1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13 
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32 
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34  * valid. Now, docs explain in dwords what is in the context object. The full
35  * size is 70720 bytes, however, the power context and execlist context will
36  * never be saved (power context is stored elsewhere, and execlists don't work
37  * on HSW) - so the final size, including the extra state required for the
38  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39  */
40 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
41 
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 
47 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
48 
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51 	u8 class;
52 	u8 instance;
53 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
54 	struct engine_mmio_base {
55 		u32 graphics_ver : 8;
56 		u32 base : 24;
57 	} mmio_bases[MAX_MMIO_BASES];
58 };
59 
60 static const struct engine_info intel_engines[] = {
61 	[RCS0] = {
62 		.class = RENDER_CLASS,
63 		.instance = 0,
64 		.mmio_bases = {
65 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
66 		},
67 	},
68 	[BCS0] = {
69 		.class = COPY_ENGINE_CLASS,
70 		.instance = 0,
71 		.mmio_bases = {
72 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
73 		},
74 	},
75 	[BCS1] = {
76 		.class = COPY_ENGINE_CLASS,
77 		.instance = 1,
78 		.mmio_bases = {
79 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80 		},
81 	},
82 	[BCS2] = {
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 2,
85 		.mmio_bases = {
86 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87 		},
88 	},
89 	[BCS3] = {
90 		.class = COPY_ENGINE_CLASS,
91 		.instance = 3,
92 		.mmio_bases = {
93 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94 		},
95 	},
96 	[BCS4] = {
97 		.class = COPY_ENGINE_CLASS,
98 		.instance = 4,
99 		.mmio_bases = {
100 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101 		},
102 	},
103 	[BCS5] = {
104 		.class = COPY_ENGINE_CLASS,
105 		.instance = 5,
106 		.mmio_bases = {
107 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108 		},
109 	},
110 	[BCS6] = {
111 		.class = COPY_ENGINE_CLASS,
112 		.instance = 6,
113 		.mmio_bases = {
114 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115 		},
116 	},
117 	[BCS7] = {
118 		.class = COPY_ENGINE_CLASS,
119 		.instance = 7,
120 		.mmio_bases = {
121 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122 		},
123 	},
124 	[BCS8] = {
125 		.class = COPY_ENGINE_CLASS,
126 		.instance = 8,
127 		.mmio_bases = {
128 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129 		},
130 	},
131 	[VCS0] = {
132 		.class = VIDEO_DECODE_CLASS,
133 		.instance = 0,
134 		.mmio_bases = {
135 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
138 		},
139 	},
140 	[VCS1] = {
141 		.class = VIDEO_DECODE_CLASS,
142 		.instance = 1,
143 		.mmio_bases = {
144 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146 		},
147 	},
148 	[VCS2] = {
149 		.class = VIDEO_DECODE_CLASS,
150 		.instance = 2,
151 		.mmio_bases = {
152 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153 		},
154 	},
155 	[VCS3] = {
156 		.class = VIDEO_DECODE_CLASS,
157 		.instance = 3,
158 		.mmio_bases = {
159 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160 		},
161 	},
162 	[VCS4] = {
163 		.class = VIDEO_DECODE_CLASS,
164 		.instance = 4,
165 		.mmio_bases = {
166 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167 		},
168 	},
169 	[VCS5] = {
170 		.class = VIDEO_DECODE_CLASS,
171 		.instance = 5,
172 		.mmio_bases = {
173 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174 		},
175 	},
176 	[VCS6] = {
177 		.class = VIDEO_DECODE_CLASS,
178 		.instance = 6,
179 		.mmio_bases = {
180 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181 		},
182 	},
183 	[VCS7] = {
184 		.class = VIDEO_DECODE_CLASS,
185 		.instance = 7,
186 		.mmio_bases = {
187 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188 		},
189 	},
190 	[VECS0] = {
191 		.class = VIDEO_ENHANCEMENT_CLASS,
192 		.instance = 0,
193 		.mmio_bases = {
194 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
196 		},
197 	},
198 	[VECS1] = {
199 		.class = VIDEO_ENHANCEMENT_CLASS,
200 		.instance = 1,
201 		.mmio_bases = {
202 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203 		},
204 	},
205 	[VECS2] = {
206 		.class = VIDEO_ENHANCEMENT_CLASS,
207 		.instance = 2,
208 		.mmio_bases = {
209 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210 		},
211 	},
212 	[VECS3] = {
213 		.class = VIDEO_ENHANCEMENT_CLASS,
214 		.instance = 3,
215 		.mmio_bases = {
216 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217 		},
218 	},
219 	[CCS0] = {
220 		.class = COMPUTE_CLASS,
221 		.instance = 0,
222 		.mmio_bases = {
223 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224 		}
225 	},
226 	[CCS1] = {
227 		.class = COMPUTE_CLASS,
228 		.instance = 1,
229 		.mmio_bases = {
230 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231 		}
232 	},
233 	[CCS2] = {
234 		.class = COMPUTE_CLASS,
235 		.instance = 2,
236 		.mmio_bases = {
237 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238 		}
239 	},
240 	[CCS3] = {
241 		.class = COMPUTE_CLASS,
242 		.instance = 3,
243 		.mmio_bases = {
244 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245 		}
246 	},
247 };
248 
249 /**
250  * intel_engine_context_size() - return the size of the context for an engine
251  * @gt: the gt
252  * @class: engine class
253  *
254  * Each engine class may require a different amount of space for a context
255  * image.
256  *
257  * Return: size (in bytes) of an engine class specific context image
258  *
259  * Note: this size includes the HWSP, which is part of the context image
260  * in LRC mode, but does not include the "shared data page" used with
261  * GuC submission. The caller should account for this if using the GuC.
262  */
intel_engine_context_size(struct intel_gt * gt,u8 class)263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265 	struct intel_uncore *uncore = gt->uncore;
266 	u32 cxt_size;
267 
268 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269 
270 	switch (class) {
271 	case COMPUTE_CLASS:
272 		fallthrough;
273 	case RENDER_CLASS:
274 		switch (GRAPHICS_VER(gt->i915)) {
275 		default:
276 			MISSING_CASE(GRAPHICS_VER(gt->i915));
277 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278 		case 12:
279 		case 11:
280 			return GEN11_LR_CONTEXT_RENDER_SIZE;
281 		case 9:
282 			return GEN9_LR_CONTEXT_RENDER_SIZE;
283 		case 8:
284 			return GEN8_LR_CONTEXT_RENDER_SIZE;
285 		case 7:
286 			if (IS_HASWELL(gt->i915))
287 				return HSW_CXT_TOTAL_SIZE;
288 
289 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291 					PAGE_SIZE);
292 		case 6:
293 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295 					PAGE_SIZE);
296 		case 5:
297 		case 4:
298 			/*
299 			 * There is a discrepancy here between the size reported
300 			 * by the register and the size of the context layout
301 			 * in the docs. Both are described as authorative!
302 			 *
303 			 * The discrepancy is on the order of a few cachelines,
304 			 * but the total is under one page (4k), which is our
305 			 * minimum allocation anyway so it should all come
306 			 * out in the wash.
307 			 */
308 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 			drm_dbg(&gt->i915->drm,
310 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 				GRAPHICS_VER(gt->i915), cxt_size * 64,
312 				cxt_size - 1);
313 			return round_up(cxt_size * 64, PAGE_SIZE);
314 		case 3:
315 		case 2:
316 		/* For the special day when i810 gets merged. */
317 		case 1:
318 			return 0;
319 		}
320 		break;
321 	default:
322 		MISSING_CASE(class);
323 		fallthrough;
324 	case VIDEO_DECODE_CLASS:
325 	case VIDEO_ENHANCEMENT_CLASS:
326 	case COPY_ENGINE_CLASS:
327 		if (GRAPHICS_VER(gt->i915) < 8)
328 			return 0;
329 		return GEN8_LR_CONTEXT_OTHER_SIZE;
330 	}
331 }
332 
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 			      const struct engine_mmio_base *bases)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_MMIO_BASES; i++)
339 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340 			break;
341 
342 	GEM_BUG_ON(i == MAX_MMIO_BASES);
343 	GEM_BUG_ON(!bases[i].base);
344 
345 	return bases[i].base;
346 }
347 
__sprint_engine_name(struct intel_engine_cs * engine)348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350 	/*
351 	 * Before we know what the uABI name for this engine will be,
352 	 * we still would like to keep track of this engine in the debug logs.
353 	 * We throw in a ' here as a reminder that this isn't its final name.
354 	 */
355 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 			     intel_engine_class_repr(engine->class),
357 			     engine->instance) >= sizeof(engine->name));
358 }
359 
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362 	/*
363 	 * Though they added more rings on g4x/ilk, they did not add
364 	 * per-engine HWSTAM until gen6.
