1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42 */
43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 u8 class;
55 u8 instance;
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
58 u32 graphics_ver : 8;
59 u32 base : 24;
60 } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64 [RCS0] = {
65 .class = RENDER_CLASS,
66 .instance = 0,
67 .mmio_bases = {
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
69 },
70 },
71 [BCS0] = {
72 .class = COPY_ENGINE_CLASS,
73 .instance = 0,
74 .mmio_bases = {
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
76 },
77 },
78 [BCS1] = {
79 .class = COPY_ENGINE_CLASS,
80 .instance = 1,
81 .mmio_bases = {
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 },
84 },
85 [BCS2] = {
86 .class = COPY_ENGINE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 },
91 },
92 [BCS3] = {
93 .class = COPY_ENGINE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 },
98 },
99 [BCS4] = {
100 .class = COPY_ENGINE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 },
105 },
106 [BCS5] = {
107 .class = COPY_ENGINE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 },
112 },
113 [BCS6] = {
114 .class = COPY_ENGINE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 },
119 },
120 [BCS7] = {
121 .class = COPY_ENGINE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 },
126 },
127 [BCS8] = {
128 .class = COPY_ENGINE_CLASS,
129 .instance = 8,
130 .mmio_bases = {
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 },
133 },
134 [VCS0] = {
135 .class = VIDEO_DECODE_CLASS,
136 .instance = 0,
137 .mmio_bases = {
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
141 },
142 },
143 [VCS1] = {
144 .class = VIDEO_DECODE_CLASS,
145 .instance = 1,
146 .mmio_bases = {
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 },
150 },
151 [VCS2] = {
152 .class = VIDEO_DECODE_CLASS,
153 .instance = 2,
154 .mmio_bases = {
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 },
157 },
158 [VCS3] = {
159 .class = VIDEO_DECODE_CLASS,
160 .instance = 3,
161 .mmio_bases = {
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 },
164 },
165 [VCS4] = {
166 .class = VIDEO_DECODE_CLASS,
167 .instance = 4,
168 .mmio_bases = {
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 },
171 },
172 [VCS5] = {
173 .class = VIDEO_DECODE_CLASS,
174 .instance = 5,
175 .mmio_bases = {
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 },
178 },
179 [VCS6] = {
180 .class = VIDEO_DECODE_CLASS,
181 .instance = 6,
182 .mmio_bases = {
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 },
185 },
186 [VCS7] = {
187 .class = VIDEO_DECODE_CLASS,
188 .instance = 7,
189 .mmio_bases = {
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 },
192 },
193 [VECS0] = {
194 .class = VIDEO_ENHANCEMENT_CLASS,
195 .instance = 0,
196 .mmio_bases = {
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 },
200 },
201 [VECS1] = {
202 .class = VIDEO_ENHANCEMENT_CLASS,
203 .instance = 1,
204 .mmio_bases = {
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 },
207 },
208 [VECS2] = {
209 .class = VIDEO_ENHANCEMENT_CLASS,
210 .instance = 2,
211 .mmio_bases = {
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 },
214 },
215 [VECS3] = {
216 .class = VIDEO_ENHANCEMENT_CLASS,
217 .instance = 3,
218 .mmio_bases = {
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 },
221 },
222 [CCS0] = {
223 .class = COMPUTE_CLASS,
224 .instance = 0,
225 .mmio_bases = {
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 }
228 },
229 [CCS1] = {
230 .class = COMPUTE_CLASS,
231 .instance = 1,
232 .mmio_bases = {
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 }
235 },
236 [CCS2] = {
237 .class = COMPUTE_CLASS,
238 .instance = 2,
239 .mmio_bases = {
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 }
242 },
243 [CCS3] = {
244 .class = COMPUTE_CLASS,
245 .instance = 3,
246 .mmio_bases = {
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 }
249 },
250 [GSC0] = {
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
253 .mmio_bases = {
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 }
256 },
257 };
258
259 /**
260 * intel_engine_context_size() - return the size of the context for an engine
261 * @gt: the gt
262 * @class: engine class
263 *
264 * Each engine class may require a different amount of space for a context
265 * image.
266 *
267 * Return: size (in bytes) of an engine class specific context image
268 *
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
272 */
intel_engine_context_size(struct intel_gt * gt,u8 class)273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 struct intel_uncore *uncore = gt->uncore;
276 u32 cxt_size;
277
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280 switch (class) {
281 case COMPUTE_CLASS:
282 fallthrough;
283 case RENDER_CLASS:
284 switch (GRAPHICS_VER(gt->i915)) {
285 default:
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 case 12:
289 case 11:
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
291 case 9:
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
293 case 8:
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
295 case 7:
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
298
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 PAGE_SIZE);
302 case 6:
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 PAGE_SIZE);
306 case 5:
307 case 4:
308 /*
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
312 *
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
316 * out in the wash.
