1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016-2019 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/time64.h>
9 #include <linux/string_helpers.h>
10 #include <linux/timekeeping.h>
11
12 #include "i915_drv.h"
13 #include "intel_guc_ct.h"
14 #include "gt/intel_gt.h"
15
ct_to_guc(struct intel_guc_ct * ct)16 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
17 {
18 return container_of(ct, struct intel_guc, ct);
19 }
20
ct_to_gt(struct intel_guc_ct * ct)21 static inline struct intel_gt *ct_to_gt(struct intel_guc_ct *ct)
22 {
23 return guc_to_gt(ct_to_guc(ct));
24 }
25
ct_to_i915(struct intel_guc_ct * ct)26 static inline struct drm_i915_private *ct_to_i915(struct intel_guc_ct *ct)
27 {
28 return ct_to_gt(ct)->i915;
29 }
30
ct_to_drm(struct intel_guc_ct * ct)31 static inline struct drm_device *ct_to_drm(struct intel_guc_ct *ct)
32 {
33 return &ct_to_i915(ct)->drm;
34 }
35
36 #define CT_ERROR(_ct, _fmt, ...) \
37 drm_err(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
38 #ifdef CONFIG_DRM_I915_DEBUG_GUC
39 #define CT_DEBUG(_ct, _fmt, ...) \
40 drm_dbg(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
41 #else
42 #define CT_DEBUG(...) do { } while (0)
43 #endif
44 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
45 i915_probe_error(ct_to_i915(ct), "CT: " _fmt, ##__VA_ARGS__)
46
47 /**
48 * DOC: CTB Blob
49 *
50 * We allocate single blob to hold both CTB descriptors and buffers:
51 *
52 * +--------+-----------------------------------------------+------+
53 * | offset | contents | size |
54 * +========+===============================================+======+
55 * | 0x0000 | H2G `CTB Descriptor`_ (send) | |
56 * +--------+-----------------------------------------------+ 4K |
57 * | 0x0800 | G2H `CTB Descriptor`_ (recv) | |
58 * +--------+-----------------------------------------------+------+
59 * | 0x1000 | H2G `CT Buffer`_ (send) | n*4K |
60 * | | | |
61 * +--------+-----------------------------------------------+------+
62 * | 0x1000 | G2H `CT Buffer`_ (recv) | m*4K |
63 * | + n*4K | | |
64 * +--------+-----------------------------------------------+------+
65 *
66 * Size of each `CT Buffer`_ must be multiple of 4K.
67 * We don't expect too many messages in flight at any time, unless we are
68 * using the GuC submission. In that case each request requires a minimum
69 * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
70 * enough space to avoid backpressure on the driver. We increase the size
71 * of the receive buffer (relative to the send) to ensure a G2H response
72 * CTB has a landing spot.
73 */
74 #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
75 #define CTB_H2G_BUFFER_SIZE (SZ_4K)
76 #define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE)
77 #define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4)
78
79 struct ct_request {
80 struct list_head link;
81 u32 fence;
82 u32 status;
83 u32 response_len;
84 u32 *response_buf;
85 };
86
87 struct ct_incoming_msg {
88 struct list_head link;
89 u32 size;
90 u32 msg[];
91 };
92
93 enum { CTB_SEND = 0, CTB_RECV = 1 };
94
95 enum { CTB_OWNER_HOST = 0 };
96
97 static void ct_receive_tasklet_func(struct tasklet_struct *t);
98 static void ct_incoming_request_worker_func(struct work_struct *w);
99
100 /**
101 * intel_guc_ct_init_early - Initialize CT state without requiring device access
102 * @ct: pointer to CT struct
103 */
intel_guc_ct_init_early(struct intel_guc_ct * ct)104 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
105 {
106 spin_lock_init(&ct->ctbs.send.lock);
107 spin_lock_init(&ct->ctbs.recv.lock);
108 spin_lock_init(&ct->requests.lock);
109 INIT_LIST_HEAD(&ct->requests.pending);
110 INIT_LIST_HEAD(&ct->requests.incoming);
111 INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
112 tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
113 init_waitqueue_head(&ct->wq);
114 }
115
guc_ct_buffer_desc_init(struct guc_ct_buffer_desc * desc)116 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
117 {
118 memset(desc, 0, sizeof(*desc));
119 }
120
guc_ct_buffer_reset(struct intel_guc_ct_buffer * ctb)121 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
122 {
123 u32 space;
124
125 ctb->broken = false;
126 ctb->tail = 0;
127 ctb->head = 0;
128 space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
129 atomic_set(&ctb->space, space);
130
131 guc_ct_buffer_desc_init(ctb->desc);
132 }
133
guc_ct_buffer_init(struct intel_guc_ct_buffer * ctb,struct guc_ct_buffer_desc * desc,u32 * cmds,u32 size_in_bytes,u32 resv_space)134 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
135 struct guc_ct_buffer_desc *desc,
136 u32 *cmds, u32 size_in_bytes, u32 resv_space)
137 {
138 GEM_BUG_ON(size_in_bytes % 4);
139
140 ctb->desc = desc;
141 ctb->cmds = cmds;
142 ctb->size = size_in_bytes / 4;
143 ctb->resv_space = resv_space / 4;
144
145 guc_ct_buffer_reset(ctb);
146 }
147
guc_action_control_ctb(struct intel_guc * guc,u32 control)148 static int guc_action_control_ctb(struct intel_guc *guc, u32 control)
149 {
150 u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
151 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
152 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
153 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB),
154 FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, control),
155 };
156 int ret;
157
158 GEM_BUG_ON(control != GUC_CTB_CONTROL_DISABLE && control != GUC_CTB_CONTROL_ENABLE);
159
160 /* CT control must go over MMIO */
161 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
162
163 return ret > 0 ? -EPROTO : ret;
164 }
165
ct_control_enable(struct intel_guc_ct * ct,bool enable)166 static int ct_control_enable(struct intel_guc_ct *ct, bool enable)
167 {
168 int err;
169
170 err = guc_action_control_ctb(ct_to_guc(ct), enable ?
