1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20
21 /**
22 * DOC: GuC
23 *
24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25 * designed to offload some of the functionality usually performed by the host
26 * driver; currently the main operations it can take care of are:
27 *
28 * - Authentication of the HuC, which is required to fully enable HuC usage.
29 * - Low latency graphics context scheduling (a.k.a. GuC submission).
30 * - GT Power management.
31 *
32 * The enable_guc module parameter can be used to select which of those
33 * operations to enable within GuC. Note that not all the operations are
34 * supported on all gen9+ platforms.
35 *
36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37 * if at least one of the operations is selected. However, not loading the GuC
38 * might result in the loss of some features that do require the GuC (currently
39 * just the HuC, but more are expected to land in the future).
40 */
41
intel_guc_notify(struct intel_guc * guc)42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 struct intel_gt *gt = guc_to_gt(guc);
45
46 /*
47 * On Gen11+, the value written to the register is passes as a payload
48 * to the FW. However, the FW currently treats all values the same way
49 * (H2G interrupt), so we can just write the value that the HW expects
50 * on older gens.
51 */
52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54
guc_send_reg(struct intel_guc * guc,u32 i)55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 GEM_BUG_ON(!guc->send_regs.base);
58 GEM_BUG_ON(!guc->send_regs.count);
59 GEM_BUG_ON(i >= guc->send_regs.count);
60
61 return _MMIO(guc->send_regs.base + 4 * i);
62 }
63
intel_guc_init_send_regs(struct intel_guc * guc)64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 struct intel_gt *gt = guc_to_gt(guc);
67 enum forcewake_domains fw_domains = 0;
68 unsigned int i;
69
70 GEM_BUG_ON(!guc->send_regs.base);
71 GEM_BUG_ON(!guc->send_regs.count);
72
73 for (i = 0; i < guc->send_regs.count; i++) {
74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 guc_send_reg(guc, i),
76 FW_REG_READ | FW_REG_WRITE);
77 }
78 guc->send_regs.fw_domains = fw_domains;
79 }
80
gen9_reset_guc_interrupts(struct intel_guc * guc)81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 struct intel_gt *gt = guc_to_gt(guc);
84
85 assert_rpm_wakelock_held(>->i915->runtime_pm);
86
87 spin_lock_irq(gt->irq_lock);
88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 spin_unlock_irq(gt->irq_lock);
90 }
91
gen9_enable_guc_interrupts(struct intel_guc * guc)92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 struct intel_gt *gt = guc_to_gt(guc);
95
96 assert_rpm_wakelock_held(>->i915->runtime_pm);
97
98 spin_lock_irq(gt->irq_lock);
99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100 gt->pm_guc_events);
101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102 spin_unlock_irq(gt->irq_lock);
103
104 guc->interrupts.enabled = true;
105 }
106
gen9_disable_guc_interrupts(struct intel_guc * guc)107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109 struct intel_gt *gt = guc_to_gt(guc);
110
111 assert_rpm_wakelock_held(>->i915->runtime_pm);
112 guc->interrupts.enabled = false;
113
114 spin_lock_irq(gt->irq_lock);
115
116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117
118 spin_unlock_irq(gt->irq_lock);
119 intel_synchronize_irq(gt->i915);
120
121 gen9_reset_guc_interrupts(guc);
122 }
123
__gen11_reset_guc_interrupts(struct intel_gt * gt)124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127
128 lockdep_assert_held(gt->irq_lock);
129 return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131
gen11_reset_guc_interrupts(struct intel_guc * guc)132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 struct intel_gt *gt = guc_to_gt(guc);
135
136 spin_lock_irq(gt->irq_lock);
137 __gen11_reset_guc_interrupts(gt);
138 spin_unlock_irq(gt->irq_lock);
139 }
140
gen11_enable_guc_interrupts(struct intel_guc * guc)141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 struct intel_gt *gt = guc_to_gt(guc);
144
145 spin_lock_irq(gt->irq_lock);
146 __gen11_reset_guc_interrupts(gt);
147 spin_unlock_irq(gt->irq_lock);
148
149 guc->interrupts.enabled = true;
150 }
151
gen11_disable_guc_interrupts(struct intel_guc * guc)152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 struct intel_gt *gt = guc_to_gt(guc);
155
156 guc->interrupts.enabled = false;
157 intel_synchronize_irq(gt->i915);
158
159 gen11_reset_guc_interrupts(guc);
160 }
161
intel_guc_init_early(struct intel_guc * guc)162 void intel_guc_init_early(struct intel_guc *guc)
163 {
164 struct intel_gt *gt = guc_to_gt(guc);
165 struct drm_i915_private *i915 = gt->i915;
166
167 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