365 	 */
366 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367 		return;
368 
369 	if (GRAPHICS_VER(engine->i915) >= 3)
370 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
371 	else
372 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374 
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377 	/* Mask off all writes into the unknown HWSP */
378 	intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380 
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383 	GEM_DEBUG_WARN_ON(iir);
384 }
385 
get_reset_domain(u8 ver,enum intel_engine_id id)386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388 	u32 reset_domain;
389 
390 	if (ver >= 11) {
391 		static const u32 engine_reset_domains[] = {
392 			[RCS0]  = GEN11_GRDOM_RENDER,
393 			[BCS0]  = GEN11_GRDOM_BLT,
394 			[BCS1]  = XEHPC_GRDOM_BLT1,
395 			[BCS2]  = XEHPC_GRDOM_BLT2,
396 			[BCS3]  = XEHPC_GRDOM_BLT3,
397 			[BCS4]  = XEHPC_GRDOM_BLT4,
398 			[BCS5]  = XEHPC_GRDOM_BLT5,
399 			[BCS6]  = XEHPC_GRDOM_BLT6,
400 			[BCS7]  = XEHPC_GRDOM_BLT7,
401 			[BCS8]  = XEHPC_GRDOM_BLT8,
402 			[VCS0]  = GEN11_GRDOM_MEDIA,
403 			[VCS1]  = GEN11_GRDOM_MEDIA2,
404 			[VCS2]  = GEN11_GRDOM_MEDIA3,
405 			[VCS3]  = GEN11_GRDOM_MEDIA4,
406 			[VCS4]  = GEN11_GRDOM_MEDIA5,
407 			[VCS5]  = GEN11_GRDOM_MEDIA6,
408 			[VCS6]  = GEN11_GRDOM_MEDIA7,
409 			[VCS7]  = GEN11_GRDOM_MEDIA8,
410 			[VECS0] = GEN11_GRDOM_VECS,
411 			[VECS1] = GEN11_GRDOM_VECS2,
412 			[VECS2] = GEN11_GRDOM_VECS3,
413 			[VECS3] = GEN11_GRDOM_VECS4,
414 			[CCS0]  = GEN11_GRDOM_RENDER,
415 			[CCS1]  = GEN11_GRDOM_RENDER,
416 			[CCS2]  = GEN11_GRDOM_RENDER,
417 			[CCS3]  = GEN11_GRDOM_RENDER,
418 		};
419 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 			   !engine_reset_domains[id]);
421 		reset_domain = engine_reset_domains[id];
422 	} else {
423 		static const u32 engine_reset_domains[] = {
424 			[RCS0]  = GEN6_GRDOM_RENDER,
425 			[BCS0]  = GEN6_GRDOM_BLT,
426 			[VCS0]  = GEN6_GRDOM_MEDIA,
427 			[VCS1]  = GEN8_GRDOM_MEDIA2,
428 			[VECS0] = GEN6_GRDOM_VECS,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	}
434 
435 	return reset_domain;
436 }
437 
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439 			      u8 logical_instance)
440 {
441 	const struct engine_info *info = &intel_engines[id];
442 	struct drm_i915_private *i915 = gt->i915;
443 	struct intel_engine_cs *engine;
444 	u8 guc_class;
445 
446 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450 
451 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452 		return -EINVAL;
453 
454 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455 		return -EINVAL;
456 
457 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458 		return -EINVAL;
459 
460 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461 		return -EINVAL;
462 
463 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464 	if (!engine)
465 		return -ENOMEM;
466 
467 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468 
469 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
470 	engine->id = id;
471 	engine->legacy_idx = INVALID_ENGINE;
472 	engine->mask = BIT(id);
473 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474 						id);
475 	engine->i915 = i915;
476 	engine->gt = gt;
477 	engine->uncore = gt->uncore;
478 	guc_class = engine_class_to_guc_class(info->class);
479 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481 
482 	engine->irq_handler = nop_irq_handler;
483 
484 	engine->class = info->class;
485 	engine->instance = info->instance;
486 	engine->logical_mask = BIT(logical_instance);
487 	__sprint_engine_name(engine);
488 
489 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
490 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
491 	     engine->class == RENDER_CLASS)
492 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
493 
494 	/* features common between engines sharing EUs */
495 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
496 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
497 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
498 	}
499 
500 	engine->props.heartbeat_interval_ms =
501 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
502 	engine->props.max_busywait_duration_ns =
503 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
504 	engine->props.preempt_timeout_ms =
505 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
506 	engine->props.stop_timeout_ms =
507 		CONFIG_DRM_I915_STOP_TIMEOUT;
508 	engine->props.timeslice_duration_ms =
509 		CONFIG_DRM_I915_TIMESLICE_DURATION;
510 
511 	/* Override to uninterruptible for OpenCL workloads. */
512 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
513 		engine->props.preempt_timeout_ms = 0;
514 
515 	/* Cap properties according to any system limits */
516 #define CLAMP_PROP(field) \
517 	do { \
518 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
519 		if (clamp != engine->props.field) { \
520 			drm_notice(&engine->i915->drm, \
521 				   "Warning, clamping %s to %lld to prevent overflow\n", \
522 				   #field, clamp); \
523 			engine->props.field = clamp; \
524 		} \
525 	} while (0)
526 
527 	CLAMP_PROP(heartbeat_interval_ms);
528 	CLAMP_PROP(max_busywait_duration_ns);
529 	CLAMP_PROP(preempt_timeout_ms);
530 	CLAMP_PROP(stop_timeout_ms);
531 	CLAMP_PROP(timeslice_duration_ms);
532 
533 #undef CLAMP_PROP
534 
535 	engine->defaults = engine->props; /* never to change again */
536 
537 	engine->context_size = intel_engine_context_size(gt, engine->class);
538 	if (WARN_ON(engine->context_size > BIT(20)))
539 		engine->context_size = 0;
540 	if (engine->context_size)
541 		DRIVER_CAPS(i915)->has_logical_contexts = true;
542 
543 	ewma__engine_latency_init(&engine->latency);
544 	seqcount_init(&engine->stats.execlists.lock);
545 
546 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
547 
548 	/* Scrub mmio state on takeover */
549 	intel_engine_sanitize_mmio(engine);
550 
551 	gt->engine_class[info->class][info->instance] = engine;
552 	gt->engine[id] = engine;
553 
554 	return 0;
555 }
556 
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)557 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
558 {
559 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
560 
561 	return value;
562 }
563 
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)564 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
565 {
566 	value = min(value, jiffies_to_nsecs(2));
567 
568 	return value;
569 }
570 
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)571 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
572 {
573 	/*
574 	 * NB: The GuC API only supports 32bit values. However, the limit is further
575 	 * reduced due to internal calculations which would otherwise overflow.
576 	 */
577 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
578 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
579 
580 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
581 
582 	return value;
583 }
584 
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)585 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
586 {
587 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
588 
589 	return value;
590 }
591 
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)592 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
593 {
594 	/*
595 	 * NB: The GuC API only supports 32bit values. However, the limit is further
596 	 * reduced due to internal calculations which would otherwise overflow.
597 	 */
598 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
599 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
600 
601 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
602 
603 	return value;
604 }
605 
__setup_engine_capabilities(struct intel_engine_cs * engine)606 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
607 {
608 	struct drm_i915_private *i915 = engine->i915;
609 
610 	if (engine->class == VIDEO_DECODE_CLASS) {
611 		/*
612 		 * HEVC support is present on first engine instance
613 		 * before Gen11 and on all instances afterwards.
614 		 */
615 		if (GRAPHICS_VER(i915) >= 11 ||
616 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
617 			engine->uabi_capabilities |=
618 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
619 
620 		/*
621 		 * SFC block is present only on even logical engine
622 		 * instances.
623 		 */
624 		if ((GRAPHICS_VER(i915) >= 11 &&
625 		     (engine->gt->info.vdbox_sfc_access &
626 		      BIT(engine->instance))) ||
627 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
628 			engine->uabi_capabilities |=
629 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
630 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
631 		if (GRAPHICS_VER(i915) >= 9 &&
632 		    engine->gt->info.sfc_mask & BIT(engine->instance))
633 			engine->uabi_capabilities |=
634 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
635 	}
636 }
637 
intel_setup_engine_capabilities(struct intel_gt * gt)638 static void intel_setup_engine_capabilities(struct intel_gt *gt)
639 {
640 	struct intel_engine_cs *engine;
641 	enum intel_engine_id id;
642 
643 	for_each_engine(engine, gt, id)
644 		__setup_engine_capabilities(engine);
645 }
646 
647 /**
648  * intel_engines_release() - free the resources allocated for Command Streamers
649  * @gt: pointer to struct intel_gt
650  */
intel_engines_release(struct intel_gt * gt)651 void intel_engines_release(struct intel_gt *gt)
652 {
653 	struct intel_engine_cs *engine;
654 	enum intel_engine_id id;
655 
656 	/*
657 	 * Before we release the resources held by engine, we must be certain
658 	 * that the HW is no longer accessing them -- having the GPU scribble
659 	 * to or read from a page being used for something else causes no end
660 	 * of fun.
