1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_gt.h"
9 #include "intel_gt_clock_utils.h"
10 #include "intel_gt_regs.h"
11 
read_reference_ts_freq(struct intel_uncore * uncore)12 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
13 {
14 	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
15 	u32 base_freq, frac_freq;
16 
17 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
18 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
19 	base_freq *= 1000000;
20 
21 	frac_freq = ((ts_override &
22 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
23 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
24 	frac_freq = 1000000 / (frac_freq + 1);
25 
26 	return base_freq + frac_freq;
27 }
28 
gen9_get_crystal_clock_freq(struct intel_uncore * uncore,u32 rpm_config_reg)29 static u32 gen9_get_crystal_clock_freq(struct intel_uncore *uncore,
30 				       u32 rpm_config_reg)
31 {
32 	u32 f19_2_mhz = 19200000;
33 	u32 f24_mhz = 24000000;
34 	u32 crystal_clock =
35 		(rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
36 		GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
37 
38 	switch (crystal_clock) {
39 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
40 		return f19_2_mhz;
41 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
42 		return f24_mhz;
43 	default:
44 		MISSING_CASE(crystal_clock);
45 		return 0;
46 	}
47 }
48 
gen11_get_crystal_clock_freq(struct intel_uncore * uncore,u32 rpm_config_reg)49 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
50 					u32 rpm_config_reg)
51 {
52 	u32 f19_2_mhz = 19200000;
53 	u32 f24_mhz = 24000000;
54 	u32 f25_mhz = 25000000;
55 	u32 f38_4_mhz = 38400000;
56 	u32 crystal_clock =
57 		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
58 		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
59 
60 	switch (crystal_clock) {
61 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
62 		return f24_mhz;
63 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
64 		return f19_2_mhz;
65 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
66 		return f38_4_mhz;
67 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
68 		return f25_mhz;
69 	default:
70 		MISSING_CASE(crystal_clock);
71 		return 0;
72 	}
73 }
74 
read_clock_frequency(struct intel_uncore * uncore)75 static u32 read_clock_frequency(struct intel_uncore *uncore)
76 {
77 	u32 f12_5_mhz = 12500000;
78 	u32 f19_2_mhz = 19200000;
79 	u32 f24_mhz = 24000000;
80 
81 	if (GRAPHICS_VER(uncore->i915) <= 4) {
82 		/*
83 		 * PRMs say:
84 		 *
85 		 *     "The value in this register increments once every 16
86 		 *      hclks." (through the “Clocking Configuration”
87 		 *      (“CLKCFG”) MCHBAR register)
88 		 */
89 		return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000 / 16;
90 	} else if (GRAPHICS_VER(uncore->i915) <= 8) {
91 		/*
92 		 * PRMs say:
93 		 *
94 		 *     "The PCU TSC counts 10ns increments; this timestamp
95 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
96 		 *      rolling over every 1.5 hours).
97 		 */
98 		return f12_5_mhz;
99 	} else if (GRAPHICS_VER(uncore->i915) <= 9) {
100 		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
101 		u32 freq = 0;
102 
103 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
104 			freq = read_reference_ts_freq(uncore);
105 		} else {
106 			freq = IS_GEN9_LP(uncore->i915) ? f19_2_mhz : f24_mhz;
107 
108 			/*
109 			 * Now figure out how the command stream's timestamp
110 			 * register increments from this frequency (it might
111 			 * increment only every few clock cycle).
112 			 */
113 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
114 				      CTC_SHIFT_PARAMETER_SHIFT);
115 		}
116 
117 		return freq;
118 	} else if (GRAPHICS_VER(uncore->i915) <= 12) {
119 		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
120 		u32 freq = 0;
121 
122 		/*
123 		 * First figure out the reference frequency. There are 2 ways
124 		 * we can compute the frequency, either through the
125 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
126 		 * tells us which one we should use.
127 		 */
128 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
129 			freq = read_reference_ts_freq(uncore);
130 		} else {
131 			u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
132 
133 			if (GRAPHICS_VER(uncore->i915) >= 11)
134 				freq = gen11_get_crystal_clock_freq(uncore, c0);
135 			else
136 				freq = gen9_get_crystal_clock_freq(uncore, c0);
137 
138 			/*
139 			 * Now figure out how the command stream's timestamp
140 			 * register increments from this frequency (it might
141 			 * increment only every few clock cycle).
142 			 */
143 			freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
144 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
145 		}
146 
147 		return freq;
148 	}
149 
150 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
151 	return 0;
152 }
153 
intel_gt_init_clock_frequency(struct intel_gt * gt)154 void intel_gt_init_clock_frequency(struct intel_gt *gt)
155 {
156 	/*
157 	 * Note that on gen11+, the clock frequency may be reconfigured.
158 	 * We do not, and we assume nobody else does.
159 	 */
160 	gt->clock_frequency = read_clock_frequency(gt->uncore);
161 	if (gt->clock_frequency)
162 		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
163 
164 	/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
165 	if (GRAPHICS_VER(gt->i915) == 11)
166 		gt->clock_period_ns = NSEC_PER_SEC / 13750000;
167 
168 	GT_TRACE(gt,
169 		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
170 		 gt->clock_frequency / 1000,
171 		 gt->clock_period_ns,
172 		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
173 			 USEC_PER_SEC));
174 }
175 
176 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
intel_gt_check_clock_frequency(const struct intel_gt * gt)177 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
178 {
179 	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
180 		dev_err(gt->i915->drm.dev,
181 			"GT clock frequency changed, was %uHz, now %uHz!\n",
182 			gt->clock_frequency,
183 			read_clock_frequency(gt->uncore));
184 	}
185 }
186 #endif
187 
div_u64_roundup(u64 nom,u32 den)188 static u64 div_u64_roundup(u64 nom, u32 den)
189 {
190 	return div_u64(nom + den - 1, den);
191 }
192 
intel_gt_clock_interval_to_ns(const struct intel_gt * gt,u64 count)193 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
194 {
195 	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
196 }
197 
intel_gt_pm_interval_to_ns(const struct intel_gt * gt,u64 count)198 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
199 {
200 	return intel_gt_clock_interval_to_ns(gt, 16 * count);
201 }
202 
intel_gt_ns_to_clock_interval(const struct intel_gt * gt,u64 ns)203 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
204 {
205 	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
206 }
207 
intel_gt_ns_to_pm_interval(const struct intel_gt * gt,u64 ns)208 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
209 {
210 	u64 val;
211 
212 	/*
213 	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
214 	 * 8300) freezing up around GPU hangs. Looks as if even
215 	 * scheduling/timer interrupts start misbehaving if the RPS
216 	 * EI/thresholds are "bad", leading to a very sluggish or even
217 	 * frozen machine.
218 	 */
219 	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
220 	if (GRAPHICS_VER(gt->i915) == 6)
221 		val = div_u64_roundup(val, 25) * 25;
222 
223 	return val;
224 }
225