1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <drm/drm_managed.h>
7
8 #include "gem/i915_gem_internal.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "pxp/intel_pxp.h"
11
12 #include "i915_drv.h"
13 #include "i915_perf_oa_regs.h"
14 #include "intel_context.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_regs.h"
17 #include "intel_gt.h"
18 #include "intel_gt_buffer_pool.h"
19 #include "intel_gt_clock_utils.h"
20 #include "intel_gt_debugfs.h"
21 #include "intel_gt_gmch.h"
22 #include "intel_gt_pm.h"
23 #include "intel_gt_regs.h"
24 #include "intel_gt_requests.h"
25 #include "intel_migrate.h"
26 #include "intel_mocs.h"
27 #include "intel_pm.h"
28 #include "intel_rc6.h"
29 #include "intel_renderstate.h"
30 #include "intel_rps.h"
31 #include "intel_gt_sysfs.h"
32 #include "intel_uncore.h"
33 #include "shmem_utils.h"
34
__intel_gt_init_early(struct intel_gt * gt)35 static void __intel_gt_init_early(struct intel_gt *gt)
36 {
37 spin_lock_init(>->irq_lock);
38
39 INIT_LIST_HEAD(>->closed_vma);
40 spin_lock_init(>->closed_lock);
41
42 init_llist_head(>->watchdog.list);
43 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work);
44
45 intel_gt_init_buffer_pool(gt);
46 intel_gt_init_reset(gt);
47 intel_gt_init_requests(gt);
48 intel_gt_init_timelines(gt);
49 mutex_init(>->tlb.invalidate_lock);
50 seqcount_mutex_init(>->tlb.seqno, >->tlb.invalidate_lock);
51 intel_gt_pm_init_early(gt);
52
53 intel_uc_init_early(>->uc);
54 intel_rps_init_early(>->rps);
55 }
56
57 /* Preliminary initialization of Tile 0 */
intel_root_gt_init_early(struct drm_i915_private * i915)58 void intel_root_gt_init_early(struct drm_i915_private *i915)
59 {
60 struct intel_gt *gt = to_gt(i915);
61
62 gt->i915 = i915;
63 gt->uncore = &i915->uncore;
64
65 __intel_gt_init_early(gt);
66 }
67
intel_gt_probe_lmem(struct intel_gt * gt)68 static int intel_gt_probe_lmem(struct intel_gt *gt)
69 {
70 struct drm_i915_private *i915 = gt->i915;
71 unsigned int instance = gt->info.id;
72 int id = INTEL_REGION_LMEM_0 + instance;
73 struct intel_memory_region *mem;
74 int err;
75
76 mem = intel_gt_setup_lmem(gt);
77 if (IS_ERR(mem)) {
78 err = PTR_ERR(mem);
79 if (err == -ENODEV)
80 return 0;
81
82 drm_err(&i915->drm,
83 "Failed to setup region(%d) type=%d\n",
84 err, INTEL_MEMORY_LOCAL);
85 return err;
86 }
87
88 mem->id = id;
89 mem->instance = instance;
90
91 intel_memory_region_set_name(mem, "local%u", mem->instance);
92
93 GEM_BUG_ON(!HAS_REGION(i915, id));
94 GEM_BUG_ON(i915->mm.regions[id]);
95 i915->mm.regions[id] = mem;
96
97 return 0;
98 }
99
intel_gt_assign_ggtt(struct intel_gt * gt)100 int intel_gt_assign_ggtt(struct intel_gt *gt)
101 {
102 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
103
104 return gt->ggtt ? 0 : -ENOMEM;
105 }
106
107 static const char * const intel_steering_types[] = {
108 "L3BANK",
109 "MSLICE",
110 "LNCF",
111 };
112
113 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
114 { 0x00B100, 0x00B3FF },
115 {},
116 };
117
118 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
119 { 0x004000, 0x004AFF },
120 { 0x00C800, 0x00CFFF },
121 { 0x00DD00, 0x00DDFF },
122 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
123 {},
124 };
125
126 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
127 { 0x00B000, 0x00B0FF },
128 { 0x00D800, 0x00D8FF },
129 {},
130 };
131
132 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
133 { 0x00B000, 0x00B0FF },
134 { 0x00D880, 0x00D8FF },
135 {},
136 };
137
slicemask(struct intel_gt * gt,int count)138 static u16 slicemask(struct intel_gt *gt, int count)
139 {
140 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0);
141
142 return intel_slicemask_from_dssmask(dss_mask, count);
143 }
144
intel_gt_init_mmio(struct intel_gt * gt)145 int intel_gt_init_mmio(struct intel_gt *gt)
146 {
147 struct drm_i915_private *i915 = gt->i915;
148
149 intel_gt_init_clock_frequency(gt);
150
151 intel_uc_init_mmio(>->uc);
152 intel_sseu_info_init(gt);
153
154 /*
155 * An mslice is unavailable only if both the meml3 for the slice is
156 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
157 */
158 if (HAS_MSLICES(i915))
159 gt->info.mslice_mask =
160 slicemask(gt, GEN_DSS_PER_MSLICE) |
161 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
162 GEN12_MEML3_EN_MASK);
163
164 if (IS_DG2(i915)) {
165 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
166 gt->steering_table[LNCF] = dg2_lncf_steering_table;
167 } else if (IS_XEHPSDV(i915)) {
168 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