661 	 *
662 	 * The GPU should be reset by this point, but assume the worst just
663 	 * in case we aborted before completely initialising the engines.
664 	 */
665 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
666 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
667 		__intel_gt_reset(gt, ALL_ENGINES);
668 
669 	/* Decouple the backend; but keep the layout for late GPU resets */
670 	for_each_engine(engine, gt, id) {
671 		if (!engine->release)
672 			continue;
673 
674 		intel_wakeref_wait_for_idle(&engine->wakeref);
675 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
676 
677 		engine->release(engine);
678 		engine->release = NULL;
679 
680 		memset(&engine->reset, 0, sizeof(engine->reset));
681 	}
682 }
683 
intel_engine_free_request_pool(struct intel_engine_cs * engine)684 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
685 {
686 	if (!engine->request_pool)
687 		return;
688 
689 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
690 }
691 
intel_engines_free(struct intel_gt * gt)692 void intel_engines_free(struct intel_gt *gt)
693 {
694 	struct intel_engine_cs *engine;
695 	enum intel_engine_id id;
696 
697 	/* Free the requests! dma-resv keeps fences around for an eternity */
698 	rcu_barrier();
699 
700 	for_each_engine(engine, gt, id) {
701 		intel_engine_free_request_pool(engine);
702 		kfree(engine);
703 		gt->engine[id] = NULL;
704 	}
705 }
706 
707 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)708 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
709 			 unsigned int physical_vdbox,
710 			 unsigned int logical_vdbox, u16 vdbox_mask)
711 {
712 	struct drm_i915_private *i915 = gt->i915;
713 
714 	/*
715 	 * In Gen11, only even numbered logical VDBOXes are hooked
716 	 * up to an SFC (Scaler & Format Converter) unit.
717 	 * In Gen12, Even numbered physical instance always are connected
718 	 * to an SFC. Odd numbered physical instances have SFC only if
719 	 * previous even instance is fused off.
720 	 *
721 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
722 	 * in the fuse register that tells us whether a specific SFC is present.
723 	 */
724 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
725 		return false;
726 	else if (MEDIA_VER(i915) >= 12)
727 		return (physical_vdbox % 2 == 0) ||
728 			!(BIT(physical_vdbox - 1) & vdbox_mask);
729 	else if (MEDIA_VER(i915) == 11)
730 		return logical_vdbox % 2 == 0;
731 
732 	return false;
733 }
734 
engine_mask_apply_media_fuses(struct intel_gt * gt)735 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
736 {
737 	struct drm_i915_private *i915 = gt->i915;
738 	unsigned int logical_vdbox = 0;
739 	unsigned int i;
740 	u32 media_fuse, fuse1;
741 	u16 vdbox_mask;
742 	u16 vebox_mask;
743 
744 	if (MEDIA_VER(gt->i915) < 11)
745 		return;
746 
747 	/*
748 	 * On newer platforms the fusing register is called 'enable' and has
749 	 * enable semantics, while on older platforms it is called 'disable'
750 	 * and bits have disable semantices.
751 	 */
752 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
753 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
754 		media_fuse = ~media_fuse;
755 
756 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
757 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
758 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
759 
760 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
761 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
762 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
763 	} else {
764 		gt->info.sfc_mask = ~0;
765 	}
766 
767 	for (i = 0; i < I915_MAX_VCS; i++) {
768 		if (!HAS_ENGINE(gt, _VCS(i))) {
769 			vdbox_mask &= ~BIT(i);
770 			continue;
771 		}
772 
773 		if (!(BIT(i) & vdbox_mask)) {
774 			gt->info.engine_mask &= ~BIT(_VCS(i));
775 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
776 			continue;
777 		}
778 
779 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
780 			gt->info.vdbox_sfc_access |= BIT(i);
781 		logical_vdbox++;
782 	}
783 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
784 		vdbox_mask, VDBOX_MASK(gt));
785 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
786 
787 	for (i = 0; i < I915_MAX_VECS; i++) {
788 		if (!HAS_ENGINE(gt, _VECS(i))) {
789 			vebox_mask &= ~BIT(i);
790 			continue;
791 		}
792 
793 		if (!(BIT(i) & vebox_mask)) {
794 			gt->info.engine_mask &= ~BIT(_VECS(i));
795 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
796 		}
797 	}
798 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
799 		vebox_mask, VEBOX_MASK(gt));
800 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
801 }
802 
engine_mask_apply_compute_fuses(struct intel_gt * gt)803 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
804 {
805 	struct drm_i915_private *i915 = gt->i915;
806 	struct intel_gt_info *info = &gt->info;
807 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
808 	unsigned long ccs_mask;
809 	unsigned int i;
810 
811 	if (GRAPHICS_VER(i915) < 11)
812 		return;
813 
814 	if (hweight32(CCS_MASK(gt)) <= 1)
815 		return;
816 
817 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
818 						     ss_per_ccs);
819 	/*
820 	 * If all DSS in a quadrant are fused off, the corresponding CCS
821 	 * engine is not available for use.
822 	 */
823 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
824 		info->engine_mask &= ~BIT(_CCS(i));
825 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
826 	}
827 }
828 
engine_mask_apply_copy_fuses(struct intel_gt * gt)829 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
830 {
831 	struct drm_i915_private *i915 = gt->i915;
832 	struct intel_gt_info *info = &gt->info;
833 	unsigned long meml3_mask;
834 	unsigned long quad;
835 
836 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
837 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
838 		return;
839 
840 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
841 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
842 
843 	/*
844 	 * Link Copy engines may be fused off according to meml3_mask. Each
845 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
846 	 */
847 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
848 		unsigned int instance = quad * 2 + 1;
849 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
850 						   _BCS(instance));
851 
852 		if (mask & info->engine_mask) {
853 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
854 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
855 
856 			info->engine_mask &= ~mask;
857 		}
858 	}
859 }
860 
861 /*
862  * Determine which engines are fused off in our particular hardware.
863  * Note that we have a catch-22 situation where we need to be able to access
864  * the blitter forcewake domain to read the engine fuses, but at the same time
865  * we need to know which engines are available on the system to know which
866  * forcewake domains are present. We solve this by intializing the forcewake
867  * domains based on the full engine mask in the platform capabilities before
868  * calling this function and pruning the domains for fused-off engines
869  * afterwards.
870  */
init_engine_mask(struct intel_gt * gt)871 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
872 {
873 	struct intel_gt_info *info = &gt->info;
874 
875 	GEM_BUG_ON(!info->engine_mask);
876 
877 	engine_mask_apply_media_fuses(gt);
878 	engine_mask_apply_compute_fuses(gt);
879 	engine_mask_apply_copy_fuses(gt);
880 
881 	return info->engine_mask;
882 }
883 
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)884 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
885 				 u8 class, const u8 *map, u8 num_instances)
886 {
887 	int i, j;
888 	u8 current_logical_id = 0;
889 
890 	for (j = 0; j < num_instances; ++j) {
891 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
892 			if (!HAS_ENGINE(gt, i) ||
893 			    intel_engines[i].class != class)
894 				continue;
895 
896 			if (intel_engines[i].instance == map[j]) {
897 				logical_ids[intel_engines[i].instance] =
898 					current_logical_id++;
899 				break;
900 			}
901 		}
902 	}
903 }
904 
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)905 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
906 {
907 	/*
908 	 * Logical to physical mapping is needed for proper support
909 	 * to split-frame feature.
910 	 */
911 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
912 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
913 
914 		populate_logical_ids(gt, logical_ids, class,
915 				     map, ARRAY_SIZE(map));
916 	} else {
917 		int i;
918 		u8 map[MAX_ENGINE_INSTANCE + 1];
919 
920 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
921 			map[i] = i;
922 		populate_logical_ids(gt, logical_ids, class,
923 				     map, ARRAY_SIZE(map));
924 	}
925 }
926 
927 /**
928  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
929  * @gt: pointer to struct intel_gt
930  *
931  * Return: non-zero if the initialization failed.
932  */
intel_engines_init_mmio(struct intel_gt * gt)933 int intel_engines_init_mmio(struct intel_gt *gt)
934 {
935 	struct drm_i915_private *i915 = gt->i915;
936 	const unsigned int engine_mask = init_engine_mask(gt);
937 	unsigned int mask = 0;
938 	unsigned int i, class;
939 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
940 	int err;
941 
942 	drm_WARN_ON(&i915->drm, engine_mask == 0);
943 	drm_WARN_ON(&i915->drm, engine_mask &
944 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
945 
946 	if (i915_inject_probe_failure(i915))
947 		return -ENODEV;
948 
949 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
950 		setup_logical_ids(gt, logical_ids, class);
951 
952 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
953 			u8 instance = intel_engines[i].instance;
954 
955 			if (intel_engines[i].class != class ||
956 			    !HAS_ENGINE(gt, i))
957 				continue;
958 
959 			err = intel_engine_setup(gt, i,
960 						 logical_ids[instance]);
961 			if (err)
962 				goto cleanup;
963 
964 			mask |= BIT(i);
965 		}
966 	}
967 
968 	/*
969 	 * Catch failures to update intel_engines table when the new engines
970 	 * are added to the driver by a warning and disabling the forgotten
971 	 * engines.