168 intel_guc_ct_init_early(&guc->ct);
169 intel_guc_log_init_early(&guc->log);
170 intel_guc_submission_init_early(guc);
171 intel_guc_slpc_init_early(&guc->slpc);
172 intel_guc_rc_init_early(guc);
173
174 mutex_init(&guc->send_mutex);
175 spin_lock_init(&guc->irq_lock);
176 if (GRAPHICS_VER(i915) >= 11) {
177 guc->interrupts.reset = gen11_reset_guc_interrupts;
178 guc->interrupts.enable = gen11_enable_guc_interrupts;
179 guc->interrupts.disable = gen11_disable_guc_interrupts;
180 if (gt->type == GT_MEDIA) {
181 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
182 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
183 } else {
184 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
185 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
186 }
187
188 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
189
190 } else {
191 guc->notify_reg = GUC_SEND_INTERRUPT;
192 guc->interrupts.reset = gen9_reset_guc_interrupts;
193 guc->interrupts.enable = gen9_enable_guc_interrupts;
194 guc->interrupts.disable = gen9_disable_guc_interrupts;
195 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
196 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
197 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
198 }
199
200 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
201 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
202 }
203
intel_guc_init_late(struct intel_guc * guc)204 void intel_guc_init_late(struct intel_guc *guc)
205 {
206 intel_guc_ads_init_late(guc);
207 }
208
guc_ctl_debug_flags(struct intel_guc * guc)209 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
210 {
211 u32 level = intel_guc_log_get_level(&guc->log);
212 u32 flags = 0;
213
214 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
215 flags |= GUC_LOG_DISABLED;
216 else
217 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
218 GUC_LOG_VERBOSITY_SHIFT;
219
220 return flags;
221 }
222
guc_ctl_feature_flags(struct intel_guc * guc)223 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
224 {
225 u32 flags = 0;
226
227 if (!intel_guc_submission_is_used(guc))
228 flags |= GUC_CTL_DISABLE_SCHEDULER;
229
230 if (intel_guc_slpc_is_used(guc))
231 flags |= GUC_CTL_ENABLE_SLPC;
232
233 return flags;
234 }
235
guc_ctl_log_params_flags(struct intel_guc * guc)236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
237 {
238 struct intel_guc_log *log = &guc->log;
239 u32 offset, flags;
240
241 GEM_BUG_ON(!log->sizes_initialised);
242
243 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
244
245 flags = GUC_LOG_VALID |
246 GUC_LOG_NOTIFY_ON_HALF_FULL |
247 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
248 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
249 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
250 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
251 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
252 (offset << GUC_LOG_BUF_ADDR_SHIFT);
253
254 return flags;
255 }
256
guc_ctl_ads_flags(struct intel_guc * guc)257 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
258 {
259 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
260 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
261
262 return flags;
263 }
264
guc_ctl_wa_flags(struct intel_guc * guc)265 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
266 {
267 struct intel_gt *gt = guc_to_gt(guc);
268 u32 flags = 0;
269
270 /* Wa_22012773006:gen11,gen12 < XeHP */
271 if (GRAPHICS_VER(gt->i915) >= 11 &&
272 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
273 flags |= GUC_WA_POLLCS;
274
275 /* Wa_16011759253:dg2_g10:a0 */
276 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
277 flags |= GUC_WA_GAM_CREDITS;
278
279 /* Wa_14014475959 */
280 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
281 IS_DG2(gt->i915))
282 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
283
284 /*
285 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
286 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
287 *
288 * The same WA bit is used for both and 22011391025 is applicable to
289 * all DG2.
290 */
291 if (IS_DG2(gt->i915))
292 flags |= GUC_WA_DUAL_QUEUE;
293
294 /* Wa_22011802037: graphics version 11/12 */
295 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
296 (GRAPHICS_VER(gt->i915) >= 11 &&
297 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)))
298 flags |= GUC_WA_PRE_PARSER;
299
300 /* Wa_16011777198:dg2 */
301 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
302 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
303 flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
304
305 /*
306 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
307 * Wa_22012727685:dg2_g11[a0..)
