1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_slpc.h"
15 #include "intel_guc_submission.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18
19 /**
20 * DOC: GuC
21 *
22 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
23 * designed to offload some of the functionality usually performed by the host
24 * driver; currently the main operations it can take care of are:
25 *
26 * - Authentication of the HuC, which is required to fully enable HuC usage.
27 * - Low latency graphics context scheduling (a.k.a. GuC submission).
28 * - GT Power management.
29 *
30 * The enable_guc module parameter can be used to select which of those
31 * operations to enable within GuC. Note that not all the operations are
32 * supported on all gen9+ platforms.
33 *
34 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
35 * if at least one of the operations is selected. However, not loading the GuC
36 * might result in the loss of some features that do require the GuC (currently
37 * just the HuC, but more are expected to land in the future).
38 */
39
intel_guc_notify(struct intel_guc * guc)40 void intel_guc_notify(struct intel_guc *guc)
41 {
42 struct intel_gt *gt = guc_to_gt(guc);
43
44 /*
45 * On Gen11+, the value written to the register is passes as a payload
46 * to the FW. However, the FW currently treats all values the same way
47 * (H2G interrupt), so we can just write the value that the HW expects
48 * on older gens.
49 */
50 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
51 }
52
guc_send_reg(struct intel_guc * guc,u32 i)53 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
54 {
55 GEM_BUG_ON(!guc->send_regs.base);
56 GEM_BUG_ON(!guc->send_regs.count);
57 GEM_BUG_ON(i >= guc->send_regs.count);
58
59 return _MMIO(guc->send_regs.base + 4 * i);
60 }
61
intel_guc_init_send_regs(struct intel_guc * guc)62 void intel_guc_init_send_regs(struct intel_guc *guc)
63 {
64 struct intel_gt *gt = guc_to_gt(guc);
65 enum forcewake_domains fw_domains = 0;
66 unsigned int i;
67
68 GEM_BUG_ON(!guc->send_regs.base);
69 GEM_BUG_ON(!guc->send_regs.count);
70
71 for (i = 0; i < guc->send_regs.count; i++) {
72 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
73 guc_send_reg(guc, i),
74 FW_REG_READ | FW_REG_WRITE);
75 }
76 guc->send_regs.fw_domains = fw_domains;
77 }
78
gen9_reset_guc_interrupts(struct intel_guc * guc)79 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
80 {
81 struct intel_gt *gt = guc_to_gt(guc);
82
83 assert_rpm_wakelock_held(>->i915->runtime_pm);
84
85 spin_lock_irq(gt->irq_lock);
86 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
87 spin_unlock_irq(gt->irq_lock);
88 }
89
gen9_enable_guc_interrupts(struct intel_guc * guc)90 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
91 {
92 struct intel_gt *gt = guc_to_gt(guc);
93
94 assert_rpm_wakelock_held(>->i915->runtime_pm);
95
96 spin_lock_irq(gt->irq_lock);
97 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
98 gt->pm_guc_events);
99 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
100 spin_unlock_irq(gt->irq_lock);
101 }
102
gen9_disable_guc_interrupts(struct intel_guc * guc)103 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
104 {
105 struct intel_gt *gt = guc_to_gt(guc);
106
107 assert_rpm_wakelock_held(>->i915->runtime_pm);
108
109 spin_lock_irq(gt->irq_lock);
110
111 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
112
113 spin_unlock_irq(gt->irq_lock);
114 intel_synchronize_irq(gt->i915);
115
116 gen9_reset_guc_interrupts(guc);
117 }
118
gen11_reset_guc_interrupts(struct intel_guc * guc)119 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
120 {
121 struct intel_gt *gt = guc_to_gt(guc);
122
123 spin_lock_irq(gt->irq_lock);
124 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
125 spin_unlock_irq(gt->irq_lock);
126 }
127
gen11_enable_guc_interrupts(struct intel_guc * guc)128 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
129 {
130 struct intel_gt *gt = guc_to_gt(guc);
131 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
132
133 spin_lock_irq(gt->irq_lock);
134 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
135 intel_uncore_write(gt->uncore,
136 GEN11_GUC_SG_INTR_ENABLE, events);
137 intel_uncore_write(gt->uncore,
138 GEN11_GUC_SG_INTR_MASK, ~events);
139 spin_unlock_irq(gt->irq_lock);
140 }
141
gen11_disable_guc_interrupts(struct intel_guc * guc)142 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
143 {