171 GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE);
172 if (unlikely(err))
173 CT_PROBE_ERROR(ct, "Failed to control/%s CTB (%pe)\n",
174 str_enable_disable(enable), ERR_PTR(err));
175
176 return err;
177 }
178
ct_register_buffer(struct intel_guc_ct * ct,bool send,u32 desc_addr,u32 buff_addr,u32 size)179 static int ct_register_buffer(struct intel_guc_ct *ct, bool send,
180 u32 desc_addr, u32 buff_addr, u32 size)
181 {
182 int err;
183
184 err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
185 GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY :
186 GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
187 desc_addr);
188 if (unlikely(err))
189 goto failed;
190
191 err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
192 GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY :
193 GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
194 buff_addr);
195 if (unlikely(err))
196 goto failed;
197
198 err = intel_guc_self_cfg32(ct_to_guc(ct), send ?
199 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY :
200 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
201 size);
202 if (unlikely(err))
203 failed:
204 CT_PROBE_ERROR(ct, "Failed to register %s buffer (%pe)\n",
205 send ? "SEND" : "RECV", ERR_PTR(err));
206
207 return err;
208 }
209
210 /**
211 * intel_guc_ct_init - Init buffer-based communication
212 * @ct: pointer to CT struct
213 *
214 * Allocate memory required for buffer-based communication.
215 *
216 * Return: 0 on success, a negative errno code on failure.
217 */
intel_guc_ct_init(struct intel_guc_ct * ct)218 int intel_guc_ct_init(struct intel_guc_ct *ct)
219 {
220 struct intel_guc *guc = ct_to_guc(ct);
221 struct guc_ct_buffer_desc *desc;
222 u32 blob_size;
223 u32 cmds_size;
224 u32 resv_space;
225 void *blob;
226 u32 *cmds;
227 int err;
228
229 err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
230 if (err)
231 return err;
232
233 GEM_BUG_ON(ct->vma);
234
235 blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
236 err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
237 if (unlikely(err)) {
238 CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
239 blob_size, ERR_PTR(err));
240 return err;
241 }
242
243 CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
244
245 /* store pointers to desc and cmds for send ctb */
246 desc = blob;
247 cmds = blob + 2 * CTB_DESC_SIZE;
248 cmds_size = CTB_H2G_BUFFER_SIZE;
249 resv_space = 0;
250 CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
251 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
252 resv_space);
253
254 guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
255
256 /* store pointers to desc and cmds for recv ctb */
257 desc = blob + CTB_DESC_SIZE;
258 cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
259 cmds_size = CTB_G2H_BUFFER_SIZE;
260 resv_space = G2H_ROOM_BUFFER_SIZE;
261 CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
262 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
263 resv_space);
264
265 guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
266
267 return 0;
268 }
269
270 /**
271 * intel_guc_ct_fini - Fini buffer-based communication
272 * @ct: pointer to CT struct
273 *
274 * Deallocate memory required for buffer-based communication.
275 */
intel_guc_ct_fini(struct intel_guc_ct * ct)276 void intel_guc_ct_fini(struct intel_guc_ct *ct)
277 {
278 GEM_BUG_ON(ct->enabled);
279
280 tasklet_kill(&ct->receive_tasklet);
281 i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
282 memset(ct, 0, sizeof(*ct));
283 }
284
285 /**
286 * intel_guc_ct_enable - Enable buffer based command transport.
287 * @ct: pointer to CT struct
288 *
289 * Return: 0 on success, a negative errno code on failure.