972 	 */
973 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
974 		gt->info.engine_mask = mask;
975 
976 	gt->info.num_engines = hweight32(mask);
977 
978 	intel_gt_check_and_clear_faults(gt);
979 
980 	intel_setup_engine_capabilities(gt);
981 
982 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
983 
984 	return 0;
985 
986 cleanup:
987 	intel_engines_free(gt);
988 	return err;
989 }
990 
intel_engine_init_execlists(struct intel_engine_cs * engine)991 void intel_engine_init_execlists(struct intel_engine_cs *engine)
992 {
993 	struct intel_engine_execlists * const execlists = &engine->execlists;
994 
995 	execlists->port_mask = 1;
996 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
997 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
998 
999 	memset(execlists->pending, 0, sizeof(execlists->pending));
1000 	execlists->active =
1001 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1002 }
1003 
cleanup_status_page(struct intel_engine_cs * engine)1004 static void cleanup_status_page(struct intel_engine_cs *engine)
1005 {
1006 	struct i915_vma *vma;
1007 
1008 	/* Prevent writes into HWSP after returning the page to the system */
1009 	intel_engine_set_hwsp_writemask(engine, ~0u);
1010 
1011 	vma = fetch_and_zero(&engine->status_page.vma);
1012 	if (!vma)
1013 		return;
1014 
1015 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1016 		i915_vma_unpin(vma);
1017 
1018 	i915_gem_object_unpin_map(vma->obj);
1019 	i915_gem_object_put(vma->obj);
1020 }
1021 
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1022 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1023 				struct i915_gem_ww_ctx *ww,
1024 				struct i915_vma *vma)
1025 {
1026 	unsigned int flags;
1027 
1028 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1029 		/*
1030 		 * On g33, we cannot place HWS above 256MiB, so
1031 		 * restrict its pinning to the low mappable arena.
1032 		 * Though this restriction is not documented for
1033 		 * gen4, gen5, or byt, they also behave similarly
1034 		 * and hang if the HWS is placed at the top of the
1035 		 * GTT. To generalise, it appears that all !llc
1036 		 * platforms have issues with us placing the HWS
1037 		 * above the mappable region (even though we never
1038 		 * actually map it).
1039 		 */
1040 		flags = PIN_MAPPABLE;
1041 	else
1042 		flags = PIN_HIGH;
1043 
1044 	return i915_ggtt_pin(vma, ww, 0, flags);
1045 }
1046 
init_status_page(struct intel_engine_cs * engine)1047 static int init_status_page(struct intel_engine_cs *engine)
1048 {
1049 	struct drm_i915_gem_object *obj;
1050 	struct i915_gem_ww_ctx ww;
1051 	struct i915_vma *vma;
1052 	void *vaddr;
1053 	int ret;
1054 
1055 	INIT_LIST_HEAD(&engine->status_page.timelines);
1056 
1057 	/*
1058 	 * Though the HWS register does support 36bit addresses, historically
1059 	 * we have had hangs and corruption reported due to wild writes if
1060 	 * the HWS is placed above 4G. We only allow objects to be allocated
1061 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1062 	 * access to more than 4G.
1063 	 */
1064 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1065 	if (IS_ERR(obj)) {
1066 		drm_err(&engine->i915->drm,
1067 			"Failed to allocate status page\n");
1068 		return PTR_ERR(obj);
1069 	}
1070 
1071 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1072 
1073 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1074 	if (IS_ERR(vma)) {
1075 		ret = PTR_ERR(vma);
1076 		goto err_put;
1077 	}
1078 
1079 	i915_gem_ww_ctx_init(&ww, true);
1080 retry:
1081 	ret = i915_gem_object_lock(obj, &ww);
1082 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1083 		ret = pin_ggtt_status_page(engine, &ww, vma);
1084 	if (ret)
1085 		goto err;
1086 
1087 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1088 	if (IS_ERR(vaddr)) {
1089 		ret = PTR_ERR(vaddr);
1090 		goto err_unpin;
1091 	}
1092 
1093 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1094 	engine->status_page.vma = vma;
1095 
1096 err_unpin:
1097 	if (ret)
1098 		i915_vma_unpin(vma);
1099 err:
1100 	if (ret == -EDEADLK) {
1101 		ret = i915_gem_ww_ctx_backoff(&ww);
1102 		if (!ret)
1103 			goto retry;
1104 	}
1105 	i915_gem_ww_ctx_fini(&ww);
1106 err_put:
1107 	if (ret)
1108 		i915_gem_object_put(obj);
1109 	return ret;
1110 }
1111 
engine_setup_common(struct intel_engine_cs * engine)1112 static int engine_setup_common(struct intel_engine_cs *engine)
1113 {
1114 	int err;
1115 
1116 	init_llist_head(&engine->barrier_tasks);
1117 
1118 	err = init_status_page(engine);
1119 	if (err)
1120 		return err;
1121 
1122 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1123 	if (!engine->breadcrumbs) {
1124 		err = -ENOMEM;
1125 		goto err_status;
1126 	}
1127 
1128 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1129 	if (!engine->sched_engine) {
1130 		err = -ENOMEM;
1131 		goto err_sched_engine;
1132 	}
1133 	engine->sched_engine->private_data = engine;
1134 
1135 	err = intel_engine_init_cmd_parser(engine);
1136 	if (err)
1137 		goto err_cmd_parser;
1138 
1139 	intel_engine_init_execlists(engine);
1140 	intel_engine_init__pm(engine);
1141 	intel_engine_init_retire(engine);
1142 
1143 	/* Use the whole device by default */
1144 	engine->sseu =
1145 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1146 
1147 	intel_engine_init_workarounds(engine);
1148 	intel_engine_init_whitelist(engine);
1149 	intel_engine_init_ctx_wa(engine);
1150 
1151 	if (GRAPHICS_VER(engine->i915) >= 12)
1152 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1153 
1154 	return 0;
1155 
1156 err_cmd_parser:
1157 	i915_sched_engine_put(engine->sched_engine);
1158 err_sched_engine:
1159 	intel_breadcrumbs_put(engine->breadcrumbs);
1160 err_status:
1161 	cleanup_status_page(engine);
1162 	return err;
1163 }
1164 
1165 struct measure_breadcrumb {
1166 	struct i915_request rq;
1167 	struct intel_ring ring;
1168 	u32 cs[2048];
1169 };
1170 
measure_breadcrumb_dw(struct intel_context * ce)1171 static int measure_breadcrumb_dw(struct intel_context *ce)
1172 {
1173 	struct intel_engine_cs *engine = ce->engine;
1174 	struct measure_breadcrumb *frame;
1175 	int dw;
1176 
1177 	GEM_BUG_ON(!engine->gt->scratch);
1178 
1179 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1180 	if (!frame)
1181 		return -ENOMEM;
1182 
1183 	frame->rq.engine = engine;
1184 	frame->rq.context = ce;
1185 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1186 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1187 
1188 	frame->ring.vaddr = frame->cs;
1189 	frame->ring.size = sizeof(frame->cs);
1190 	frame->ring.wrap =
1191 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1192 	frame->ring.effective_size = frame->ring.size;
1193 	intel_ring_update_space(&frame->ring);
1194 	frame->rq.ring = &frame->ring;
1195 
1196 	mutex_lock(&ce->timeline->mutex);
1197 	spin_lock_irq(&engine->sched_engine->lock);
1198 
1199 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1200 
1201 	spin_unlock_irq(&engine->sched_engine->lock);
1202 	mutex_unlock(&ce->timeline->mutex);
1203 
1204 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1205 
1206 	kfree(frame);
1207 	return dw;
1208 }
1209 
1210 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1211 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1212 				   struct i915_address_space *vm,
1213 				   unsigned int ring_size,
1214 				   unsigned int hwsp,
1215 				   struct lock_class_key *key,
1216 				   const char *name)
1217 {
1218 	struct intel_context *ce;
1219 	int err;
1220 
1221 	ce = intel_context_create(engine);
1222 	if (IS_ERR(ce))
1223 		return ce;
1224 
1225 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1226 	ce->timeline = page_pack_bits(NULL, hwsp);
1227 	ce->ring = NULL;
1228 	ce->ring_size = ring_size;
1229 
1230 	i915_vm_put(ce->vm);
1231 	ce->vm = i915_vm_get(vm);
1232 
1233 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1234 	if (err) {
1235 		intel_context_put(ce);
1236 		return ERR_PTR(err);
1237 	}
1238 
1239 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1240 
1241 	/*
1242 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1243 	 * so that we can use them from within the normal user timelines
1244 	 * should we need to inject GPU operations during their request
1245 	 * construction.
