1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17 
18 /**
19  * DOC: Hardware workarounds
20  *
21  * Hardware workarounds are register programming documented to be executed in
22  * the driver that fall outside of the normal programming sequences for a
23  * platform. There are some basic categories of workarounds, depending on
24  * how/when they are applied:
25  *
26  * - Context workarounds: workarounds that touch registers that are
27  *   saved/restored to/from the HW context image. The list is emitted (via Load
28  *   Register Immediate commands) once when initializing the device and saved in
29  *   the default context. That default context is then used on every context
30  *   creation to have a "primed golden context", i.e. a context image that
31  *   already contains the changes needed to all the registers.
32  *
33  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
34  *   variants respective to the targeted platforms.
35  *
36  * - Engine workarounds: the list of these WAs is applied whenever the specific
37  *   engine is reset. It's also possible that a set of engine classes share a
38  *   common power domain and they are reset together. This happens on some
39  *   platforms with render and compute engines. In this case (at least) one of
40  *   them need to keeep the workaround programming: the approach taken in the
41  *   driver is to tie those workarounds to the first compute/render engine that
42  *   is registered.  When executing with GuC submission, engine resets are
43  *   outside of kernel driver control, hence the list of registers involved in
44  *   written once, on engine initialization, and then passed to GuC, that
45  *   saves/restores their values before/after the reset takes place. See
46  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
47  *
48  *   Workarounds for registers specific to RCS and CCS should be implemented in
49  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
50  *   registers belonging to BCS, VCS or VECS should be implemented in
51  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
52  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
53  *   should be implemented in general_render_compute_wa_init().
54  *
55  * - GT workarounds: the list of these WAs is applied whenever these registers
56  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
57  *
58  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
59  *   variants respective to the targeted platforms.
60  *
61  * - Register whitelist: some workarounds need to be implemented in userspace,
62  *   but need to touch privileged registers. The whitelist in the kernel
63  *   instructs the hardware to allow the access to happen. From the kernel side,
64  *   this is just a special case of a MMIO workaround (as we write the list of
65  *   these to/be-whitelisted registers to some special HW registers).
66  *
67  *   Register whitelisting should be done in the \*_whitelist_build() variants
68  *   respective to the targeted platforms.
69  *
70  * - Workaround batchbuffers: buffers that get executed automatically by the
71  *   hardware on every HW context restore. These buffers are created and
72  *   programmed in the default context so the hardware always go through those
73  *   programming sequences when switching contexts. The support for workaround
74  *   batchbuffers is enabled these hardware mechanisms:
75  *
76  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
77  *      context, pointing the hardware to jump to that location when that offset
78  *      is reached in the context restore. Workaround batchbuffer in the driver
79  *      currently uses this mechanism for all platforms.
80  *
81  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
82  *      pointing the hardware to a buffer to continue executing after the
83  *      engine registers are restored in a context restore sequence. This is
84  *      currently not used in the driver.
85  *
86  * - Other:  There are WAs that, due to their nature, cannot be applied from a
87  *   central place. Those are peppered around the rest of the code, as needed.
88  *   Workarounds related to the display IP are the main example.
89  *
90  * .. [1] Technically, some registers are powercontext saved & restored, so they
91  *    survive a suspend/resume. In practice, writing them again is not too
92  *    costly and simplifies things, so it's the approach taken in the driver.
93  */
94 
wa_init_start(struct i915_wa_list * wal,struct intel_gt * gt,const char * name,const char * engine_name)95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
96 			  const char *name, const char *engine_name)
97 {
98 	wal->gt = gt;
99 	wal->name = name;
100 	wal->engine_name = engine_name;
101 }
102 
103 #define WA_LIST_CHUNK (1 << 4)
104 
wa_init_finish(struct i915_wa_list * wal)105 static void wa_init_finish(struct i915_wa_list *wal)
106 {
107 	/* Trim unused entries. */
108 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
109 		struct i915_wa *list = kmemdup(wal->list,
110 					       wal->count * sizeof(*list),
111 					       GFP_KERNEL);
112 
113 		if (list) {
114 			kfree(wal->list);
115 			wal->list = list;
116 		}
117 	}
118 
119 	if (!wal->count)
120 		return;
121 
122 	drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
123 		wal->wa_count, wal->name, wal->engine_name);
124 }
125 
126 static enum forcewake_domains
wal_get_fw_for_rmw(struct intel_uncore * uncore,const struct i915_wa_list * wal)127 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
128 {
129 	enum forcewake_domains fw = 0;
130 	struct i915_wa *wa;
131 	unsigned int i;
132 
133 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
134 		fw |= intel_uncore_forcewake_for_reg(uncore,
135 						     wa->reg,
136 						     FW_REG_READ |
137 						     FW_REG_WRITE);
138 
139 	return fw;
140 }
141 
_wa_add(struct i915_wa_list * wal,const struct i915_wa * wa)142 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
143 {
144 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
145 	struct drm_i915_private *i915 = wal->gt->i915;
146 	unsigned int start = 0, end = wal->count;
147 	const unsigned int grow = WA_LIST_CHUNK;
148 	struct i915_wa *wa_;
149 
150 	GEM_BUG_ON(!is_power_of_2(grow));
151 
152 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
153 		struct i915_wa *list;
154 
155 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
156 				     GFP_KERNEL);
157 		if (!list) {
158 			drm_err(&i915->drm, "No space for workaround init!\n");
159 			return;
160 		}
161 
162 		if (wal->list) {
163 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
164 			kfree(wal->list);
165 		}
166 
167 		wal->list = list;
168 	}
169 
170 	while (start < end) {
171 		unsigned int mid = start + (end - start) / 2;
172 
173 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
174 			start = mid + 1;
175 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
176 			end = mid;
177 		} else {
178 			wa_ = &wal->list[mid];
179 
180 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
181 				drm_err(&i915->drm,
182 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
183 					i915_mmio_reg_offset(wa_->reg),
184 					wa_->clr, wa_->set);
185 
186 				wa_->set &= ~wa->clr;
187 			}
188 
189 			wal->wa_count++;
190 			wa_->set |= wa->set;
191 			wa_->clr |= wa->clr;
192 			wa_->read |= wa->read;
193 			return;
194 		}
195 	}
196 
197 	wal->wa_count++;
198 	wa_ = &wal->list[wal->count++];
199 	*wa_ = *wa;
200 
201 	while (wa_-- > wal->list) {
202 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
203 			   i915_mmio_reg_offset(wa_[1].reg));
204 		if (i915_mmio_reg_offset(wa_[1].reg) >
205 		    i915_mmio_reg_offset(wa_[0].reg))
206 			break;
207 
208 		swap(wa_[1], wa_[0]);
209 	}
210 }
211 
wa_add(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)212 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
213 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
214 {
215 	struct i915_wa wa = {
216 		.reg  = reg,
217 		.clr  = clear,
218 		.set  = set,
219 		.read = read_mask,
220 		.masked_reg = masked_reg,
221 	};
222 
223 	_wa_add(wal, &wa);
224 }
225 
wa_mcr_add(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)226 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
227 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
228 {
229 	struct i915_wa wa = {
230 		.mcr_reg = reg,
231 		.clr  = clear,
232 		.set  = set,
233 		.read = read_mask,
234 		.masked_reg = masked_reg,
235 		.is_mcr = 1,
236 	};
237 
238 	_wa_add(wal, &wa);
239 }
240 
241 static void
wa_write_clr_set(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set)242 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
243 {
244 	wa_add(wal, reg, clear, set, clear | set, false);
245 }
246 
247 static void
wa_mcr_write_clr_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set)248 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
249 {
250 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
251 }
252 
253 static void
wa_write(struct i915_wa_list * wal,i915_reg_t reg,u32 set)254 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
255 {
256 	wa_write_clr_set(wal, reg, ~0, set);
257 }
258 
259 static void
wa_mcr_write(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)260 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
261 {
262 	wa_mcr_write_clr_set(wal, reg, ~0, set);
263 }
264 
265 static void
wa_write_or(struct i915_wa_list * wal,i915_reg_t reg,u32 set)266 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
267 {
268 	wa_write_clr_set(wal, reg, set, set);
269 }
270 
271 static void
wa_mcr_write_or(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)272 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
273 {
274 	wa_mcr_write_clr_set(wal, reg, set, set);
275 }
276 
277 static void
wa_write_clr(struct i915_wa_list * wal,i915_reg_t reg,u32 clr)278 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
279 {
280 	wa_write_clr_set(wal, reg, clr, 0);
281 }
282 
283 static void
wa_mcr_write_clr(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clr)284 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
285 {
286 	wa_mcr_write_clr_set(wal, reg, clr, 0);
287 }
288 
289 /*
290  * WA operations on "masked register". A masked register has the upper 16 bits
291  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
292  * portion of the register without a rmw: you simply write in the upper 16 bits
293  * the mask of bits you are going to modify.
294  *
295  * The wa_masked_* family of functions already does the necessary operations to
296  * calculate the mask based on the parameters passed, so user only has to
297  * provide the lower 16 bits of that register.
298  */
299 
300 static void
wa_masked_en(struct i915_wa_list * wal,i915_reg_t reg,u32 val)301 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
302 {
303 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
304 }
305 
306 static void
wa_mcr_masked_en(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)307 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
308 {
309 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
310 }
311 
312 static void
wa_masked_dis(struct i915_wa_list * wal,i915_reg_t reg,u32 val)313 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
314 {
315 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
316 }
317 
318 static void
wa_mcr_masked_dis(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)319 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
320 {
321 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
322 }
323 
324 static void
wa_masked_field_set(struct i915_wa_list * wal,i915_reg_t reg,u32 mask,u32 val)325 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
326 		    u32 mask, u32 val)
327 {
328 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
329 }
330 
331 static void
wa_mcr_masked_field_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 mask,u32 val)332 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
333 			u32 mask, u32 val)
334 {
335 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
336 }
337 
gen6_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)338 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
339 				      struct i915_wa_list *wal)
340 {
341 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
342 }
343 
gen7_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)344 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
345 				      struct i915_wa_list *wal)
346 {
347 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
348 }
349 
gen8_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)350 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
351 				      struct i915_wa_list *wal)
352 {
353 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
354 
355 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
356 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
357 
358 	/* WaDisablePartialInstShootdown:bdw,chv */
359 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
360 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
361 
362 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
363 	 * workaround for a possible hang in the unlikely event a TLB
364 	 * invalidation occurs during a PSD flush.
365 	 */
366 	/* WaForceEnableNonCoherent:bdw,chv */
367 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
368 	wa_masked_en(wal, HDC_CHICKEN0,
369 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
370 		     HDC_FORCE_NON_COHERENT);
371 
372 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
373 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
374 	 *  polygons in the same 8x4 pixel/sample area to be processed without
375 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
376 	 *  buffer."
377 	 *
378 	 * This optimization is off by default for BDW and CHV; turn it on.
379 	 */
380 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
381 
382 	/* Wa4x4STCOptimizationDisable:bdw,chv */
383 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
384 
385 	/*
386 	 * BSpec recommends 8x4 when MSAA is used,
387 	 * however in practice 16x4 seems fastest.
388 	 *
389 	 * Note that PS/WM thread counts depend on the WIZ hashing
390 	 * disable bit, which we don't touch here, but it's good
391 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
392 	 */
393 	wa_masked_field_set(wal, GEN7_GT_MODE,
394 			    GEN6_WIZ_HASHING_MASK,
395 			    GEN6_WIZ_HASHING_16x4);
396 }
397 
bdw_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)398 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
399 				     struct i915_wa_list *wal)
400 {
401 	struct drm_i915_private *i915 = engine->i915;
402 
403 	gen8_ctx_workarounds_init(engine, wal);
404 
405 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
406 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
407 
408 	/* WaDisableDopClockGating:bdw
409 	 *
410 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
411 	 * to disable EUTC clock gating.
412 	 */
413 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
414 			 DOP_CLOCK_GATING_DISABLE);
415 
416 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
417 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
418 
419 	wa_masked_en(wal, HDC_CHICKEN0,
420 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
421 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
422 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
423 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
424 }
425 
chv_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)426 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
427 				     struct i915_wa_list *wal)
428 {
429 	gen8_ctx_workarounds_init(engine, wal);
430 
431 	/* WaDisableThreadStallDopClockGating:chv */
432 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
433 
434 	/* Improve HiZ throughput on CHV. */
435 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
436 }
437 
gen9_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)438 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
439 				      struct i915_wa_list *wal)
440 {
441 	struct drm_i915_private *i915 = engine->i915;
442 
443 	if (HAS_LLC(i915)) {
444 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
445 		 *
446 		 * Must match Display Engine. See
447 		 * WaCompressedResourceDisplayNewHashMode.
448 		 */
449 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
450 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
451 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
452 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
453 	}
454 
455 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
456 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
457 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
458 			 FLOW_CONTROL_ENABLE |
459 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
460 
461 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
462 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
463 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
464 			 GEN9_ENABLE_YV12_BUGFIX |
465 			 GEN9_ENABLE_GPGPU_PREEMPTION);
466 
467 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
468 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
469 	wa_masked_en(wal, CACHE_MODE_1,
470 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
471 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
472 
473 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
474 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
475 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
476 
477 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
478 	wa_masked_en(wal, HDC_CHICKEN0,
479 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
480 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
481 
482 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
483 	 * both tied to WaForceContextSaveRestoreNonCoherent
484 	 * in some hsds for skl. We keep the tie for all gen9. The
485 	 * documentation is a bit hazy and so we want to get common behaviour,
486 	 * even though there is no clear evidence we would need both on kbl/bxt.