290 */
intel_guc_ct_enable(struct intel_guc_ct * ct)291 int intel_guc_ct_enable(struct intel_guc_ct *ct)
292 {
293 struct intel_guc *guc = ct_to_guc(ct);
294 u32 base, desc, cmds, size;
295 void *blob;
296 int err;
297
298 GEM_BUG_ON(ct->enabled);
299
300 /* vma should be already allocated and map'ed */
301 GEM_BUG_ON(!ct->vma);
302 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
303 base = intel_guc_ggtt_offset(guc, ct->vma);
304
305 /* blob should start with send descriptor */
306 blob = __px_vaddr(ct->vma->obj);
307 GEM_BUG_ON(blob != ct->ctbs.send.desc);
308
309 /* (re)initialize descriptors */
310 guc_ct_buffer_reset(&ct->ctbs.send);
311 guc_ct_buffer_reset(&ct->ctbs.recv);
312
313 /*
314 * Register both CT buffers starting with RECV buffer.
315 * Descriptors are in first half of the blob.
316 */
317 desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
318 cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
319 size = ct->ctbs.recv.size * 4;
320 err = ct_register_buffer(ct, false, desc, cmds, size);
321 if (unlikely(err))
322 goto err_out;
323
324 desc = base + ptrdiff(ct->ctbs.send.desc, blob);
325 cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
326 size = ct->ctbs.send.size * 4;
327 err = ct_register_buffer(ct, true, desc, cmds, size);
328 if (unlikely(err))
329 goto err_out;
330
331 err = ct_control_enable(ct, true);
332 if (unlikely(err))
333 goto err_out;
334
335 ct->enabled = true;
336 ct->stall_time = KTIME_MAX;
337
338 return 0;
339
340 err_out:
341 CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
342 return err;
343 }
344
345 /**
346 * intel_guc_ct_disable - Disable buffer based command transport.
347 * @ct: pointer to CT struct
348 */
intel_guc_ct_disable(struct intel_guc_ct * ct)349 void intel_guc_ct_disable(struct intel_guc_ct *ct)
350 {
351 struct intel_guc *guc = ct_to_guc(ct);
352
353 GEM_BUG_ON(!ct->enabled);
354
355 ct->enabled = false;
356
357 if (intel_guc_is_fw_running(guc)) {
358 ct_control_enable(ct, false);
359 }
360 }
361
ct_get_next_fence(struct intel_guc_ct * ct)362 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
363 {
364 /* For now it's trivial */
365 return ++ct->requests.last_fence;
366 }
367
ct_write(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 fence,u32 flags)368 static int ct_write(struct intel_guc_ct *ct,
369 const u32 *action,
370 u32 len /* in dwords */,
371 u32 fence, u32 flags)
372 {
373 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
374 struct guc_ct_buffer_desc *desc = ctb->desc;
375 u32 tail = ctb->tail;
376 u32 size = ctb->size;
377 u32 header;
378 u32 hxg;
379 u32 type;
380 u32 *cmds = ctb->cmds;
381 unsigned int i;
382
383 if (unlikely(desc->status))
384 goto corrupted;
385
386 GEM_BUG_ON(tail > size);
387
388 #ifdef CONFIG_DRM_I915_DEBUG_GUC
389 if (unlikely(tail != READ_ONCE(desc->tail))) {
390 CT_ERROR(ct, "Tail was modified %u != %u\n",
391 desc->tail, tail);
392 desc->status |= GUC_CTB_STATUS_MISMATCH;
393 goto corrupted;
394 }
395 if (unlikely(READ_ONCE(desc->head) >= size)) {
396 CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
397 desc->head, size);
398 desc->status |= GUC_CTB_STATUS_OVERFLOW;
399 goto corrupted;
400 }
401 #endif
402
403 /*
404 * dw0: CT header (including fence)
405 * dw1: HXG header (including action code)
406 * dw2+: action data
407 */
408 header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
409 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
410 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
411
412 type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_EVENT :
413 GUC_HXG_TYPE_REQUEST;
414 hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
415 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
416 GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
417
418 CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
419 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
420
421 cmds[tail] = header;
422 tail = (tail + 1) % size;
423
424 cmds[tail] = hxg;
425 tail = (tail + 1) % size;
426
427 for (i = 1; i < len; i++) {
428 cmds[tail] = action[i];
429 tail = (tail + 1) % size;
430 }
431 GEM_BUG_ON(tail > size);
432
433 /*
434 * make sure H2G buffer update and LRC tail update (if this triggering a
435 * submission) are visible before updating the descriptor tail
436 */
437 intel_guc_write_barrier(ct_to_guc(ct));
438
439 /* update local copies */
440 ctb->tail = tail;
441 GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
442 atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
443
444 /* now update descriptor */
445 WRITE_ONCE(desc->tail, tail);
446
447 return 0;
448
449 corrupted:
450 CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
451 desc->head, desc->tail, desc->status);
452 ctb->broken = true;
453 return -EPIPE;
454 }
455
456 /**
457 * wait_for_ct_request_update - Wait for CT request state update.
458 * @ct: pointer to CT
459 * @req: pointer to pending request
460 * @status: placeholder for status
461 *
462 * For each sent request, GuC shall send back CT response message.