144 struct intel_gt *gt = guc_to_gt(guc);
145
146 spin_lock_irq(gt->irq_lock);
147
148 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
149 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
150
151 spin_unlock_irq(gt->irq_lock);
152 intel_synchronize_irq(gt->i915);
153
154 gen11_reset_guc_interrupts(guc);
155 }
156
intel_guc_init_early(struct intel_guc * guc)157 void intel_guc_init_early(struct intel_guc *guc)
158 {
159 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
160
161 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
162 intel_guc_ct_init_early(&guc->ct);
163 intel_guc_log_init_early(&guc->log);
164 intel_guc_submission_init_early(guc);
165 intel_guc_slpc_init_early(&guc->slpc);
166 intel_guc_rc_init_early(guc);
167
168 mutex_init(&guc->send_mutex);
169 spin_lock_init(&guc->irq_lock);
170 if (GRAPHICS_VER(i915) >= 11) {
171 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
172 guc->interrupts.reset = gen11_reset_guc_interrupts;
173 guc->interrupts.enable = gen11_enable_guc_interrupts;
174 guc->interrupts.disable = gen11_disable_guc_interrupts;
175 guc->send_regs.base =
176 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
177 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
178
179 } else {
180 guc->notify_reg = GUC_SEND_INTERRUPT;
181 guc->interrupts.reset = gen9_reset_guc_interrupts;
182 guc->interrupts.enable = gen9_enable_guc_interrupts;
183 guc->interrupts.disable = gen9_disable_guc_interrupts;
184 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
185 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
186 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
187 }
188
189 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
190 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
191 }
192
intel_guc_init_late(struct intel_guc * guc)193 void intel_guc_init_late(struct intel_guc *guc)
194 {
195 intel_guc_ads_init_late(guc);
196 }
197
guc_ctl_debug_flags(struct intel_guc * guc)198 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
199 {
200 u32 level = intel_guc_log_get_level(&guc->log);
201 u32 flags = 0;
202
203 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
204 flags |= GUC_LOG_DISABLED;
205 else
206 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
207 GUC_LOG_VERBOSITY_SHIFT;
208
209 return flags;
210 }
211
guc_ctl_feature_flags(struct intel_guc * guc)212 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
213 {
214 u32 flags = 0;
215
216 if (!intel_guc_submission_is_used(guc))
217 flags |= GUC_CTL_DISABLE_SCHEDULER;
218
219 if (intel_guc_slpc_is_used(guc))
220 flags |= GUC_CTL_ENABLE_SLPC;
221
222 return flags;
223 }
224
guc_ctl_log_params_flags(struct intel_guc * guc)225 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
226 {
227 struct intel_guc_log *log = &guc->log;
228 u32 offset, flags;
229
230 GEM_BUG_ON(!log->sizes_initialised);
231
232 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
233
234 flags = GUC_LOG_VALID |
235 GUC_LOG_NOTIFY_ON_HALF_FULL |
236 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
237 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
238 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
239 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
240 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
241 (offset << GUC_LOG_BUF_ADDR_SHIFT);
242
243 return flags;
244 }
245
guc_ctl_ads_flags(struct intel_guc * guc)246 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
247 {
248 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
249 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
250
251 return flags;
252 }
253
guc_ctl_wa_flags(struct intel_guc * guc)254 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
255 {
256 struct intel_gt *gt = guc_to_gt(guc);
257 u32 flags = 0;
258
259 /* Wa_22012773006:gen11,gen12 < XeHP */
260 if (GRAPHICS_VER(gt->i915) >= 11 &&
261 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
262 flags |= GUC_WA_POLLCS;
263
264 /* Wa_16011759253:dg2_g10:a0 */
265 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
266 flags |= GUC_WA_GAM_CREDITS;
267
268 /* Wa_14014475959:dg2 */
269 if (IS_DG2(gt->i915))
270 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
271
272 /*
273 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
274 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
275 *
276 * The same WA bit is used for both and 22011391025 is applicable to
277 * all DG2.