487 	 * This area has been source of system hangs so we play it safe
488 	 * and mimic the skl regardless of what bspec says.
489 	 *
490 	 * Use Force Non-Coherent whenever executing a 3D context. This
491 	 * is a workaround for a possible hang in the unlikely event
492 	 * a TLB invalidation occurs during a PSD flush.
493 	 */
494 
495 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
496 	wa_masked_en(wal, HDC_CHICKEN0,
497 		     HDC_FORCE_NON_COHERENT);
498 
499 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
500 	if (IS_SKYLAKE(i915) ||
501 	    IS_KABYLAKE(i915) ||
502 	    IS_COFFEELAKE(i915) ||
503 	    IS_COMETLAKE(i915))
504 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
505 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
506 
507 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
508 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
509 
510 	/*
511 	 * Supporting preemption with fine-granularity requires changes in the
512 	 * batch buffer programming. Since we can't break old userspace, we
513 	 * need to set our default preemption level to safe value. Userspace is
514 	 * still able to use more fine-grained preemption levels, since in
515 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
516 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
517 	 * not real HW workarounds, but merely a way to start using preemption
518 	 * while maintaining old contract with userspace.
519 	 */
520 
521 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
522 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
523 
524 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
525 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
526 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
527 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
528 
529 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
530 	if (IS_GEN9_LP(i915))
531 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
532 }
533 
skl_tune_iz_hashing(struct intel_engine_cs * engine,struct i915_wa_list * wal)534 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
535 				struct i915_wa_list *wal)
536 {
537 	struct intel_gt *gt = engine->gt;
538 	u8 vals[3] = { 0, 0, 0 };
539 	unsigned int i;
540 
541 	for (i = 0; i < 3; i++) {
542 		u8 ss;
543 
544 		/*
545 		 * Only consider slices where one, and only one, subslice has 7
546 		 * EUs
547 		 */
548 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
549 			continue;
550 
551 		/*
552 		 * subslice_7eu[i] != 0 (because of the check above) and
553 		 * ss_max == 4 (maximum number of subslices possible per slice)
554 		 *
555 		 * ->    0 <= ss <= 3;
556 		 */
557 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
558 		vals[i] = 3 - ss;
559 	}
560 
561 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
562 		return;
563 
564 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
565 	wa_masked_field_set(wal, GEN7_GT_MODE,
566 			    GEN9_IZ_HASHING_MASK(2) |
567 			    GEN9_IZ_HASHING_MASK(1) |
568 			    GEN9_IZ_HASHING_MASK(0),
569 			    GEN9_IZ_HASHING(2, vals[2]) |
570 			    GEN9_IZ_HASHING(1, vals[1]) |
571 			    GEN9_IZ_HASHING(0, vals[0]));
572 }
573 
skl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)574 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
575 				     struct i915_wa_list *wal)
576 {
577 	gen9_ctx_workarounds_init(engine, wal);
578 	skl_tune_iz_hashing(engine, wal);
579 }
580 
bxt_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)581 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
582 				     struct i915_wa_list *wal)
583 {
584 	gen9_ctx_workarounds_init(engine, wal);
585 
586 	/* WaDisableThreadStallDopClockGating:bxt */
587 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
588 			 STALL_DOP_GATING_DISABLE);
589 
590 	/* WaToEnableHwFixForPushConstHWBug:bxt */
591 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
592 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
593 }
594 
kbl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)595 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
596 				     struct i915_wa_list *wal)
597 {
598 	struct drm_i915_private *i915 = engine->i915;
599 
600 	gen9_ctx_workarounds_init(engine, wal);
601 
602 	/* WaToEnableHwFixForPushConstHWBug:kbl */
603 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
604 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
605 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
606 
607 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
608 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
609 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
610 }
611 
glk_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)612 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
613 				     struct i915_wa_list *wal)
614 {
615 	gen9_ctx_workarounds_init(engine, wal);
616 
617 	/* WaToEnableHwFixForPushConstHWBug:glk */
618 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
619 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
620 }
621 
cfl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)622 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
623 				     struct i915_wa_list *wal)
624 {
625 	gen9_ctx_workarounds_init(engine, wal);
626 
627 	/* WaToEnableHwFixForPushConstHWBug:cfl */
628 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
629 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
630 
631 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
632 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
633 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
634 }
635 
icl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)636 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
637 				     struct i915_wa_list *wal)
638 {
639 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
640 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
641 
642 	/* WaForceEnableNonCoherent:icl
643 	 * This is not the same workaround as in early Gen9 platforms, where
644 	 * lacking this could cause system hangs, but coherency performance
645 	 * overhead is high and only a few compute workloads really need it
646 	 * (the register is whitelisted in hardware now, so UMDs can opt in
647 	 * for coherency if they have a good reason).
648 	 */
649 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
650 
651 	/* WaEnableFloatBlendOptimization:icl */
652 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
653 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
654 		   0 /* write-only, so skip validation */,
655 		   true);
656 
657 	/* WaDisableGPGPUMidThreadPreemption:icl */
658 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
659 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
660 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
661 
662 	/* allow headerless messages for preemptible GPGPU context */
663 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
664 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
665 
666 	/* Wa_1604278689:icl,ehl */
667 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
668 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
669 			 0,
670 			 0xFFFFFFFF);
671 
672 	/* Wa_1406306137:icl,ehl */
673 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
674 }
675 
676 /*
677  * These settings aren't actually workarounds, but general tuning settings that
678  * need to be programmed on dg2 platform.
679  */
dg2_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)680 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
681 				   struct i915_wa_list *wal)
682 {
683 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
684 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
685 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
686 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
687 			     FF_MODE2_TDS_TIMER_128);
688 }
689 
gen12_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)690 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
691 				       struct i915_wa_list *wal)
692 {
693 	struct drm_i915_private *i915 = engine->i915;
694 
695 	/*
696 	 * Wa_1409142259:tgl,dg1,adl-p
697 	 * Wa_1409347922:tgl,dg1,adl-p
698 	 * Wa_1409252684:tgl,dg1,adl-p
699 	 * Wa_1409217633:tgl,dg1,adl-p
700 	 * Wa_1409207793:tgl,dg1,adl-p
701 	 * Wa_1409178076:tgl,dg1,adl-p
702 	 * Wa_1408979724:tgl,dg1,adl-p
703 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
704 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
705 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
706 	 */
707 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
708 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
709 
710 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
711 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
712 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
713 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
714 
715 	/*
716 	 * Wa_16011163337 - GS_TIMER
717 	 *
718 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
719 	 * need to program it even on those that don't explicitly list that
720 	 * workaround.
721 	 *
722 	 * Note that the programming of GEN12_FF_MODE2 is further modified
723 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
724 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
725 	 * value when read from the CPU.
726 	 *
727 	 * The default value for this register is zero for all fields.
728 	 * So instead of doing a RMW we should just write the desired values
729 	 * for TDS and GS timers. Note that since the readback can't be trusted,
730 	 * the clear mask is just set to ~0 to make sure other bits are not
731 	 * inadvertently set. For the same reason read verification is ignored.
732 	 */
733 	wa_add(wal,
734 	       GEN12_FF_MODE2,
735 	       ~0,
736 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
737 	       0, false);
738 
739 	if (!IS_DG1(i915)) {
740 		/* Wa_1806527549 */
741 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
742 
743 		/* Wa_1606376872 */
744 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
745 	}
746 }
747 
dg1_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)748 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
749 				     struct i915_wa_list *wal)
750 {
751 	gen12_ctx_workarounds_init(engine, wal);
752 
753 	/* Wa_1409044764 */
754 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
755 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
756 
757 	/* Wa_22010493298 */
758 	wa_masked_en(wal, HIZ_CHICKEN,
759 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
760 }
761 
dg2_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)762 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
763 				     struct i915_wa_list *wal)
764 {
765 	dg2_ctx_gt_tuning_init(engine, wal);
766 
767 	/* Wa_16011186671:dg2_g11 */
768 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
769 		wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH);
770 		wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE);
771 	}
772 
773 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
774 		/* Wa_14010469329:dg2_g10 */
775 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
776 				 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE);
777 
778 		/*
779 		 * Wa_22010465075:dg2_g10
780 		 * Wa_22010613112:dg2_g10
781 		 * Wa_14010698770:dg2_g10
782 		 */
783 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
784 				 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
785 	}
786 
787 	/* Wa_16013271637:dg2 */
788 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
789 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
790 
791 	/* Wa_14014947963:dg2 */
792 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) ||
793 	    IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
794 		wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
795 
796 	/* Wa_18018764978:dg2 */
797 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) ||
798 	    IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
799 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
800 
801 	/* Wa_15010599737:dg2 */
802 	wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
803 
804 	/* Wa_18019271663:dg2 */
805 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
806 }
807 
mtl_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)808 static void mtl_ctx_gt_tuning_init(struct intel_engine_cs *engine,
809 				   struct i915_wa_list *wal)
810 {
811 	struct drm_i915_private *i915 = engine->i915;
812 
813 	dg2_ctx_gt_tuning_init(engine, wal);
814 
815 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) ||
816 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER))
817 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
818 }
819 
mtl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)820 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine,
821 				     struct i915_wa_list *wal)
822 {
823 	struct drm_i915_private *i915 = engine->i915;
824 
825 	mtl_ctx_gt_tuning_init(engine, wal);
826 
827 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
828 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
829 		/* Wa_14014947963 */
830 		wa_masked_field_set(wal, VF_PREEMPTION,
831 				    PREEMPTION_VERTEX_COUNT, 0x4000);
832 
833 		/* Wa_16013271637 */
834 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
835 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
836 
837 		/* Wa_18019627453 */
838 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
839 
840 		/* Wa_18018764978 */
841 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
842 	}
843 
844 	/* Wa_18019271663 */
845 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
846 }
847 
fakewa_disable_nestedbb_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)848 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
849 					 struct i915_wa_list *wal)
850 {
851 	/*
852 	 * This is a "fake" workaround defined by software to ensure we
853 	 * maintain reliable, backward-compatible behavior for userspace with
854 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
855 	 *
856 	 * The per-context setting of MI_MODE[12] determines whether the bits
857 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
858 	 * in the traditional manner or whether they should instead use a new
859 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
860 	 * into 3rd-level batchbuffers.  When this new capability was first
861 	 * added in TGL, it remained off by default unless a context
862 	 * intentionally opted in to the new behavior.  However Xe_HPG now
863 	 * flips this on by default and requires that we explicitly opt out if
864 	 * we don't want the new behavior.
865 	 *
866 	 * From a SW perspective, we want to maintain the backward-compatible
867 	 * behavior for userspace, so we'll apply a fake workaround to set it
868 	 * back to the legacy behavior on platforms where the hardware default
869 	 * is to break compatibility.  At the moment there is no Linux
870 	 * userspace that utilizes third-level batchbuffers, so this will avoid
871 	 * userspace from needing to make any changes.  using the legacy
872 	 * meaning is the correct thing to do.  If/when we have userspace
873 	 * consumers that want to utilize third-level batch nesting, we can
874 	 * provide a context parameter to allow them to opt-in.
875 	 */
876 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
877 }
878 
gen12_ctx_gt_mocs_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)879 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
880 				   struct i915_wa_list *wal)
881 {
882 	u8 mocs;
883 
884 	/*
885 	 * Some blitter commands do not have a field for MOCS, those
886 	 * commands will use MOCS index pointed by BLIT_CCTL.
887 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
888 	 */
889 	if (engine->class == COPY_ENGINE_CLASS) {
890 		mocs = engine->gt->mocs.uc_index;
891 		wa_write_clr_set(wal,
892 				 BLIT_CCTL(engine->mmio_base),
893 				 BLIT_CCTL_MASK,
894 				 BLIT_CCTL_MOCS(mocs, mocs));
895 	}
896 }
897 
898 /*
899  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
900  * defined by the hardware team, but it programming general context registers.
901  * Adding those context register programming in context workaround
902  * allow us to use the wa framework for proper application and validation.
903  */
904 static void
gen12_ctx_gt_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)905 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
906 			  struct i915_wa_list *wal)
907 {
908 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
909 		fakewa_disable_nestedbb_mode(engine, wal);
910 
911 	gen12_ctx_gt_mocs_init(engine, wal);
912 }
913 
914 static void
__intel_engine_init_ctx_wa(struct intel_engine_cs * engine,struct i915_wa_list * wal,const char * name)915 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
916 			   struct i915_wa_list *wal,
917 			   const char *name)
918 {
919 	struct drm_i915_private *i915 = engine->i915;
920 
921 	wa_init_start(wal, engine->gt, name, engine->name);
922 
923 	/* Applies to all engines */
924 	/*
925 	 * Fake workarounds are not the actual workaround but
926 	 * programming of context registers using workaround framework.
