589 continue;
4590
4591 intel_engine_set_hung_context(engine, ce);
4592
4593 /* Can only cope with one hang at a time... */
4594 intel_context_put(ce);
4595 xa_lock(&guc->context_lookup);
4596 goto done;
4597 }
4598 next:
4599 intel_context_put(ce);
4600 xa_lock(&guc->context_lookup);
4601 }
4602 done:
4603 xa_unlock_irqrestore(&guc->context_lookup, flags);
4604 }
4605
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)4606 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4607 struct i915_request *hung_rq,
4608 struct drm_printer *m)
4609 {
4610 struct intel_guc *guc = &engine->gt->uc.guc;
4611 struct intel_context *ce;
4612 unsigned long index;
4613 unsigned long flags;
4614
4615 /* Reset called during driver load? GuC not yet initialised! */
4616 if (unlikely(!guc_submission_initialized(guc)))
4617 return;
4618
4619 xa_lock_irqsave(&guc->context_lookup, flags);
4620 xa_for_each(&guc->context_lookup, index, ce) {
4621 if (!kref_get_unless_zero(&ce->ref))
4622 continue;
4623
4624 xa_unlock(&guc->context_lookup);
4625
4626 if (!intel_context_is_pinned(ce))
4627 goto next;
4628
4629 if (intel_engine_is_virtual(ce->engine)) {
4630 if (!(ce->engine->mask & engine->mask))
4631 goto next;
4632 } else {
4633 if (ce->engine != engine)
4634 goto next;
4635 }
4636
4637 spin_lock(&ce->guc_state.lock);
4638 intel_engine_dump_active_requests(&ce->guc_state.requests,
4639 hung_rq, m);
4640 spin_unlock(&ce->guc_state.lock);
4641
4642 next:
4643 intel_context_put(ce);
4644 xa_lock(&guc->context_lookup);
4645 }
4646 xa_unlock_irqrestore(&guc->context_lookup, flags);
4647 }
4648
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)4649 void intel_guc_submission_print_info(struct intel_guc *guc,
4650 struct drm_printer *p)
4651 {
4652 struct i915_sched_engine *sched_engine = guc->sched_engine;
4653 struct rb_node *rb;
4654 unsigned long flags;
4655
4656 if (!sched_engine)
4657 return;
4658
4659 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4660 atomic_read(&guc->outstanding_submission_g2h));
4661 drm_printf(p, "GuC tasklet count: %u\n\n",
4662 atomic_read(&sched_engine->tasklet.count));
4663
4664 spin_lock_irqsave(&sched_engine->lock, flags);
4665 drm_printf(p, "Requests in GuC submit tasklet:\n");
4666 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4667 struct i915_priolist *pl = to_priolist(rb);
4668 struct i915_request *rq;
4669
4670 priolist_for_each_request(rq, pl)
4671 drm_printf(p, "guc_id=%u, seqno=%llu\n",
4672 rq->context->guc_id.id,
4673 rq->fence.seqno);
4674 }
4675 spin_unlock_irqrestore(&sched_engine->lock, flags);
4676 drm_printf(p, "\n");
4677 }
4678
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)4679 static inline void guc_log_context_priority(struct drm_printer *p,
4680 struct intel_context *ce)
4681 {
4682 int i;
4683
4684 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4685 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4686 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4687 i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4688 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4689 i, ce->guc_state.prio_count[i]);
4690 }
4691 drm_printf(p, "\n");
4692 }
4693
guc_log_context(struct drm_printer * p,struct intel_context * ce)4694 static inline void guc_log_context(struct drm_printer *p,
4695 struct intel_context *ce)
4696 {