317 */
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 drm_dbg(>->i915->drm,
320 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321 GRAPHICS_VER(gt->i915), cxt_size * 64,
322 cxt_size - 1);
323 return round_up(cxt_size * 64, PAGE_SIZE);
324 case 3:
325 case 2:
326 /* For the special day when i810 gets merged. */
327 case 1:
328 return 0;
329 }
330 break;
331 default:
332 MISSING_CASE(class);
333 fallthrough;
334 case VIDEO_DECODE_CLASS:
335 case VIDEO_ENHANCEMENT_CLASS:
336 case COPY_ENGINE_CLASS:
337 case OTHER_CLASS:
338 if (GRAPHICS_VER(gt->i915) < 8)
339 return 0;
340 return GEN8_LR_CONTEXT_OTHER_SIZE;
341 }
342 }
343
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345 const struct engine_mmio_base *bases)
346 {
347 int i;
348
349 for (i = 0; i < MAX_MMIO_BASES; i++)
350 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351 break;
352
353 GEM_BUG_ON(i == MAX_MMIO_BASES);
354 GEM_BUG_ON(!bases[i].base);
355
356 return bases[i].base;
357 }
358
__sprint_engine_name(struct intel_engine_cs * engine)359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361 /*
362 * Before we know what the uABI name for this engine will be,
363 * we still would like to keep track of this engine in the debug logs.
364 * We throw in a ' here as a reminder that this isn't its final name.
365 */
366 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367 intel_engine_class_repr(engine->class),
368 engine->instance) >= sizeof(engine->name));
369 }
370
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373 /*
374 * Though they added more rings on g4x/ilk, they did not add
375 * per-engine HWSTAM until gen6.
376 */
377 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378 return;
379
380 if (GRAPHICS_VER(engine->i915) >= 3)
381 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 else
383 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388 /* Mask off all writes into the unknown HWSP */
389 intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394 GEM_DEBUG_WARN_ON(iir);
395 }
396
get_reset_domain(u8 ver,enum intel_engine_id id)397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399 u32 reset_domain;
400
401 if (ver >= 11) {
402 static const u32 engine_reset_domains[] = {
403 [RCS0] = GEN11_GRDOM_RENDER,
404 [BCS0] = GEN11_GRDOM_BLT,
405 [BCS1] = XEHPC_GRDOM_BLT1,
406 [BCS2] = XEHPC_GRDOM_BLT2,
407 [BCS3] = XEHPC_GRDOM_BLT3,
408 [BCS4] = XEHPC_GRDOM_BLT4,
409 [BCS5] = XEHPC_GRDOM_BLT5,
410 [BCS6] = XEHPC_GRDOM_BLT6,
411 [BCS7] = XEHPC_GRDOM_BLT7,
412 [BCS8] = XEHPC_GRDOM_BLT8,
413 [VCS0] = GEN11_GRDOM_MEDIA,
414 [VCS1] = GEN11_GRDOM_MEDIA2,
415 [VCS2] = GEN11_GRDOM_MEDIA3,
416 [VCS3] = GEN11_GRDOM_MEDIA4,
417 [VCS4] = GEN11_GRDOM_MEDIA5,
418 [VCS5] = GEN11_GRDOM_MEDIA6,
419 [VCS6] = GEN11_GRDOM_MEDIA7,
420 [VCS7] = GEN11_GRDOM_MEDIA8,
421 [VECS0] = GEN11_GRDOM_VECS,
422 [VECS1] = GEN11_GRDOM_VECS2,
423 [VECS2] = GEN11_GRDOM_VECS3,
424 [VECS3] = GEN11_GRDOM_VECS4,
425 [CCS0] = GEN11_GRDOM_RENDER,
426 [CCS1] = GEN11_GRDOM_RENDER,
427 [CCS2] = GEN11_GRDOM_RENDER,
428 [CCS3] = GEN11_GRDOM_RENDER,
429 [GSC0] = GEN12_GRDOM_GSC,
430 };
431 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432 !engine_reset_domains[id]);
433 reset_domain = engine_reset_domains[id];
434 } else {
435 static const u32 engine_reset_domains[] = {
436 [RCS0] = GEN6_GRDOM_RENDER,
437 [BCS0] = GEN6_GRDOM_BLT,
438 [VCS0] = GEN6_GRDOM_MEDIA,
439 [VCS1] = GEN8_GRDOM_MEDIA2,
440 [VECS0] = GEN6_GRDOM_VECS,
441 };
442 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443 !engine_reset_domains[id]);
444 reset_domain = engine_reset_domains[id];
445 }
446
447 return reset_domain;
448 }
449
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451 u8 logical_instance)
452 {
453 const struct engine_info *info = &intel_engines[id];
454 struct drm_i915_private *i915 = gt->i915;
455 struct intel_engine_cs *engine;
456 u8 guc_class;
457
458 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462
463 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464 return -EINVAL;
465
466 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467 return -EINVAL;
468
469 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470 return -EINVAL;
471
472 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473 return -EINVAL;
474
475 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476 if (!engine)
477 return -ENOMEM;
478
479 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480
481 INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 engine->id = id;
483 engine->legacy_idx = INVALID_ENGINE;
484 engine->mask = BIT(id);
485 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486 id);
487 engine->i915 = i915;
488 engine->gt = gt;
489 engine->uncore = gt->uncore;
490 guc_class = engine_class_to_guc_class(info->class);
491 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493
494 engine->irq_handler = nop_irq_handler;
495
496 engine->class = info->class;
497 engine->instance = info->instance;
498 engine->logical_mask = BIT(logical_instance);
499 __sprint_engine_name(engine);
500
501 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503 engine->class == RENDER_CLASS)
504 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505
506 /* features common between engines sharing EUs */
507 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 }
511
512 engine->props.heartbeat_interval_ms =
513 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514 engine->props.max_busywait_duration_ns =
515 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516 engine->props.preempt_timeout_ms =
517 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518 engine->props.stop_timeout_ms =
519 CONFIG_DRM_I915_STOP_TIMEOUT;
520 engine->props.timeslice_duration_ms =
521 CONFIG_DRM_I915_TIMESLICE_DURATION;
522
523 /*
524 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525 * some compute workloads run quite long threads. That means they get
526 * reset due to not pre-empting in a timely manner. So, bump the
527 * pre-emption timeout value to be much higher for compute engines.