169 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
170 } else if (GRAPHICS_VER(i915) >= 11 &&
171 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
172 gt->steering_table[L3BANK] = icl_l3bank_steering_table;
173 gt->info.l3bank_mask =
174 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
175 GEN10_L3BANK_MASK;
176 } else if (HAS_MSLICES(i915)) {
177 MISSING_CASE(INTEL_INFO(i915)->platform);
178 }
179
180 return intel_engines_init_mmio(gt);
181 }
182
init_unused_ring(struct intel_gt * gt,u32 base)183 static void init_unused_ring(struct intel_gt *gt, u32 base)
184 {
185 struct intel_uncore *uncore = gt->uncore;
186
187 intel_uncore_write(uncore, RING_CTL(base), 0);
188 intel_uncore_write(uncore, RING_HEAD(base), 0);
189 intel_uncore_write(uncore, RING_TAIL(base), 0);
190 intel_uncore_write(uncore, RING_START(base), 0);
191 }
192
init_unused_rings(struct intel_gt * gt)193 static void init_unused_rings(struct intel_gt *gt)
194 {
195 struct drm_i915_private *i915 = gt->i915;
196
197 if (IS_I830(i915)) {
198 init_unused_ring(gt, PRB1_BASE);
199 init_unused_ring(gt, SRB0_BASE);
200 init_unused_ring(gt, SRB1_BASE);
201 init_unused_ring(gt, SRB2_BASE);
202 init_unused_ring(gt, SRB3_BASE);
203 } else if (GRAPHICS_VER(i915) == 2) {
204 init_unused_ring(gt, SRB0_BASE);
205 init_unused_ring(gt, SRB1_BASE);
206 } else if (GRAPHICS_VER(i915) == 3) {
207 init_unused_ring(gt, PRB1_BASE);
208 init_unused_ring(gt, PRB2_BASE);
209 }
210 }
211
intel_gt_init_hw(struct intel_gt * gt)212 int intel_gt_init_hw(struct intel_gt *gt)
213 {
214 struct drm_i915_private *i915 = gt->i915;
215 struct intel_uncore *uncore = gt->uncore;
216 int ret;
217
218 gt->last_init_time = ktime_get();
219
220 /* Double layer security blanket, see i915_gem_init() */
221 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
222
223 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
224 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
225
226 if (IS_HASWELL(i915))
227 intel_uncore_write(uncore,
228 HSW_MI_PREDICATE_RESULT_2,
229 IS_HSW_GT3(i915) ?
230 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
231
232 /* Apply the GT workarounds... */
233 intel_gt_apply_workarounds(gt);
234 /* ...and determine whether they are sticking. */
235 intel_gt_verify_workarounds(gt, "init");
236
237 intel_gt_init_swizzling(gt);
238
239 /*
240 * At least 830 can leave some of the unused rings
241 * "active" (ie. head != tail) after resume which
242 * will prevent c3 entry. Makes sure all unused rings
243 * are totally idle.
244 */
245 init_unused_rings(gt);
246
247 ret = i915_ppgtt_init_hw(gt);
248 if (ret) {
249 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
250 goto out;
251 }
252
253 /* We can't enable contexts until all firmware is loaded */
254 ret = intel_uc_init_hw(>->uc);
255 if (ret) {
256 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
257 goto out;
258 }
259
260 intel_mocs_init(gt);
261
262 out:
263 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
264 return ret;
265 }
266
rmw_set(struct intel_uncore * uncore,i915_reg_t reg,u32 set)267 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
268 {
269 intel_uncore_rmw(uncore, reg, 0, set);
270 }
271
rmw_clear(struct intel_uncore * uncore,i915_reg_t reg,u32 clr)272 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
273 {
274 intel_uncore_rmw(uncore, reg, clr, 0);
275 }
276
clear_register(struct intel_uncore * uncore,i915_reg_t reg)277 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
278 {
279 intel_uncore_rmw(uncore, reg, 0, 0);
280 }
281
gen6_clear_engine_error_register(struct intel_engine_cs * engine)282 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
283 {
284 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
285 GEN6_RING_FAULT_REG_POSTING_READ(engine);
286 }
287
288 void
intel_gt_clear_error_registers(struct intel_gt * gt,intel_engine_mask_t engine_mask)289 intel_gt_clear_error_registers(struct intel_gt *gt,
290 intel_engine_mask_t engine_mask)
291 {
292 struct drm_i915_private *i915 = gt->i915;
293 struct intel_uncore *uncore = gt->uncore;
294 u32 eir;
295
296 if (GRAPHICS_VER(i915) != 2)
297 clear_register(uncore, PGTBL_ER);
298
299 if (GRAPHICS_VER(i915) < 4)
300 clear_register(uncore, IPEIR(RENDER_RING_BASE));
301 else
302 clear_register(uncore, IPEIR_I965);
303
304 clear_register(uncore, EIR);
305 eir = intel_uncore_read(uncore, EIR);
306 if (eir) {
307 /*
308 * some errors might have become stuck,
309 * mask them.