463 * Our message handler will update status of tracked request once
464 * response message with given fence is received. Wait here and
465 * check for valid response status value.
466 *
467 * Return:
468 * * 0 response received (status is valid)
469 * * -ETIMEDOUT no response within hardcoded timeout
470 */
wait_for_ct_request_update(struct intel_guc_ct * ct,struct ct_request * req,u32 * status)471 static int wait_for_ct_request_update(struct intel_guc_ct *ct, struct ct_request *req, u32 *status)
472 {
473 int err;
474 bool ct_enabled;
475
476 /*
477 * Fast commands should complete in less than 10us, so sample quickly
478 * up to that length of time, then switch to a slower sleep-wait loop.
479 * No GuC command should ever take longer than 10ms but many GuC
480 * commands can be inflight at time, so use a 1s timeout on the slower
481 * sleep-wait loop.
482 */
483 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
484 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
485 #define done \
486 (!(ct_enabled = intel_guc_ct_enabled(ct)) || \
487 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
488 GUC_HXG_ORIGIN_GUC)
489 err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
490 if (err)
491 err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
492 #undef done
493 if (!ct_enabled)
494 err = -ENODEV;
495
496 *status = req->status;
497 return err;
498 }
499
500 #define GUC_CTB_TIMEOUT_MS 1500
ct_deadlocked(struct intel_guc_ct * ct)501 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
502 {
503 long timeout = GUC_CTB_TIMEOUT_MS;
504 bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
505
506 if (unlikely(ret)) {
507 struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
508 struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
509
510 CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
511 ktime_ms_delta(ktime_get(), ct->stall_time),
512 send->status, recv->status);
513 CT_ERROR(ct, "H2G Space: %u (Bytes)\n",
514 atomic_read(&ct->ctbs.send.space) * 4);
515 CT_ERROR(ct, "Head: %u (Dwords)\n", ct->ctbs.send.desc->head);
516 CT_ERROR(ct, "Tail: %u (Dwords)\n", ct->ctbs.send.desc->tail);
517 CT_ERROR(ct, "G2H Space: %u (Bytes)\n",
518 atomic_read(&ct->ctbs.recv.space) * 4);
519 CT_ERROR(ct, "Head: %u\n (Dwords)", ct->ctbs.recv.desc->head);
520 CT_ERROR(ct, "Tail: %u\n (Dwords)", ct->ctbs.recv.desc->tail);
521
522 ct->ctbs.send.broken = true;
523 }
524
525 return ret;
526 }
527
g2h_has_room(struct intel_guc_ct * ct,u32 g2h_len_dw)528 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
529 {
530 struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
531
532 /*
533 * We leave a certain amount of space in the G2H CTB buffer for
534 * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
535 */
536 return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
537 }
538
g2h_reserve_space(struct intel_guc_ct * ct,u32 g2h_len_dw)539 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
540 {
541 lockdep_assert_held(&ct->ctbs.send.lock);
542
543 GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
544
545 if (g2h_len_dw)
546 atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
547 }
548
g2h_release_space(struct intel_guc_ct * ct,u32 g2h_len_dw)549 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
550 {
551 atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
552 }
553
h2g_has_room(struct intel_guc_ct * ct,u32 len_dw)554 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
555 {
556 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
557 struct guc_ct_buffer_desc *desc = ctb->desc;
558 u32 head;
559 u32 space;
560
561 if (atomic_read(&ctb->space) >= len_dw)
562 return true;
563
564 head = READ_ONCE(desc->head);
565 if (unlikely(head > ctb->size)) {
566 CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
567 head, ctb->size);
568 desc->status |= GUC_CTB_STATUS_OVERFLOW;
569 ctb->broken = true;
570 return false;
571 }
572
573 space = CIRC_SPACE(ctb->tail, head, ctb->size);
574 atomic_set(&ctb->space, space);
575
576 return space >= len_dw;
577 }
578
has_room_nb(struct intel_guc_ct * ct,u32 h2g_dw,u32 g2h_dw)579 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
580 {
581 bool h2g = h2g_has_room(ct, h2g_dw);
582 bool g2h = g2h_has_room(ct, g2h_dw);
583
584 lockdep_assert_held(&ct->ctbs.send.lock);
585
586 if (unlikely(!h2g || !g2h)) {
587 if (ct->stall_time == KTIME_MAX)
588 ct->stall_time = ktime_get();
589
590 /* Be paranoid and kick G2H tasklet to free credits */
591 if (!g2h)
592 tasklet_hi_schedule(&ct->receive_tasklet);
593
594 if (unlikely(ct_deadlocked(ct)))
595 return -EPIPE;
596 else
597 return -EBUSY;
598 }
599
600 ct->stall_time = KTIME_MAX;