528 */
529 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531
532 /* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534 do { \
535 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536 if (clamp != engine->props.field) { \
537 drm_notice(&engine->i915->drm, \
538 "Warning, clamping %s to %lld to prevent overflow\n", \
539 #field, clamp); \
540 engine->props.field = clamp; \
541 } \
542 } while (0)
543
544 CLAMP_PROP(heartbeat_interval_ms);
545 CLAMP_PROP(max_busywait_duration_ns);
546 CLAMP_PROP(preempt_timeout_ms);
547 CLAMP_PROP(stop_timeout_ms);
548 CLAMP_PROP(timeslice_duration_ms);
549
550 #undef CLAMP_PROP
551
552 engine->defaults = engine->props; /* never to change again */
553
554 engine->context_size = intel_engine_context_size(gt, engine->class);
555 if (WARN_ON(engine->context_size > BIT(20)))
556 engine->context_size = 0;
557 if (engine->context_size)
558 DRIVER_CAPS(i915)->has_logical_contexts = true;
559
560 ewma__engine_latency_init(&engine->latency);
561
562 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563
564 /* Scrub mmio state on takeover */
565 intel_engine_sanitize_mmio(engine);
566
567 gt->engine_class[info->class][info->instance] = engine;
568 gt->engine[id] = engine;
569
570 return 0;
571 }
572
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576
577 return value;
578 }
579
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 value = min(value, jiffies_to_nsecs(2));
583
584 return value;
585 }
586
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 /*
590 * NB: The GuC API only supports 32bit values. However, the limit is further
591 * reduced due to internal calculations which would otherwise overflow.
592 */
593 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595
596 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597
598 return value;
599 }
600
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604
605 return value;
606 }
607
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 /*
611 * NB: The GuC API only supports 32bit values. However, the limit is further
612 * reduced due to internal calculations which would otherwise overflow.
613 */
614 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616
617 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618
619 return value;
620 }
621
__setup_engine_capabilities(struct intel_engine_cs * engine)622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 struct drm_i915_private *i915 = engine->i915;
625
626 if (engine->class == VIDEO_DECODE_CLASS) {
627 /*
628 * HEVC support is present on first engine instance
629 * before Gen11 and on all instances afterwards.
630 */
631 if (GRAPHICS_VER(i915) >= 11 ||
632 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 engine->uabi_capabilities |=
634 I915_VIDEO_CLASS_CAPABILITY_HEVC;
635
636 /*
637 * SFC block is present only on even logical engine
638 * instances.
639 */
640 if ((GRAPHICS_VER(i915) >= 11 &&
641 (engine->gt->info.vdbox_sfc_access &
642 BIT(engine->instance))) ||
643 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 engine->uabi_capabilities |=
645 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 if (GRAPHICS_VER(i915) >= 9 &&
648 engine->gt->info.sfc_mask & BIT(engine->instance))
649 engine->uabi_capabilities |=
650 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 }
652 }
653
intel_setup_engine_capabilities(struct intel_gt * gt)654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 struct intel_engine_cs *engine;
657 enum intel_engine_id id;
658
659 for_each_engine(engine, gt, id)
660 __setup_engine_capabilities(engine);
661 }
662
663 /**
664 * intel_engines_release() - free the resources allocated for Command Streamers
665 * @gt: pointer to struct intel_gt
666 */
intel_engines_release(struct intel_gt * gt)667 void intel_engines_release(struct intel_gt *gt)
668 {
669 struct intel_engine_cs *engine;
670 enum intel_engine_id id;
671
672 /*
673 * Before we release the resources held by engine, we must be certain
674 * that the HW is no longer accessing them -- having the GPU scribble
675 * to or read from a page being used for something else causes no end
676 * of fun.
677 *
678 * The GPU should be reset by this point, but assume the worst just
679 * in case we aborted before completely initialising the engines.
680 */
681 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 __intel_gt_reset(gt, ALL_ENGINES);
684
685 /* Decouple the backend; but keep the layout for late GPU resets */
686 for_each_engine(engine, gt, id) {
687 if (!engine->release)
688 continue;
689
690 intel_wakeref_wait_for_idle(&engine->wakeref);
691 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692
693 engine->release(engine);
694 engine->release = NULL;
695
696 memset(&engine->reset, 0, sizeof(engine->reset));
697 }
698 }
699
intel_engine_free_request_pool(struct intel_engine_cs * engine)700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 if (!engine->request_pool)
703 return;
704
705 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707
intel_engines_free(struct intel_gt * gt)708 void intel_engines_free(struct intel_gt *gt)
709 {
710 struct intel_engine_cs *engine;
711 enum intel_engine_id id;
712
713 /* Free the requests! dma-resv keeps fences around for an eternity */
714 rcu_barrier();
715
716 for_each_engine(engine, gt, id) {
717 intel_engine_free_request_pool(engine);
718 kfree(engine);
719 gt->engine[id] = NULL;
720 }
721 }
722
723 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 unsigned int physical_vdbox,
726 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 struct drm_i915_private *i915 = gt->i915;
729
730 /*
731 * In Gen11, only even numbered logical VDBOXes are hooked
732 * up to an SFC (Scaler & Format Converter) unit.