278 */
279 if (IS_DG2(gt->i915))
280 flags |= GUC_WA_DUAL_QUEUE;
281
282 /* Wa_22011802037: graphics version 11/12 */
283 if (IS_GRAPHICS_VER(gt->i915, 11, 12))
284 flags |= GUC_WA_PRE_PARSER;
285
286 /* Wa_16011777198:dg2 */
287 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
288 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
289 flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
290
291 /*
292 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
293 * Wa_22012727685:dg2_g11[a0..)
294 */
295 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
296 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
297 flags |= GUC_WA_CONTEXT_ISOLATION;
298
299 /* Wa_16015675438 */
300 if (!RCS_MASK(gt))
301 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
302
303 return flags;
304 }
305
guc_ctl_devid(struct intel_guc * guc)306 static u32 guc_ctl_devid(struct intel_guc *guc)
307 {
308 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
309
310 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
311 }
312
313 /*
314 * Initialise the GuC parameter block before starting the firmware
315 * transfer. These parameters are read by the firmware on startup
316 * and cannot be changed thereafter.
317 */
guc_init_params(struct intel_guc * guc)318 static void guc_init_params(struct intel_guc *guc)
319 {
320 u32 *params = guc->params;
321 int i;
322
323 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
324
325 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
326 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
327 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
328 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
329 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
330 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
331
332 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
333 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
334 }
335
336 /*
337 * Initialise the GuC parameter block before starting the firmware
338 * transfer. These parameters are read by the firmware on startup
339 * and cannot be changed thereafter.
340 */
intel_guc_write_params(struct intel_guc * guc)341 void intel_guc_write_params(struct intel_guc *guc)
342 {
343 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
344 int i;
345
346 /*
347 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
348 * they are power context saved so it's ok to release forcewake
349 * when we are done here and take it again at xfer time.
350 */
351 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
352
353 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
354
355 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
356 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
357
358 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
359 }
360
intel_guc_dump_time_info(struct intel_guc * guc,struct drm_printer * p)361 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
362 {
363 struct intel_gt *gt = guc_to_gt(guc);
364 intel_wakeref_t wakeref;
365 u32 stamp = 0;
366 u64 ktime;
367
368 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
369 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
370 ktime = ktime_get_boottime_ns();
371
372 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
373 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
374 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
375 gt->clock_frequency, gt->clock_period_ns);
376 }
377
intel_guc_init(struct intel_guc * guc)378 int intel_guc_init(struct intel_guc *guc)
379 {
380 struct intel_gt *gt = guc_to_gt(guc);
381 int ret;
382
383 ret = intel_uc_fw_init(&guc->fw);
384 if (ret)
385 goto out;
386
387 ret = intel_guc_log_create(&guc->log);
388 if (ret)
389 goto err_fw;
390
391 ret = intel_guc_capture_init(guc);
392 if (ret)
393 goto err_log;
394
395 ret = intel_guc_ads_create(guc);
396 if (ret)
397 goto err_capture;
398
399 GEM_BUG_ON(!guc->ads_vma);
400
401 ret = intel_guc_ct_init(&guc->ct);
402 if (ret)
403 goto err_ads;
404
405 if (intel_guc_submission_is_used(guc)) {
406 /*
407 * This is stuff we need to have available at fw load time
408 * if we are planning to enable submission later
409 */
410 ret = intel_guc_submission_init(guc);
411 if (ret)
412 goto err_ct;
413 }
414
415 if (intel_guc_slpc_is_used(guc)) {
416 ret = intel_guc_slpc_init(&guc->slpc);
417 if (ret)
418 goto err_submission;
419 }
420
421 /* now that everything is perma-pinned, initialize the parameters */
422 guc_init_params(guc);
423
424 /* We need to notify the guc whenever we change the GGTT */
425 i915_ggtt_enable_guc(gt->ggtt);
426
427 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
428
429 return 0;
430
431 err_submission:
432 intel_guc_submission_fini(guc);
433 err_ct:
434 intel_guc_ct_fini(&guc->ct);
435 err_ads:
436 intel_guc_ads_destroy(guc);
437 err_capture:
438 intel_guc_capture_destroy(guc);
439 err_log:
440 intel_guc_log_destroy(&guc->log);
441 err_fw:
442 intel_uc_fw_fini(&guc->fw);
443 out:
444 i915_probe_error(gt->i915, "failed with %d\n", ret);
445 return ret;
446 }
447
intel_guc_fini(struct intel_guc * guc)448 void intel_guc_fini(struct intel_guc *guc)
449 {
450 struct intel_gt *gt = guc_to_gt(guc);
451
452 if (!intel_uc_fw_is_loadable(&guc->fw))
453 return;
454
455 i915_ggtt_disable_guc(gt->ggtt);
456
457 if (intel_guc_slpc_is_used(guc))
458 intel_guc_slpc_fini(&guc->slpc);
459
460 if (intel_guc_submission_is_used(guc))
461 intel_guc_submission_fini(guc);
462
463 intel_guc_ct_fini(&guc->ct);
464
465 intel_guc_ads_destroy(guc);
466 intel_guc_capture_destroy(guc);
467 intel_guc_log_destroy(&guc->log);
468 intel_uc_fw_fini(&guc->fw);
469 }
470
471 /*
472 * This function implements the MMIO based host to GuC interface.