310 */
311 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
312 rmw_set(uncore, EMR, eir);
313 intel_uncore_write(uncore, GEN2_IIR,
314 I915_MASTER_ERROR_INTERRUPT);
315 }
316
317 if (GRAPHICS_VER(i915) >= 12) {
318 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
319 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
320 } else if (GRAPHICS_VER(i915) >= 8) {
321 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
322 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
323 } else if (GRAPHICS_VER(i915) >= 6) {
324 struct intel_engine_cs *engine;
325 enum intel_engine_id id;
326
327 for_each_engine_masked(engine, gt, engine_mask, id)
328 gen6_clear_engine_error_register(engine);
329 }
330 }
331
gen6_check_faults(struct intel_gt * gt)332 static void gen6_check_faults(struct intel_gt *gt)
333 {
334 struct intel_engine_cs *engine;
335 enum intel_engine_id id;
336 u32 fault;
337
338 for_each_engine(engine, gt, id) {
339 fault = GEN6_RING_FAULT_REG_READ(engine);
340 if (fault & RING_FAULT_VALID) {
341 drm_dbg(&engine->i915->drm, "Unexpected fault\n"
342 "\tAddr: 0x%08lx\n"
343 "\tAddress space: %s\n"
344 "\tSource ID: %d\n"
345 "\tType: %d\n",
346 fault & PAGE_MASK,
347 fault & RING_FAULT_GTTSEL_MASK ?
348 "GGTT" : "PPGTT",
349 RING_FAULT_SRCID(fault),
350 RING_FAULT_FAULT_TYPE(fault));
351 }
352 }
353 }
354
gen8_check_faults(struct intel_gt * gt)355 static void gen8_check_faults(struct intel_gt *gt)
356 {
357 struct intel_uncore *uncore = gt->uncore;
358 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
359 u32 fault;
360
361 if (GRAPHICS_VER(gt->i915) >= 12) {
362 fault_reg = GEN12_RING_FAULT_REG;
363 fault_data0_reg = GEN12_FAULT_TLB_DATA0;
364 fault_data1_reg = GEN12_FAULT_TLB_DATA1;
365 } else {
366 fault_reg = GEN8_RING_FAULT_REG;
367 fault_data0_reg = GEN8_FAULT_TLB_DATA0;
368 fault_data1_reg = GEN8_FAULT_TLB_DATA1;
369 }
370
371 fault = intel_uncore_read(uncore, fault_reg);
372 if (fault & RING_FAULT_VALID) {
373 u32 fault_data0, fault_data1;
374 u64 fault_addr;
375
376 fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
377 fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
378
379 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
380 ((u64)fault_data0 << 12);
381
382 drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
383 "\tAddr: 0x%08x_%08x\n"
384 "\tAddress space: %s\n"
385 "\tEngine ID: %d\n"
386 "\tSource ID: %d\n"
387 "\tType: %d\n",
388 upper_32_bits(fault_addr), lower_32_bits(fault_addr),
389 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
390 GEN8_RING_FAULT_ENGINE_ID(fault),
391 RING_FAULT_SRCID(fault),
392 RING_FAULT_FAULT_TYPE(fault));
393 }
394 }
395
intel_gt_check_and_clear_faults(struct intel_gt * gt)396 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
397 {
398 struct drm_i915_private *i915 = gt->i915;
399
400 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
401 if (GRAPHICS_VER(i915) >= 8)
402 gen8_check_faults(gt);
403 else if (GRAPHICS_VER(i915) >= 6)
404 gen6_check_faults(gt);
405 else
406 return;
407
408 intel_gt_clear_error_registers(gt, ALL_ENGINES);
409 }
410
intel_gt_flush_ggtt_writes(struct intel_gt * gt)411 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
412 {
413 struct intel_uncore *uncore = gt->uncore;
414 intel_wakeref_t wakeref;
415
416 /*
417 * No actual flushing is required for the GTT write domain for reads
418 * from the GTT domain. Writes to it "immediately" go to main memory
419 * as far as we know, so there's no chipset flush. It also doesn't
420 * land in the GPU render cache.
421 *
422 * However, we do have to enforce the order so that all writes through
423 * the GTT land before any writes to the device, such as updates to
424 * the GATT itself.
425 *
426 * We also have to wait a bit for the writes to land from the GTT.
427 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
428 * timing. This issue has only been observed when switching quickly
429 * between GTT writes and CPU reads from inside the kernel on recent hw,
430 * and it appears to only affect discrete GTT blocks (i.e. on LLC
431 * system agents we cannot reproduce this behaviour, until Cannonlake
432 * that was!).