733 * In Gen12, Even numbered physical instance always are connected
734 * to an SFC. Odd numbered physical instances have SFC only if
735 * previous even instance is fused off.
736 *
737 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 * in the fuse register that tells us whether a specific SFC is present.
739 */
740 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 return false;
742 else if (MEDIA_VER(i915) >= 12)
743 return (physical_vdbox % 2 == 0) ||
744 !(BIT(physical_vdbox - 1) & vdbox_mask);
745 else if (MEDIA_VER(i915) == 11)
746 return logical_vdbox % 2 == 0;
747
748 return false;
749 }
750
engine_mask_apply_media_fuses(struct intel_gt * gt)751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 struct drm_i915_private *i915 = gt->i915;
754 unsigned int logical_vdbox = 0;
755 unsigned int i;
756 u32 media_fuse, fuse1;
757 u16 vdbox_mask;
758 u16 vebox_mask;
759
760 if (MEDIA_VER(gt->i915) < 11)
761 return;
762
763 /*
764 * On newer platforms the fusing register is called 'enable' and has
765 * enable semantics, while on older platforms it is called 'disable'
766 * and bits have disable semantices.
767 */
768 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
770 media_fuse = ~media_fuse;
771
772 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 GEN11_GT_VEBOX_DISABLE_SHIFT;
775
776 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
777 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 } else {
780 gt->info.sfc_mask = ~0;
781 }
782
783 for (i = 0; i < I915_MAX_VCS; i++) {
784 if (!HAS_ENGINE(gt, _VCS(i))) {
785 vdbox_mask &= ~BIT(i);
786 continue;
787 }
788
789 if (!(BIT(i) & vdbox_mask)) {
790 gt->info.engine_mask &= ~BIT(_VCS(i));
791 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
792 continue;
793 }
794
795 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 gt->info.vdbox_sfc_access |= BIT(i);
797 logical_vdbox++;
798 }
799 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
800 vdbox_mask, VDBOX_MASK(gt));
801 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
802
803 for (i = 0; i < I915_MAX_VECS; i++) {
804 if (!HAS_ENGINE(gt, _VECS(i))) {
805 vebox_mask &= ~BIT(i);
806 continue;
807 }
808
809 if (!(BIT(i) & vebox_mask)) {
810 gt->info.engine_mask &= ~BIT(_VECS(i));
811 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
812 }
813 }
814 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
815 vebox_mask, VEBOX_MASK(gt));
816 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
817 }
818
engine_mask_apply_compute_fuses(struct intel_gt * gt)819 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
820 {
821 struct drm_i915_private *i915 = gt->i915;
822 struct intel_gt_info *info = >->info;
823 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
824 unsigned long ccs_mask;
825 unsigned int i;
826
827 if (GRAPHICS_VER(i915) < 11)
828 return;
829
830 if (hweight32(CCS_MASK(gt)) <= 1)
831 return;
832
833 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
834 ss_per_ccs);
835 /*
836 * If all DSS in a quadrant are fused off, the corresponding CCS
837 * engine is not available for use.
838 */
839 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
840 info->engine_mask &= ~BIT(_CCS(i));
841 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
842 }
843 }
844
engine_mask_apply_copy_fuses(struct intel_gt * gt)845 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
846 {
847 struct drm_i915_private *i915 = gt->i915;
848 struct intel_gt_info *info = >->info;
849 unsigned long meml3_mask;
850 unsigned long quad;
851
852 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
853 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
854 return;
855
856 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
857 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
858
859 /*
860 * Link Copy engines may be fused off according to meml3_mask. Each
861 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
862 */
863 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
864 unsigned int instance = quad * 2 + 1;
865 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
866 _BCS(instance));
867
868 if (mask & info->engine_mask) {
869 drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
870 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
871
872 info->engine_mask &= ~mask;
873 }
874 }
875 }
876
877 /*
878 * Determine which engines are fused off in our particular hardware.
879 * Note that we have a catch-22 situation where we need to be able to access
880 * the blitter forcewake domain to read the engine fuses, but at the same time
881 * we need to know which engines are available on the system to know which
882 * forcewake domains are present. We solve this by intializing the forcewake
883 * domains based on the full engine mask in the platform capabilities before
884 * calling this function and pruning the domains for fused-off engines
885 * afterwards.
886 */
init_engine_mask(struct intel_gt * gt)887 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
888 {
889 struct intel_gt_info *info = >->info;
890
891 GEM_BUG_ON(!info->engine_mask);
892
893 engine_mask_apply_media_fuses(gt);
894 engine_mask_apply_compute_fuses(gt);
895 engine_mask_apply_copy_fuses(gt);
896
897 /*
898 * The only use of the GSC CS is to load and communicate with the GSC
899 * FW, so we have no use for it if we don't have the FW.
900 *
901 * IMPORTANT: in cases where we don't have the GSC FW, we have a
902 * catch-22 situation that breaks media C6 due to 2 requirements:
903 * 1) once turned on, the GSC power well will not go to sleep unless the
904 * GSC FW is loaded.
905 * 2) to enable idling (which is required for media C6) we need to
906 * initialize the IDLE_MSG register for the GSC CS and do at least 1
907 * submission, which will wake up the GSC power well.