927 	 */
928 	if (GRAPHICS_VER(i915) >= 12)
929 		gen12_ctx_gt_fake_wa_init(engine, wal);
930 
931 	if (engine->class != RENDER_CLASS)
932 		goto done;
933 
934 	if (IS_METEORLAKE(i915))
935 		mtl_ctx_workarounds_init(engine, wal);
936 	else if (IS_PONTEVECCHIO(i915))
937 		; /* noop; none at this time */
938 	else if (IS_DG2(i915))
939 		dg2_ctx_workarounds_init(engine, wal);
940 	else if (IS_XEHPSDV(i915))
941 		; /* noop; none at this time */
942 	else if (IS_DG1(i915))
943 		dg1_ctx_workarounds_init(engine, wal);
944 	else if (GRAPHICS_VER(i915) == 12)
945 		gen12_ctx_workarounds_init(engine, wal);
946 	else if (GRAPHICS_VER(i915) == 11)
947 		icl_ctx_workarounds_init(engine, wal);
948 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
949 		cfl_ctx_workarounds_init(engine, wal);
950 	else if (IS_GEMINILAKE(i915))
951 		glk_ctx_workarounds_init(engine, wal);
952 	else if (IS_KABYLAKE(i915))
953 		kbl_ctx_workarounds_init(engine, wal);
954 	else if (IS_BROXTON(i915))
955 		bxt_ctx_workarounds_init(engine, wal);
956 	else if (IS_SKYLAKE(i915))
957 		skl_ctx_workarounds_init(engine, wal);
958 	else if (IS_CHERRYVIEW(i915))
959 		chv_ctx_workarounds_init(engine, wal);
960 	else if (IS_BROADWELL(i915))
961 		bdw_ctx_workarounds_init(engine, wal);
962 	else if (GRAPHICS_VER(i915) == 7)
963 		gen7_ctx_workarounds_init(engine, wal);
964 	else if (GRAPHICS_VER(i915) == 6)
965 		gen6_ctx_workarounds_init(engine, wal);
966 	else if (GRAPHICS_VER(i915) < 8)
967 		;
968 	else
969 		MISSING_CASE(GRAPHICS_VER(i915));
970 
971 done:
972 	wa_init_finish(wal);
973 }
974 
intel_engine_init_ctx_wa(struct intel_engine_cs * engine)975 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
976 {
977 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
978 }
979 
intel_engine_emit_ctx_wa(struct i915_request * rq)980 int intel_engine_emit_ctx_wa(struct i915_request *rq)
981 {
982 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
983 	struct intel_uncore *uncore = rq->engine->uncore;
984 	enum forcewake_domains fw;
985 	unsigned long flags;
986 	struct i915_wa *wa;
987 	unsigned int i;
988 	u32 *cs;
989 	int ret;
990 
991 	if (wal->count == 0)
992 		return 0;
993 
994 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
995 	if (ret)
996 		return ret;
997 
998 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
999 	if (IS_ERR(cs))
1000 		return PTR_ERR(cs);
1001 
1002 	fw = wal_get_fw_for_rmw(uncore, wal);
1003 
1004 	intel_gt_mcr_lock(wal->gt, &flags);
1005 	spin_lock(&uncore->lock);
1006 	intel_uncore_forcewake_get__locked(uncore, fw);
1007 
1008 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
1009 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1010 		u32 val;
1011 
1012 		/* Skip reading the register if it's not really needed */
1013 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1014 			val = wa->set;
1015 		} else {
1016 			val = wa->is_mcr ?
1017 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1018 				intel_uncore_read_fw(uncore, wa->reg);
1019 			val &= ~wa->clr;
1020 			val |= wa->set;
1021 		}
1022 
1023 		*cs++ = i915_mmio_reg_offset(wa->reg);
1024 		*cs++ = val;
1025 	}
1026 	*cs++ = MI_NOOP;
1027 
1028 	intel_uncore_forcewake_put__locked(uncore, fw);
1029 	spin_unlock(&uncore->lock);
1030 	intel_gt_mcr_unlock(wal->gt, flags);
1031 
1032 	intel_ring_advance(rq, cs);
1033 
1034 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1035 	if (ret)
1036 		return ret;
1037 
1038 	return 0;
1039 }
1040 
1041 static void
gen4_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1042 gen4_gt_workarounds_init(struct intel_gt *gt,
1043 			 struct i915_wa_list *wal)
1044 {
1045 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1046 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1047 }
1048 
1049 static void
g4x_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1050 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1051 {
1052 	gen4_gt_workarounds_init(gt, wal);
1053 
1054 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1055 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1056 }
1057 
1058 static void
ilk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1059 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1060 {
1061 	g4x_gt_workarounds_init(gt, wal);
1062 
1063 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1064 }
1065 
1066 static void
snb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1067 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1068 {
1069 }
1070 
1071 static void
ivb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1072 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1073 {
1074 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1075 	wa_masked_dis(wal,
1076 		      GEN7_COMMON_SLICE_CHICKEN1,
1077 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1078 
1079 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1080 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1081 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1082 
1083 	/* WaForceL3Serialization:ivb */
1084 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1085 }
1086 
1087 static void
vlv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1088 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1089 {
1090 	/* WaForceL3Serialization:vlv */
1091 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1092 
1093 	/*
1094 	 * WaIncreaseL3CreditsForVLVB0:vlv
1095 	 * This is the hardware default actually.
1096 	 */
1097 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1098 }
1099 
1100 static void
hsw_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1101 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1102 {
1103 	/* L3 caching of data atomics doesn't work -- disable it. */
1104 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1105 
1106 	wa_add(wal,
1107 	       HSW_ROW_CHICKEN3, 0,
1108 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1109 	       0 /* XXX does this reg exist? */, true);
1110 
1111 	/* WaVSRefCountFullforceMissDisable:hsw */
1112 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1113 }
1114 
1115 static void
gen9_wa_init_mcr(struct drm_i915_private * i915,struct i915_wa_list * wal)1116 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1117 {
1118 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1119 	unsigned int slice, subslice;
1120 	u32 mcr, mcr_mask;
1121 
1122 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1123 
1124 	/*
1125 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1126 	 * Before any MMIO read into slice/subslice specific registers, MCR
1127 	 * packet control register needs to be programmed to point to any
1128 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1129 	 * This means each subsequent MMIO read will be forwarded to an
1130 	 * specific s/ss combination, but this is OK since these registers
1131 	 * are consistent across s/ss in almost all cases. In the rare
1132 	 * occasions, such as INSTDONE, where this value is dependent
1133 	 * on s/ss combo, the read should be done with read_subslice_reg.
1134 	 */
1135 	slice = ffs(sseu->slice_mask) - 1;
1136 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1137 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1138 	GEM_BUG_ON(!subslice);
1139 	subslice--;
1140 
1141 	/*
1142 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1143 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1144 	 */
1145 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1146 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1147 
1148 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1149 
1150 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1151 }
1152 
1153 static void
gen9_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1154 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1155 {
1156 	struct drm_i915_private *i915 = gt->i915;
1157 
1158 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1159 	gen9_wa_init_mcr(i915, wal);
1160 
1161 	/* WaDisableKillLogic:bxt,skl,kbl */
1162 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1163 		wa_write_or(wal,
1164 			    GAM_ECOCHK,
1165 			    ECOCHK_DIS_TLB);
1166 
1167 	if (HAS_LLC(i915)) {
1168 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1169 		 *
1170 		 * Must match Display Engine. See
1171 		 * WaCompressedResourceDisplayNewHashMode.
1172 		 */
1173 		wa_write_or(wal,
1174 			    MMCD_MISC_CTRL,
1175 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1176 	}
1177 
1178 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1179 	wa_write_or(wal,
1180 		    GAM_ECOCHK,
1181 		    BDW_DISABLE_HDC_INVALIDATION);
1182 }
1183 
1184 static void
skl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1185 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1186 {
1187 	gen9_gt_workarounds_init(gt, wal);
1188 
1189 	/* WaDisableGafsUnitClkGating:skl */
1190 	wa_write_or(wal,
1191 		    GEN7_UCGCTL4,
1192 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1193 
1194 	/* WaInPlaceDecompressionHang:skl */
1195 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1196 		wa_write_or(wal,
1197 			    GEN9_GAMT_ECO_REG_RW_IA,
1198 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1199 }
1200 
1201 static void
kbl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1202 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1203 {
1204 	gen9_gt_workarounds_init(gt, wal);
1205 
1206 	/* WaDisableDynamicCreditSharing:kbl */
1207 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1208 		wa_write_or(wal,
1209 			    GAMT_CHKN_BIT_REG,
1210 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1211 
1212 	/* WaDisableGafsUnitClkGating:kbl */
1213 	wa_write_or(wal,
1214 		    GEN7_UCGCTL4,
1215 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1216 
1217 	/* WaInPlaceDecompressionHang:kbl */
1218 	wa_write_or(wal,
1219 		    GEN9_GAMT_ECO_REG_RW_IA,
1220 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1221 }
1222 
1223 static void
glk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1224 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1225 {
1226 	gen9_gt_workarounds_init(gt, wal);
1227 }
1228 
1229 static void
cfl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1230 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1231 {
1232 	gen9_gt_workarounds_init(gt, wal);
1233 
1234 	/* WaDisableGafsUnitClkGating:cfl */
1235 	wa_write_or(wal,
1236 		    GEN7_UCGCTL4,
1237 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1238 
1239 	/* WaInPlaceDecompressionHang:cfl */
1240 	wa_write_or(wal,
1241 		    GEN9_GAMT_ECO_REG_RW_IA,
1242 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1243 }
1244 
__set_mcr_steering(struct i915_wa_list * wal,i915_reg_t steering_reg,unsigned int slice,unsigned int subslice)1245 static void __set_mcr_steering(struct i915_wa_list *wal,
1246 			       i915_reg_t steering_reg,
1247 			       unsigned int slice, unsigned int subslice)
1248 {
1249 	u32 mcr, mcr_mask;
1250 
1251 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1252 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1253 
1254 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1255 }
1256 
debug_dump_steering(struct intel_gt * gt)1257 static void debug_dump_steering(struct intel_gt *gt)
1258 {
1259 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1260 
1261 	if (drm_debug_enabled(DRM_UT_DRIVER))
1262 		intel_gt_mcr_report_steering(&p, gt, false);
1263 }
1264 
__add_mcr_wa(struct intel_gt * gt,struct i915_wa_list * wal,unsigned int slice,unsigned int subslice)1265 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1266 			 unsigned int slice, unsigned int subslice)
1267 {
1268 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1269 
1270 	gt->default_steering.groupid = slice;
1271 	gt->default_steering.instanceid = subslice;
1272 
1273 	debug_dump_steering(gt);
1274 }
1275 
1276 static void
icl_wa_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1277 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1278 {
1279 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1280 	unsigned int subslice;
1281 
1282 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1283 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1284 
1285 	/*
1286 	 * Although a platform may have subslices, we need to always steer
1287 	 * reads to the lowest instance that isn't fused off.  When Render
1288 	 * Power Gating is enabled, grabbing forcewake will only power up a
1289 	 * single subslice (the "minconfig") if there isn't a real workload
1290 	 * that needs to be run; this means that if we steer register reads to
1291 	 * one of the higher subslices, we run the risk of reading back 0's or
1292 	 * random garbage.
1293 	 */
1294 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1295 
1296 	/*
1297 	 * If the subslice we picked above also steers us to a valid L3 bank,
1298 	 * then we can just rely on the default steering and won't need to
1299 	 * worry about explicitly re-steering L3BANK reads later.
1300 	 */
1301 	if (gt->info.l3bank_mask & BIT(subslice))
1302 		gt->steering_table[L3BANK] = NULL;
1303 
1304 	__add_mcr_wa(gt, wal, 0, subslice);
1305 }
1306 
1307 static void
xehp_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1308 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1309 {
1310 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1311 	unsigned long slice, subslice = 0, slice_mask = 0;
1312 	u32 lncf_mask = 0;
1313 	int i;
1314 
1315 	/*
1316 	 * On Xe_HP the steering increases in complexity. There are now several
1317 	 * more units that require steering and we're not guaranteed to be able
1318 	 * to find a common setting for all of them. These are:
1319 	 * - GSLICE (fusable)
1320 	 * - DSS (sub-unit within gslice; fusable)
1321 	 * - L3 Bank (fusable)
1322 	 * - MSLICE (fusable)
1323 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1324 	 *
1325 	 * We'll do our default/implicit steering based on GSLICE (in the
1326 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1327 	 * find overlap between the valid MSLICE and/or LNCF values with
1328 	 * a suitable GSLICE, then we can just re-use the default value and
1329 	 * skip and explicit steering at runtime.
1330 	 *
1331 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1332 	 * a valid sliceid value.  DSS steering is the only type of steering
1333 	 * that utilizes the 'subsliceid' bits.
1334 	 *
1335 	 * Also note that, even though the steering domain is called "GSlice"
1336 	 * and it is encoded in the register using the gslice format, the spec
1337 	 * says that the combined (geometry | compute) fuse should be used to
1338 	 * select the steering.
1339 	 */
1340 
1341 	/* Find the potential gslice candidates */
1342 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1343 						       GEN_DSS_PER_GSLICE);
1344 
1345 	/*
1346 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1347 	 * mslice is fine.
1348 	 */
1349 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1350 		lncf_mask |= (0x3 << (i * 2));
1351 
1352 	/*
1353 	 * Are there any sliceid values that work for both GSLICE and LNCF
1354 	 * steering?