4697 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4698 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4699 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4700 ce->ring->head,
4701 ce->lrc_reg_state[CTX_RING_HEAD]);
4702 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4703 ce->ring->tail,
4704 ce->lrc_reg_state[CTX_RING_TAIL]);
4705 drm_printf(p, "\t\tContext Pin Count: %u\n",
4706 atomic_read(&ce->pin_count));
4707 drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4708 atomic_read(&ce->guc_id.ref));
4709 drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
4710 ce->guc_state.sched_state);
4711 }
4712
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)4713 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4714 struct drm_printer *p)
4715 {
4716 struct intel_context *ce;
4717 unsigned long index;
4718 unsigned long flags;
4719
4720 xa_lock_irqsave(&guc->context_lookup, flags);
4721 xa_for_each(&guc->context_lookup, index, ce) {
4722 GEM_BUG_ON(intel_context_is_child(ce));
4723
4724 guc_log_context(p, ce);
4725 guc_log_context_priority(p, ce);
4726
4727 if (intel_context_is_parent(ce)) {
4728 struct intel_context *child;
4729
4730 drm_printf(p, "\t\tNumber children: %u\n",
4731 ce->parallel.number_children);
4732
4733 if (ce->parallel.guc.wq_status) {
4734 drm_printf(p, "\t\tWQI Head: %u\n",
4735 READ_ONCE(*ce->parallel.guc.wq_head));
4736 drm_printf(p, "\t\tWQI Tail: %u\n",
4737 READ_ONCE(*ce->parallel.guc.wq_tail));
4738 drm_printf(p, "\t\tWQI Status: %u\n\n",
4739 READ_ONCE(*ce->parallel.guc.wq_status));
4740 }
4741
4742 if (ce->engine->emit_bb_start ==
4743 emit_bb_start_parent_no_preempt_mid_batch) {
4744 u8 i;
4745
4746 drm_printf(p, "\t\tChildren Go: %u\n\n",
4747 get_children_go_value(ce));
4748 for (i = 0; i < ce->parallel.number_children; ++i)
4749 drm_printf(p, "\t\tChildren Join: %u\n",
4750 get_children_join_value(ce, i));
4751 }
4752
4753 for_each_child(ce, child)
4754 guc_log_context(p, child);
4755 }
4756 }
4757 xa_unlock_irqrestore(&guc->context_lookup, flags);
4758 }
4759
get_children_go_addr(struct intel_context * ce)4760 static inline u32 get_children_go_addr(struct intel_context *ce)
4761 {
4762 GEM_BUG_ON(!intel_context_is_parent(ce));
4763
4764 return i915_ggtt_offset(ce->state) +
4765 __get_parent_scratch_offset(ce) +
4766 offsetof(struct parent_scratch, go.semaphore);
4767 }
4768
get_children_join_addr(struct intel_context * ce,u8 child_index)4769 static inline u32 get_children_join_addr(struct intel_context *ce,
4770 u8 child_index)
4771 {
4772 GEM_BUG_ON(!intel_context_is_parent(ce));
4773
4774 return i915_ggtt_offset(ce->state) +
4775 __get_parent_scratch_offset(ce) +
4776 offsetof(struct parent_scratch, join[child_index].semaphore);
4777 }
4778
4779 #define PARENT_GO_BB 1
4780 #define PARENT_GO_FINI_BREADCRUMB 0
4781 #define CHILD_GO_BB 1
4782 #define CHILD_GO_FINI_BREADCRUMB 0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)4783 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4784 u64 offset, u32 len,
4785 const unsigned int flags)
4786 {
4787 struct intel_context *ce = rq->context;
4788 u32 *cs;
4789 u8 i;
4790
4791 GEM_BUG_ON(!intel_context_is_parent(ce));
4792
4793 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
4794 if (IS_ERR(cs))
4795 return PTR_ERR(cs);
4796
4797 /* Wait on children */
4798 for (i = 0; i < ce->parallel.number_children; ++i) {
4799 *cs++ = (MI_SEMAPHORE_WAIT |
4800 MI_SEMAPHORE_GLOBAL_GTT |
4801 MI_SEMAPHORE_POLL |