1246 	 */
1247 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1248 
1249 	return ce;
1250 }
1251 
intel_engine_destroy_pinned_context(struct intel_context * ce)1252 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1253 {
1254 	struct intel_engine_cs *engine = ce->engine;
1255 	struct i915_vma *hwsp = engine->status_page.vma;
1256 
1257 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1258 
1259 	mutex_lock(&hwsp->vm->mutex);
1260 	list_del(&ce->timeline->engine_link);
1261 	mutex_unlock(&hwsp->vm->mutex);
1262 
1263 	list_del(&ce->pinned_contexts_link);
1264 	intel_context_unpin(ce);
1265 	intel_context_put(ce);
1266 }
1267 
1268 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1269 create_kernel_context(struct intel_engine_cs *engine)
1270 {
1271 	static struct lock_class_key kernel;
1272 
1273 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1274 						  I915_GEM_HWS_SEQNO_ADDR,
1275 						  &kernel, "kernel_context");
1276 }
1277 
1278 /**
1279  * intel_engines_init_common - initialize cengine state which might require hw access
1280  * @engine: Engine to initialize.
1281  *
1282  * Initializes @engine@ structure members shared between legacy and execlists
1283  * submission modes which do require hardware access.
1284  *
1285  * Typcally done at later stages of submission mode specific engine setup.
1286  *
1287  * Returns zero on success or an error code on failure.
1288  */
engine_init_common(struct intel_engine_cs * engine)1289 static int engine_init_common(struct intel_engine_cs *engine)
1290 {
1291 	struct intel_context *ce;
1292 	int ret;
1293 
1294 	engine->set_default_submission(engine);
1295 
1296 	/*
1297 	 * We may need to do things with the shrinker which
1298 	 * require us to immediately switch back to the default
1299 	 * context. This can cause a problem as pinning the
1300 	 * default context also requires GTT space which may not
1301 	 * be available. To avoid this we always pin the default
1302 	 * context.
1303 	 */
1304 	ce = create_kernel_context(engine);
1305 	if (IS_ERR(ce))
1306 		return PTR_ERR(ce);
1307 
1308 	ret = measure_breadcrumb_dw(ce);
1309 	if (ret < 0)
1310 		goto err_context;
1311 
1312 	engine->emit_fini_breadcrumb_dw = ret;
1313 	engine->kernel_context = ce;
1314 
1315 	return 0;
1316 
1317 err_context:
1318 	intel_engine_destroy_pinned_context(ce);
1319 	return ret;
1320 }
1321 
intel_engines_init(struct intel_gt * gt)1322 int intel_engines_init(struct intel_gt *gt)
1323 {
1324 	int (*setup)(struct intel_engine_cs *engine);
1325 	struct intel_engine_cs *engine;
1326 	enum intel_engine_id id;
1327 	int err;
1328 
1329 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1330 		gt->submission_method = INTEL_SUBMISSION_GUC;
1331 		setup = intel_guc_submission_setup;
1332 	} else if (HAS_EXECLISTS(gt->i915)) {
1333 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1334 		setup = intel_execlists_submission_setup;
1335 	} else {
1336 		gt->submission_method = INTEL_SUBMISSION_RING;
1337 		setup = intel_ring_submission_setup;
1338 	}
1339 
1340 	for_each_engine(engine, gt, id) {
1341 		err = engine_setup_common(engine);
1342 		if (err)
1343 			return err;
1344 
1345 		err = setup(engine);
1346 		if (err) {
1347 			intel_engine_cleanup_common(engine);
1348 			return err;
1349 		}
1350 
1351 		/* The backend should now be responsible for cleanup */
1352 		GEM_BUG_ON(engine->release == NULL);
1353 
1354 		err = engine_init_common(engine);
1355 		if (err)
1356 			return err;
1357 
1358 		intel_engine_add_user(engine);
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * intel_engines_cleanup_common - cleans up the engine state created by
1366  *                                the common initiailizers.
1367  * @engine: Engine to cleanup.
1368  *
1369  * This cleans up everything created by the common helpers.
1370  */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1371 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1372 {
1373 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1374 
1375 	i915_sched_engine_put(engine->sched_engine);
1376 	intel_breadcrumbs_put(engine->breadcrumbs);
1377 
1378 	intel_engine_fini_retire(engine);
1379 	intel_engine_cleanup_cmd_parser(engine);
1380 
1381 	if (engine->default_state)
1382 		fput(engine->default_state);
1383 
1384 	if (engine->kernel_context)
1385 		intel_engine_destroy_pinned_context(engine->kernel_context);
1386 
1387 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1388 	cleanup_status_page(engine);
1389 
1390 	intel_wa_list_free(&engine->ctx_wa_list);
1391 	intel_wa_list_free(&engine->wa_list);
1392 	intel_wa_list_free(&engine->whitelist);
1393 }
1394 
1395 /**
1396  * intel_engine_resume - re-initializes the HW state of the engine
1397  * @engine: Engine to resume.
1398  *
1399  * Returns zero on success or an error code on failure.
1400  */
intel_engine_resume(struct intel_engine_cs * engine)1401 int intel_engine_resume(struct intel_engine_cs *engine)
1402 {
1403 	intel_engine_apply_workarounds(engine);
1404 	intel_engine_apply_whitelist(engine);
1405 
1406 	return engine->resume(engine);
1407 }
1408 
intel_engine_get_active_head(const struct intel_engine_cs * engine)1409 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1410 {
1411 	struct drm_i915_private *i915 = engine->i915;
1412 
1413 	u64 acthd;
1414 
1415 	if (GRAPHICS_VER(i915) >= 8)
1416 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1417 	else if (GRAPHICS_VER(i915) >= 4)
1418 		acthd = ENGINE_READ(engine, RING_ACTHD);
1419 	else
1420 		acthd = ENGINE_READ(engine, ACTHD);
1421 
1422 	return acthd;
1423 }
1424 
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1425 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1426 {
1427 	u64 bbaddr;
1428 
1429 	if (GRAPHICS_VER(engine->i915) >= 8)
1430 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1431 	else
1432 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1433 
1434 	return bbaddr;
1435 }
1436 
stop_timeout(const struct intel_engine_cs * engine)1437 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1438 {
1439 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1440 		return 0;
1441 
1442 	/*
1443 	 * If we are doing a normal GPU reset, we can take our time and allow
1444 	 * the engine to quiesce. We've stopped submission to the engine, and
1445 	 * if we wait long enough an innocent context should complete and
1446 	 * leave the engine idle. So they should not be caught unaware by
1447 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1448 	 */
1449 	return READ_ONCE(engine->props.stop_timeout_ms);
1450 }
1451 
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1452 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1453 				  int fast_timeout_us,
1454 				  int slow_timeout_ms)
1455 {
1456 	struct intel_uncore *uncore = engine->uncore;
1457 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1458 	int err;
1459 
1460 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1461 
1462 	/*
1463 	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1464 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1465 	 */
1466 	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1467 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1468 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1469 
1470 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1471 					   MODE_IDLE, MODE_IDLE,
1472 					   fast_timeout_us,
1473 					   slow_timeout_ms,
1474 					   NULL);
1475 
1476 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1477 	intel_uncore_posting_read_fw(uncore, mode);
1478 	return err;
1479 }
1480 
intel_engine_stop_cs(struct intel_engine_cs * engine)1481 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1482 {
1483 	int err = 0;
1484 
1485 	if (GRAPHICS_VER(engine->i915) < 3)
1486 		return -ENODEV;
1487 
1488 	ENGINE_TRACE(engine, "\n");
1489 	/*
1490 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1491 	 * especially with gem_eio tests.
1492 	 *
1493 	 * Occasionally trying to stop the cs times out, but does not adversely
1494 	 * affect functionality. The timeout is set as a config parameter that
1495 	 * defaults to 100ms. In most cases the follow up operation is to wait
1496 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1497 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1498 	 * caused, the caller must check and handle the return from this
1499 	 * function.
1500 	 */
1501 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1502 		ENGINE_TRACE(engine,
1503 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1504 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1505 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1506 
1507 		/*
1508 		 * Sometimes we observe that the idle flag is not
1509 		 * set even though the ring is empty. So double
1510 		 * check before giving up.