908 */
909 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
910 drm_notice(>->i915->drm,
911 "No GSC FW selected, disabling GSC CS and media C6\n");
912 info->engine_mask &= ~BIT(GSC0);
913 }
914
915 return info->engine_mask;
916 }
917
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)918 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
919 u8 class, const u8 *map, u8 num_instances)
920 {
921 int i, j;
922 u8 current_logical_id = 0;
923
924 for (j = 0; j < num_instances; ++j) {
925 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
926 if (!HAS_ENGINE(gt, i) ||
927 intel_engines[i].class != class)
928 continue;
929
930 if (intel_engines[i].instance == map[j]) {
931 logical_ids[intel_engines[i].instance] =
932 current_logical_id++;
933 break;
934 }
935 }
936 }
937 }
938
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)939 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
940 {
941 /*
942 * Logical to physical mapping is needed for proper support
943 * to split-frame feature.
944 */
945 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
946 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
947
948 populate_logical_ids(gt, logical_ids, class,
949 map, ARRAY_SIZE(map));
950 } else {
951 int i;
952 u8 map[MAX_ENGINE_INSTANCE + 1];
953
954 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
955 map[i] = i;
956 populate_logical_ids(gt, logical_ids, class,
957 map, ARRAY_SIZE(map));
958 }
959 }
960
961 /**
962 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
963 * @gt: pointer to struct intel_gt
964 *
965 * Return: non-zero if the initialization failed.
966 */
intel_engines_init_mmio(struct intel_gt * gt)967 int intel_engines_init_mmio(struct intel_gt *gt)
968 {
969 struct drm_i915_private *i915 = gt->i915;
970 const unsigned int engine_mask = init_engine_mask(gt);
971 unsigned int mask = 0;
972 unsigned int i, class;
973 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
974 int err;
975
976 drm_WARN_ON(&i915->drm, engine_mask == 0);
977 drm_WARN_ON(&i915->drm, engine_mask &
978 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
979
980 if (i915_inject_probe_failure(i915))
981 return -ENODEV;
982
983 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
984 setup_logical_ids(gt, logical_ids, class);
985
986 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
987 u8 instance = intel_engines[i].instance;
988
989 if (intel_engines[i].class != class ||
990 !HAS_ENGINE(gt, i))
991 continue;
992
993 err = intel_engine_setup(gt, i,
994 logical_ids[instance]);
995 if (err)
996 goto cleanup;
997
998 mask |= BIT(i);
999 }
1000 }
1001
1002 /*
1003 * Catch failures to update intel_engines table when the new engines
1004 * are added to the driver by a warning and disabling the forgotten
1005 * engines.
1006 */
1007 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1008 gt->info.engine_mask = mask;
1009
1010 gt->info.num_engines = hweight32(mask);
1011
1012 intel_gt_check_and_clear_faults(gt);
1013
1014 intel_setup_engine_capabilities(gt);
1015
1016 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1017
1018 return 0;
1019
1020 cleanup:
1021 intel_engines_free(gt);
1022 return err;
1023 }
1024
intel_engine_init_execlists(struct intel_engine_cs * engine)1025 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1026 {
1027 struct intel_engine_execlists * const execlists = &engine->execlists;
1028
1029 execlists->port_mask = 1;
1030 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1031 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1032
1033 memset(execlists->pending, 0, sizeof(execlists->pending));
1034 execlists->active =
1035 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1036 }
1037
cleanup_status_page(struct intel_engine_cs * engine)1038 static void cleanup_status_page(struct intel_engine_cs *engine)
1039 {
1040 struct i915_vma *vma;
1041
1042 /* Prevent writes into HWSP after returning the page to the system */
1043 intel_engine_set_hwsp_writemask(engine, ~0u);
1044
1045 vma = fetch_and_zero(&engine->status_page.vma);
1046 if (!vma)
1047 return;
1048
1049 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1050 i915_vma_unpin(vma);
1051
1052 i915_gem_object_unpin_map(vma->obj);
1053 i915_gem_object_put(vma->obj);
1054 }
1055
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1056 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1057 struct i915_gem_ww_ctx *ww,
1058 struct i915_vma *vma)
1059 {
1060 unsigned int flags;
1061
1062 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1063 /*
1064 * On g33, we cannot place HWS above 256MiB, so
1065 * restrict its pinning to the low mappable arena.
1066 * Though this restriction is not documented for
1067 * gen4, gen5, or byt, they also behave similarly
1068 * and hang if the HWS is placed at the top of the
1069 * GTT. To generalise, it appears that all !llc
1070 * platforms have issues with us placing the HWS
1071 * above the mappable region (even though we never
1072 * actually map it).
1073 */
1074 flags = PIN_MAPPABLE;
1075 else
1076 flags = PIN_HIGH;
1077
1078 return i915_ggtt_pin(vma, ww, 0, flags);
1079 }
1080
init_status_page(struct intel_engine_cs * engine)1081 static int init_status_page(struct intel_engine_cs *engine)
1082 {
1083 struct drm_i915_gem_object *obj;
1084 struct i915_gem_ww_ctx ww;
1085 struct i915_vma *vma;
1086 void *vaddr;
1087 int ret;
1088
1089 INIT_LIST_HEAD(&engine->status_page.timelines);
1090
1091 /*
1092 * Though the HWS register does support 36bit addresses, historically
1093 * we have had hangs and corruption reported due to wild writes if
1094 * the HWS is placed above 4G. We only allow objects to be allocated
1095 * in GFP_DMA32 for i965, and no earlier physical address users had
1096 * access to more than 4G.