601 return 0;
602 }
603
604 #define G2H_LEN_DW(f) ({ \
605 typeof(f) f_ = (f); \
606 FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
607 FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
608 GUC_CTB_HXG_MSG_MIN_LEN : 0; \
609 })
ct_send_nb(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 flags)610 static int ct_send_nb(struct intel_guc_ct *ct,
611 const u32 *action,
612 u32 len,
613 u32 flags)
614 {
615 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
616 unsigned long spin_flags;
617 u32 g2h_len_dw = G2H_LEN_DW(flags);
618 u32 fence;
619 int ret;
620
621 spin_lock_irqsave(&ctb->lock, spin_flags);
622
623 ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
624 if (unlikely(ret))
625 goto out;
626
627 fence = ct_get_next_fence(ct);
628 ret = ct_write(ct, action, len, fence, flags);
629 if (unlikely(ret))
630 goto out;
631
632 g2h_reserve_space(ct, g2h_len_dw);
633 intel_guc_notify(ct_to_guc(ct));
634
635 out:
636 spin_unlock_irqrestore(&ctb->lock, spin_flags);
637
638 return ret;
639 }
640
ct_send(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size,u32 * status)641 static int ct_send(struct intel_guc_ct *ct,
642 const u32 *action,
643 u32 len,
644 u32 *response_buf,
645 u32 response_buf_size,
646 u32 *status)
647 {
648 struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
649 struct ct_request request;
650 unsigned long flags;
651 unsigned int sleep_period_ms = 1;
652 bool send_again;
653 u32 fence;
654 int err;
655
656 GEM_BUG_ON(!ct->enabled);
657 GEM_BUG_ON(!len);
658 GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK);
659 GEM_BUG_ON(!response_buf && response_buf_size);
660 might_sleep();
661
662 resend:
663 send_again = false;
664
665 /*
666 * We use a lazy spin wait loop here as we believe that if the CT
667 * buffers are sized correctly the flow control condition should be
668 * rare. Reserving the maximum size in the G2H credits as we don't know
669 * how big the response is going to be.
670 */
671 retry:
672 spin_lock_irqsave(&ctb->lock, flags);
673 if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
674 !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
675 if (ct->stall_time == KTIME_MAX)
676 ct->stall_time = ktime_get();
677 spin_unlock_irqrestore(&ctb->lock, flags);
678
679 if (unlikely(ct_deadlocked(ct)))
680 return -EPIPE;
681
682 if (msleep_interruptible(sleep_period_ms))
683 return -EINTR;
684 sleep_period_ms = sleep_period_ms << 1;
685
686 goto retry;
687 }
688
689 ct->stall_time = KTIME_MAX;
690
691 fence = ct_get_next_fence(ct);
692 request.fence = fence;
693 request.status = 0;
694 request.response_len = response_buf_size;
695 request.response_buf = response_buf;
696
697 spin_lock(&ct->requests.lock);
698 list_add_tail(&request.link, &ct->requests.pending);
699 spin_unlock(&ct->requests.lock);
700
701 err = ct_write(ct, action, len, fence, 0);
702 g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
703
704 spin_unlock_irqrestore(&ctb->lock, flags);
705
706 if (unlikely(err))
707 goto unlink;
708
709 intel_guc_notify(ct_to_guc(ct));
710
711 err = wait_for_ct_request_update(ct, &request, status);
712 g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
713 if (unlikely(err)) {
714 if (err == -ENODEV)
715 /* wait_for_ct_request_update returns -ENODEV on reset/suspend in progress.
716 * In this case, output is debug rather than error info
717 */
718 CT_DEBUG(ct, "Request %#x (fence %u) cancelled as CTB is disabled\n",
719 action[0], request.fence);
720 else
721 CT_ERROR(ct, "No response for request %#x (fence %u)\n",
722 action[0], request.fence);
723 goto unlink;
724 }
725
726 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
727 CT_DEBUG(ct, "retrying request %#x (%u)\n", *action,
728 FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, *status));
729 send_again = true;
730 goto unlink;
731 }
732
733 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
734 err = -EIO;
735 goto unlink;
736 }
737
738 if (response_buf) {
739 /* There shall be no data in the status */
740 WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
741 /* Return actual response len */
742 err = request.response_len;
743 } else {
744 /* There shall be no response payload */
745 WARN_ON(request.response_len);
746 /* Return data decoded from the status dword */
747 err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
748 }
749
750 unlink:
751 spin_lock_irqsave(&ct->requests.lock, flags);
752 list_del(&request.link);
753 spin_unlock_irqrestore(&ct->requests.lock, flags);
754
755 if (unlikely(send_again))
756 goto resend;
757
758 return err;
759 }
760
761 /*
762 * Command Transport (CT) buffer based GuC send function.