473 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * request,u32 len,u32 * response_buf,u32 response_buf_size)474 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
475 u32 *response_buf, u32 response_buf_size)
476 {
477 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
478 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
479 u32 header;
480 int i;
481 int ret;
482
483 GEM_BUG_ON(!len);
484 GEM_BUG_ON(len > guc->send_regs.count);
485
486 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
487 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
488
489 mutex_lock(&guc->send_mutex);
490 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
491
492 retry:
493 for (i = 0; i < len; i++)
494 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
495
496 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
497
498 intel_guc_notify(guc);
499
500 /*
501 * No GuC command should ever take longer than 10ms.
502 * Fast commands should still complete in 10us.
503 */
504 ret = __intel_wait_for_register_fw(uncore,
505 guc_send_reg(guc, 0),
506 GUC_HXG_MSG_0_ORIGIN,
507 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
508 GUC_HXG_ORIGIN_GUC),
509 10, 10, &header);
510 if (unlikely(ret)) {
511 timeout:
512 drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
513 request[0], header);
514 goto out;
515 }
516
517 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
518 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
519 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
520 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
521
522 ret = wait_for(done, 1000);
523 if (unlikely(ret))
524 goto timeout;
525 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
526 GUC_HXG_ORIGIN_GUC))
527 goto proto;
528 #undef done
529 }
530
531 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
532 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
533
534 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
535 request[0], reason);
536 goto retry;
537 }
538
539 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
540 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
541 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
542
543 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
544 request[0], error, hint);
545 ret = -ENXIO;
546 goto out;
547 }
548
549 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
550 proto:
551 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
552 request[0], header);
553 ret = -EPROTO;
554 goto out;
555 }
556
557 if (response_buf) {
558 int count = min(response_buf_size, guc->send_regs.count);
559
560 GEM_BUG_ON(!count);
561
562 response_buf[0] = header;
563
564 for (i = 1; i < count; i++)
565 response_buf[i] = intel_uncore_read(uncore,
566 guc_send_reg(guc, i));
567
568 /* Use number of copied dwords as our return value */
569 ret = count;
570 } else {
571 /* Use data from the GuC response as our return value */
572 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
573 }
574
575 out:
576 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
577 mutex_unlock(&guc->send_mutex);
578
579 return ret;
580 }
581
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)582 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
583 const u32 *payload, u32 len)
584 {
585 u32 msg;
586
587 if (unlikely(!len))
588 return -EPROTO;
589
590 /* Make sure to handle only enabled messages */
591 msg = payload[0] & guc->msg_enabled_mask;
592
593 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
594 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n");
595 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
596 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n");
597
598 return 0;
599 }
600
601 /**
602 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
603 * @guc: intel_guc structure
604 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
605 *
606 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
607 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
608 * intel_huc_auth().
609 *
610 * Return: non-zero code on error
611 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)612 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
613 {
614 u32 action[] = {
615 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
616 rsa_offset
617 };
618
619 return intel_guc_send(guc, action, ARRAY_SIZE(action));
620 }
621
622 /**
623 * intel_guc_suspend() - notify GuC entering suspend state
624 * @guc: the guc
625 */
intel_guc_suspend(struct intel_guc * guc)626 int intel_guc_suspend(struct intel_guc *guc)
627 {
628 int ret;
629 u32 action[] = {
630 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
631 };
632
633 if (!intel_guc_is_ready(guc))
634 return 0;
635
636 if (intel_guc_submission_is_used(guc)) {
637 /*
638 * This H2G MMIO command tears down the GuC in two steps. First it will
639 * generate a G2H CTB for every active context indicating a reset. In
640 * practice the i915 shouldn't ever get a G2H as suspend should only be
641 * called when the GPU is idle. Next, it tears down the CTBs and this
642 * H2G MMIO command completes.