1355 	 */
1356 	if (slice_mask & lncf_mask) {
1357 		slice_mask &= lncf_mask;
1358 		gt->steering_table[LNCF] = NULL;
1359 	}
1360 
1361 	/* How about sliceid values that also work for MSLICE steering? */
1362 	if (slice_mask & gt->info.mslice_mask) {
1363 		slice_mask &= gt->info.mslice_mask;
1364 		gt->steering_table[MSLICE] = NULL;
1365 	}
1366 
1367 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1368 		gt->steering_table[GAM] = NULL;
1369 
1370 	slice = __ffs(slice_mask);
1371 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1372 		GEN_DSS_PER_GSLICE;
1373 
1374 	__add_mcr_wa(gt, wal, slice, subslice);
1375 
1376 	/*
1377 	 * SQIDI ranges are special because they use different steering
1378 	 * registers than everything else we work with.  On XeHP SDV and
1379 	 * DG2-G10, any value in the steering registers will work fine since
1380 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1381 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1382 	 * we'll just steer to a hardcoded "2" since that value will work
1383 	 * everywhere.
1384 	 */
1385 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1386 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1387 
1388 	/*
1389 	 * On DG2, GAM registers have a dedicated steering control register
1390 	 * and must always be programmed to a hardcoded groupid of "1."
1391 	 */
1392 	if (IS_DG2(gt->i915))
1393 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1394 }
1395 
1396 static void
pvc_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1397 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1398 {
1399 	unsigned int dss;
1400 
1401 	/*
1402 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1403 	 * non-fused-off DSS.  All other types of MCR registers will be
1404 	 * explicitly steered.
1405 	 */
1406 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1407 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1408 }
1409 
1410 static void
icl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1411 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1412 {
1413 	struct drm_i915_private *i915 = gt->i915;
1414 
1415 	icl_wa_init_mcr(gt, wal);
1416 
1417 	/* WaModifyGamTlbPartitioning:icl */
1418 	wa_write_clr_set(wal,
1419 			 GEN11_GACB_PERF_CTRL,
1420 			 GEN11_HASH_CTRL_MASK,
1421 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1422 
1423 	/* Wa_1405766107:icl
1424 	 * Formerly known as WaCL2SFHalfMaxAlloc
1425 	 */
1426 	wa_write_or(wal,
1427 		    GEN11_LSN_UNSLCVC,
1428 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1429 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1430 
1431 	/* Wa_220166154:icl
1432 	 * Formerly known as WaDisCtxReload
1433 	 */
1434 	wa_write_or(wal,
1435 		    GEN8_GAMW_ECO_DEV_RW_IA,
1436 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1437 
1438 	/* Wa_1406463099:icl
1439 	 * Formerly known as WaGamTlbPendError
1440 	 */
1441 	wa_write_or(wal,
1442 		    GAMT_CHKN_BIT_REG,
1443 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1444 
1445 	/*
1446 	 * Wa_1408615072:icl,ehl  (vsunit)
1447 	 * Wa_1407596294:icl,ehl  (hsunit)
1448 	 */
1449 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1450 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1451 
1452 	/* Wa_1407352427:icl,ehl */
1453 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1454 		    PSDUNIT_CLKGATE_DIS);
1455 
1456 	/* Wa_1406680159:icl,ehl */
1457 	wa_mcr_write_or(wal,
1458 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1459 			GWUNIT_CLKGATE_DIS);
1460 
1461 	/* Wa_1607087056:icl,ehl,jsl */
1462 	if (IS_ICELAKE(i915) ||
1463 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1464 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1465 		wa_write_or(wal,
1466 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1467 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1468 
1469 	/*
1470 	 * This is not a documented workaround, but rather an optimization
1471 	 * to reduce sampler power.
1472 	 */
1473 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1474 }
1475 
1476 /*
1477  * Though there are per-engine instances of these registers,
1478  * they retain their value through engine resets and should
1479  * only be provided on the GT workaround list rather than
1480  * the engine-specific workaround list.
1481  */
1482 static void
wa_14011060649(struct intel_gt * gt,struct i915_wa_list * wal)1483 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1484 {
1485 	struct intel_engine_cs *engine;
1486 	int id;
1487 
1488 	for_each_engine(engine, gt, id) {
1489 		if (engine->class != VIDEO_DECODE_CLASS ||
1490 		    (engine->instance % 2))
1491 			continue;
1492 
1493 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1494 			    IECPUNIT_CLKGATE_DIS);
1495 	}
1496 }
1497 
1498 static void
gen12_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1499 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1500 {
1501 	icl_wa_init_mcr(gt, wal);
1502 
1503 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1504 	wa_14011060649(gt, wal);
1505 
1506 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1507 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1508 
1509 	/*
1510 	 * Wa_14015795083
1511 	 *
1512 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1513 	 * preventing i915 from modifying it for this workaround.  Skip the
1514 	 * readback verification for this workaround on debug builds; if the
1515 	 * workaround doesn't stick due to firmware behavior, it's not an error
1516 	 * that we want CI to flag.
1517 	 */
1518 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1519 	       0, 0, false);
1520 }
1521 
1522 static void
dg1_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1523 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1524 {
1525 	gen12_gt_workarounds_init(gt, wal);
1526 
1527 	/* Wa_1409420604:dg1 */
1528 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1529 			CPSSUNIT_CLKGATE_DIS);
1530 
1531 	/* Wa_1408615072:dg1 */
1532 	/* Empirical testing shows this register is unaffected by engine reset. */
1533 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1534 }
1535 
1536 static void
xehpsdv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1537 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1538 {
1539 	struct drm_i915_private *i915 = gt->i915;
1540 
1541 	xehp_init_mcr(gt, wal);
1542 
1543 	/* Wa_1409757795:xehpsdv */
1544 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1545 
1546 	/* Wa_18011725039:xehpsdv */
1547 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1548 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1549 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1550 	}
1551 
1552 	/* Wa_16011155590:xehpsdv */
1553 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1554 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1555 			    TSGUNIT_CLKGATE_DIS);
1556 
1557 	/* Wa_14011780169:xehpsdv */
1558 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1559 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1560 			    GAMTLBVDBOX7_CLKGATE_DIS |
1561 			    GAMTLBVDBOX6_CLKGATE_DIS |
1562 			    GAMTLBVDBOX5_CLKGATE_DIS |
1563 			    GAMTLBVDBOX4_CLKGATE_DIS |
1564 			    GAMTLBVDBOX3_CLKGATE_DIS |
1565 			    GAMTLBVDBOX2_CLKGATE_DIS |
1566 			    GAMTLBVDBOX1_CLKGATE_DIS |
1567 			    GAMTLBVDBOX0_CLKGATE_DIS |
1568 			    GAMTLBKCR_CLKGATE_DIS |
1569 			    GAMTLBGUC_CLKGATE_DIS |
1570 			    GAMTLBBLT_CLKGATE_DIS);
1571 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1572 			    GAMTLBGFXA1_CLKGATE_DIS |
1573 			    GAMTLBCOMPA0_CLKGATE_DIS |
1574 			    GAMTLBCOMPA1_CLKGATE_DIS |
1575 			    GAMTLBCOMPB0_CLKGATE_DIS |
1576 			    GAMTLBCOMPB1_CLKGATE_DIS |
1577 			    GAMTLBCOMPC0_CLKGATE_DIS |
1578 			    GAMTLBCOMPC1_CLKGATE_DIS |
1579 			    GAMTLBCOMPD0_CLKGATE_DIS |
1580 			    GAMTLBCOMPD1_CLKGATE_DIS |
1581 			    GAMTLBMERT_CLKGATE_DIS   |
1582 			    GAMTLBVEBOX3_CLKGATE_DIS |
1583 			    GAMTLBVEBOX2_CLKGATE_DIS |
1584 			    GAMTLBVEBOX1_CLKGATE_DIS |
1585 			    GAMTLBVEBOX0_CLKGATE_DIS);
1586 	}
1587 
1588 	/* Wa_16012725990:xehpsdv */
1589 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1590 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1591 
1592 	/* Wa_14011060649:xehpsdv */
1593 	wa_14011060649(gt, wal);
1594 
1595 	/* Wa_14012362059:xehpsdv */
1596 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1597 
1598 	/* Wa_14014368820:xehpsdv */
1599 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1600 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1601 
1602 	/* Wa_14010670810:xehpsdv */
1603 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1604 }
1605 
1606 static void
dg2_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1607 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1608 {
1609 	struct intel_engine_cs *engine;
1610 	int id;
1611 
1612 	xehp_init_mcr(gt, wal);
1613 
1614 	/* Wa_14011060649:dg2 */
1615 	wa_14011060649(gt, wal);
1616 
1617 	/*
1618 	 * Although there are per-engine instances of these registers,
1619 	 * they technically exist outside the engine itself and are not
1620 	 * impacted by engine resets.  Furthermore, they're part of the
1621 	 * GuC blacklist so trying to treat them as engine workarounds
1622 	 * will result in GuC initialization failure and a wedged GPU.
1623 	 */
1624 	for_each_engine(engine, gt, id) {
1625 		if (engine->class != VIDEO_DECODE_CLASS)
1626 			continue;
1627 
1628 		/* Wa_16010515920:dg2_g10 */
1629 		if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
1630 			wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base),
1631 				    ALNUNIT_CLKGATE_DIS);
1632 	}
1633 
1634 	if (IS_DG2_G10(gt->i915)) {
1635 		/* Wa_22010523718:dg2 */
1636 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1637 			    CG3DDISCFEG_CLKGATE_DIS);
1638 
1639 		/* Wa_14011006942:dg2 */
1640 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1641 				DSS_ROUTER_CLKGATE_DIS);
1642 	}
1643 
1644 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) ||
1645 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) {
1646 		/* Wa_14012362059:dg2 */
1647 		wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1648 	}
1649 
1650 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) {
1651 		/* Wa_14010948348:dg2_g10 */
1652 		wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS);
1653 
1654 		/* Wa_14011037102:dg2_g10 */
1655 		wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS);
1656 
1657 		/* Wa_14011371254:dg2_g10 */
1658 		wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS);
1659 
1660 		/* Wa_14011431319:dg2_g10 */
1661 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1662 			    GAMTLBVDBOX7_CLKGATE_DIS |
1663 			    GAMTLBVDBOX6_CLKGATE_DIS |
1664 			    GAMTLBVDBOX5_CLKGATE_DIS |
1665 			    GAMTLBVDBOX4_CLKGATE_DIS |
1666 			    GAMTLBVDBOX3_CLKGATE_DIS |
1667 			    GAMTLBVDBOX2_CLKGATE_DIS |
1668 			    GAMTLBVDBOX1_CLKGATE_DIS |
1669 			    GAMTLBVDBOX0_CLKGATE_DIS |
1670 			    GAMTLBKCR_CLKGATE_DIS |
1671 			    GAMTLBGUC_CLKGATE_DIS |
1672 			    GAMTLBBLT_CLKGATE_DIS);
1673 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1674 			    GAMTLBGFXA1_CLKGATE_DIS |
1675 			    GAMTLBCOMPA0_CLKGATE_DIS |
1676 			    GAMTLBCOMPA1_CLKGATE_DIS |
1677 			    GAMTLBCOMPB0_CLKGATE_DIS |
1678 			    GAMTLBCOMPB1_CLKGATE_DIS |
1679 			    GAMTLBCOMPC0_CLKGATE_DIS |
1680 			    GAMTLBCOMPC1_CLKGATE_DIS |
1681 			    GAMTLBCOMPD0_CLKGATE_DIS |
1682 			    GAMTLBCOMPD1_CLKGATE_DIS |
1683 			    GAMTLBMERT_CLKGATE_DIS   |
1684 			    GAMTLBVEBOX3_CLKGATE_DIS |
1685 			    GAMTLBVEBOX2_CLKGATE_DIS |
1686 			    GAMTLBVEBOX1_CLKGATE_DIS |
1687 			    GAMTLBVEBOX0_CLKGATE_DIS);
1688 
1689 		/* Wa_14010569222:dg2_g10 */
1690 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1691 			    GAMEDIA_CLKGATE_DIS);
1692 
1693 		/* Wa_14011028019:dg2_g10 */
1694 		wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS);
1695 
1696 		/* Wa_14010680813:dg2_g10 */
1697 		wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL,
1698 				CONTROL_BLOCK_CLKGATE_DIS |
1699 				EGRESS_BLOCK_CLKGATE_DIS |
1700 				TAG_BLOCK_CLKGATE_DIS);
1701 	}
1702 
1703 	/* Wa_14014830051:dg2 */
1704 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1705 
1706 	/* Wa_14015795083 */
1707 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1708 
1709 	/* Wa_18018781329 */
1710 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1711 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1712 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1713 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1714 
1715 	/* Wa_1509235366:dg2 */
1716 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1717 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1718 
1719 	/* Wa_14010648519:dg2 */
1720 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1721 }
1722 
1723 static void
pvc_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1724 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1725 {
1726 	pvc_init_mcr(gt, wal);
1727 
1728 	/* Wa_14015795083 */
1729 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1730 
1731 	/* Wa_18018781329 */
1732 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1733 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1734 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1735 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1736 
1737 	/* Wa_16016694945 */
1738 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1739 }
1740 
1741 static void
xelpg_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1742 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1743 {
1744 	/* Wa_14018778641 / Wa_18018781329 */
1745 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1746 
1747 	/* Wa_22016670082 */
1748 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1749 
1750 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
1751 	    IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) {
1752 		/* Wa_14014830051 */
1753 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1754 
1755 		/* Wa_14015795083 */
1756 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1757 	}
1758 
1759 	/*
1760 	 * Unlike older platforms, we no longer setup implicit steering here;
1761 	 * all MCR accesses are explicitly steered.