308 */
309 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
310 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
311 flags |= GUC_WA_CONTEXT_ISOLATION;
312
313 /* Wa_16015675438 */
314 if (!RCS_MASK(gt))
315 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
316
317 return flags;
318 }
319
guc_ctl_devid(struct intel_guc * guc)320 static u32 guc_ctl_devid(struct intel_guc *guc)
321 {
322 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
323
324 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
325 }
326
327 /*
328 * Initialise the GuC parameter block before starting the firmware
329 * transfer. These parameters are read by the firmware on startup
330 * and cannot be changed thereafter.
331 */
guc_init_params(struct intel_guc * guc)332 static void guc_init_params(struct intel_guc *guc)
333 {
334 u32 *params = guc->params;
335 int i;
336
337 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
338
339 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
340 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
341 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
342 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
343 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
344 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
345
346 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
347 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
348 }
349
350 /*
351 * Initialise the GuC parameter block before starting the firmware
352 * transfer. These parameters are read by the firmware on startup
353 * and cannot be changed thereafter.
354 */
intel_guc_write_params(struct intel_guc * guc)355 void intel_guc_write_params(struct intel_guc *guc)
356 {
357 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
358 int i;
359
360 /*
361 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
362 * they are power context saved so it's ok to release forcewake
363 * when we are done here and take it again at xfer time.
364 */
365 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
366
367 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
368
369 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
370 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
371
372 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
373 }
374
intel_guc_dump_time_info(struct intel_guc * guc,struct drm_printer * p)375 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
376 {
377 struct intel_gt *gt = guc_to_gt(guc);
378 intel_wakeref_t wakeref;
379 u32 stamp = 0;
380 u64 ktime;
381
382 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
383 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
384 ktime = ktime_get_boottime_ns();
385
386 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
387 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
388 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
389 gt->clock_frequency, gt->clock_period_ns);
390 }
391
intel_guc_init(struct intel_guc * guc)392 int intel_guc_init(struct intel_guc *guc)
393 {
394 int ret;
395
396 ret = intel_uc_fw_init(&guc->fw);
397 if (ret)
398 goto out;
399
400 ret = intel_guc_log_create(&guc->log);
401 if (ret)
402 goto err_fw;
403
404 ret = intel_guc_capture_init(guc);
405 if (ret)
406 goto err_log;
407
408 ret = intel_guc_ads_create(guc);
409 if (ret)
410 goto err_capture;
411
412 GEM_BUG_ON(!guc->ads_vma);
413
414 ret = intel_guc_ct_init(&guc->ct);
415 if (ret)
416 goto err_ads;
417
418 if (intel_guc_submission_is_used(guc)) {
419 /*
420 * This is stuff we need to have available at fw load time
421 * if we are planning to enable submission later
422 */
423 ret = intel_guc_submission_init(guc);
424 if (ret)
425 goto err_ct;
426 }
427
428 if (intel_guc_slpc_is_used(guc)) {
429 ret = intel_guc_slpc_init(&guc->slpc);
430 if (ret)
431 goto err_submission;
432 }
433
434 /* now that everything is perma-pinned, initialize the parameters */
435 guc_init_params(guc);
436
437 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
438
439 return 0;
440
441 err_submission:
442 intel_guc_submission_fini(guc);
443 err_ct:
444 intel_guc_ct_fini(&guc->ct);
445 err_ads:
446 intel_guc_ads_destroy(guc);
447 err_capture:
448 intel_guc_capture_destroy(guc);
449 err_log:
450 intel_guc_log_destroy(&guc->log);
451 err_fw:
452 intel_uc_fw_fini(&guc->fw);
453 out:
454 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
455 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
456 return ret;
457 }
458
intel_guc_fini(struct intel_guc * guc)459 void intel_guc_fini(struct intel_guc *guc)
460 {
461 if (!intel_uc_fw_is_loadable(&guc->fw))
462 return;
463
464 if (intel_guc_slpc_is_used(guc))
465 intel_guc_slpc_fini(&guc->slpc);
466
467 if (intel_guc_submission_is_used(guc))
468 intel_guc_submission_fini(guc);
469
470 intel_guc_ct_fini(&guc->ct);
471
472 intel_guc_ads_destroy(guc);
473 intel_guc_capture_destroy(guc);
474 intel_guc_log_destroy(&guc->log);
475 intel_uc_fw_fini(&guc->fw);
476 }
477
478 /*
479 * This function implements the MMIO based host to GuC interface.