433 */
434
435 wmb();
436
437 if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
438 return;
439
440 intel_gt_chipset_flush(gt);
441
442 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
443 unsigned long flags;
444
445 spin_lock_irqsave(&uncore->lock, flags);
446 intel_uncore_posting_read_fw(uncore,
447 RING_HEAD(RENDER_RING_BASE));
448 spin_unlock_irqrestore(&uncore->lock, flags);
449 }
450 }
451
intel_gt_chipset_flush(struct intel_gt * gt)452 void intel_gt_chipset_flush(struct intel_gt *gt)
453 {
454 wmb();
455 if (GRAPHICS_VER(gt->i915) < 6)
456 intel_gt_gmch_gen5_chipset_flush(gt);
457 }
458
intel_gt_driver_register(struct intel_gt * gt)459 void intel_gt_driver_register(struct intel_gt *gt)
460 {
461 intel_gsc_init(>->gsc, gt->i915);
462
463 intel_rps_driver_register(>->rps);
464
465 intel_gt_debugfs_register(gt);
466 intel_gt_sysfs_register(gt);
467 }
468
intel_gt_init_scratch(struct intel_gt * gt,unsigned int size)469 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
470 {
471 struct drm_i915_private *i915 = gt->i915;
472 struct drm_i915_gem_object *obj;
473 struct i915_vma *vma;
474 int ret;
475
476 obj = i915_gem_object_create_lmem(i915, size,
477 I915_BO_ALLOC_VOLATILE |
478 I915_BO_ALLOC_GPU_ONLY);
479 if (IS_ERR(obj))
480 obj = i915_gem_object_create_stolen(i915, size);
481 if (IS_ERR(obj))
482 obj = i915_gem_object_create_internal(i915, size);
483 if (IS_ERR(obj)) {
484 drm_err(&i915->drm, "Failed to allocate scratch page\n");
485 return PTR_ERR(obj);
486 }
487
488 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
489 if (IS_ERR(vma)) {
490 ret = PTR_ERR(vma);
491 goto err_unref;
492 }
493
494 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
495 if (ret)
496 goto err_unref;
497
498 gt->scratch = i915_vma_make_unshrinkable(vma);
499
500 return 0;
501
502 err_unref:
503 i915_gem_object_put(obj);
504 return ret;
505 }
506
intel_gt_fini_scratch(struct intel_gt * gt)507 static void intel_gt_fini_scratch(struct intel_gt *gt)
508 {
509 i915_vma_unpin_and_release(>->scratch, 0);
510 }
511
kernel_vm(struct intel_gt * gt)512 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
513 {
514 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
515 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
516 else
517 return i915_vm_get(>->ggtt->vm);
518 }
519
__engines_record_defaults(struct intel_gt * gt)520 static int __engines_record_defaults(struct intel_gt *gt)
521 {
522 struct i915_request *requests[I915_NUM_ENGINES] = {};
523 struct intel_engine_cs *engine;
524 enum intel_engine_id id;
525 int err = 0;
526
527 /*
528 * As we reset the gpu during very early sanitisation, the current
529 * register state on the GPU should reflect its defaults values.
530 * We load a context onto the hw (with restore-inhibit), then switch
531 * over to a second context to save that default register state. We
532 * can then prime every new context with that state so they all start
533 * from the same default HW values.
534 */
535
536 for_each_engine(engine, gt, id) {
537 struct intel_renderstate so;
538 struct intel_context *ce;
539 struct i915_request *rq;
540
541 /* We must be able to switch to something! */
542 GEM_BUG_ON(!engine->kernel_context);
543
544 ce = intel_context_create(engine);
545 if (IS_ERR(ce)) {
546 err = PTR_ERR(ce);
547 goto out;
548 }
549
550 err = intel_renderstate_init(&so, ce);
551 if (err)
552 goto err;
553
554 rq = i915_request_create(ce);
555 if (IS_ERR(rq)) {
556 err = PTR_ERR(rq);
557 goto err_fini;
558 }
559
560 err = intel_engine_emit_ctx_wa(rq);
561 if (err)
562 goto err_rq;
563
564 err = intel_renderstate_emit(&so, rq);
565 if (err)
566 goto err_rq;
567
568 err_rq:
569 requests[id] = i915_request_get(rq);
570 i915_request_add(rq);
571 err_fini:
572 intel_renderstate_fini(&so, ce);
573 err:
574 if (err) {
575 intel_context_put(ce);
576 goto out;
577 }
578 }
579
580 /* Flush the default context image to memory, and enable powersaving. */
581 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
582 err = -EIO;
583 goto out;
584 }
585
586 for (id = 0; id < ARRAY_SIZE(requests); id++) {
587 struct i915_request *rq;
588 struct file *state;
589
590 rq = requests[id];
591 if (!rq)
592 continue;
593
594 if (rq->fence.error) {
595 err = -EIO;
596 goto out;
597 }
598
599 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
600 if (!rq->context->state)
601 continue;
602
603 /* Keep a copy of the state's backing pages; free the obj */
604 state = shmem_create_from_object(rq->context->state->obj);
605 if (IS_ERR(state)) {
606 err = PTR_ERR(state);
607 goto out;
608 }
609 rq->engine->default_state = state;
610 }
611
612 out:
613 /*
614 * If we have to abandon now, we expect the engines to be idle
615 * and ready to be torn-down. The quickest way we can accomplish
616 * this is by declaring ourselves wedged.