1762 	 */
1763 	debug_dump_steering(gt);
1764 }
1765 
1766 static void
xelpmp_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1767 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1768 {
1769 	/*
1770 	 * Wa_14018778641
1771 	 * Wa_18018781329
1772 	 *
1773 	 * Note that although these registers are MCR on the primary
1774 	 * GT, the media GT's versions are regular singleton registers.
1775 	 */
1776 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1777 
1778 	debug_dump_steering(gt);
1779 }
1780 
1781 /*
1782  * The bspec performance guide has recommended MMIO tuning settings.  These
1783  * aren't truly "workarounds" but we want to program them through the
1784  * workaround infrastructure to make sure they're (re)applied at the proper
1785  * times.
1786  *
1787  * The programming in this function is for settings that persist through
1788  * engine resets and also are not part of any engine's register state context.
1789  * I.e., settings that only need to be re-applied in the event of a full GT
1790  * reset.
1791  */
gt_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)1792 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1793 {
1794 	if (IS_METEORLAKE(gt->i915)) {
1795 		if (gt->type != GT_MEDIA)
1796 			wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1797 
1798 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1799 	}
1800 
1801 	if (IS_PONTEVECCHIO(gt->i915)) {
1802 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1803 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1804 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1805 	}
1806 
1807 	if (IS_DG2(gt->i915)) {
1808 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1809 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1810 	}
1811 }
1812 
1813 static void
gt_init_workarounds(struct intel_gt * gt,struct i915_wa_list * wal)1814 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1815 {
1816 	struct drm_i915_private *i915 = gt->i915;
1817 
1818 	gt_tuning_settings(gt, wal);
1819 
1820 	if (gt->type == GT_MEDIA) {
1821 		if (MEDIA_VER(i915) >= 13)
1822 			xelpmp_gt_workarounds_init(gt, wal);
1823 		else
1824 			MISSING_CASE(MEDIA_VER(i915));
1825 
1826 		return;
1827 	}
1828 
1829 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1830 		xelpg_gt_workarounds_init(gt, wal);
1831 	else if (IS_PONTEVECCHIO(i915))
1832 		pvc_gt_workarounds_init(gt, wal);
1833 	else if (IS_DG2(i915))
1834 		dg2_gt_workarounds_init(gt, wal);
1835 	else if (IS_XEHPSDV(i915))
1836 		xehpsdv_gt_workarounds_init(gt, wal);
1837 	else if (IS_DG1(i915))
1838 		dg1_gt_workarounds_init(gt, wal);
1839 	else if (GRAPHICS_VER(i915) == 12)
1840 		gen12_gt_workarounds_init(gt, wal);
1841 	else if (GRAPHICS_VER(i915) == 11)
1842 		icl_gt_workarounds_init(gt, wal);
1843 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1844 		cfl_gt_workarounds_init(gt, wal);
1845 	else if (IS_GEMINILAKE(i915))
1846 		glk_gt_workarounds_init(gt, wal);
1847 	else if (IS_KABYLAKE(i915))
1848 		kbl_gt_workarounds_init(gt, wal);
1849 	else if (IS_BROXTON(i915))
1850 		gen9_gt_workarounds_init(gt, wal);
1851 	else if (IS_SKYLAKE(i915))
1852 		skl_gt_workarounds_init(gt, wal);
1853 	else if (IS_HASWELL(i915))
1854 		hsw_gt_workarounds_init(gt, wal);
1855 	else if (IS_VALLEYVIEW(i915))
1856 		vlv_gt_workarounds_init(gt, wal);
1857 	else if (IS_IVYBRIDGE(i915))
1858 		ivb_gt_workarounds_init(gt, wal);
1859 	else if (GRAPHICS_VER(i915) == 6)
1860 		snb_gt_workarounds_init(gt, wal);
1861 	else if (GRAPHICS_VER(i915) == 5)
1862 		ilk_gt_workarounds_init(gt, wal);
1863 	else if (IS_G4X(i915))
1864 		g4x_gt_workarounds_init(gt, wal);
1865 	else if (GRAPHICS_VER(i915) == 4)
1866 		gen4_gt_workarounds_init(gt, wal);
1867 	else if (GRAPHICS_VER(i915) <= 8)
1868 		;
1869 	else
1870 		MISSING_CASE(GRAPHICS_VER(i915));
1871 }
1872 
intel_gt_init_workarounds(struct intel_gt * gt)1873 void intel_gt_init_workarounds(struct intel_gt *gt)
1874 {
1875 	struct i915_wa_list *wal = &gt->wa_list;
1876 
1877 	wa_init_start(wal, gt, "GT", "global");
1878 	gt_init_workarounds(gt, wal);
1879 	wa_init_finish(wal);
1880 }
1881 
1882 static bool
wa_verify(struct intel_gt * gt,const struct i915_wa * wa,u32 cur,const char * name,const char * from)1883 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1884 	  const char *name, const char *from)
1885 {
1886 	if ((cur ^ wa->set) & wa->read) {
1887 		drm_err(&gt->i915->drm,
1888 			"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1889 			name, from, i915_mmio_reg_offset(wa->reg),
1890 			cur, cur & wa->read, wa->set & wa->read);
1891 
1892 		return false;
1893 	}
1894 
1895 	return true;
1896 }
1897 
wa_list_apply(const struct i915_wa_list * wal)1898 static void wa_list_apply(const struct i915_wa_list *wal)
1899 {
1900 	struct intel_gt *gt = wal->gt;
1901 	struct intel_uncore *uncore = gt->uncore;
1902 	enum forcewake_domains fw;
1903 	unsigned long flags;
1904 	struct i915_wa *wa;
1905 	unsigned int i;
1906 
1907 	if (!wal->count)
1908 		return;
1909 
1910 	fw = wal_get_fw_for_rmw(uncore, wal);
1911 
1912 	intel_gt_mcr_lock(gt, &flags);
1913 	spin_lock(&uncore->lock);
1914 	intel_uncore_forcewake_get__locked(uncore, fw);
1915 
1916 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1917 		u32 val, old = 0;
1918 
1919 		/* open-coded rmw due to steering */
1920 		if (wa->clr)
1921 			old = wa->is_mcr ?
1922 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1923 				intel_uncore_read_fw(uncore, wa->reg);
1924 		val = (old & ~wa->clr) | wa->set;
1925 		if (val != old || !wa->clr) {
1926 			if (wa->is_mcr)
1927 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1928 			else
1929 				intel_uncore_write_fw(uncore, wa->reg, val);
1930 		}
1931 
1932 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1933 			u32 val = wa->is_mcr ?
1934 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1935 				intel_uncore_read_fw(uncore, wa->reg);
1936 
1937 			wa_verify(gt, wa, val, wal->name, "application");
1938 		}
1939 	}
1940 
1941 	intel_uncore_forcewake_put__locked(uncore, fw);
1942 	spin_unlock(&uncore->lock);
1943 	intel_gt_mcr_unlock(gt, flags);
1944 }
1945 
intel_gt_apply_workarounds(struct intel_gt * gt)1946 void intel_gt_apply_workarounds(struct intel_gt *gt)
1947 {
1948 	wa_list_apply(&gt->wa_list);
1949 }
1950 
wa_list_verify(struct intel_gt * gt,const struct i915_wa_list * wal,const char * from)1951 static bool wa_list_verify(struct intel_gt *gt,
1952 			   const struct i915_wa_list *wal,
1953 			   const char *from)
1954 {
1955 	struct intel_uncore *uncore = gt->uncore;
1956 	struct i915_wa *wa;
1957 	enum forcewake_domains fw;
1958 	unsigned long flags;
1959 	unsigned int i;
1960 	bool ok = true;
1961 
1962 	fw = wal_get_fw_for_rmw(uncore, wal);
1963 
1964 	intel_gt_mcr_lock(gt, &flags);
1965 	spin_lock(&uncore->lock);
1966 	intel_uncore_forcewake_get__locked(uncore, fw);
1967 
1968 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1969 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1970 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1971 				intel_uncore_read_fw(uncore, wa->reg),
1972 				wal->name, from);
1973 
1974 	intel_uncore_forcewake_put__locked(uncore, fw);
1975 	spin_unlock(&uncore->lock);
1976 	intel_gt_mcr_unlock(gt, flags);
1977 
1978 	return ok;
1979 }
1980 
intel_gt_verify_workarounds(struct intel_gt * gt,const char * from)1981 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1982 {
1983 	return wa_list_verify(gt, &gt->wa_list, from);
1984 }
1985 
1986 __maybe_unused
is_nonpriv_flags_valid(u32 flags)1987 static bool is_nonpriv_flags_valid(u32 flags)
1988 {
1989 	/* Check only valid flag bits are set */
1990 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1991 		return false;
1992 
1993 	/* NB: Only 3 out of 4 enum values are valid for access field */
1994 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1995 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1996 		return false;
1997 
1998 	return true;
1999 }
2000 
2001 static void
whitelist_reg_ext(struct i915_wa_list * wal,i915_reg_t reg,u32 flags)2002 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
2003 {
2004 	struct i915_wa wa = {
2005 		.reg = reg
2006 	};
2007 
2008 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
2009 		return;
2010 
2011 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
2012 		return;
2013 
2014 	wa.reg.reg |= flags;
2015 	_wa_add(wal, &wa);
2016 }
2017 
2018 static void
whitelist_mcr_reg_ext(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 flags)2019 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
2020 {
2021 	struct i915_wa wa = {
2022 		.mcr_reg = reg,
2023 		.is_mcr = 1,
2024 	};
2025 
2026 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
2027 		return;
2028 
2029 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
2030 		return;
2031 
2032 	wa.mcr_reg.reg |= flags;
2033 	_wa_add(wal, &wa);
2034 }
2035 
2036 static void
whitelist_reg(struct i915_wa_list * wal,i915_reg_t reg)2037 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
2038 {
2039 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2040 }
2041 
2042 static void
whitelist_mcr_reg(struct i915_wa_list * wal,i915_mcr_reg_t reg)2043 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
2044 {
2045 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2046 }
2047 
gen9_whitelist_build(struct i915_wa_list * w)2048 static void gen9_whitelist_build(struct i915_wa_list *w)
2049 {
2050 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
2051 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2052 
2053 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
2054 	whitelist_reg(w, GEN8_CS_CHICKEN1);
2055 
2056 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
2057 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
2058 
2059 	/* WaSendPushConstantsFromMMIO:skl,bxt */
2060 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
2061 }
2062 
skl_whitelist_build(struct intel_engine_cs * engine)2063 static void skl_whitelist_build(struct intel_engine_cs *engine)
2064 {
2065 	struct i915_wa_list *w = &engine->whitelist;
2066 
2067 	if (engine->class != RENDER_CLASS)
2068 		return;
2069 
2070 	gen9_whitelist_build(w);
2071 
2072 	/* WaDisableLSQCROPERFforOCL:skl */
2073 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2074 }
2075 
bxt_whitelist_build(struct intel_engine_cs * engine)2076 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2077 {
2078 	if (engine->class != RENDER_CLASS)
2079 		return;
2080 
2081 	gen9_whitelist_build(&engine->whitelist);
2082 }
2083 
kbl_whitelist_build(struct intel_engine_cs * engine)2084 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2085 {
2086 	struct i915_wa_list *w = &engine->whitelist;
2087 
2088 	if (engine->class != RENDER_CLASS)
2089 		return;
2090 
2091 	gen9_whitelist_build(w);
2092 
2093 	/* WaDisableLSQCROPERFforOCL:kbl */
2094 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2095 }
2096 
glk_whitelist_build(struct intel_engine_cs * engine)2097 static void glk_whitelist_build(struct intel_engine_cs *engine)
2098 {
2099 	struct i915_wa_list *w = &engine->whitelist;
2100 
2101 	if (engine->class != RENDER_CLASS)
2102 		return;
2103 
2104 	gen9_whitelist_build(w);
2105 
2106 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2107 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2108 }
2109 
cfl_whitelist_build(struct intel_engine_cs * engine)2110 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2111 {
2112 	struct i915_wa_list *w = &engine->whitelist;
2113 
2114 	if (engine->class != RENDER_CLASS)
2115 		return;
2116 
2117 	gen9_whitelist_build(w);
2118 
2119 	/*
2120 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2121 	 *
2122 	 * This covers 4 register which are next to one another :
2123 	 *   - PS_INVOCATION_COUNT
2124 	 *   - PS_INVOCATION_COUNT_UDW
2125 	 *   - PS_DEPTH_COUNT
2126 	 *   - PS_DEPTH_COUNT_UDW
2127 	 */
2128 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2129 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2130 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2131 }
2132 
allow_read_ctx_timestamp(struct intel_engine_cs * engine)2133 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2134 {
2135 	struct i915_wa_list *w = &engine->whitelist;
2136 
2137 	if (engine->class != RENDER_CLASS)
2138 		whitelist_reg_ext(w,
2139 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2140 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2141 }
2142 
cml_whitelist_build(struct intel_engine_cs * engine)2143 static void cml_whitelist_build(struct intel_engine_cs *engine)
2144 {
2145 	allow_read_ctx_timestamp(engine);
2146 
2147 	cfl_whitelist_build(engine);
2148 }
2149 
icl_whitelist_build(struct intel_engine_cs * engine)2150 static void icl_whitelist_build(struct intel_engine_cs *engine)
2151 {
2152 	struct i915_wa_list *w = &engine->whitelist;
2153 
2154 	allow_read_ctx_timestamp(engine);
2155 
2156 	switch (engine->class) {
2157 	case RENDER_CLASS:
2158 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2159 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2160 
2161 		/* WaAllowUMDToModifySamplerMode:icl */
2162 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2163 
2164 		/* WaEnableStateCacheRedirectToCS:icl */
2165 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2166 
2167 		/*
2168 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2169 		 *
2170 		 * This covers 4 register which are next to one another :
2171 		 *   - PS_INVOCATION_COUNT
2172 		 *   - PS_INVOCATION_COUNT_UDW
2173 		 *   - PS_DEPTH_COUNT
2174 		 *   - PS_DEPTH_COUNT_UDW
2175 		 */
2176 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2177 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2178 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2179 		break;
2180 
2181 	case VIDEO_DECODE_CLASS:
2182 		/* hucStatusRegOffset */
2183 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2184 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2185 		/* hucUKernelHdrInfoRegOffset */
2186 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2187 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2188 		/* hucStatus2RegOffset */
2189 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2190 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2191 		break;
2192 
2193 	default:
2194 		break;
2195 	}
2196 }
2197 
tgl_whitelist_build(struct intel_engine_cs * engine)2198 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2199 {
2200 	struct i915_wa_list *w = &engine->whitelist;
2201 
2202 	allow_read_ctx_timestamp(engine);
2203 
2204 	switch (engine->class) {
2205 	case RENDER_CLASS:
2206 		/*
2207 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2208 		 * Wa_1408556865:tgl
2209 		 *
2210 		 * This covers 4 registers which are next to one another :
2211 		 *   - PS_INVOCATION_COUNT
2212 		 *   - PS_INVOCATION_COUNT_UDW
2213 		 *   - PS_DEPTH_COUNT
2214 		 *   - PS_DEPTH_COUNT_UDW
2215 		 */
2216 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2217 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2218 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2219 
2220 		/*
2221 		 * Wa_1808121037:tgl
2222 		 * Wa_14012131227:dg1
2223 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2224 		 */
2225 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2226 
2227 		/* Wa_1806527549:tgl */
2228 		whitelist_reg(w, HIZ_CHICKEN);
2229 
2230 		/* Required by recommended tuning setting (not a workaround) */
2231 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2232 
2233 		break;
2234 	default:
2235 		break;
2236 	}
2237 }
2238 
dg2_whitelist_build(struct intel_engine_cs * engine)2239 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2240 {
2241 	struct i915_wa_list *w = &engine->whitelist;
2242 
2243 	switch (engine->class) {
2244 	case RENDER_CLASS:
2245 		/*
2246 		 * Wa_1507100340:dg2_g10
2247 		 *
2248 		 * This covers 4 registers which are next to one another :
2249 		 *   - PS_INVOCATION_COUNT
2250 		 *   - PS_INVOCATION_COUNT_UDW
2251 		 *   - PS_DEPTH_COUNT
2252 		 *   - PS_DEPTH_COUNT_UDW
2253 		 */
2254 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2255 			whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2256 					  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2257 					  RING_FORCE_TO_NONPRIV_RANGE_4);
2258 
2259 		/* Required by recommended tuning setting (not a workaround) */
2260 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2261 
2262 		break;
2263 	case COMPUTE_CLASS:
2264 		/* Wa_16011157294:dg2_g10 */
2265 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2266 			whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2267 		break;
2268 	default:
2269 		break;
2270 	}
2271 }
2272 
blacklist_trtt(struct intel_engine_cs * engine)2273 static void blacklist_trtt(struct intel_engine_cs *engine)
2274 {
2275 	struct i915_wa_list *w = &engine->whitelist;
2276 
2277 	/*
2278 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2279 	 * the TRTT range across all engines. Note that normally userspace
2280 	 * cannot access the other engines' trtt control, but for simplicity
2281 	 * we cover the entire range on each engine.