480 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * request,u32 len,u32 * response_buf,u32 response_buf_size)481 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
482 u32 *response_buf, u32 response_buf_size)
483 {
484 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
485 u32 header;
486 int i;
487 int ret;
488
489 GEM_BUG_ON(!len);
490 GEM_BUG_ON(len > guc->send_regs.count);
491
492 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
493 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
494
495 mutex_lock(&guc->send_mutex);
496 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
497
498 retry:
499 for (i = 0; i < len; i++)
500 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
501
502 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
503
504 intel_guc_notify(guc);
505
506 /*
507 * No GuC command should ever take longer than 10ms.
508 * Fast commands should still complete in 10us.
509 */
510 ret = __intel_wait_for_register_fw(uncore,
511 guc_send_reg(guc, 0),
512 GUC_HXG_MSG_0_ORIGIN,
513 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
514 GUC_HXG_ORIGIN_GUC),
515 10, 10, &header);
516 if (unlikely(ret)) {
517 timeout:
518 guc_err(guc, "mmio request %#x: no reply %x\n",
519 request[0], header);
520 goto out;
521 }
522
523 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
524 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
525 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
526 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
527
528 ret = wait_for(done, 1000);
529 if (unlikely(ret))
530 goto timeout;
531 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
532 GUC_HXG_ORIGIN_GUC))
533 goto proto;
534 #undef done
535 }
536
537 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
538 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
539
540 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
541 request[0], reason);
542 goto retry;
543 }
544
545 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
546 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
547 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
548
549 guc_err(guc, "mmio request %#x: failure %x/%u\n",
550 request[0], error, hint);
551 ret = -ENXIO;
552 goto out;
553 }
554
555 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
556 proto:
557 guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
558 request[0], header);
559 ret = -EPROTO;
560 goto out;
561 }
562
563 if (response_buf) {
564 int count = min(response_buf_size, guc->send_regs.count);
565
566 GEM_BUG_ON(!count);
567
568 response_buf[0] = header;
569
570 for (i = 1; i < count; i++)
571 response_buf[i] = intel_uncore_read(uncore,
572 guc_send_reg(guc, i));
573
574 /* Use number of copied dwords as our return value */
575 ret = count;
576 } else {
577 /* Use data from the GuC response as our return value */
578 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
579 }
580
581 out:
582 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
583 mutex_unlock(&guc->send_mutex);
584
585 return ret;
586 }
587
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)588 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
589 const u32 *payload, u32 len)
590 {
591 u32 msg;
592
593 if (unlikely(!len))
594 return -EPROTO;
595
596 /* Make sure to handle only enabled messages */
597 msg = payload[0] & guc->msg_enabled_mask;
598
599 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
600 guc_err(guc, "Received early crash dump notification!\n");
601 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
602 guc_err(guc, "Received early exception notification!\n");
603
604 return 0;
605 }
606
607 /**
608 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
609 * @guc: intel_guc structure
610 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
611 *
612 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
613 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
614 * intel_huc_auth().
615 *
616 * Return: non-zero code on error
617 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)618 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
619 {
620 u32 action[] = {
621 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
622 rsa_offset
623 };
624
625 return intel_guc_send(guc, action, ARRAY_SIZE(action));
626 }
627
628 /**
629 * intel_guc_suspend() - notify GuC entering suspend state
630 * @guc: the guc
631 */
intel_guc_suspend(struct intel_guc * guc)632 int intel_guc_suspend(struct intel_guc *guc)
633 {
634 int ret;
635 u32 action[] = {
636 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
637 };
638
639 if (!intel_guc_is_ready(guc))
640 return 0;
641
642 if (intel_guc_submission_is_used(guc)) {
643 /*
644 * This H2G MMIO command tears down the GuC in two steps. First it will
645 * generate a G2H CTB for every active context indicating a reset. In
646 * practice the i915 shouldn't ever get a G2H as suspend should only be
647 * called when the GPU is idle. Next, it tears down the CTBs and this
648 * H2G MMIO command completes.