763 */
intel_guc_ct_send(struct intel_guc_ct * ct,const u32 * action,u32 len,u32 * response_buf,u32 response_buf_size,u32 flags)764 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
765 u32 *response_buf, u32 response_buf_size, u32 flags)
766 {
767 u32 status = ~0; /* undefined */
768 int ret;
769
770 if (unlikely(!ct->enabled)) {
771 struct intel_guc *guc = ct_to_guc(ct);
772 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
773
774 WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
775 return -ENODEV;
776 }
777
778 if (unlikely(ct->ctbs.send.broken))
779 return -EPIPE;
780
781 if (flags & INTEL_GUC_CT_SEND_NB)
782 return ct_send_nb(ct, action, len, flags);
783
784 ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
785 if (unlikely(ret < 0)) {
786 if (ret != -ENODEV)
787 CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
788 action[0], ERR_PTR(ret), status);
789 } else if (unlikely(ret)) {
790 CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
791 action[0], ret, ret);
792 }
793
794 return ret;
795 }
796
ct_alloc_msg(u32 num_dwords)797 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
798 {
799 struct ct_incoming_msg *msg;
800
801 msg = kmalloc(struct_size(msg, msg, num_dwords), GFP_ATOMIC);
802 if (msg)
803 msg->size = num_dwords;
804 return msg;
805 }
806
ct_free_msg(struct ct_incoming_msg * msg)807 static void ct_free_msg(struct ct_incoming_msg *msg)
808 {
809 kfree(msg);
810 }
811
812 /*
813 * Return: number available remaining dwords to read (0 if empty)
814 * or a negative error code on failure
815 */
ct_read(struct intel_guc_ct * ct,struct ct_incoming_msg ** msg)816 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
817 {
818 struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
819 struct guc_ct_buffer_desc *desc = ctb->desc;
820 u32 head = ctb->head;
821 u32 tail = READ_ONCE(desc->tail);
822 u32 size = ctb->size;
823 u32 *cmds = ctb->cmds;
824 s32 available;
825 unsigned int len;
826 unsigned int i;
827 u32 header;
828
829 if (unlikely(ctb->broken))
830 return -EPIPE;
831
832 if (unlikely(desc->status)) {
833 u32 status = desc->status;
834
835 if (status & GUC_CTB_STATUS_UNUSED) {
836 /*
837 * Potentially valid if a CLIENT_RESET request resulted in
838 * contexts/engines being reset. But should never happen as
839 * no contexts should be active when CLIENT_RESET is sent.
840 */
841 CT_ERROR(ct, "Unexpected G2H after GuC has stopped!\n");
842 status &= ~GUC_CTB_STATUS_UNUSED;
843 }
844
845 if (status)
846 goto corrupted;
847 }
848
849 GEM_BUG_ON(head > size);
850
851 #ifdef CONFIG_DRM_I915_DEBUG_GUC
852 if (unlikely(head != READ_ONCE(desc->head))) {
853 CT_ERROR(ct, "Head was modified %u != %u\n",
854 desc->head, head);
855 desc->status |= GUC_CTB_STATUS_MISMATCH;
856 goto corrupted;
857 }
858 #endif
859 if (unlikely(tail >= size)) {
860 CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
861 tail, size);
862 desc->status |= GUC_CTB_STATUS_OVERFLOW;
863 goto corrupted;
864 }
865
866 /* tail == head condition indicates empty */
867 available = tail - head;
868 if (unlikely(available == 0)) {
869 *msg = NULL;
870 return 0;
871 }
872
873 /* beware of buffer wrap case */
874 if (unlikely(available < 0))
875 available += size;
876 CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
877 GEM_BUG_ON(available < 0);
878
879 header = cmds[head];
880 head = (head + 1) % size;
881
882 /* message len with header */
883 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
884 if (unlikely(len > (u32)available)) {
885 CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
886 4, &header,
887 4 * (head + available - 1 > size ?
888 size - head : available - 1), &cmds[head],
889 4 * (head + available - 1 > size ?
890 available - 1 - size + head : 0), &cmds[0]);
891 desc->status |= GUC_CTB_STATUS_UNDERFLOW;
892 goto corrupted;
893 }
894
895 *msg = ct_alloc_msg(len);
896 if (!*msg) {
897 CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
898 4, &header,
899 4 * (head + available - 1 > size ?
900 size - head : available - 1), &cmds[head],
901 4 * (head + available - 1 > size ?