1511 		 */
1512 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1513 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1514 			err = -ETIMEDOUT;
1515 	}
1516 
1517 	return err;
1518 }
1519 
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1520 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1521 {
1522 	ENGINE_TRACE(engine, "\n");
1523 
1524 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1525 }
1526 
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1527 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1528 {
1529 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1530 		[RCS0] = MSG_IDLE_CS,
1531 		[BCS0] = MSG_IDLE_BCS,
1532 		[VCS0] = MSG_IDLE_VCS0,
1533 		[VCS1] = MSG_IDLE_VCS1,
1534 		[VCS2] = MSG_IDLE_VCS2,
1535 		[VCS3] = MSG_IDLE_VCS3,
1536 		[VCS4] = MSG_IDLE_VCS4,
1537 		[VCS5] = MSG_IDLE_VCS5,
1538 		[VCS6] = MSG_IDLE_VCS6,
1539 		[VCS7] = MSG_IDLE_VCS7,
1540 		[VECS0] = MSG_IDLE_VECS0,
1541 		[VECS1] = MSG_IDLE_VECS1,
1542 		[VECS2] = MSG_IDLE_VECS2,
1543 		[VECS3] = MSG_IDLE_VECS3,
1544 		[CCS0] = MSG_IDLE_CS,
1545 		[CCS1] = MSG_IDLE_CS,
1546 		[CCS2] = MSG_IDLE_CS,
1547 		[CCS3] = MSG_IDLE_CS,
1548 	};
1549 	u32 val;
1550 
1551 	if (!_reg[engine->id].reg) {
1552 		drm_err(&engine->i915->drm,
1553 			"MSG IDLE undefined for engine id %u\n", engine->id);
1554 		return 0;
1555 	}
1556 
1557 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1558 
1559 	/* bits[29:25] & bits[13:9] >> shift */
1560 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1561 }
1562 
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1563 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1564 {
1565 	int ret;
1566 
1567 	/* Ensure GPM receives fw up/down after CS is stopped */
1568 	udelay(1);
1569 
1570 	/* Wait for forcewake request to complete in GPM */
1571 	ret =  __intel_wait_for_register_fw(gt->uncore,
1572 					    GEN9_PWRGT_DOMAIN_STATUS,
1573 					    fw_mask, fw_mask, 5000, 0, NULL);
1574 
1575 	/* Ensure CS receives fw ack from GPM */
1576 	udelay(1);
1577 
1578 	if (ret)
1579 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1580 }
1581 
1582 /*
1583  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1584  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1585  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1586  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1587  * are concerned only with the gt reset here, we use a logical OR of pending
1588  * forcewakeups from all reset domains and then wait for them to complete by
1589  * querying PWRGT_DOMAIN_STATUS.
1590  */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1591 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1592 {
1593 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1594 
1595 	if (fw_pending)
1596 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1597 }
1598 
1599 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1600 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1601 			       struct intel_instdone *instdone)
1602 {
1603 	struct drm_i915_private *i915 = engine->i915;
1604 	struct intel_uncore *uncore = engine->uncore;
1605 	u32 mmio_base = engine->mmio_base;
1606 	int slice;
1607 	int subslice;
1608 	int iter;
1609 
1610 	memset(instdone, 0, sizeof(*instdone));
1611 
1612 	if (GRAPHICS_VER(i915) >= 8) {
1613 		instdone->instdone =
1614 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1615 
1616 		if (engine->id != RCS0)
1617 			return;
1618 
1619 		instdone->slice_common =
1620 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1621 		if (GRAPHICS_VER(i915) >= 12) {
1622 			instdone->slice_common_extra[0] =
1623 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1624 			instdone->slice_common_extra[1] =
1625 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1626 		}
1627 
1628 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1629 			instdone->sampler[slice][subslice] =
1630 				intel_gt_mcr_read(engine->gt,
1631 						  GEN7_SAMPLER_INSTDONE,
1632 						  slice, subslice);
1633 			instdone->row[slice][subslice] =
1634 				intel_gt_mcr_read(engine->gt,
1635 						  GEN7_ROW_INSTDONE,
1636 						  slice, subslice);
1637 		}
1638 
1639 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1640 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1641 				instdone->geom_svg[slice][subslice] =
1642 					intel_gt_mcr_read(engine->gt,
1643 							  XEHPG_INSTDONE_GEOM_SVG,
1644 							  slice, subslice);
1645 		}
1646 	} else if (GRAPHICS_VER(i915) >= 7) {
1647 		instdone->instdone =
1648 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1649 
1650 		if (engine->id != RCS0)
1651 			return;
1652 
1653 		instdone->slice_common =
1654 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1655 		instdone->sampler[0][0] =
1656 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1657 		instdone->row[0][0] =
1658 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1659 	} else if (GRAPHICS_VER(i915) >= 4) {
1660 		instdone->instdone =
1661 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1662 		if (engine->id == RCS0)
1663 			/* HACK: Using the wrong struct member */
1664 			instdone->slice_common =
1665 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1666 	} else {
1667 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1668 	}
1669 }
1670 
ring_is_idle(struct intel_engine_cs * engine)1671 static bool ring_is_idle(struct intel_engine_cs *engine)
1672 {
1673 	bool idle = true;
1674 
1675 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1676 		return true;
1677 
1678 	if (!intel_engine_pm_get_if_awake(engine))
1679 		return true;
1680 
1681 	/* First check that no commands are left in the ring */
1682 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1683 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1684 		idle = false;
1685 
1686 	/* No bit for gen2, so assume the CS parser is idle */
1687 	if (GRAPHICS_VER(engine->i915) > 2 &&
1688 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1689 		idle = false;
1690 
1691 	intel_engine_pm_put(engine);
1692 
1693 	return idle;
1694 }
1695 
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1696 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1697 {
1698 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1699 
1700 	if (!t->callback)
1701 		return;
1702 
1703 	local_bh_disable();
1704 	if (tasklet_trylock(t)) {
1705 		/* Must wait for any GPU reset in progress. */
1706 		if (__tasklet_is_enabled(t))
1707 			t->callback(t);
1708 		tasklet_unlock(t);
1709 	}
1710 	local_bh_enable();
1711 
1712 	/* Synchronise and wait for the tasklet on another CPU */
1713 	if (sync)
1714 		tasklet_unlock_wait(t);
1715 }
1716 
1717 /**
1718  * intel_engine_is_idle() - Report if the engine has finished process all work
1719  * @engine: the intel_engine_cs
1720  *
1721  * Return true if there are no requests pending, nothing left to be submitted
1722  * to hardware, and that the engine is idle.
1723  */
intel_engine_is_idle(struct intel_engine_cs * engine)1724 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1725 {
1726 	/* More white lies, if wedged, hw state is inconsistent */
1727 	if (intel_gt_is_wedged(engine->gt))
1728 		return true;
1729 
1730 	if (!intel_engine_pm_is_awake(engine))
1731 		return true;
1732 
1733 	/* Waiting to drain ELSP? */
1734 	intel_synchronize_hardirq(engine->i915);
1735 	intel_engine_flush_submission(engine);
1736 
1737 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1738 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1739 		return false;
1740 
1741 	/* Ring stopped? */
1742 	return ring_is_idle(engine);
1743 }
1744 
intel_engines_are_idle(struct intel_gt * gt)1745 bool intel_engines_are_idle(struct intel_gt *gt)
1746 {
1747 	struct intel_engine_cs *engine;
1748 	enum intel_engine_id id;
1749 
1750 	/*
1751 	 * If the driver is wedged, HW state may be very inconsistent and
1752 	 * report that it is still busy, even though we have stopped using it.
1753 	 */
1754 	if (intel_gt_is_wedged(gt))
1755 		return true;
1756 
1757 	/* Already parked (and passed an idleness test); must still be idle */
1758 	if (!READ_ONCE(gt->awake))
1759 		return true;
1760 
1761 	for_each_engine(engine, gt, id) {
1762 		if (!intel_engine_is_idle(engine))
1763 			return false;
1764 	}
1765 
1766 	return true;
1767 }
1768 
intel_engine_irq_enable(struct intel_engine_cs * engine)1769 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1770 {
1771 	if (!engine->irq_enable)
1772 		return false;
1773 
1774 	/* Caller disables interrupts */
1775 	spin_lock(engine->gt->irq_lock);
1776 	engine->irq_enable(engine);
1777 	spin_unlock(engine->gt->irq_lock);
1778 
1779 	return true;
1780 }
1781 
intel_engine_irq_disable(struct intel_engine_cs * engine)1782 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1783 {
1784 	if (!engine->irq_disable)
1785 		return;
1786 
1787 	/* Caller disables interrupts */
1788 	spin_lock(engine->gt->irq_lock);
1789 	engine->irq_disable(engine);
1790 	spin_unlock(engine->gt->irq_lock);
1791 }
1792 
intel_engines_reset_default_submission(struct intel_gt * gt)1793 void intel_engines_reset_default_submission(struct intel_gt *gt)
1794 {
1795 	struct intel_engine_cs *engine;
1796 	enum intel_engine_id id;
1797 
1798 	for_each_engine(engine, gt, id) {
1799 		if (engine->sanitize)
1800 			engine->sanitize(engine);
1801 
1802 		engine->set_default_submission(engine);
1803 	}
1804 }
1805 
intel_engine_can_store_dword(struct intel_engine_cs * engine)1806 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1807 {
1808 	switch (GRAPHICS_VER(engine->i915)) {
1809 	case 2:
1810 		return false; /* uses physical not virtual addresses */
1811 	case 3:
1812 		/* maybe only uses physical not virtual addresses */
1813 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1814 	case 4:
1815 		return !IS_I965G(engine->i915); /* who knows! */
1816 	case 6:
1817 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1818 	default:
1819 		return true;
1820 	}
1821 }
1822 
get_timeline(struct i915_request * rq)1823 static struct intel_timeline *get_timeline(struct i915_request *rq)
1824 {
1825 	struct intel_timeline *tl;
1826 
1827 	/*
1828 	 * Even though we are holding the engine->sched_engine->lock here, there
1829 	 * is no control over the submission queue per-se and we are
1830 	 * inspecting the active state at a random point in time, with an
1831 	 * unknown queue. Play safe and make sure the timeline remains valid.