4802 MI_SEMAPHORE_SAD_EQ_SDD);
4803 *cs++ = PARENT_GO_BB;
4804 *cs++ = get_children_join_addr(ce, i);
4805 *cs++ = 0;
4806 }
4807
4808 /* Turn off preemption */
4809 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4810 *cs++ = MI_NOOP;
4811
4812 /* Tell children go */
4813 cs = gen8_emit_ggtt_write(cs,
4814 CHILD_GO_BB,
4815 get_children_go_addr(ce),
4816 0);
4817
4818 /* Jump to batch */
4819 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
4820 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4821 *cs++ = lower_32_bits(offset);
4822 *cs++ = upper_32_bits(offset);
4823 *cs++ = MI_NOOP;
4824
4825 intel_ring_advance(rq, cs);
4826
4827 return 0;
4828 }
4829
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)4830 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4831 u64 offset, u32 len,
4832 const unsigned int flags)
4833 {
4834 struct intel_context *ce = rq->context;
4835 struct intel_context *parent = intel_context_to_parent(ce);
4836 u32 *cs;
4837
4838 GEM_BUG_ON(!intel_context_is_child(ce));
4839
4840 cs = intel_ring_begin(rq, 12);
4841 if (IS_ERR(cs))
4842 return PTR_ERR(cs);
4843
4844 /* Signal parent */
4845 cs = gen8_emit_ggtt_write(cs,
4846 PARENT_GO_BB,
4847 get_children_join_addr(parent,
4848 ce->parallel.child_index),
4849 0);
4850
4851 /* Wait on parent for go */
4852 *cs++ = (MI_SEMAPHORE_WAIT |
4853 MI_SEMAPHORE_GLOBAL_GTT |
4854 MI_SEMAPHORE_POLL |
4855 MI_SEMAPHORE_SAD_EQ_SDD);
4856 *cs++ = CHILD_GO_BB;
4857 *cs++ = get_children_go_addr(parent);
4858 *cs++ = 0;
4859
4860 /* Turn off preemption */
4861 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4862
4863 /* Jump to batch */
4864 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
4865 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4866 *cs++ = lower_32_bits(offset);
4867 *cs++ = upper_32_bits(offset);
4868
4869 intel_ring_advance(rq, cs);
4870
4871 return 0;
4872 }
4873
4874 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)4875 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4876 u32 *cs)
4877 {
4878 struct intel_context *ce = rq->context;
4879 u8 i;
4880
4881 GEM_BUG_ON(!intel_context_is_parent(ce));
4882
4883 /* Wait on children */
4884 for (i = 0; i < ce->parallel.number_children; ++i) {
4885 *cs++ = (MI_SEMAPHORE_WAIT |
4886 MI_SEMAPHORE_GLOBAL_GTT |
4887 MI_SEMAPHORE_POLL |
4888 MI_SEMAPHORE_SAD_EQ_SDD);
4889 *cs++ = PARENT_GO_FINI_BREADCRUMB;
4890 *cs++ = get_children_join_addr(ce, i);
4891 *cs++ = 0;
4892 }
4893
4894 /* Turn on preemption */
4895 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4896 *cs++ = MI_NOOP;
4897
4898 /* Tell children go */
4899 cs = gen8_emit_ggtt_write(cs,
4900 CHILD_GO_FINI_BREADCRUMB,
4901 get_children_go_addr(ce),
4902 0);
4903
4904 return cs;
4905 }
4906
4907 /*
4908 * If this true, a submission of multi-lrc requests had an error and the
4909 * requests need to be skipped. The front end (execuf IOCTL) should've called
4910 * i915_request_skip which squashes the BB but we still need to emit the fini
4911 * breadrcrumbs seqno write. At this point we don't know how many of the
4912 * requests in the multi-lrc submission were generated so we can't do the
4913 * handshake between the parent and children (e.g. if 4 requests should be
4914 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
4915 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
4916 * has occurred on any of the requests in submission / relationship.