1097 */
1098 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1099 if (IS_ERR(obj)) {
1100 drm_err(&engine->i915->drm,
1101 "Failed to allocate status page\n");
1102 return PTR_ERR(obj);
1103 }
1104
1105 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1106
1107 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1108 if (IS_ERR(vma)) {
1109 ret = PTR_ERR(vma);
1110 goto err_put;
1111 }
1112
1113 i915_gem_ww_ctx_init(&ww, true);
1114 retry:
1115 ret = i915_gem_object_lock(obj, &ww);
1116 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1117 ret = pin_ggtt_status_page(engine, &ww, vma);
1118 if (ret)
1119 goto err;
1120
1121 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1122 if (IS_ERR(vaddr)) {
1123 ret = PTR_ERR(vaddr);
1124 goto err_unpin;
1125 }
1126
1127 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1128 engine->status_page.vma = vma;
1129
1130 err_unpin:
1131 if (ret)
1132 i915_vma_unpin(vma);
1133 err:
1134 if (ret == -EDEADLK) {
1135 ret = i915_gem_ww_ctx_backoff(&ww);
1136 if (!ret)
1137 goto retry;
1138 }
1139 i915_gem_ww_ctx_fini(&ww);
1140 err_put:
1141 if (ret)
1142 i915_gem_object_put(obj);
1143 return ret;
1144 }
1145
intel_engine_init_tlb_invalidation(struct intel_engine_cs * engine)1146 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1147 {
1148 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1149 [RENDER_CLASS].reg = GEN8_RTCR,
1150 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1151 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1152 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1153 };
1154 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1155 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1156 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1157 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1158 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1159 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1160 };
1161 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1162 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1163 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1164 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1165 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1166 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1167 };
1168 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1169 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1170 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1171 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1172 };
1173 struct drm_i915_private *i915 = engine->i915;
1174 const unsigned int instance = engine->instance;
1175 const unsigned int class = engine->class;
1176 const union intel_engine_tlb_inv_reg *regs;
1177 union intel_engine_tlb_inv_reg reg;
1178 unsigned int num = 0;
1179 u32 val;
1180
1181 /*
1182 * New platforms should not be added with catch-all-newer (>=)
1183 * condition so that any later platform added triggers the below warning
1184 * and in turn mandates a human cross-check of whether the invalidation
1185 * flows have compatible semantics.
1186 *
1187 * For instance with the 11.00 -> 12.00 transition three out of five
1188 * respective engine registers were moved to masked type. Then after the
1189 * 12.00 -> 12.50 transition multi cast handling is required too.
1190 */
1191
1192 if (engine->gt->type == GT_MEDIA) {
1193 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1194 regs = xelpmp_regs;
1195 num = ARRAY_SIZE(xelpmp_regs);
1196 }
1197 } else {
1198 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1199 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1200 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1201 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1202 regs = xehp_regs;
1203 num = ARRAY_SIZE(xehp_regs);
1204 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1205 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1206 regs = gen12_regs;
1207 num = ARRAY_SIZE(gen12_regs);
1208 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1209 regs = gen8_regs;
1210 num = ARRAY_SIZE(gen8_regs);
1211 } else if (GRAPHICS_VER(i915) < 8) {
1212 return 0;
1213 }
1214 }
1215
1216 if (gt_WARN_ONCE(engine->gt, !num,
1217 "Platform does not implement TLB invalidation!"))
1218 return -ENODEV;
1219
1220 if (gt_WARN_ON_ONCE(engine->gt,
1221 class >= num ||
1222 (!regs[class].reg.reg &&
1223 !regs[class].mcr_reg.reg)))
1224 return -ERANGE;
1225
1226 reg = regs[class];
1227
1228 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1229 /*
1230 * There's only a single GSC instance, but it uses register bit
1231 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1232 */
1233 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1234 val = 1;
1235 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1236 reg.reg = GEN8_M2TCR;
1237 val = 0;
1238 } else {
1239 val = instance;
1240 }
1241
1242 val = BIT(val);
1243
1244 engine->tlb_inv.mcr = regs == xehp_regs;
1245 engine->tlb_inv.reg = reg;
1246 engine->tlb_inv.done = val;
1247
1248 if (GRAPHICS_VER(i915) >= 12 &&
1249 (engine->class == VIDEO_DECODE_CLASS ||
1250 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1251 engine->class == COMPUTE_CLASS ||
1252 engine->class == OTHER_CLASS))
1253 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1254 else
1255 engine->tlb_inv.request = val;
1256
1257 return 0;
1258 }
1259
engine_setup_common(struct intel_engine_cs * engine)1260 static int engine_setup_common(struct intel_engine_cs *engine)
1261 {
1262 int err;
1263
1264 init_llist_head(&engine->barrier_tasks);
1265
1266 err = intel_engine_init_tlb_invalidation(engine);
1267 if (err)