2282 	 */
2283 	whitelist_reg_ext(w, _MMIO(0x4400),
2284 			  RING_FORCE_TO_NONPRIV_DENY |
2285 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2286 	whitelist_reg_ext(w, _MMIO(0x4500),
2287 			  RING_FORCE_TO_NONPRIV_DENY |
2288 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2289 }
2290 
pvc_whitelist_build(struct intel_engine_cs * engine)2291 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2292 {
2293 	/* Wa_16014440446:pvc */
2294 	blacklist_trtt(engine);
2295 }
2296 
mtl_whitelist_build(struct intel_engine_cs * engine)2297 static void mtl_whitelist_build(struct intel_engine_cs *engine)
2298 {
2299 	struct i915_wa_list *w = &engine->whitelist;
2300 
2301 	switch (engine->class) {
2302 	case RENDER_CLASS:
2303 		/* Required by recommended tuning setting (not a workaround) */
2304 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2305 
2306 		break;
2307 	default:
2308 		break;
2309 	}
2310 }
2311 
intel_engine_init_whitelist(struct intel_engine_cs * engine)2312 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2313 {
2314 	struct drm_i915_private *i915 = engine->i915;
2315 	struct i915_wa_list *w = &engine->whitelist;
2316 
2317 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2318 
2319 	if (IS_METEORLAKE(i915))
2320 		mtl_whitelist_build(engine);
2321 	else if (IS_PONTEVECCHIO(i915))
2322 		pvc_whitelist_build(engine);
2323 	else if (IS_DG2(i915))
2324 		dg2_whitelist_build(engine);
2325 	else if (IS_XEHPSDV(i915))
2326 		; /* none needed */
2327 	else if (GRAPHICS_VER(i915) == 12)
2328 		tgl_whitelist_build(engine);
2329 	else if (GRAPHICS_VER(i915) == 11)
2330 		icl_whitelist_build(engine);
2331 	else if (IS_COMETLAKE(i915))
2332 		cml_whitelist_build(engine);
2333 	else if (IS_COFFEELAKE(i915))
2334 		cfl_whitelist_build(engine);
2335 	else if (IS_GEMINILAKE(i915))
2336 		glk_whitelist_build(engine);
2337 	else if (IS_KABYLAKE(i915))
2338 		kbl_whitelist_build(engine);
2339 	else if (IS_BROXTON(i915))
2340 		bxt_whitelist_build(engine);
2341 	else if (IS_SKYLAKE(i915))
2342 		skl_whitelist_build(engine);
2343 	else if (GRAPHICS_VER(i915) <= 8)
2344 		;
2345 	else
2346 		MISSING_CASE(GRAPHICS_VER(i915));
2347 
2348 	wa_init_finish(w);
2349 }
2350 
intel_engine_apply_whitelist(struct intel_engine_cs * engine)2351 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2352 {
2353 	const struct i915_wa_list *wal = &engine->whitelist;
2354 	struct intel_uncore *uncore = engine->uncore;
2355 	const u32 base = engine->mmio_base;
2356 	struct i915_wa *wa;
2357 	unsigned int i;
2358 
2359 	if (!wal->count)
2360 		return;
2361 
2362 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2363 		intel_uncore_write(uncore,
2364 				   RING_FORCE_TO_NONPRIV(base, i),
2365 				   i915_mmio_reg_offset(wa->reg));
2366 
2367 	/* And clear the rest just in case of garbage */
2368 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2369 		intel_uncore_write(uncore,
2370 				   RING_FORCE_TO_NONPRIV(base, i),
2371 				   i915_mmio_reg_offset(RING_NOPID(base)));
2372 }
2373 
2374 /*
2375  * engine_fake_wa_init(), a place holder to program the registers
2376  * which are not part of an official workaround defined by the
2377  * hardware team.
2378  * Adding programming of those register inside workaround will
2379  * allow utilizing wa framework to proper application and verification.
2380  */
2381 static void
engine_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2382 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2383 {
2384 	u8 mocs_w, mocs_r;
2385 
2386 	/*
2387 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2388 	 * by the command streamer when executing commands that don't have
2389 	 * a way to explicitly specify a MOCS setting.  The default should
2390 	 * usually reference whichever MOCS entry corresponds to uncached
2391 	 * behavior, although use of a WB cached entry is recommended by the
2392 	 * spec in certain circumstances on specific platforms.
2393 	 */
2394 	if (GRAPHICS_VER(engine->i915) >= 12) {
2395 		mocs_r = engine->gt->mocs.uc_index;
2396 		mocs_w = engine->gt->mocs.uc_index;
2397 
2398 		if (HAS_L3_CCS_READ(engine->i915) &&
2399 		    engine->class == COMPUTE_CLASS) {
2400 			mocs_r = engine->gt->mocs.wb_index;
2401 
2402 			/*
2403 			 * Even on the few platforms where MOCS 0 is a
2404 			 * legitimate table entry, it's never the correct
2405 			 * setting to use here; we can assume the MOCS init
2406 			 * just forgot to initialize wb_index.
2407 			 */
2408 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2409 		}
2410 
2411 		wa_masked_field_set(wal,
2412 				    RING_CMD_CCTL(engine->mmio_base),
2413 				    CMD_CCTL_MOCS_MASK,
2414 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2415 	}
2416 }
2417 
needs_wa_1308578152(struct intel_engine_cs * engine)2418 static bool needs_wa_1308578152(struct intel_engine_cs *engine)
2419 {
2420 	return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >=
2421 		GEN_DSS_PER_GSLICE;
2422 }
2423 
2424 static void
rcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2425 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2426 {
2427 	struct drm_i915_private *i915 = engine->i915;
2428 
2429 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2430 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
2431 		/* Wa_22014600077 */
2432 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2433 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2434 	}
2435 
2436 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2437 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2438 	    IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2439 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2440 		/* Wa_1509727124 */
2441 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2442 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2443 	}
2444 
2445 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2446 	    IS_DG2_G11(i915) || IS_DG2_G12(i915) ||
2447 	    IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) {
2448 		/* Wa_22012856258 */
2449 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2450 				 GEN12_DISABLE_READ_SUPPRESSION);
2451 	}
2452 
2453 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2454 		/* Wa_14013392000:dg2_g11 */
2455 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE);
2456 	}
2457 
2458 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) ||
2459 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2460 		/* Wa_14012419201:dg2 */
2461 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4,
2462 				 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX);
2463 	}
2464 
2465 	/* Wa_1308578152:dg2_g10 when first gslice is fused off */
2466 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) &&
2467 	    needs_wa_1308578152(engine)) {
2468 		wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON,
2469 			      GEN12_REPLAY_MODE_GRANULARITY);
2470 	}
2471 
2472 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2473 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2474 		/*
2475 		 * Wa_22010960976:dg2
2476 		 * Wa_14013347512:dg2
2477 		 */
2478 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2479 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2480 	}
2481 
2482 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2483 		/*
2484 		 * Wa_1608949956:dg2_g10
2485 		 * Wa_14010198302:dg2_g10
2486 		 */
2487 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
2488 				 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE);
2489 	}
2490 
2491 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
2492 		/* Wa_22010430635:dg2 */
2493 		wa_mcr_masked_en(wal,
2494 				 GEN9_ROW_CHICKEN4,
2495 				 GEN12_DISABLE_GRF_CLEAR);
2496 
2497 	/* Wa_14013202645:dg2 */
2498 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2499 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0))
2500 		wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY);
2501 
2502 	/* Wa_22012532006:dg2 */
2503 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) ||
2504 	    IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0))
2505 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
2506 				 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA);
2507 
2508 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) ||
2509 	    IS_DG2_G10(i915)) {
2510 		/* Wa_22014600077:dg2 */
2511 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2512 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2513 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2514 			   true);
2515 	}
2516 
2517 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2518 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2519 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2520 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2521 
2522 		/*
2523 		 * Wa_1407928979:tgl A*
2524 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2525 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2526 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2527 		 */
2528 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2529 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2530 	}
2531 
2532 	if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) ||
2533 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2534 		/*
2535 		 * Wa_1606700617:tgl,dg1,adl-p
2536 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2537 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2538 		 * Wa_18019627453:dg2
2539 		 */
2540 		wa_masked_en(wal,
2541 			     GEN9_CS_DEBUG_MODE1,
2542 			     FF_DOP_CLOCK_GATE_DISABLE);
2543 	}
2544 
2545 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2546 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2547 		/* Wa_1409804808 */
2548 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2549 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2550 
2551 		/* Wa_14010229206 */
2552 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2553 	}
2554 
2555 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2556 		/*
2557 		 * Wa_1607297627
2558 		 *
2559 		 * On TGL and RKL there are multiple entries for this WA in the
2560 		 * BSpec; some indicate this is an A0-only WA, others indicate
2561 		 * it applies to all steppings so we trust the "all steppings."