4917 */
skip_handshake(struct i915_request * rq)4918 static inline bool skip_handshake(struct i915_request *rq)
4919 {
4920 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
4921 }
4922
4923 #define NON_SKIP_LEN 6
4924 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)4925 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4926 u32 *cs)
4927 {
4928 struct intel_context *ce = rq->context;
4929 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4930 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4931
4932 GEM_BUG_ON(!intel_context_is_parent(ce));
4933
4934 if (unlikely(skip_handshake(rq))) {
4935 /*
4936 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4937 * the NON_SKIP_LEN comes from the length of the emits below.
4938 */
4939 memset(cs, 0, sizeof(u32) *
4940 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4941 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4942 } else {
4943 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
4944 }
4945
4946 /* Emit fini breadcrumb */
4947 before_fini_breadcrumb_user_interrupt_cs = cs;
4948 cs = gen8_emit_ggtt_write(cs,
4949 rq->fence.seqno,
4950 i915_request_active_timeline(rq)->hwsp_offset,
4951 0);
4952
4953 /* User interrupt */
4954 *cs++ = MI_USER_INTERRUPT;
4955 *cs++ = MI_NOOP;
4956
4957 /* Ensure our math for skip + emit is correct */
4958 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4959 cs);
4960 GEM_BUG_ON(start_fini_breadcrumb_cs +
4961 ce->engine->emit_fini_breadcrumb_dw != cs);
4962
4963 rq->tail = intel_ring_offset(rq, cs);
4964
4965 return cs;
4966 }
4967
4968 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)4969 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4970 u32 *cs)
4971 {
4972 struct intel_context *ce = rq->context;
4973 struct intel_context *parent = intel_context_to_parent(ce);
4974
4975 GEM_BUG_ON(!intel_context_is_child(ce));
4976
4977 /* Turn on preemption */
4978 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4979 *cs++ = MI_NOOP;
4980
4981 /* Signal parent */
4982 cs = gen8_emit_ggtt_write(cs,
4983 PARENT_GO_FINI_BREADCRUMB,
4984 get_children_join_addr(parent,
4985 ce->parallel.child_index),
4986 0);
4987
4988 /* Wait parent on for go */
4989 *cs++ = (MI_SEMAPHORE_WAIT |
4990 MI_SEMAPHORE_GLOBAL_GTT |
4991 MI_SEMAPHORE_POLL |
4992 MI_SEMAPHORE_SAD_EQ_SDD);
4993 *cs++ = CHILD_GO_FINI_BREADCRUMB;
4994 *cs++ = get_children_go_addr(parent);
4995 *cs++ = 0;
4996
4997 return cs;
4998 }
4999
5000 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5001 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5002 u32 *cs)
5003 {
5004 struct intel_context *ce = rq->context;
5005 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5006 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5007
5008 GEM_BUG_ON(!intel_context_is_child(ce));
5009
5010 if (unlikely(skip_handshake(rq))) {
5011 /*
5012 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5013 * the NON_SKIP_LEN comes from the length of the emits below.