1832 	 * (Only being used for pretty printing, one extra kref shouldn't
1833 	 * cause a camel stampede!)
1834 	 */
1835 	rcu_read_lock();
1836 	tl = rcu_dereference(rq->timeline);
1837 	if (!kref_get_unless_zero(&tl->kref))
1838 		tl = NULL;
1839 	rcu_read_unlock();
1840 
1841 	return tl;
1842 }
1843 
print_ring(char * buf,int sz,struct i915_request * rq)1844 static int print_ring(char *buf, int sz, struct i915_request *rq)
1845 {
1846 	int len = 0;
1847 
1848 	if (!i915_request_signaled(rq)) {
1849 		struct intel_timeline *tl = get_timeline(rq);
1850 
1851 		len = scnprintf(buf, sz,
1852 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1853 				i915_ggtt_offset(rq->ring->vma),
1854 				tl ? tl->hwsp_offset : 0,
1855 				hwsp_seqno(rq),
1856 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1857 						      1000 * 1000));
1858 
1859 		if (tl)
1860 			intel_timeline_put(tl);
1861 	}
1862 
1863 	return len;
1864 }
1865 
hexdump(struct drm_printer * m,const void * buf,size_t len)1866 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1867 {
1868 	const size_t rowsize = 8 * sizeof(u32);
1869 	const void *prev = NULL;
1870 	bool skip = false;
1871 	size_t pos;
1872 
1873 	for (pos = 0; pos < len; pos += rowsize) {
1874 		char line[128];
1875 
1876 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1877 			if (!skip) {
1878 				drm_printf(m, "*\n");
1879 				skip = true;
1880 			}
1881 			continue;
1882 		}
1883 
1884 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1885 						rowsize, sizeof(u32),
1886 						line, sizeof(line),
1887 						false) >= sizeof(line));
1888 		drm_printf(m, "[%04zx] %s\n", pos, line);
1889 
1890 		prev = buf + pos;
1891 		skip = false;
1892 	}
1893 }
1894 
repr_timer(const struct timer_list * t)1895 static const char *repr_timer(const struct timer_list *t)
1896 {
1897 	if (!READ_ONCE(t->expires))
1898 		return "inactive";
1899 
1900 	if (timer_pending(t))
1901 		return "active";
1902 
1903 	return "expired";
1904 }
1905 
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1906 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1907 					 struct drm_printer *m)
1908 {
1909 	struct drm_i915_private *dev_priv = engine->i915;
1910 	struct intel_engine_execlists * const execlists = &engine->execlists;
1911 	u64 addr;
1912 
1913 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1914 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1915 	if (HAS_EXECLISTS(dev_priv)) {
1916 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1917 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1918 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1919 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1920 	}
1921 	drm_printf(m, "\tRING_START: 0x%08x\n",
1922 		   ENGINE_READ(engine, RING_START));
1923 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1924 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1925 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1926 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1927 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1928 		   ENGINE_READ(engine, RING_CTL),
1929 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1930 	if (GRAPHICS_VER(engine->i915) > 2) {
1931 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1932 			   ENGINE_READ(engine, RING_MI_MODE),
1933 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1934 	}
1935 
1936 	if (GRAPHICS_VER(dev_priv) >= 6) {
1937 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1938 			   ENGINE_READ(engine, RING_IMR));
1939 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1940 			   ENGINE_READ(engine, RING_ESR));
1941 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1942 			   ENGINE_READ(engine, RING_EMR));
1943 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1944 			   ENGINE_READ(engine, RING_EIR));
1945 	}
1946 
1947 	addr = intel_engine_get_active_head(engine);
1948 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1949 		   upper_32_bits(addr), lower_32_bits(addr));
1950 	addr = intel_engine_get_last_batch_head(engine);
1951 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1952 		   upper_32_bits(addr), lower_32_bits(addr));
1953 	if (GRAPHICS_VER(dev_priv) >= 8)
1954 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1955 	else if (GRAPHICS_VER(dev_priv) >= 4)
1956 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1957 	else
1958 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1959 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1960 		   upper_32_bits(addr), lower_32_bits(addr));
1961 	if (GRAPHICS_VER(dev_priv) >= 4) {
1962 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1963 			   ENGINE_READ(engine, RING_IPEIR));
1964 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1965 			   ENGINE_READ(engine, RING_IPEHR));
1966 	} else {
1967 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1968 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1969 	}
1970 
1971 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1972 		struct i915_request * const *port, *rq;
1973 		const u32 *hws =
1974 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1975 		const u8 num_entries = execlists->csb_size;
1976 		unsigned int idx;
1977 		u8 read, write;
1978 
1979 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1980 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1981 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1982 			   repr_timer(&engine->execlists.preempt),
1983 			   repr_timer(&engine->execlists.timer));
1984 
1985 		read = execlists->csb_head;
1986 		write = READ_ONCE(*execlists->csb_write);
1987 
1988 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1989 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1990 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1991 			   read, write, num_entries);
1992 
1993 		if (read >= num_entries)
1994 			read = 0;
1995 		if (write >= num_entries)
1996 			write = 0;
1997 		if (read > write)
1998 			write += num_entries;
1999 		while (read < write) {
2000 			idx = ++read % num_entries;
2001 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2002 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2003 		}
2004 
2005 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2006 		rcu_read_lock();
2007 		for (port = execlists->active; (rq = *port); port++) {
2008 			char hdr[160];
2009 			int len;
2010 
2011 			len = scnprintf(hdr, sizeof(hdr),
2012 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2013 					(int)(port - execlists->active),
2014 					rq->context->lrc.ccid,
2015 					intel_context_is_closed(rq->context) ? "!" : "",
2016 					intel_context_is_banned(rq->context) ? "*" : "");
2017 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2018 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2019 			i915_request_show(m, rq, hdr, 0);
2020 		}
2021 		for (port = execlists->pending; (rq = *port); port++) {
2022 			char hdr[160];
2023 			int len;
2024 
2025 			len = scnprintf(hdr, sizeof(hdr),
2026 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2027 					(int)(port - execlists->pending),
2028 					rq->context->lrc.ccid,
2029 					intel_context_is_closed(rq->context) ? "!" : "",
2030 					intel_context_is_banned(rq->context) ? "*" : "");
2031 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2032 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2033 			i915_request_show(m, rq, hdr, 0);
2034 		}
2035 		rcu_read_unlock();
2036 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2037 	} else if (GRAPHICS_VER(dev_priv) > 6) {
2038 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2039 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2040 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2041 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2042 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2043 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2044 	}
2045 }
2046 
print_request_ring(struct drm_printer * m,struct i915_request * rq)2047 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2048 {
2049 	struct i915_vma_resource *vma_res = rq->batch_res;
2050 	void *ring;
2051 	int size;
2052 
2053 	drm_printf(m,
2054 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2055 		   rq->head, rq->postfix, rq->tail,
2056 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2057 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2058 
2059 	size = rq->tail - rq->head;
2060 	if (rq->tail < rq->head)
2061 		size += rq->ring->size;
2062 
2063 	ring = kmalloc(size, GFP_ATOMIC);
2064 	if (ring) {
2065 		const void *vaddr = rq->ring->vaddr;
2066 		unsigned int head = rq->head;
2067 		unsigned int len = 0;
2068 
2069 		if (rq->tail < head) {
2070 			len = rq->ring->size - head;
2071 			memcpy(ring, vaddr + head, len);
2072 			head = 0;
2073 		}
2074 		memcpy(ring + len, vaddr + head, size - len);
2075 
2076 		hexdump(m, ring, size);
2077 		kfree(ring);
2078 	}
2079 }
2080 
list_count(struct list_head * list)2081 static unsigned long list_count(struct list_head *list)
2082 {
2083 	struct list_head *pos;
2084 	unsigned long count = 0;
2085 
2086 	list_for_each(pos, list)
2087 		count++;
2088 
2089 	return count;
2090 }
2091 
read_ul(void * p,size_t x)2092 static unsigned long read_ul(void *p, size_t x)
2093 {
2094 	return *(unsigned long *)(p + x);
2095 }
2096 
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2097 static void print_properties(struct intel_engine_cs *engine,
2098 			     struct drm_printer *m)
2099 {
2100 	static const struct pmap {
2101 		size_t offset;
2102 		const char *name;
2103 	} props[] = {
2104 #define P(x) { \
2105 	.offset = offsetof(typeof(engine->props), x), \