649 *
650 * Don't abort on a failure code from the GuC. Keep going and do the
651 * clean up in santize() and re-initialisation on resume and hopefully
652 * the error here won't be problematic.
653 */
654 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
655 if (ret)
656 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
657 ERR_PTR(ret));
658 }
659
660 /* Signal that the GuC isn't running. */
661 intel_guc_sanitize(guc);
662
663 return 0;
664 }
665
666 /**
667 * intel_guc_resume() - notify GuC resuming from suspend state
668 * @guc: the guc
669 */
intel_guc_resume(struct intel_guc * guc)670 int intel_guc_resume(struct intel_guc *guc)
671 {
672 /*
673 * NB: This function can still be called even if GuC submission is
674 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
675 * if any code is later added here, it must be support doing nothing
676 * if submission is disabled (as per intel_guc_suspend).
677 */
678 return 0;
679 }
680
681 /**
682 * DOC: GuC Memory Management
683 *
684 * GuC can't allocate any memory for its own usage, so all the allocations must
685 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
686 * exception of the top and bottom parts of the 4GB address space, which are
687 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
688 * or other parts of the HW. The driver must take care not to place objects that
689 * the GuC is going to access in these reserved ranges. The layout of the GuC
690 * address space is shown below:
691 *
692 * ::
693 *
694 * +===========> +====================+ <== FFFF_FFFF
695 * ^ | Reserved |
696 * | +====================+ <== GUC_GGTT_TOP
697 * | | |
698 * | | DRAM |
699 * GuC | |
700 * Address +===> +====================+ <== GuC ggtt_pin_bias
701 * Space ^ | |
702 * | | | |
703 * | GuC | GuC |
704 * | WOPCM | WOPCM |
705 * | Size | |
706 * | | | |
707 * v v | |
708 * +=======+===> +====================+ <== 0000_0000
709 *
710 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
711 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
712 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
713 */
714
715 /**
716 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
717 * @guc: the guc
718 * @size: size of area to allocate (both virtual space and memory)
719 *
720 * This is a wrapper to create an object for use with the GuC. In order to
721 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
722 * both some backing storage and a range inside the Global GTT. We must pin
723 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
724 * range is reserved inside GuC.
725 *
726 * Return: A i915_vma if successful, otherwise an ERR_PTR.
727 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)728 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
729 {
730 struct intel_gt *gt = guc_to_gt(guc);
731 struct drm_i915_gem_object *obj;
732 struct i915_vma *vma;
733 u64 flags;
734 int ret;
735
736 if (HAS_LMEM(gt->i915))
737 obj = i915_gem_object_create_lmem(gt->i915, size,
738 I915_BO_ALLOC_CPU_CLEAR |
739 I915_BO_ALLOC_CONTIGUOUS |
740 I915_BO_ALLOC_PM_EARLY);
741 else
742 obj = i915_gem_object_create_shmem(gt->i915, size);
743
744 if (IS_ERR(obj))
745 return ERR_CAST(obj);
746
747 /*
748 * Wa_22016122933: For Media version 13.0, all Media GT shared
749 * memory needs to be mapped as WC on CPU side and UC (PAT
750 * index 2) on GPU side.
751 */
752 if (intel_gt_needs_wa_22016122933(gt))
753 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
754
755 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
756 if (IS_ERR(vma))
757 goto err;
758
759 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
760 ret = i915_ggtt_pin(vma, NULL, 0, flags);
761 if (ret) {
762 vma = ERR_PTR(ret);
763 goto err;
764 }
765
766 return i915_vma_make_unshrinkable(vma);
767
768 err:
769 i915_gem_object_put(obj);
770 return vma;
771 }
772
773 /**
774 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
775 * @guc: the guc
776 * @size: size of area to allocate (both virtual space and memory)
777 * @out_vma: return variable for the allocated vma pointer
778 * @out_vaddr: return variable for the obj mapping
779 *
780 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
781 * object with I915_MAP_WB.
782 *
783 * Return: 0 if successful, a negative errno code otherwise.