2562 		 */
2563 		wa_masked_en(wal,
2564 			     RING_PSMI_CTL(RENDER_RING_BASE),
2565 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2566 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2567 	}
2568 
2569 	if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) ||
2570 	    IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) {
2571 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2572 		wa_mcr_masked_en(wal,
2573 				 GEN10_SAMPLER_MODE,
2574 				 ENABLE_SMALLPL);
2575 	}
2576 
2577 	if (GRAPHICS_VER(i915) == 11) {
2578 		/* This is not an Wa. Enable for better image quality */
2579 		wa_masked_en(wal,
2580 			     _3D_CHICKEN3,
2581 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2582 
2583 		/*
2584 		 * Wa_1405543622:icl
2585 		 * Formerly known as WaGAPZPriorityScheme
2586 		 */
2587 		wa_write_or(wal,
2588 			    GEN8_GARBCNTL,
2589 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2590 
2591 		/*
2592 		 * Wa_1604223664:icl
2593 		 * Formerly known as WaL3BankAddressHashing
2594 		 */
2595 		wa_write_clr_set(wal,
2596 				 GEN8_GARBCNTL,
2597 				 GEN11_HASH_CTRL_EXCL_MASK,
2598 				 GEN11_HASH_CTRL_EXCL_BIT0);
2599 		wa_write_clr_set(wal,
2600 				 GEN11_GLBLINVL,
2601 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2602 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2603 
2604 		/*
2605 		 * Wa_1405733216:icl
2606 		 * Formerly known as WaDisableCleanEvicts
2607 		 */
2608 		wa_mcr_write_or(wal,
2609 				GEN8_L3SQCREG4,
2610 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2611 
2612 		/* Wa_1606682166:icl */
2613 		wa_write_or(wal,
2614 			    GEN7_SARCHKMD,
2615 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2616 
2617 		/* Wa_1409178092:icl */
2618 		wa_mcr_write_clr_set(wal,
2619 				     GEN11_SCRATCH2,
2620 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2621 				     0);
2622 
2623 		/* WaEnable32PlaneMode:icl */
2624 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2625 			     GEN11_ENABLE_32_PLANE_MODE);
2626 
2627 		/*
2628 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2629 		 * Wa_1605460711:icl[a0..c0]
2630 		 */
2631 		wa_write_or(wal,
2632 			    GEN7_FF_THREAD_MODE,
2633 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2634 
2635 		/* Wa_22010271021 */
2636 		wa_masked_en(wal,
2637 			     GEN9_CS_DEBUG_MODE1,
2638 			     FF_DOP_CLOCK_GATE_DISABLE);
2639 	}
2640 
2641 	/*
2642 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2643 	 * beyond) allow the kernel-mode driver to choose between two different
2644 	 * options for controlling preemption granularity and behavior.
2645 	 *
2646 	 * Option 1 (hardware default):
2647 	 *   Preemption settings are controlled in a global manner via
2648 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2649 	 *   and settings chosen by the kernel-mode driver will apply to all
2650 	 *   userspace clients.
2651 	 *
2652 	 * Option 2:
2653 	 *   Preemption settings are controlled on a per-context basis via
2654 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2655 	 *   context switch and is writable by userspace (e.g., via
2656 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2657 	 *   which allows different userspace drivers/clients to select
2658 	 *   different settings, or to change those settings on the fly in
2659 	 *   response to runtime needs.  This option was known by name
2660 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2661 	 *   that name is somewhat misleading as other non-granularity
2662 	 *   preemption settings are also impacted by this decision.
2663 	 *
2664 	 * On Linux, our policy has always been to let userspace drivers
2665 	 * control preemption granularity/settings (Option 2).  This was
2666 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2667 	 * userspace developed before object-level preemption was enabled would
2668 	 * not behave well if i915 were to go with Option 1 and enable that
2669 	 * preemption in a global manner).  On gen9 each context would have
2670 	 * object-level preemption disabled by default (see
2671 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2672 	 * userspace drivers could opt-in to object-level preemption as they
2673 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2674 	 * even though it is no longer necessary for ABI compatibility when
2675 	 * enabling a new platform, it does ensure that userspace will be able
2676 	 * to implement any workarounds that show up requiring temporary
2677 	 * adjustments to preemption behavior at runtime.
2678 	 *
2679 	 * Notes/Workarounds:
2680 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2681 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2682 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2683 	 *      using Option 1).  Effectively this means userspace is unable
2684 	 *      to disable object-level preemption on these platforms/steppings
2685 	 *      despite the setting here.
2686 	 *
2687 	 *  - Wa_16013994831:  May require that userspace program
2688 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2689 	 *      Userspace requires Option 2 to be in effect for their update of
2690 	 *      CS_CHICKEN1[10] to be effective.
2691 	 *
2692 	 * Other workarounds may appear in the future that will also require
2693 	 * Option 2 behavior to allow proper userspace implementation.
2694 	 */
2695 	if (GRAPHICS_VER(i915) >= 9)
2696 		wa_masked_en(wal,
2697 			     GEN7_FF_SLICE_CS_CHICKEN1,
2698 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2699 
2700 	if (IS_SKYLAKE(i915) ||
2701 	    IS_KABYLAKE(i915) ||
2702 	    IS_COFFEELAKE(i915) ||
2703 	    IS_COMETLAKE(i915)) {
2704 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2705 		wa_write_or(wal,
2706 			    GEN8_GARBCNTL,
2707 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2708 	}
2709 
2710 	if (IS_BROXTON(i915)) {
2711 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2712 		wa_masked_en(wal,
2713 			     FF_SLICE_CS_CHICKEN2,
2714 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2715 	}
2716 
2717 	if (GRAPHICS_VER(i915) == 9) {
2718 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2719 		wa_masked_en(wal,
2720 			     GEN9_CSFE_CHICKEN1_RCS,
2721 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2722 
2723 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2724 		wa_mcr_write_or(wal,
2725 				BDW_SCRATCH1,
2726 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2727 
2728 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2729 		if (IS_GEN9_LP(i915))
2730 			wa_mcr_write_clr_set(wal,
2731 					     GEN8_L3SQCREG1,
2732 					     L3_PRIO_CREDITS_MASK,
2733 					     L3_GENERAL_PRIO_CREDITS(62) |
2734 					     L3_HIGH_PRIO_CREDITS(2));
2735 
2736 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2737 		wa_mcr_write_or(wal,
2738 				GEN8_L3SQCREG4,
2739 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2740 
2741 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2742 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2743 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2744 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2745 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2746 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2747 				     EVICTION_PERF_FIX_ENABLE, 0);
2748 	}
2749 
2750 	if (IS_HASWELL(i915)) {
2751 		/* WaSampleCChickenBitEnable:hsw */
2752 		wa_masked_en(wal,
2753 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2754 
2755 		wa_masked_dis(wal,
2756 			      CACHE_MODE_0_GEN7,
2757 			      /* enable HiZ Raw Stall Optimization */
2758 			      HIZ_RAW_STALL_OPT_DISABLE);
2759 	}
2760 
2761 	if (IS_VALLEYVIEW(i915)) {
2762 		/* WaDisableEarlyCull:vlv */
2763 		wa_masked_en(wal,
2764 			     _3D_CHICKEN3,
2765 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2766 
2767 		/*
2768 		 * WaVSThreadDispatchOverride:ivb,vlv
2769 		 *
2770 		 * This actually overrides the dispatch
2771 		 * mode for all thread types.
2772 		 */
2773 		wa_write_clr_set(wal,
2774 				 GEN7_FF_THREAD_MODE,
2775 				 GEN7_FF_SCHED_MASK,
2776 				 GEN7_FF_TS_SCHED_HW |
2777 				 GEN7_FF_VS_SCHED_HW |
2778 				 GEN7_FF_DS_SCHED_HW);
2779 
2780 		/* WaPsdDispatchEnable:vlv */
2781 		/* WaDisablePSDDualDispatchEnable:vlv */
2782 		wa_masked_en(wal,
2783 			     GEN7_HALF_SLICE_CHICKEN1,
2784 			     GEN7_MAX_PS_THREAD_DEP |
2785 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2786 	}
2787 
2788 	if (IS_IVYBRIDGE(i915)) {
2789 		/* WaDisableEarlyCull:ivb */
2790 		wa_masked_en(wal,
2791 			     _3D_CHICKEN3,
2792 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2793 
2794 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2795 			/* enable HiZ Raw Stall Optimization */
2796 			wa_masked_dis(wal,
2797 				      CACHE_MODE_0_GEN7,
2798 				      HIZ_RAW_STALL_OPT_DISABLE);
2799 		}
2800 
2801 		/*
2802 		 * WaVSThreadDispatchOverride:ivb,vlv
2803 		 *
2804 		 * This actually overrides the dispatch
2805 		 * mode for all thread types.
2806 		 */
2807 		wa_write_clr_set(wal,
2808 				 GEN7_FF_THREAD_MODE,
2809 				 GEN7_FF_SCHED_MASK,
2810 				 GEN7_FF_TS_SCHED_HW |
2811 				 GEN7_FF_VS_SCHED_HW |
2812 				 GEN7_FF_DS_SCHED_HW);
2813 
2814 		/* WaDisablePSDDualDispatchEnable:ivb */
2815 		if (IS_IVB_GT1(i915))
2816 			wa_masked_en(wal,
2817 				     GEN7_HALF_SLICE_CHICKEN1,
2818 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2819 	}
2820 
2821 	if (GRAPHICS_VER(i915) == 7) {
2822 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2823 		wa_masked_en(wal,
2824 			     RING_MODE_GEN7(RENDER_RING_BASE),
2825 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2826 
2827 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2828 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2829 
2830 		/*
2831 		 * BSpec says this must be set, even though
2832 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2833 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2834 		 */
2835 		wa_masked_en(wal,
2836 			     CACHE_MODE_1,
2837 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2838 
2839 		/*
2840 		 * BSpec recommends 8x4 when MSAA is used,
2841 		 * however in practice 16x4 seems fastest.
2842 		 *
2843 		 * Note that PS/WM thread counts depend on the WIZ hashing
2844 		 * disable bit, which we don't touch here, but it's good
2845 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2846 		 */
2847 		wa_masked_field_set(wal,
2848 				    GEN7_GT_MODE,
2849 				    GEN6_WIZ_HASHING_MASK,
2850 				    GEN6_WIZ_HASHING_16x4);
2851 	}
2852 
2853 	if (IS_GRAPHICS_VER(i915, 6, 7))
2854 		/*
2855 		 * We need to disable the AsyncFlip performance optimisations in
2856 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2857 		 * already be programmed to '1' on all products.
2858 		 *
2859 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2860 		 */
2861 		wa_masked_en(wal,
2862 			     RING_MI_MODE(RENDER_RING_BASE),
2863 			     ASYNC_FLIP_PERF_DISABLE);
2864 
2865 	if (GRAPHICS_VER(i915) == 6) {
2866 		/*
2867 		 * Required for the hardware to program scanline values for
2868 		 * waiting
2869 		 * WaEnableFlushTlbInvalidationMode:snb
2870 		 */
2871 		wa_masked_en(wal,
2872 			     GFX_MODE,
2873 			     GFX_TLB_INVALIDATE_EXPLICIT);
2874 
2875 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2876 		wa_masked_en(wal,
2877 			     _3D_CHICKEN,
2878 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2879 
2880 		wa_masked_en(wal,
2881 			     _3D_CHICKEN3,
2882 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2883 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2884 			     /*
2885 			      * Bspec says:
2886 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2887 			      * to normal and 3DSTATE_SF number of SF output attributes
2888 			      * is more than 16."
2889 			      */
2890 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2891 
2892 		/*
2893 		 * BSpec recommends 8x4 when MSAA is used,
2894 		 * however in practice 16x4 seems fastest.
2895 		 *
2896 		 * Note that PS/WM thread counts depend on the WIZ hashing
2897 		 * disable bit, which we don't touch here, but it's good
2898 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2899 		 */
2900 		wa_masked_field_set(wal,
2901 				    GEN6_GT_MODE,
2902 				    GEN6_WIZ_HASHING_MASK,
2903 				    GEN6_WIZ_HASHING_16x4);
2904 
2905 		/* WaDisable_RenderCache_OperationalFlush:snb */
2906 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2907 
2908 		/*
2909 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2910 		 * "If this bit is set, STCunit will have LRA as replacement
2911 		 *  policy. [...] This bit must be reset. LRA replacement
2912 		 *  policy is not supported."
2913 		 */
2914 		wa_masked_dis(wal,
2915 			      CACHE_MODE_0,
2916 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2917 	}
2918 
2919 	if (IS_GRAPHICS_VER(i915, 4, 6))
2920 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2921 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2922 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2923 		       /* XXX bit doesn't stick on Broadwater */
2924 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2925 
2926 	if (GRAPHICS_VER(i915) == 4)
2927 		/*
2928 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2929 		 * image. For as it is loaded, it is executed and the stored
2930 		 * address may no longer be valid, leading to a GPU hang.
2931 		 *
2932 		 * This imposes the requirement that userspace reload their
2933 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2934 		 * they are already accustomed to from before contexts were
2935 		 * enabled.
2936 		 */
2937 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2938 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2939 		       0 /* XXX bit doesn't stick on Broadwater */,
2940 		       true);
2941 }
2942 
2943 static void
xcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2944 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2945 {
2946 	struct drm_i915_private *i915 = engine->i915;
2947 
2948 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2949 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2950 		wa_write(wal,
2951 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2952 			 1);
2953 	}
2954 }
2955 
2956 static void
ccs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2957 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2958 {
2959 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2960 		/* Wa_14014999345:pvc */
2961 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2962 	}
2963 }
2964 
2965 /*
2966  * The bspec performance guide has recommended MMIO tuning settings.  These
2967  * aren't truly "workarounds" but we want to program them with the same
2968  * workaround infrastructure to ensure that they're automatically added to
2969  * the GuC save/restore lists, re-applied at the right times, and checked for
2970  * any conflicting programming requested by real workarounds.
2971  *
2972  * Programming settings should be added here only if their registers are not
2973  * part of an engine's register state context.  If a register is part of a
2974  * context, then any tuning settings should be programmed in an appropriate
2975  * function invoked by __intel_engine_init_ctx_wa().