902 available - 1 - size + head : 0), &cmds[0]);
903 return available;
904 }
905
906 (*msg)->msg[0] = header;
907
908 for (i = 1; i < len; i++) {
909 (*msg)->msg[i] = cmds[head];
910 head = (head + 1) % size;
911 }
912 CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
913
914 /* update local copies */
915 ctb->head = head;
916
917 /* now update descriptor */
918 WRITE_ONCE(desc->head, head);
919
920 return available - len;
921
922 corrupted:
923 CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
924 desc->head, desc->tail, desc->status);
925 ctb->broken = true;
926 return -EPIPE;
927 }
928
ct_handle_response(struct intel_guc_ct * ct,struct ct_incoming_msg * response)929 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
930 {
931 u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
932 u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
933 const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
934 const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
935 u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
936 struct ct_request *req;
937 unsigned long flags;
938 bool found = false;
939 int err = 0;
940
941 GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
942 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
943 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
944 FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_NO_RESPONSE_RETRY &&
945 FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
946
947 CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
948
949 spin_lock_irqsave(&ct->requests.lock, flags);
950 list_for_each_entry(req, &ct->requests.pending, link) {
951 if (unlikely(fence != req->fence)) {
952 CT_DEBUG(ct, "request %u awaits response\n",
953 req->fence);
954 continue;
955 }
956 if (unlikely(datalen > req->response_len)) {
957 CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
958 req->fence, datalen, req->response_len);
959 datalen = min(datalen, req->response_len);
960 err = -EMSGSIZE;
961 }
962 if (datalen)
963 memcpy(req->response_buf, data, 4 * datalen);
964 req->response_len = datalen;
965 WRITE_ONCE(req->status, hxg[0]);
966 found = true;
967 break;
968 }
969 if (!found) {
970 CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence);
971 CT_ERROR(ct, "Could not find fence=%u, last_fence=%u\n", fence,
972 ct->requests.last_fence);
973 list_for_each_entry(req, &ct->requests.pending, link)
974 CT_ERROR(ct, "request %u awaits response\n",
975 req->fence);
976 err = -ENOKEY;
977 }
978 spin_unlock_irqrestore(&ct->requests.lock, flags);
979
980 if (unlikely(err))
981 return err;
982
983 ct_free_msg(response);
984 return 0;
985 }
986
ct_process_request(struct intel_guc_ct * ct,struct ct_incoming_msg * request)987 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
988 {
989 struct intel_guc *guc = ct_to_guc(ct);
990 const u32 *hxg;
991 const u32 *payload;
992 u32 hxg_len, action, len;
993 int ret;
994
995 hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
996 hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
997 payload = &hxg[GUC_HXG_MSG_MIN_LEN];
998 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
999 len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1000
1001 CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
1002
1003 switch (action) {
1004 case INTEL_GUC_ACTION_DEFAULT:
1005 ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
1006 break;
1007 case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1008 ret = intel_guc_deregister_done_process_msg(guc, payload,
1009 len);
1010 break;
1011 case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1012 ret = intel_guc_sched_done_process_msg(guc, payload, len);
1013 break;
1014 case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1015 ret = intel_guc_context_reset_process_msg(guc, payload, len);
1016 break;
1017 case INTEL_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1018 ret = intel_guc_error_capture_process_msg(guc, payload, len);
1019 if (unlikely(ret))
1020 CT_ERROR(ct, "error capture notification failed %x %*ph\n",
1021 action, 4 * len, payload);
1022 break;
1023 case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1024 ret = intel_guc_engine_failure_process_msg(guc, payload, len);
1025 break;
1026 case INTEL_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1027 intel_guc_log_handle_flush_event(&guc->log);
1028 ret = 0;
1029 break;
1030 case INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1031 CT_ERROR(ct, "Received GuC crash dump notification!\n");
1032 ret = 0;
1033 break;
1034 case INTEL_GUC_ACTION_NOTIFY_EXCEPTION:
1035 CT_ERROR(ct, "Received GuC exception notification!\n");
1036 ret = 0;
1037 break;
1038 default:
1039 ret = -EOPNOTSUPP;
1040 break;
1041 }
1042
1043 if (unlikely(ret)) {
1044 CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
1045 action, ERR_PTR(ret));
1046 return ret;
1047 }
1048
1049 ct_free_msg(request);
1050 return 0;
1051 }
1052
ct_process_incoming_requests(struct intel_guc_ct * ct)1053 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
1054 {
1055 unsigned long flags;
1056 struct ct_incoming_msg *request;
1057 bool done;
1058 int err;
1059
1060 spin_lock_irqsave(&ct->requests.lock, flags);
1061 request = list_first_entry_or_null(&ct->requests.incoming,
1062 struct ct_incoming_msg, link);
1063 if (request)
1064 list_del(&request->link);
1065 done = !!list_empty(&ct->requests.incoming);
1066 spin_unlock_irqrestore(&ct->requests.lock, flags);
1067
1068 if (!request)
1069 return true;
1070
1071 err = ct_process_request(ct, request);
1072 if (unlikely(err)) {
1073 CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1074 ERR_PTR(err), 4 * request->size, request->msg);
1075 ct_free_msg(request);
1076 }
1077
1078 return done;
1079 }
1080
ct_incoming_request_worker_func(struct work_struct * w)1081 static void ct_incoming_request_worker_func(struct work_struct *w)
1082 {
1083 struct intel_guc_ct *ct =
1084 container_of(w, struct intel_guc_ct, requests.worker);
1085 bool done;
1086
1087 do {
1088 done = ct_process_incoming_requests(ct);
1089 } while (!done);
1090 }
1091
ct_handle_event(struct intel_guc_ct * ct,struct ct_incoming_msg * request)1092 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1093 {
1094 const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1095 u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1096 unsigned long flags;
1097
1098 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1099
1100 /*
1101 * Adjusting the space must be done in IRQ or deadlock can occur as the
1102 * CTB processing in the below workqueue can send CTBs which creates a
1103 * circular dependency if the space was returned there.