1268 return err;
1269
1270 err = init_status_page(engine);
1271 if (err)
1272 return err;
1273
1274 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1275 if (!engine->breadcrumbs) {
1276 err = -ENOMEM;
1277 goto err_status;
1278 }
1279
1280 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1281 if (!engine->sched_engine) {
1282 err = -ENOMEM;
1283 goto err_sched_engine;
1284 }
1285 engine->sched_engine->private_data = engine;
1286
1287 err = intel_engine_init_cmd_parser(engine);
1288 if (err)
1289 goto err_cmd_parser;
1290
1291 intel_engine_init_execlists(engine);
1292 intel_engine_init__pm(engine);
1293 intel_engine_init_retire(engine);
1294
1295 /* Use the whole device by default */
1296 engine->sseu =
1297 intel_sseu_from_device_info(&engine->gt->info.sseu);
1298
1299 intel_engine_init_workarounds(engine);
1300 intel_engine_init_whitelist(engine);
1301 intel_engine_init_ctx_wa(engine);
1302
1303 if (GRAPHICS_VER(engine->i915) >= 12)
1304 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1305
1306 return 0;
1307
1308 err_cmd_parser:
1309 i915_sched_engine_put(engine->sched_engine);
1310 err_sched_engine:
1311 intel_breadcrumbs_put(engine->breadcrumbs);
1312 err_status:
1313 cleanup_status_page(engine);
1314 return err;
1315 }
1316
1317 struct measure_breadcrumb {
1318 struct i915_request rq;
1319 struct intel_ring ring;
1320 u32 cs[2048];
1321 };
1322
measure_breadcrumb_dw(struct intel_context * ce)1323 static int measure_breadcrumb_dw(struct intel_context *ce)
1324 {
1325 struct intel_engine_cs *engine = ce->engine;
1326 struct measure_breadcrumb *frame;
1327 int dw;
1328
1329 GEM_BUG_ON(!engine->gt->scratch);
1330
1331 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1332 if (!frame)
1333 return -ENOMEM;
1334
1335 frame->rq.i915 = engine->i915;
1336 frame->rq.engine = engine;
1337 frame->rq.context = ce;
1338 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1339 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1340
1341 frame->ring.vaddr = frame->cs;
1342 frame->ring.size = sizeof(frame->cs);
1343 frame->ring.wrap =
1344 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1345 frame->ring.effective_size = frame->ring.size;
1346 intel_ring_update_space(&frame->ring);
1347 frame->rq.ring = &frame->ring;
1348
1349 mutex_lock(&ce->timeline->mutex);
1350 spin_lock_irq(&engine->sched_engine->lock);
1351
1352 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1353
1354 spin_unlock_irq(&engine->sched_engine->lock);
1355 mutex_unlock(&ce->timeline->mutex);
1356
1357 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1358
1359 kfree(frame);
1360 return dw;
1361 }
1362
1363 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1364 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1365 struct i915_address_space *vm,
1366 unsigned int ring_size,
1367 unsigned int hwsp,
1368 struct lock_class_key *key,
1369 const char *name)
1370 {
1371 struct intel_context *ce;
1372 int err;
1373
1374 ce = intel_context_create(engine);
1375 if (IS_ERR(ce))
1376 return ce;
1377
1378 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1379 ce->timeline = page_pack_bits(NULL, hwsp);
1380 ce->ring = NULL;
1381 ce->ring_size = ring_size;
1382
1383 i915_vm_put(ce->vm);
1384 ce->vm = i915_vm_get(vm);
1385
1386 err = intel_context_pin(ce); /* perma-pin so it is always available */
1387 if (err) {
1388 intel_context_put(ce);
1389 return ERR_PTR(err);
1390 }
1391
1392 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1393
1394 /*
1395 * Give our perma-pinned kernel timelines a separate lockdep class,
1396 * so that we can use them from within the normal user timelines
1397 * should we need to inject GPU operations during their request
1398 * construction.
1399 */
1400 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1401
1402 return ce;
1403 }
1404
intel_engine_destroy_pinned_context(struct intel_context * ce)1405 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1406 {
1407 struct intel_engine_cs *engine = ce->engine;
1408 struct i915_vma *hwsp = engine->status_page.vma;
1409
1410 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1411
1412 mutex_lock(&hwsp->vm->mutex);
1413 list_del(&ce->timeline->engine_link);
1414 mutex_unlock(&hwsp->vm->mutex);
1415
1416 list_del(&ce->pinned_contexts_link);
1417 intel_context_unpin(ce);
1418 intel_context_put(ce);
1419 }
1420
1421 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1422 create_kernel_context(struct intel_engine_cs *engine)
1423 {
1424 static struct lock_class_key kernel;
1425
1426 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1427 I915_GEM_HWS_SEQNO_ADDR,
1428 &kernel, "kernel_context");
1429 }
1430
1431 /*
1432 * engine_init_common - initialize engine state which might require hw access
1433 * @engine: Engine to initialize.
1434 *
1435 * Initializes @engine@ structure members shared between legacy and execlists
1436 * submission modes which do require hardware access.
1437 *
1438 * Typcally done at later stages of submission mode specific engine setup.
1439 *
1440 * Returns zero on success or an error code on failure.
1441 */
engine_init_common(struct intel_engine_cs * engine)1442 static int engine_init_common(struct intel_engine_cs *engine)
1443 {
1444 struct intel_context *ce;
1445 int ret;
1446
1447 engine->set_default_submission(engine);
1448
1449 /*
1450 * We may need to do things with the shrinker which
1451 * require us to immediately switch back to the default
1452 * context. This can cause a problem as pinning the
1453 * default context also requires GTT space which may not
1454 * be available. To avoid this we always pin the default
1455 * context.