784 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)785 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
786 struct i915_vma **out_vma, void **out_vaddr)
787 {
788 struct i915_vma *vma;
789 void *vaddr;
790
791 vma = intel_guc_allocate_vma(guc, size);
792 if (IS_ERR(vma))
793 return PTR_ERR(vma);
794
795 vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
796 intel_gt_coherent_map_type(guc_to_gt(guc),
797 vma->obj, true));
798 if (IS_ERR(vaddr)) {
799 i915_vma_unpin_and_release(&vma, 0);
800 return PTR_ERR(vaddr);
801 }
802
803 *out_vma = vma;
804 *out_vaddr = vaddr;
805
806 return 0;
807 }
808
__guc_action_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)809 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
810 {
811 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
812 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
813 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
814 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
815 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
816 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
817 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
818 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
819 };
820 int ret;
821
822 GEM_BUG_ON(len > 2);
823 GEM_BUG_ON(len == 1 && upper_32_bits(value));
824
825 /* Self config must go over MMIO */
826 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
827
828 if (unlikely(ret < 0))
829 return ret;
830 if (unlikely(ret > 1))
831 return -EPROTO;
832 if (unlikely(!ret))
833 return -ENOKEY;
834
835 return 0;
836 }
837
__guc_self_cfg(struct intel_guc * guc,u16 key,u16 len,u64 value)838 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
839 {
840 int err = __guc_action_self_cfg(guc, key, len, value);
841
842 if (unlikely(err))
843 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
844 ERR_PTR(err), key, value);
845 return err;
846 }
847
intel_guc_self_cfg32(struct intel_guc * guc,u16 key,u32 value)848 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
849 {
850 return __guc_self_cfg(guc, key, 1, value);
851 }
852
intel_guc_self_cfg64(struct intel_guc * guc,u16 key,u64 value)853 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
854 {
855 return __guc_self_cfg(guc, key, 2, value);
856 }
857
858 /**
859 * intel_guc_load_status - dump information about GuC load status
860 * @guc: the GuC
861 * @p: the &drm_printer
862 *
863 * Pretty printer for GuC load status.
864 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)865 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
866 {
867 struct intel_gt *gt = guc_to_gt(guc);
868 struct intel_uncore *uncore = gt->uncore;
869 intel_wakeref_t wakeref;
870
871 if (!intel_guc_is_supported(guc)) {
872 drm_printf(p, "GuC not supported\n");
873 return;
874 }
875
876 if (!intel_guc_is_wanted(guc)) {
877 drm_printf(p, "GuC disabled\n");
878 return;
879 }
880
881 intel_uc_fw_dump(&guc->fw, p);
882
883 with_intel_runtime_pm(uncore->rpm, wakeref) {
884 u32 status = intel_uncore_read(uncore, GUC_STATUS);
885 u32 i;
886
887 drm_printf(p, "GuC status 0x%08x:\n", status);
888 drm_printf(p, "\tBootrom status = 0x%x\n",
889 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
890 drm_printf(p, "\tuKernel status = 0x%x\n",
891 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
892 drm_printf(p, "\tMIA Core status = 0x%x\n",
893 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
894 drm_puts(p, "Scratch registers:\n");
895 for (i = 0; i < 16; i++) {
896 drm_printf(p, "\t%2d: \t0x%x\n",
897 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
898 }
899 }
900 }
901
intel_guc_write_barrier(struct intel_guc * guc)902 void intel_guc_write_barrier(struct intel_guc *guc)
903 {
904 struct intel_gt *gt = guc_to_gt(guc);
905
906 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
907 /*
908 * Ensure intel_uncore_write_fw can be used rather than
909 * intel_uncore_write.
910 */
911 GEM_BUG_ON(guc->send_regs.fw_domains);
912
913 /*
914 * This register is used by the i915 and GuC for MMIO based
915 * communication. Once we are in this code CTBs are the only
916 * method the i915 uses to communicate with the GuC so it is
917 * safe to write to this register (a value of 0 is NOP for MMIO
918 * communication). If we ever start mixing CTBs and MMIOs a new
919 * register will have to be chosen. This function is also used
920 * to enforce ordering of a work queue item write and an update
921 * to the process descriptor. When a work queue is being used,
922 * CTBs are also the only mechanism of communication.
923 */
924 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
925 } else {
926 /* wmb() sufficient for a barrier if in smem */
927 wmb();
928 }
929 }
930