1104 */
1105 switch (action) {
1106 case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1107 case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1108 g2h_release_space(ct, request->size);
1109 }
1110
1111 spin_lock_irqsave(&ct->requests.lock, flags);
1112 list_add_tail(&request->link, &ct->requests.incoming);
1113 spin_unlock_irqrestore(&ct->requests.lock, flags);
1114
1115 queue_work(system_unbound_wq, &ct->requests.worker);
1116 return 0;
1117 }
1118
ct_handle_hxg(struct intel_guc_ct * ct,struct ct_incoming_msg * msg)1119 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1120 {
1121 u32 origin, type;
1122 u32 *hxg;
1123 int err;
1124
1125 if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1126 return -EBADMSG;
1127
1128 hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1129
1130 origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1131 if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1132 err = -EPROTO;
1133 goto failed;
1134 }
1135
1136 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1137 switch (type) {
1138 case GUC_HXG_TYPE_EVENT:
1139 err = ct_handle_event(ct, msg);
1140 break;
1141 case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1142 case GUC_HXG_TYPE_RESPONSE_FAILURE:
1143 case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1144 err = ct_handle_response(ct, msg);
1145 break;
1146 default:
1147 err = -EOPNOTSUPP;
1148 }
1149
1150 if (unlikely(err)) {
1151 failed:
1152 CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1153 ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1154 }
1155 return err;
1156 }
1157
ct_handle_msg(struct intel_guc_ct * ct,struct ct_incoming_msg * msg)1158 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1159 {
1160 u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1161 int err;
1162
1163 if (format == GUC_CTB_FORMAT_HXG)
1164 err = ct_handle_hxg(ct, msg);
1165 else
1166 err = -EOPNOTSUPP;
1167
1168 if (unlikely(err)) {
1169 CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1170 ERR_PTR(err), 4 * msg->size, msg->msg);
1171 ct_free_msg(msg);
1172 }
1173 }
1174
1175 /*
1176 * Return: number available remaining dwords to read (0 if empty)
1177 * or a negative error code on failure
1178 */
ct_receive(struct intel_guc_ct * ct)1179 static int ct_receive(struct intel_guc_ct *ct)
1180 {
1181 struct ct_incoming_msg *msg = NULL;
1182 unsigned long flags;
1183 int ret;
1184
1185 spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1186 ret = ct_read(ct, &msg);
1187 spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1188 if (ret < 0)
1189 return ret;
1190
1191 if (msg)
1192 ct_handle_msg(ct, msg);
1193
1194 return ret;
1195 }
1196
ct_try_receive_message(struct intel_guc_ct * ct)1197 static void ct_try_receive_message(struct intel_guc_ct *ct)
1198 {
1199 int ret;
1200
1201 if (GEM_WARN_ON(!ct->enabled))
1202 return;
1203
1204 ret = ct_receive(ct);
1205 if (ret > 0)
1206 tasklet_hi_schedule(&ct->receive_tasklet);
1207 }
1208
ct_receive_tasklet_func(struct tasklet_struct * t)1209 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1210 {
1211 struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1212
1213 ct_try_receive_message(ct);
1214 }
1215
1216 /*
1217 * When we're communicating with the GuC over CT, GuC uses events
1218 * to notify us about new messages being posted on the RECV buffer.
1219 */
intel_guc_ct_event_handler(struct intel_guc_ct * ct)1220 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1221 {
1222 if (unlikely(!ct->enabled)) {
1223 WARN(1, "Unexpected GuC event received while CT disabled!\n");
1224 return;
1225 }
1226
1227 ct_try_receive_message(ct);
1228 }
1229
intel_guc_ct_print_info(struct intel_guc_ct * ct,struct drm_printer * p)1230 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1231 struct drm_printer *p)
1232 {
1233 drm_printf(p, "CT %s\n", str_enabled_disabled(ct->enabled));
1234
1235 if (!ct->enabled)
1236 return;
1237
1238 drm_printf(p, "H2G Space: %u\n",
1239 atomic_read(&ct->ctbs.send.space) * 4);
1240 drm_printf(p, "Head: %u\n",
1241 ct->ctbs.send.desc->head);
1242 drm_printf(p, "Tail: %u\n",
1243 ct->ctbs.send.desc->tail);
1244 drm_printf(p, "G2H Space: %u\n",
1245 atomic_read(&ct->ctbs.recv.space) * 4);
1246 drm_printf(p, "Head: %u\n",
1247 ct->ctbs.recv.desc->head);
1248 drm_printf(p, "Tail: %u\n",
1249 ct->ctbs.recv.desc->tail);
1250 }
1251