643 *
644 * Don't abort on a failure code from the GuC. Keep going and do the
645 * clean up in santize() and re-initialisation on resume and hopefully
646 * the error here won't be problematic.
647 */
648 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
649 if (ret)
650 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
651 }
652
653 /* Signal that the GuC isn't running. */
654 intel_guc_sanitize(guc);
655
656 return 0;
657 }
658
659 /**
660 * intel_guc_resume() - notify GuC resuming from suspend state
661 * @guc: the guc
662 */
intel_guc_resume(struct intel_guc * guc)663 int intel_guc_resume(struct intel_guc *guc)
664 {
665 /*
666 * NB: This function can still be called even if GuC submission is
667 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
668 * if any code is later added here, it must be support doing nothing
669 * if submission is disabled (as per intel_guc_suspend).
670 */
671 return 0;
672 }
673
674 /**
675 * DOC: GuC Memory Management
676 *
677 * GuC can't allocate any memory for its own usage, so all the allocations must
678 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
679 * exception of the top and bottom parts of the 4GB address space, which are
680 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
681 * or other parts of the HW. The driver must take care not to place objects that
682 * the GuC is going to access in these reserved ranges. The layout of the GuC
683 * address space is shown below:
684 *
685 * ::
686 *
687 * +===========> +====================+ <== FFFF_FFFF
688 * ^ | Reserved |
689 * | +====================+ <== GUC_GGTT_TOP
690 * | | |
691 * | | DRAM |
692 * GuC | |
693 * Address +===> +====================+ <== GuC ggtt_pin_bias
694 * Space ^ | |
695 * | | | |
696 * | GuC | GuC |
697 * | WOPCM | WOPCM |
698 * | Size | |
699 * | | | |
700 * v v | |
701 * +=======+===> +====================+ <== 0000_0000
702 *
703 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
704 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
705 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
706 */
707
708 /**
709 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
710 * @guc: the guc
711 * @size: size of area to allocate (both virtual space and memory)
712 *
713 * This is a wrapper to create an object for use with the GuC. In order to
714 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
715 * both some backing storage and a range inside the Global GTT. We must pin
716 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
717 * range is reserved inside GuC.
718 *
719 * Return: A i915_vma if successful, otherwise an ERR_PTR.
720 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)721 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
722 {
723 struct intel_gt *gt = guc_to_gt(guc);
724 struct drm_i915_gem_object *obj;
725 struct i915_vma *vma;
726 u64 flags;
727 int ret;
728
729 if (HAS_LMEM(gt->i915))
730 obj = i915_gem_object_create_lmem(gt->i915, size,
731 I915_BO_ALLOC_CPU_CLEAR |
732 I915_BO_ALLOC_CONTIGUOUS |
733 I915_BO_ALLOC_PM_EARLY);
734 else
735 obj = i915_gem_object_create_shmem(gt->i915, size);
736
737 if (IS_ERR(obj))
738 return ERR_CAST(obj);
739
740 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
741 if (IS_ERR(vma))
742 goto err;
743
744 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
745 ret = i915_ggtt_pin(vma, NULL, 0, flags);
746 if (ret) {
747 vma = ERR_PTR(ret);
748 goto err;
749 }
750
751 return i915_vma_make_unshrinkable(vma);
752
753 err:
754 i915_gem_object_put(obj);
755 return vma;
756 }
757
758 /**
759 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
760 * @guc: the guc
761 * @size: size of area to allocate (both virtual space and memory)
762 * @out_vma: return variable for the allocated vma pointer
763 * @out_vaddr: return variable for the obj mapping
764 *
765 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
766 * object with I915_MAP_WB.
767 *
768 * Return: 0 if successful, a negative errno code otherwise.