2976  */
2977 static void
add_render_compute_tuning_settings(struct drm_i915_private * i915,struct i915_wa_list * wal)2978 add_render_compute_tuning_settings(struct drm_i915_private *i915,
2979 				   struct i915_wa_list *wal)
2980 {
2981 	if (IS_METEORLAKE(i915) || IS_DG2(i915))
2982 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2983 
2984 	/*
2985 	 * This tuning setting proves beneficial only on ATS-M designs; the
2986 	 * default "age based" setting is optimal on regular DG2 and other
2987 	 * platforms.
2988 	 */
2989 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2990 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2991 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2992 
2993 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2994 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2995 }
2996 
2997 /*
2998  * The workarounds in this function apply to shared registers in
2999  * the general render reset domain that aren't tied to a
3000  * specific engine.  Since all render+compute engines get reset
3001  * together, and the contents of these registers are lost during
3002  * the shared render domain reset, we'll define such workarounds
3003  * here and then add them to just a single RCS or CCS engine's
3004  * workaround list (whichever engine has the XXXX flag).
3005  */
3006 static void
general_render_compute_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)3007 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3008 {
3009 	struct drm_i915_private *i915 = engine->i915;
3010 
3011 	add_render_compute_tuning_settings(i915, wal);
3012 
3013 	if (GRAPHICS_VER(i915) >= 11) {
3014 		/* This is not a Wa (although referred to as
3015 		 * WaSetInidrectStateOverride in places), this allows
3016 		 * applications that reference sampler states through
3017 		 * the BindlessSamplerStateBaseAddress to have their
3018 		 * border color relative to DynamicStateBaseAddress
3019 		 * rather than BindlessSamplerStateBaseAddress.
3020 		 *
3021 		 * Otherwise SAMPLER_STATE border colors have to be
3022 		 * copied in multiple heaps (DynamicStateBaseAddress &
3023 		 * BindlessSamplerStateBaseAddress)
3024 		 *
3025 		 * BSpec: 46052
3026 		 */
3027 		wa_mcr_masked_en(wal,
3028 				 GEN10_SAMPLER_MODE,
3029 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
3030 	}
3031 
3032 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) ||
3033 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER))
3034 		/* Wa_14017856879 */
3035 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
3036 
3037 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3038 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
3039 		/*
3040 		 * Wa_14017066071
3041 		 * Wa_14017654203
3042 		 */
3043 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
3044 				 MTL_DISABLE_SAMPLER_SC_OOO);
3045 
3046 	if (IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
3047 		/* Wa_22015279794 */
3048 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
3049 				 DISABLE_PREFETCH_INTO_IC);
3050 
3051 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3052 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3053 	    IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
3054 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
3055 		/* Wa_22013037850 */
3056 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
3057 				DISABLE_128B_EVICTION_COMMAND_UDW);
3058 	}
3059 
3060 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3061 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3062 	    IS_PONTEVECCHIO(i915) ||
3063 	    IS_DG2(i915)) {
3064 		/* Wa_22014226127 */
3065 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
3066 	}
3067 
3068 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3069 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3070 	    IS_DG2(i915)) {
3071 		/* Wa_18017747507 */
3072 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
3073 	}
3074 
3075 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
3076 	    IS_DG2_G11(i915)) {
3077 		/*
3078 		 * Wa_22012826095:dg2
3079 		 * Wa_22013059131:dg2
3080 		 */
3081 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
3082 				     MAXREQS_PER_BANK,
3083 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
3084 
3085 		/* Wa_22013059131:dg2 */
3086 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
3087 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
3088 	}
3089 
3090 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
3091 		/*
3092 		 * Wa_14010918519:dg2_g10
3093 		 *
3094 		 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping,
3095 		 * so ignoring verification.
3096 		 */
3097 		wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0,
3098 			   FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE,
3099 			   0, false);
3100 	}
3101 
3102 	if (IS_XEHPSDV(i915)) {
3103 		/* Wa_1409954639 */
3104 		wa_mcr_masked_en(wal,
3105 				 GEN8_ROW_CHICKEN,
3106 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3107 
3108 		/* Wa_1607196519 */
3109 		wa_mcr_masked_en(wal,
3110 				 GEN9_ROW_CHICKEN4,
3111 				 GEN12_DISABLE_GRF_CLEAR);
3112 
3113 		/* Wa_14010449647:xehpsdv */
3114 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3115 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3116 	}
3117 
3118 	if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) {
3119 		/* Wa_14015227452:dg2,pvc */
3120 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
3121 
3122 		/* Wa_16015675438:dg2,pvc */
3123 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
3124 	}
3125 
3126 	if (IS_DG2(i915)) {
3127 		/*
3128 		 * Wa_16011620976:dg2_g11
3129 		 * Wa_22015475538:dg2
3130 		 */
3131 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
3132 	}
3133 
3134 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915))
3135 		/*
3136 		 * Wa_22012654132
3137 		 *
3138 		 * Note that register 0xE420 is write-only and cannot be read
3139 		 * back for verification on DG2 (due to Wa_14012342262), so
3140 		 * we need to explicitly skip the readback.
3141 		 */
3142 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
3143 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
3144 			   0 /* write-only, so skip validation */,
3145 			   true);
3146 }
3147 
3148 static void
engine_init_workarounds(struct intel_engine_cs * engine,struct i915_wa_list * wal)3149 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3150 {
3151 	if (GRAPHICS_VER(engine->i915) < 4)
3152 		return;
3153 
3154 	engine_fake_wa_init(engine, wal);
3155 
3156 	/*
3157 	 * These are common workarounds that just need to applied
3158 	 * to a single RCS/CCS engine's workaround list since
3159 	 * they're reset as part of the general render domain reset.
3160 	 */
3161 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3162 		general_render_compute_wa_init(engine, wal);
3163 
3164 	if (engine->class == COMPUTE_CLASS)
3165 		ccs_engine_wa_init(engine, wal);
3166 	else if (engine->class == RENDER_CLASS)
3167 		rcs_engine_wa_init(engine, wal);
3168 	else
3169 		xcs_engine_wa_init(engine, wal);
3170 }
3171 
intel_engine_init_workarounds(struct intel_engine_cs * engine)3172 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3173 {
3174 	struct i915_wa_list *wal = &engine->wa_list;
3175 
3176 	wa_init_start(wal, engine->gt, "engine", engine->name);
3177 	engine_init_workarounds(engine, wal);
3178 	wa_init_finish(wal);
3179 }
3180 
intel_engine_apply_workarounds(struct intel_engine_cs * engine)3181 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3182 {
3183 	wa_list_apply(&engine->wa_list);
3184 }
3185 
3186 static const struct i915_range mcr_ranges_gen8[] = {
3187 	{ .start = 0x5500, .end = 0x55ff },
3188 	{ .start = 0x7000, .end = 0x7fff },
3189 	{ .start = 0x9400, .end = 0x97ff },
3190 	{ .start = 0xb000, .end = 0xb3ff },
3191 	{ .start = 0xe000, .end = 0xe7ff },
3192 	{},
3193 };
3194 
3195 static const struct i915_range mcr_ranges_gen12[] = {
3196 	{ .start =  0x8150, .end =  0x815f },
3197 	{ .start =  0x9520, .end =  0x955f },
3198 	{ .start =  0xb100, .end =  0xb3ff },
3199 	{ .start =  0xde80, .end =  0xe8ff },
3200 	{ .start = 0x24a00, .end = 0x24a7f },
3201 	{},
3202 };
3203 
3204 static const struct i915_range mcr_ranges_xehp[] = {
3205 	{ .start =  0x4000, .end =  0x4aff },
3206 	{ .start =  0x5200, .end =  0x52ff },
3207 	{ .start =  0x5400, .end =  0x7fff },
3208 	{ .start =  0x8140, .end =  0x815f },
3209 	{ .start =  0x8c80, .end =  0x8dff },
3210 	{ .start =  0x94d0, .end =  0x955f },
3211 	{ .start =  0x9680, .end =  0x96ff },
3212 	{ .start =  0xb000, .end =  0xb3ff },
3213 	{ .start =  0xc800, .end =  0xcfff },
3214 	{ .start =  0xd800, .end =  0xd8ff },
3215 	{ .start =  0xdc00, .end =  0xffff },
3216 	{ .start = 0x17000, .end = 0x17fff },
3217 	{ .start = 0x24a00, .end = 0x24a7f },
3218 	{},
3219 };
3220 
mcr_range(struct drm_i915_private * i915,u32 offset)3221 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3222 {
3223 	const struct i915_range *mcr_ranges;
3224 	int i;
3225 
3226 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3227 		mcr_ranges = mcr_ranges_xehp;
3228 	else if (GRAPHICS_VER(i915) >= 12)
3229 		mcr_ranges = mcr_ranges_gen12;
3230 	else if (GRAPHICS_VER(i915) >= 8)
3231 		mcr_ranges = mcr_ranges_gen8;
3232 	else
3233 		return false;
3234 
3235 	/*
3236 	 * Registers in these ranges are affected by the MCR selector
3237 	 * which only controls CPU initiated MMIO. Routing does not
3238 	 * work for CS access so we cannot verify them on this path.
3239 	 */
3240 	for (i = 0; mcr_ranges[i].start; i++)
3241 		if (offset >= mcr_ranges[i].start &&
3242 		    offset <= mcr_ranges[i].end)
3243 			return true;
3244 
3245 	return false;
3246 }
3247 
3248 static int
wa_list_srm(struct i915_request * rq,const struct i915_wa_list * wal,struct i915_vma * vma)3249 wa_list_srm(struct i915_request *rq,
3250 	    const struct i915_wa_list *wal,
3251 	    struct i915_vma *vma)
3252 {
3253 	struct drm_i915_private *i915 = rq->i915;
3254 	unsigned int i, count = 0;
3255 	const struct i915_wa *wa;
3256 	u32 srm, *cs;
3257 
3258 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3259 	if (GRAPHICS_VER(i915) >= 8)
3260 		srm++;
3261 
3262 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3263 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3264 			count++;
3265 	}
3266 
3267 	cs = intel_ring_begin(rq, 4 * count);
3268 	if (IS_ERR(cs))
3269 		return PTR_ERR(cs);
3270 
3271 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3272 		u32 offset = i915_mmio_reg_offset(wa->reg);
3273 
3274 		if (mcr_range(i915, offset))
3275 			continue;
3276 
3277 		*cs++ = srm;
3278 		*cs++ = offset;
3279 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3280 		*cs++ = 0;
3281 	}
3282 	intel_ring_advance(rq, cs);
3283 
3284 	return 0;
3285 }
3286 
engine_wa_list_verify(struct intel_context * ce,const struct i915_wa_list * const wal,const char * from)3287 static int engine_wa_list_verify(struct intel_context *ce,
3288 				 const struct i915_wa_list * const wal,
3289 				 const char *from)
3290 {
3291 	const struct i915_wa *wa;
3292 	struct i915_request *rq;
3293 	struct i915_vma *vma;
3294 	struct i915_gem_ww_ctx ww;
3295 	unsigned int i;
3296 	u32 *results;
3297 	int err;
3298 
3299 	if (!wal->count)
3300 		return 0;
3301 
3302 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3303 					   wal->count * sizeof(u32));
3304 	if (IS_ERR(vma))
3305 		return PTR_ERR(vma);
3306 
3307 	intel_engine_pm_get(ce->engine);
3308 	i915_gem_ww_ctx_init(&ww, false);
3309 retry:
3310 	err = i915_gem_object_lock(vma->obj, &ww);
3311 	if (err == 0)
3312 		err = intel_context_pin_ww(ce, &ww);
3313 	if (err)
3314 		goto err_pm;
3315 
3316 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3317 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3318 	if (err)
3319 		goto err_unpin;
3320 
3321 	rq = i915_request_create(ce);
3322 	if (IS_ERR(rq)) {
3323 		err = PTR_ERR(rq);
3324 		goto err_vma;
3325 	}
3326 
3327 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3328 	if (err == 0)
3329 		err = wa_list_srm(rq, wal, vma);
3330 
3331 	i915_request_get(rq);
3332 	if (err)
3333 		i915_request_set_error_once(rq, err);
3334 	i915_request_add(rq);
3335 
3336 	if (err)
3337 		goto err_rq;
3338 
3339 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3340 		err = -ETIME;
3341 		goto err_rq;
3342 	}
3343 
3344 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3345 	if (IS_ERR(results)) {
3346 		err = PTR_ERR(results);
3347 		goto err_rq;
3348 	}
3349 
3350 	err = 0;
3351 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3352 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3353 			continue;
3354 
3355 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3356 			err = -ENXIO;
3357 	}
3358 
3359 	i915_gem_object_unpin_map(vma->obj);
3360 
3361 err_rq:
3362 	i915_request_put(rq);
3363 err_vma:
3364 	i915_vma_unpin(vma);
3365 err_unpin:
3366 	intel_context_unpin(ce);
3367 err_pm:
3368 	if (err == -EDEADLK) {
3369 		err = i915_gem_ww_ctx_backoff(&ww);
3370 		if (!err)
3371 			goto retry;
3372 	}
3373 	i915_gem_ww_ctx_fini(&ww);
3374 	intel_engine_pm_put(ce->engine);
3375 	i915_vma_put(vma);
3376 	return err;
3377 }
3378 
intel_engine_verify_workarounds(struct intel_engine_cs * engine,const char * from)3379 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3380 				    const char *from)
3381 {
3382 	return engine_wa_list_verify(engine->kernel_context,
3383 				     &engine->wa_list,
3384 				     from);
3385 }
3386 
3387 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3388 #include "selftest_workarounds.c"
3389 #endif
3390