617 */
618 if (err)
619 intel_gt_set_wedged(gt);
620
621 for (id = 0; id < ARRAY_SIZE(requests); id++) {
622 struct intel_context *ce;
623 struct i915_request *rq;
624
625 rq = requests[id];
626 if (!rq)
627 continue;
628
629 ce = rq->context;
630 i915_request_put(rq);
631 intel_context_put(ce);
632 }
633 return err;
634 }
635
__engines_verify_workarounds(struct intel_gt * gt)636 static int __engines_verify_workarounds(struct intel_gt *gt)
637 {
638 struct intel_engine_cs *engine;
639 enum intel_engine_id id;
640 int err = 0;
641
642 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
643 return 0;
644
645 for_each_engine(engine, gt, id) {
646 if (intel_engine_verify_workarounds(engine, "load"))
647 err = -EIO;
648 }
649
650 /* Flush and restore the kernel context for safety */
651 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
652 err = -EIO;
653
654 return err;
655 }
656
__intel_gt_disable(struct intel_gt * gt)657 static void __intel_gt_disable(struct intel_gt *gt)
658 {
659 intel_gt_set_wedged_on_fini(gt);
660
661 intel_gt_suspend_prepare(gt);
662 intel_gt_suspend_late(gt);
663
664 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
665 }
666
intel_gt_wait_for_idle(struct intel_gt * gt,long timeout)667 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
668 {
669 long remaining_timeout;
670
671 /* If the device is asleep, we have no requests outstanding */
672 if (!intel_gt_pm_is_awake(gt))
673 return 0;
674
675 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
676 &remaining_timeout)) > 0) {
677 cond_resched();
678 if (signal_pending(current))
679 return -EINTR;
680 }
681
682 return timeout ? timeout : intel_uc_wait_for_idle(>->uc,
683 remaining_timeout);
684 }
685
intel_gt_init(struct intel_gt * gt)686 int intel_gt_init(struct intel_gt *gt)
687 {
688 int err;
689
690 err = i915_inject_probe_error(gt->i915, -ENODEV);
691 if (err)
692 return err;
693
694 intel_gt_init_workarounds(gt);
695
696 /*
697 * This is just a security blanket to placate dragons.
698 * On some systems, we very sporadically observe that the first TLBs
699 * used by the CS may be stale, despite us poking the TLB reset. If
700 * we hold the forcewake during initialisation these problems
701 * just magically go away.
702 */
703 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
704
705 err = intel_gt_init_scratch(gt,
706 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
707 if (err)
708 goto out_fw;
709
710 intel_gt_pm_init(gt);
711
712 gt->vm = kernel_vm(gt);
713 if (!gt->vm) {
714 err = -ENOMEM;
715 goto err_pm;
716 }
717
718 intel_set_mocs_index(gt);
719
720 err = intel_engines_init(gt);
721 if (err)
722 goto err_engines;
723
724 err = intel_uc_init(>->uc);
725 if (err)
726 goto err_engines;
727
728 err = intel_gt_resume(gt);
729 if (err)
730 goto err_uc_init;
731
732 err = intel_gt_init_hwconfig(gt);
733 if (err)
734 drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
735 ERR_PTR(err));
736
737 err = __engines_record_defaults(gt);
738 if (err)
739 goto err_gt;
740
741 err = __engines_verify_workarounds(gt);
742 if (err)
743 goto err_gt;
744
745 intel_uc_init_late(>->uc);
746
747 err = i915_inject_probe_error(gt->i915, -EIO);
748 if (err)
749 goto err_gt;
750
751 intel_migrate_init(>->migrate, gt);
752
753 intel_pxp_init(>->pxp);
754
755 goto out_fw;
756 err_gt:
757 __intel_gt_disable(gt);
758 intel_uc_fini_hw(>->uc);
759 err_uc_init:
760 intel_uc_fini(>->uc);
761 err_engines:
762 intel_engines_release(gt);
763 i915_vm_put(fetch_and_zero(>->vm));
764 err_pm:
765 intel_gt_pm_fini(gt);
766 intel_gt_fini_scratch(gt);
767 out_fw:
768 if (err)
769 intel_gt_set_wedged_on_init(gt);
770 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
771 return err;
772 }
773
intel_gt_driver_remove(struct intel_gt * gt)774 void intel_gt_driver_remove(struct intel_gt *gt)
775 {
776 __intel_gt_disable(gt);
777
778 intel_migrate_fini(>->migrate);
779 intel_uc_driver_remove(>->uc);
780
781 intel_engines_release(gt);
782
783 intel_gt_flush_buffer_pool(gt);
784 }
785
intel_gt_driver_unregister(struct intel_gt * gt)786 void intel_gt_driver_unregister(struct intel_gt *gt)
787 {
788 intel_wakeref_t wakeref;
789
790 intel_gt_sysfs_unregister(gt);
791 intel_rps_driver_unregister(>->rps);
792 intel_gsc_fini(>->gsc);
793
794 intel_pxp_fini(>->pxp);
795
796 /*
797 * Upon unregistering the device to prevent any new users, cancel
798 * all in-flight requests so that we can quickly unbind the active
799 * resources.
800 */
801 intel_gt_set_wedged_on_fini(gt);
802
803 /* Scrub all HW state upon release */
804 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
805 __intel_gt_reset(gt, ALL_ENGINES);
806 }
807
intel_gt_driver_release(struct intel_gt * gt)808 void intel_gt_driver_release(struct intel_gt *gt)
809 {
810 struct i915_address_space *vm;
811
812 vm = fetch_and_zero(>->vm);
813 if (vm) /* FIXME being called twice on error paths :( */
814 i915_vm_put(vm);
815
816 intel_wa_list_free(>->wa_list);
817 intel_gt_pm_fini(gt);
818 intel_gt_fini_scratch(gt);
819 intel_gt_fini_buffer_pool(gt);
820 intel_gt_fini_hwconfig(gt);
821 }
822
intel_gt_driver_late_release_all(struct drm_i915_private * i915)823 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
824 {
825 struct intel_gt *gt;
826 unsigned int id;
827
828 /* We need to wait for inflight RCU frees to release their grip */
829 rcu_barrier();
830
831 for_each_gt(gt, i915, id) {
832 intel_uc_driver_late_release(>->uc);
833 intel_gt_fini_requests(gt);
834 intel_gt_fini_reset(gt);
835 intel_gt_fini_timelines(gt);
836 mutex_destroy(>->tlb.invalidate_lock);
837 intel_engines_free(gt);
838 }
839 }
840
841 /**
842 * intel_gt_reg_needs_read_steering - determine whether a register read
843 * requires explicit steering
844 * @gt: GT structure
845 * @reg: the register to check steering requirements for
846 * @type: type of multicast steering to check
847 *
848 * Determines whether @reg needs explicit steering of a specific type for
849 * reads.