769 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)770 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
771 struct i915_vma **out_vma, void **out_vaddr)
772 {
773 struct i915_vma *vma;
774 void *vaddr;
775
776 vma = intel_guc_allocate_vma(guc, size);
777 if (IS_ERR(vma))
778 return PTR_ERR(vma);
779
780 vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
781 i915_coherent_map_type(guc_to_gt(guc)->i915,
782 vma->obj, true));
783 if (IS_ERR(vaddr)) {
784 i915_vma_unpin_and_release(&vma, 0);
785 return PTR_ERR(vaddr);
786 }
787
788 *out_vma = vma;
789 *out_vaddr = vaddr;
790
791 return 0;
792 }
793
__guc_action_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)794 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
795 {
796 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
797 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
798 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
799 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
800 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
801 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
802 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
803 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
804 };
805 int ret;
806
807 GEM_BUG_ON(len > 2);
808 GEM_BUG_ON(len == 1 && upper_32_bits(value));
809
810 /* Self config must go over MMIO */
811 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
812
813 if (unlikely(ret < 0))
814 return ret;
815 if (unlikely(ret > 1))
816 return -EPROTO;
817 if (unlikely(!ret))
818 return -ENOKEY;
819
820 return 0;
821 }
822
__guc_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)823 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
824 {
825 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
826 int err = __guc_action_self_cfg(guc, key, len, value);
827
828 if (unlikely(err))
829 i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
830 ERR_PTR(err), key, value);
831 return err;
832 }
833
intel_guc_self_cfg32(struct intel_guc * guc,u16 key,u32 value)834 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
835 {
836 return __guc_self_cfg(guc, key, 1, value);
837 }
838
intel_guc_self_cfg64(struct intel_guc * guc,u16 key,u64 value)839 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
840 {
841 return __guc_self_cfg(guc, key, 2, value);
842 }
843
844 /**
845 * intel_guc_load_status - dump information about GuC load status
846 * @guc: the GuC
847 * @p: the &drm_printer
848 *
849 * Pretty printer for GuC load status.
850 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)851 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
852 {
853 struct intel_gt *gt = guc_to_gt(guc);
854 struct intel_uncore *uncore = gt->uncore;
855 intel_wakeref_t wakeref;
856
857 if (!intel_guc_is_supported(guc)) {
858 drm_printf(p, "GuC not supported\n");
859 return;
860 }
861
862 if (!intel_guc_is_wanted(guc)) {
863 drm_printf(p, "GuC disabled\n");
864 return;
865 }
866
867 intel_uc_fw_dump(&guc->fw, p);
868
869 with_intel_runtime_pm(uncore->rpm, wakeref) {
870 u32 status = intel_uncore_read(uncore, GUC_STATUS);
871 u32 i;
872
873 drm_printf(p, "\nGuC status 0x%08x:\n", status);
874 drm_printf(p, "\tBootrom status = 0x%x\n",
875 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
876 drm_printf(p, "\tuKernel status = 0x%x\n",
877 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
878 drm_printf(p, "\tMIA Core status = 0x%x\n",
879 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
880 drm_puts(p, "\nScratch registers:\n");
881 for (i = 0; i < 16; i++) {
882 drm_printf(p, "\t%2d: \t0x%x\n",
883 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
884 }
885 }
886 }
887
intel_guc_write_barrier(struct intel_guc * guc)888 void intel_guc_write_barrier(struct intel_guc *guc)
889 {
890 struct intel_gt *gt = guc_to_gt(guc);
891
892 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
893 /*
894 * Ensure intel_uncore_write_fw can be used rather than
895 * intel_uncore_write.
896 */
897 GEM_BUG_ON(guc->send_regs.fw_domains);
898
899 /*
900 * This register is used by the i915 and GuC for MMIO based
901 * communication. Once we are in this code CTBs are the only
902 * method the i915 uses to communicate with the GuC so it is
903 * safe to write to this register (a value of 0 is NOP for MMIO
904 * communication). If we ever start mixing CTBs and MMIOs a new
905 * register will have to be chosen. This function is also used
906 * to enforce ordering of a work queue item write and an update
907 * to the process descriptor. When a work queue is being used,
908 * CTBs are also the only mechanism of communication.
909 */
910 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
911 } else {
912 /* wmb() sufficient for a barrier if in smem */
913 wmb();
914 }
915 }
916