2106 	.name = #x \
2107 }
2108 		P(heartbeat_interval_ms),
2109 		P(max_busywait_duration_ns),
2110 		P(preempt_timeout_ms),
2111 		P(stop_timeout_ms),
2112 		P(timeslice_duration_ms),
2113 
2114 		{},
2115 #undef P
2116 	};
2117 	const struct pmap *p;
2118 
2119 	drm_printf(m, "\tProperties:\n");
2120 	for (p = props; p->name; p++)
2121 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2122 			   p->name,
2123 			   read_ul(&engine->props, p->offset),
2124 			   read_ul(&engine->defaults, p->offset));
2125 }
2126 
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2127 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2128 {
2129 	struct intel_timeline *tl = get_timeline(rq);
2130 
2131 	i915_request_show(m, rq, msg, 0);
2132 
2133 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2134 		   i915_ggtt_offset(rq->ring->vma));
2135 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2136 		   rq->ring->head);
2137 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2138 		   rq->ring->tail);
2139 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2140 		   rq->ring->emit);
2141 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2142 		   rq->ring->space);
2143 
2144 	if (tl) {
2145 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2146 			   tl->hwsp_offset);
2147 		intel_timeline_put(tl);
2148 	}
2149 
2150 	print_request_ring(m, rq);
2151 
2152 	if (rq->context->lrc_reg_state) {
2153 		drm_printf(m, "Logical Ring Context:\n");
2154 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2155 	}
2156 }
2157 
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2158 void intel_engine_dump_active_requests(struct list_head *requests,
2159 				       struct i915_request *hung_rq,
2160 				       struct drm_printer *m)
2161 {
2162 	struct i915_request *rq;
2163 	const char *msg;
2164 	enum i915_request_state state;
2165 
2166 	list_for_each_entry(rq, requests, sched.link) {
2167 		if (rq == hung_rq)
2168 			continue;
2169 
2170 		state = i915_test_request_state(rq);
2171 		if (state < I915_REQUEST_QUEUED)
2172 			continue;
2173 
2174 		if (state == I915_REQUEST_ACTIVE)
2175 			msg = "\t\tactive on engine";
2176 		else
2177 			msg = "\t\tactive in queue";
2178 
2179 		engine_dump_request(rq, m, msg);
2180 	}
2181 }
2182 
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2183 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
2184 {
2185 	struct i915_request *hung_rq = NULL;
2186 	struct intel_context *ce;
2187 	bool guc;
2188 
2189 	/*
2190 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2191 	 * The GPU is still running so requests are still executing and any
2192 	 * hardware reads will be out of date by the time they are reported.
2193 	 * But the intention here is just to report an instantaneous snapshot
2194 	 * so that's fine.
2195 	 */
2196 	lockdep_assert_held(&engine->sched_engine->lock);
2197 
2198 	drm_printf(m, "\tRequests:\n");
2199 
2200 	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
2201 	if (guc) {
2202 		ce = intel_engine_get_hung_context(engine);
2203 		if (ce)
2204 			hung_rq = intel_context_find_active_request(ce);
2205 	} else {
2206 		hung_rq = intel_engine_execlist_find_hung_request(engine);
2207 	}
2208 
2209 	if (hung_rq)
2210 		engine_dump_request(hung_rq, m, "\t\thung");
2211 
2212 	if (guc)
2213 		intel_guc_dump_active_requests(engine, hung_rq, m);
2214 	else
2215 		intel_engine_dump_active_requests(&engine->sched_engine->requests,
2216 						  hung_rq, m);
2217 }
2218 
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2219 void intel_engine_dump(struct intel_engine_cs *engine,
2220 		       struct drm_printer *m,
2221 		       const char *header, ...)
2222 {
2223 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2224 	struct i915_request *rq;
2225 	intel_wakeref_t wakeref;
2226 	unsigned long flags;
2227 	ktime_t dummy;
2228 
2229 	if (header) {
2230 		va_list ap;
2231 
2232 		va_start(ap, header);
2233 		drm_vprintf(m, header, &ap);
2234 		va_end(ap);
2235 	}
2236 
2237 	if (intel_gt_is_wedged(engine->gt))
2238 		drm_printf(m, "*** WEDGED ***\n");
2239 
2240 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2241 	drm_printf(m, "\tBarriers?: %s\n",
2242 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2243 	drm_printf(m, "\tLatency: %luus\n",
2244 		   ewma__engine_latency_read(&engine->latency));
2245 	if (intel_engine_supports_stats(engine))
2246 		drm_printf(m, "\tRuntime: %llums\n",
2247 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2248 								  &dummy)));
2249 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2250 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2251 
2252 	rcu_read_lock();
2253 	rq = READ_ONCE(engine->heartbeat.systole);
2254 	if (rq)
2255 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2256 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2257 	rcu_read_unlock();
2258 	drm_printf(m, "\tReset count: %d (global %d)\n",
2259 		   i915_reset_engine_count(error, engine),
2260 		   i915_reset_count(error));
2261 	print_properties(engine, m);
2262 
2263 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2264 	engine_dump_active_requests(engine, m);
2265 
2266 	drm_printf(m, "\tOn hold?: %lu\n",
2267 		   list_count(&engine->sched_engine->hold));
2268 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2269 
2270 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2271 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2272 	if (wakeref) {
2273 		intel_engine_print_registers(engine, m);
2274 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2275 	} else {
2276 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2277 	}
2278 
2279 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2280 
2281 	drm_printf(m, "HWSP:\n");
2282 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2283 
2284 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2285 
2286 	intel_engine_print_breadcrumbs(engine, m);
2287 }
2288 
2289 /**
2290  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2291  * @engine: engine to report on
2292  * @now: monotonic timestamp of sampling
2293  *
2294  * Returns accumulated time @engine was busy since engine stats were enabled.
2295  */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2296 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2297 {
2298 	return engine->busyness(engine, now);
2299 }
2300 
2301 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2302 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2303 			    unsigned int count, unsigned long flags)
2304 {
2305 	if (count == 0)
2306 		return ERR_PTR(-EINVAL);
2307 
2308 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2309 		return intel_context_create(siblings[0]);
2310 
2311 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2312 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2313 }
2314 
2315 struct i915_request *
intel_engine_execlist_find_hung_request(struct intel_engine_cs * engine)2316 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2317 {
2318 	struct i915_request *request, *active = NULL;
2319 
2320 	/*
2321 	 * This search does not work in GuC submission mode. However, the GuC
2322 	 * will report the hanging context directly to the driver itself. So
2323 	 * the driver should never get here when in GuC mode.
2324 	 */
2325 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2326 
2327 	/*
2328 	 * We are called by the error capture, reset and to dump engine
2329 	 * state at random points in time. In particular, note that neither is
2330 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2331 	 * and we assume that no more writes can happen (we waited long enough
2332 	 * for all writes that were in transaction to be flushed) - adding an
2333 	 * extra delay for a recent interrupt is pointless. Hence, we do
2334 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2335 	 * At all other times, we must assume the GPU is still running, but
2336 	 * we only care about the snapshot of this moment.
2337 	 */
2338 	lockdep_assert_held(&engine->sched_engine->lock);
2339 
2340 	rcu_read_lock();
2341 	request = execlists_active(&engine->execlists);
2342 	if (request) {
2343 		struct intel_timeline *tl = request->context->timeline;
2344 
2345 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2346 			if (__i915_request_is_complete(request))
2347 				break;
2348 
2349 			active = request;
2350 		}
2351 	}
2352 	rcu_read_unlock();
2353 	if (active)
2354 		return active;
2355 
2356 	list_for_each_entry(request, &engine->sched_engine->requests,
2357 			    sched.link) {
2358 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2359 			continue;
2360 
2361 		active = request;
2362 		break;
2363 	}
2364 
2365 	return active;
2366 }
2367 
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2368 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2369 {
2370 	/*
2371 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2372 	 * support in the RCU_MODE register.  This only needs to be done once,
2373 	 * so for simplicity we'll take care of this in the RCS engine's
2374 	 * resume handler; since the RCS and all CCS engines belong to the
2375 	 * same reset domain and are reset together, this will also take care
2376 	 * of re-applying the setting after i915-triggered resets.
2377 	 */
2378 	if (!CCS_MASK(engine->gt))
2379 		return;
2380 
2381 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2382 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2383 }
2384 
2385 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2386 #include "mock_engine.c"
2387 #include "selftest_engine.c"
2388 #include "selftest_engine_cs.c"
2389 #endif
2390