850 *
851 * Returns false if @reg does not belong to a register range of the given
852 * steering type, or if the default (subslice-based) steering IDs are suitable
853 * for @type steering too.
854 */
intel_gt_reg_needs_read_steering(struct intel_gt * gt,i915_reg_t reg,enum intel_steering_type type)855 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
856 i915_reg_t reg,
857 enum intel_steering_type type)
858 {
859 const u32 offset = i915_mmio_reg_offset(reg);
860 const struct intel_mmio_range *entry;
861
862 if (likely(!intel_gt_needs_read_steering(gt, type)))
863 return false;
864
865 for (entry = gt->steering_table[type]; entry->end; entry++) {
866 if (offset >= entry->start && offset <= entry->end)
867 return true;
868 }
869
870 return false;
871 }
872
873 /**
874 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
875 * @gt: GT structure
876 * @type: multicast register type
877 * @sliceid: Slice ID returned
878 * @subsliceid: Subslice ID returned
879 *
880 * Determines sliceid and subsliceid values that will steer reads
881 * of a specific multicast register class to a valid value.
882 */
intel_gt_get_valid_steering(struct intel_gt * gt,enum intel_steering_type type,u8 * sliceid,u8 * subsliceid)883 static void intel_gt_get_valid_steering(struct intel_gt *gt,
884 enum intel_steering_type type,
885 u8 *sliceid, u8 *subsliceid)
886 {
887 switch (type) {
888 case L3BANK:
889 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
890
891 *sliceid = 0; /* unused */
892 *subsliceid = __ffs(gt->info.l3bank_mask);
893 break;
894 case MSLICE:
895 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
896
897 *sliceid = __ffs(gt->info.mslice_mask);
898 *subsliceid = 0; /* unused */
899 break;
900 case LNCF:
901 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
902
903 /*
904 * An LNCF is always present if its mslice is present, so we
905 * can safely just steer to LNCF 0 in all cases.
906 */
907 *sliceid = __ffs(gt->info.mslice_mask) << 1;
908 *subsliceid = 0; /* unused */
909 break;
910 default:
911 MISSING_CASE(type);
912 *sliceid = 0;
913 *subsliceid = 0;
914 }
915 }
916
917 /**
918 * intel_gt_read_register_fw - reads a GT register with support for multicast
919 * @gt: GT structure
920 * @reg: register to read
921 *
922 * This function will read a GT register. If the register is a multicast
923 * register, the read will be steered to a valid instance (i.e., one that
924 * isn't fused off or powered down by power gating).
925 *
926 * Returns the value from a valid instance of @reg.
927 */
intel_gt_read_register_fw(struct intel_gt * gt,i915_reg_t reg)928 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
929 {
930 int type;
931 u8 sliceid, subsliceid;
932
933 for (type = 0; type < NUM_STEERING_TYPES; type++) {
934 if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
935 intel_gt_get_valid_steering(gt, type, &sliceid,
936 &subsliceid);
937 return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
938 reg,
939 sliceid,
940 subsliceid);
941 }
942 }
943
944 return intel_uncore_read_fw(gt->uncore, reg);
945 }
946
947 /**
948 * intel_gt_get_valid_steering_for_reg - get a valid steering for a register
949 * @gt: GT structure
950 * @reg: register for which the steering is required
951 * @sliceid: return variable for slice steering
952 * @subsliceid: return variable for subslice steering
953 *
954 * This function returns a slice/subslice pair that is guaranteed to work for
955 * read steering of the given register. Note that a value will be returned even
956 * if the register is not replicated and therefore does not actually require
957 * steering.