5014 */
5015 memset(cs, 0, sizeof(u32) *
5016 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5017 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5018 } else {
5019 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5020 }
5021
5022 /* Emit fini breadcrumb */
5023 before_fini_breadcrumb_user_interrupt_cs = cs;
5024 cs = gen8_emit_ggtt_write(cs,
5025 rq->fence.seqno,
5026 i915_request_active_timeline(rq)->hwsp_offset,
5027 0);
5028
5029 /* User interrupt */
5030 *cs++ = MI_USER_INTERRUPT;
5031 *cs++ = MI_NOOP;
5032
5033 /* Ensure our math for skip + emit is correct */
5034 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5035 cs);
5036 GEM_BUG_ON(start_fini_breadcrumb_cs +
5037 ce->engine->emit_fini_breadcrumb_dw != cs);
5038
5039 rq->tail = intel_ring_offset(rq, cs);
5040
5041 return cs;
5042 }
5043
5044 #undef NON_SKIP_LEN
5045
5046 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5047 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5048 unsigned long flags)
5049 {
5050 struct guc_virtual_engine *ve;
5051 struct intel_guc *guc;
5052 unsigned int n;
5053 int err;
5054
5055 ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5056 if (!ve)
5057 return ERR_PTR(-ENOMEM);
5058
5059 guc = &siblings[0]->gt->uc.guc;
5060
5061 ve->base.i915 = siblings[0]->i915;
5062 ve->base.gt = siblings[0]->gt;
5063 ve->base.uncore = siblings[0]->uncore;
5064 ve->base.id = -1;
5065
5066 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5067 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5068 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5069 ve->base.saturated = ALL_ENGINES;
5070
5071 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5072
5073 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5074
5075 ve->base.cops = &virtual_guc_context_ops;
5076 ve->base.request_alloc = guc_request_alloc;
5077 ve->base.bump_serial = virtual_guc_bump_serial;
5078
5079 ve->base.submit_request = guc_submit_request;
5080
5081 ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5082
5083 intel_context_init(&ve->context, &ve->base);
5084
5085 for (n = 0; n < count; n++) {
5086 struct intel_engine_cs *sibling = siblings[n];
5087
5088 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5089 if (sibling->mask & ve->base.mask) {
5090 DRM_DEBUG("duplicate %s entry in load balancer\n",
5091 sibling->name);
5092 err = -EINVAL;
5093 goto err_put;
5094 }
5095
5096 ve->base.mask |= sibling->mask;
5097 ve->base.logical_mask |= sibling->logical_mask;
5098
5099 if (n != 0 && ve->base.class != sibling->class) {
5100 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5101 sibling->class, ve->base.class);
5102 err = -EINVAL;
5103 goto err_put;
5104 } else if (n == 0) {
5105 ve->base.class = sibling->class;
5106 ve->base.uabi_class = sibling->uabi_class;
5107 snprintf(ve->base.name, sizeof(ve->base.name),
5108 "v%dx%d", ve->base.class, count);
5109 ve->base.context_size = sibling->context_size;
5110
5111 ve->base.add_active_request =
5112 sibling->add_active_request;
5113 ve->base.remove_active_request =
5114 sibling->remove_active_request;
5115 ve->base.emit_bb_start = sibling->emit_bb_start;
5116 ve->base.emit_flush = sibling->emit_flush;
5117 ve->base.emit_init_breadcrumb =
5118 sibling->emit_init_breadcrumb;
5119 ve->base.emit_fini_breadcrumb =
5120 sibling->emit_fini_breadcrumb;
5121 ve->base.emit_fini_breadcrumb_dw =
5122 sibling->emit_fini_breadcrumb_dw;
5123 ve->base.breadcrumbs =
5124 intel_breadcrumbs_get(sibling->breadcrumbs);
5125
5126 ve->base.flags |= sibling->flags;
5127
5128 ve->base.props.timeslice_duration_ms =
5129 sibling->props.timeslice_duration_ms;
5130 ve->base.props.preempt_timeout_ms =
5131 sibling->props.preempt_timeout_ms;
5132 }
5133 }
5134
5135 return &ve->context;
5136
5137 err_put:
5138 intel_context_put(&ve->context);
5139 return ERR_PTR(err);
5140 }
5141
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5142 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5143 {
5144 struct intel_engine_cs *engine;
5145 intel_engine_mask_t tmp, mask = ve->mask;
5146
5147 for_each_engine_masked(engine, ve->gt, mask, tmp)
5148 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5149 return true;
5150
5151 return false;
5152 }
5153
5154 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5155 #include "selftest_guc.c"
5156 #include "selftest_guc_multi_lrc.c"
5157 #endif
5158