958 */
intel_gt_get_valid_steering_for_reg(struct intel_gt * gt,i915_reg_t reg,u8 * sliceid,u8 * subsliceid)959 void intel_gt_get_valid_steering_for_reg(struct intel_gt *gt, i915_reg_t reg,
960 u8 *sliceid, u8 *subsliceid)
961 {
962 int type;
963
964 for (type = 0; type < NUM_STEERING_TYPES; type++) {
965 if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
966 intel_gt_get_valid_steering(gt, type, sliceid,
967 subsliceid);
968 return;
969 }
970 }
971
972 *sliceid = gt->default_steering.groupid;
973 *subsliceid = gt->default_steering.instanceid;
974 }
975
intel_gt_read_register(struct intel_gt * gt,i915_reg_t reg)976 u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg)
977 {
978 int type;
979 u8 sliceid, subsliceid;
980
981 for (type = 0; type < NUM_STEERING_TYPES; type++) {
982 if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
983 intel_gt_get_valid_steering(gt, type, &sliceid,
984 &subsliceid);
985 return intel_uncore_read_with_mcr_steering(gt->uncore,
986 reg,
987 sliceid,
988 subsliceid);
989 }
990 }
991
992 return intel_uncore_read(gt->uncore, reg);
993 }
994
report_steering_type(struct drm_printer * p,struct intel_gt * gt,enum intel_steering_type type,bool dump_table)995 static void report_steering_type(struct drm_printer *p,
996 struct intel_gt *gt,
997 enum intel_steering_type type,
998 bool dump_table)
999 {
1000 const struct intel_mmio_range *entry;
1001 u8 slice, subslice;
1002
1003 BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
1004
1005 if (!gt->steering_table[type]) {
1006 drm_printf(p, "%s steering: uses default steering\n",
1007 intel_steering_types[type]);
1008 return;
1009 }
1010
1011 intel_gt_get_valid_steering(gt, type, &slice, &subslice);
1012 drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n",
1013 intel_steering_types[type], slice, subslice);
1014
1015 if (!dump_table)
1016 return;
1017
1018 for (entry = gt->steering_table[type]; entry->end; entry++)
1019 drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
1020 }
1021
intel_gt_report_steering(struct drm_printer * p,struct intel_gt * gt,bool dump_table)1022 void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt,
1023 bool dump_table)
1024 {
1025 drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n",
1026 gt->default_steering.groupid,
1027 gt->default_steering.instanceid);
1028
1029 if (HAS_MSLICES(gt->i915)) {
1030 report_steering_type(p, gt, MSLICE, dump_table);
1031 report_steering_type(p, gt, LNCF, dump_table);
1032 }
1033 }
1034
intel_gt_tile_setup(struct intel_gt * gt,phys_addr_t phys_addr)1035 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
1036 {
1037 int ret;
1038
1039 if (!gt_is_root(gt)) {
1040 struct intel_uncore_mmio_debug *mmio_debug;
1041 struct intel_uncore *uncore;
1042
1043 uncore = kzalloc(sizeof(*uncore), GFP_KERNEL);
1044 if (!uncore)
1045 return -ENOMEM;
1046
1047 mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL);
1048 if (!mmio_debug) {
1049 kfree(uncore);
1050 return -ENOMEM;
1051 }
1052
1053 gt->uncore = uncore;
1054 gt->uncore->debug = mmio_debug;
1055
1056 __intel_gt_init_early(gt);
1057 }
1058
1059 intel_uncore_init_early(gt->uncore, gt);
1060
1061 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
1062 if (ret)
1063 return ret;
1064
1065 gt->phys_addr = phys_addr;
1066
1067 return 0;
1068 }
1069
1070 static void
intel_gt_tile_cleanup(struct intel_gt * gt)1071 intel_gt_tile_cleanup(struct intel_gt *gt)
1072 {
1073 intel_uncore_cleanup_mmio(gt->uncore);
1074
1075 if (!gt_is_root(gt)) {
1076 kfree(gt->uncore->debug);
1077 kfree(gt->uncore);
1078 kfree(gt);
1079 }
1080 }
1081
intel_gt_probe_all(struct drm_i915_private * i915)1082 int intel_gt_probe_all(struct drm_i915_private *i915)
1083 {
1084 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1085 struct intel_gt *gt = &i915->gt0;
1086 phys_addr_t phys_addr;
1087 unsigned int mmio_bar;
1088 int ret;
1089
1090 mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0;
1091 phys_addr = pci_resource_start(pdev, mmio_bar);
1092
1093 /*
1094 * We always have at least one primary GT on any device
1095 * and it has been already initialized early during probe
1096 * in i915_driver_probe()
1097 */
1098 ret = intel_gt_tile_setup(gt, phys_addr);
1099 if (ret)
1100 return ret;
1101
1102 i915->gt[0] = gt;
1103
1104 /* TODO: add more tiles */
1105 return 0;
1106 }
1107
intel_gt_tiles_init(struct drm_i915_private * i915)1108 int intel_gt_tiles_init(struct drm_i915_private *i915)
1109 {
1110 struct intel_gt *gt;
1111 unsigned int id;
1112 int ret;
1113
1114 for_each_gt(gt, i915, id) {
1115 ret = intel_gt_probe_lmem(gt);
1116 if (ret)
1117 return ret;
1118 }
1119
1120 return 0;
1121 }
1122
intel_gt_release_all(struct drm_i915_private * i915)1123 void intel_gt_release_all(struct drm_i915_private *i915)
1124 {
1125 struct intel_gt *gt;
1126 unsigned int id;
1127
1128 for_each_gt(gt, i915, id) {
1129 intel_gt_tile_cleanup(gt);
1130 i915->gt[id] = NULL;
1131 }
1132 }
1133
intel_gt_info_print(const struct intel_gt_info * info,struct drm_printer * p)1134 void intel_gt_info_print(const struct intel_gt_info *info,
1135 struct drm_printer *p)
1136 {
1137 drm_printf(p, "available engines: %x\n", info->engine_mask);
1138
1139 intel_sseu_dump(&info->sseu, p);
1140 }
1141
1142 struct reg_and_bit {
1143 i915_reg_t reg;
1144 u32 bit;
1145 };
1146
1147 static struct reg_and_bit
get_reg_and_bit(const struct intel_engine_cs * engine,const bool gen8,const i915_reg_t * regs,const unsigned int num)1148 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
1149 const i915_reg_t *regs, const unsigned int num)
1150 {
1151 const unsigned int class = engine->class;
1152 struct reg_and_bit rb = { };
1153
1154 if (drm_WARN_ON_ONCE(&engine->i915->drm,
1155 class >= num || !regs[class].reg))
1156 return rb;
1157
1158 rb.reg = regs[class];
1159 if (gen8 && class == VIDEO_DECODE_CLASS)
1160 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
1161 else
1162 rb.bit = engine->instance;
1163
1164 rb.bit = BIT(rb.bit);
1165
1166 return rb;
1167 }
1168
mmio_invalidate_full(struct intel_gt * gt)1169 static void mmio_invalidate_full(struct intel_gt *gt)
1170 {
1171 static const i915_reg_t gen8_regs[] = {
1172 [RENDER_CLASS] = GEN8_RTCR,
1173 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */
1174 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR,
1175 [COPY_ENGINE_CLASS] = GEN8_BTCR,
1176 };
1177 static const i915_reg_t gen12_regs[] = {
1178 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR,
1179 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR,
1180 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR,
1181 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR,
1182 [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR,
1183 };
1184 struct drm_i915_private *i915 = gt->i915;
1185 struct intel_uncore *uncore = gt->uncore;
1186 struct intel_engine_cs *engine;
1187 intel_engine_mask_t awake, tmp;
1188 enum intel_engine_id id;
1189 const i915_reg_t *regs;
1190 unsigned int num = 0;
1191
1192 if (GRAPHICS_VER(i915) == 12) {
1193 regs = gen12_regs;
1194 num = ARRAY_SIZE(gen12_regs);
1195 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1196 regs = gen8_regs;
1197 num = ARRAY_SIZE(gen8_regs);
1198 } else if (GRAPHICS_VER(i915) < 8) {
1199 return;
1200 }
1201
1202 if (drm_WARN_ONCE(&i915->drm, !num,
1203 "Platform does not implement TLB invalidation!"))
1204 return;
1205
1206 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1207
1208 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
1209
1210 awake = 0;
1211 for_each_engine(engine, gt, id) {
1212 struct reg_and_bit rb;
1213
1214 if (!intel_engine_pm_is_awake(engine))
1215 continue;
1216
1217 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1218 if (!i915_mmio_reg_offset(rb.reg))
1219 continue;
1220
1221 intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1222 awake |= engine->mask;
1223 }
1224
1225 GT_TRACE(gt, "invalidated engines %08x\n", awake);
1226
1227 /* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
1228 if (awake &&
1229 (IS_TIGERLAKE(i915) ||
1230 IS_DG1(i915) ||
1231 IS_ROCKETLAKE(i915) ||
1232 IS_ALDERLAKE_S(i915) ||
1233 IS_ALDERLAKE_P(i915)))
1234 intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
1235
1236 spin_unlock_irq(&uncore->lock);
1237
1238 for_each_engine_masked(engine, gt, awake, tmp) {
1239 struct reg_and_bit rb;
1240
1241 /*
1242 * HW architecture suggest typical invalidation time at 40us,
1243 * with pessimistic cases up to 100us and a recommendation to
1244 * cap at 1ms. We go a bit higher just in case.
1245 */
1246 const unsigned int timeout_us = 100;
1247 const unsigned int timeout_ms = 4;
1248
1249 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1250 if (__intel_wait_for_register_fw(uncore,
1251 rb.reg, rb.bit, 0,
1252 timeout_us, timeout_ms,
1253 NULL))
1254 drm_err_ratelimited(>->i915->drm,
1255 "%s TLB invalidation did not complete in %ums!\n",
1256 engine->name, timeout_ms);
1257 }
1258
1259 /*
1260 * Use delayed put since a) we mostly expect a flurry of TLB
1261 * invalidations so it is good to avoid paying the forcewake cost and
1262 * b) it works around a bug in Icelake which cannot cope with too rapid
1263 * transitions.
1264 */
1265 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1266 }
1267
tlb_seqno_passed(const struct intel_gt * gt,u32 seqno)1268 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1269 {
1270 u32 cur = intel_gt_tlb_seqno(gt);
1271
1272 /* Only skip if a *full* TLB invalidate barrier has passed */
1273 return (s32)(cur - ALIGN(seqno, 2)) > 0;
1274 }
1275
intel_gt_invalidate_tlb(struct intel_gt * gt,u32 seqno)1276 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1277 {
1278 intel_wakeref_t wakeref;
1279
1280 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1281 return;
1282
1283 if (intel_gt_is_wedged(gt))
1284 return;
1285
1286 if (tlb_seqno_passed(gt, seqno))
1287 return;
1288
1289 with_intel_gt_pm_if_awake(gt, wakeref) {
1290 mutex_lock(>->tlb.invalidate_lock);
1291 if (tlb_seqno_passed(gt, seqno))
1292 goto unlock;
1293
1294 mmio_invalidate_full(gt);
1295
1296 write_seqcount_invalidate(>->tlb.seqno);
1297 unlock:
1298 mutex_unlock(>->tlb.invalidate_lock);
1299 }
1300 }
1301