1456 */
1457 ce = create_kernel_context(engine);
1458 if (IS_ERR(ce))
1459 return PTR_ERR(ce);
1460
1461 ret = measure_breadcrumb_dw(ce);
1462 if (ret < 0)
1463 goto err_context;
1464
1465 engine->emit_fini_breadcrumb_dw = ret;
1466 engine->kernel_context = ce;
1467
1468 return 0;
1469
1470 err_context:
1471 intel_engine_destroy_pinned_context(ce);
1472 return ret;
1473 }
1474
intel_engines_init(struct intel_gt * gt)1475 int intel_engines_init(struct intel_gt *gt)
1476 {
1477 int (*setup)(struct intel_engine_cs *engine);
1478 struct intel_engine_cs *engine;
1479 enum intel_engine_id id;
1480 int err;
1481
1482 if (intel_uc_uses_guc_submission(>->uc)) {
1483 gt->submission_method = INTEL_SUBMISSION_GUC;
1484 setup = intel_guc_submission_setup;
1485 } else if (HAS_EXECLISTS(gt->i915)) {
1486 gt->submission_method = INTEL_SUBMISSION_ELSP;
1487 setup = intel_execlists_submission_setup;
1488 } else {
1489 gt->submission_method = INTEL_SUBMISSION_RING;
1490 setup = intel_ring_submission_setup;
1491 }
1492
1493 for_each_engine(engine, gt, id) {
1494 err = engine_setup_common(engine);
1495 if (err)
1496 return err;
1497
1498 err = setup(engine);
1499 if (err) {
1500 intel_engine_cleanup_common(engine);
1501 return err;
1502 }
1503
1504 /* The backend should now be responsible for cleanup */
1505 GEM_BUG_ON(engine->release == NULL);
1506
1507 err = engine_init_common(engine);
1508 if (err)
1509 return err;
1510
1511 intel_engine_add_user(engine);
1512 }
1513
1514 return 0;
1515 }
1516
1517 /**
1518 * intel_engine_cleanup_common - cleans up the engine state created by
1519 * the common initiailizers.
1520 * @engine: Engine to cleanup.
1521 *
1522 * This cleans up everything created by the common helpers.
1523 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1524 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1525 {
1526 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1527
1528 i915_sched_engine_put(engine->sched_engine);
1529 intel_breadcrumbs_put(engine->breadcrumbs);
1530
1531 intel_engine_fini_retire(engine);
1532 intel_engine_cleanup_cmd_parser(engine);
1533
1534 if (engine->default_state)
1535 fput(engine->default_state);
1536
1537 if (engine->kernel_context)
1538 intel_engine_destroy_pinned_context(engine->kernel_context);
1539
1540 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1541 cleanup_status_page(engine);
1542
1543 intel_wa_list_free(&engine->ctx_wa_list);
1544 intel_wa_list_free(&engine->wa_list);
1545 intel_wa_list_free(&engine->whitelist);
1546 }
1547
1548 /**
1549 * intel_engine_resume - re-initializes the HW state of the engine
1550 * @engine: Engine to resume.
1551 *
1552 * Returns zero on success or an error code on failure.
1553 */
intel_engine_resume(struct intel_engine_cs * engine)1554 int intel_engine_resume(struct intel_engine_cs *engine)
1555 {
1556 intel_engine_apply_workarounds(engine);
1557 intel_engine_apply_whitelist(engine);
1558
1559 return engine->resume(engine);
1560 }
1561
intel_engine_get_active_head(const struct intel_engine_cs * engine)1562 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1563 {
1564 struct drm_i915_private *i915 = engine->i915;
1565
1566 u64 acthd;
1567
1568 if (GRAPHICS_VER(i915) >= 8)
1569 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1570 else if (GRAPHICS_VER(i915) >= 4)
1571 acthd = ENGINE_READ(engine, RING_ACTHD);
1572 else
1573 acthd = ENGINE_READ(engine, ACTHD);
1574
1575 return acthd;
1576 }
1577
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1578 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1579 {
1580 u64 bbaddr;
1581
1582 if (GRAPHICS_VER(engine->i915) >= 8)
1583 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1584 else
1585 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1586
1587 return bbaddr;
1588 }
1589
stop_timeout(const struct intel_engine_cs * engine)1590 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1591 {
1592 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1593 return 0;
1594
1595 /*
1596 * If we are doing a normal GPU reset, we can take our time and allow
1597 * the engine to quiesce. We've stopped submission to the engine, and
1598 * if we wait long enough an innocent context should complete and
1599 * leave the engine idle. So they should not be caught unaware by
1600 * the forthcoming GPU reset (which usually follows the stop_cs)!
1601 */
1602 return READ_ONCE(engine->props.stop_timeout_ms);
1603 }
1604
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1605 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1606 int fast_timeout_us,
1607 int slow_timeout_ms)
1608 {
1609 struct intel_uncore *uncore = engine->uncore;
1610 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1611 int err;
1612
1613 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1614
1615 /*
1616 * Wa_22011802037: Prior to doing a reset, ensure CS is
1617 * stopped, set ring stop bit and prefetch disable bit to halt CS
1618 */
1619 if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1620 (GRAPHICS_VER(engine->i915) >= 11 &&
1621 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
1622 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1623 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1624
1625 err = __intel_wait_for_register_fw(engine->uncore, mode,
1626 MODE_IDLE, MODE_IDLE,
1627 fast_timeout_us,
1628 slow_timeout_ms,
1629 NULL);
1630
1631 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1632 intel_uncore_posting_read_fw(uncore, mode);
1633 return err;
1634 }
1635
intel_engine_stop_cs(struct intel_engine_cs * engine)1636 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1637 {
1638 int err = 0;
1639
1640 if (GRAPHICS_VER(engine->i915) < 3)
1641 return -ENODEV;
1642
1643 ENGINE_TRACE(engine, "\n");
1644 /*
1645 * TODO: Find out why occasionally stopping the CS times out. Seen
1646 * especially with gem_eio tests.
1647 *
1648 * Occasionally trying to stop the cs times out, but does not adversely
1649 * affect functionality. The timeout is set as a config parameter that
1650 * defaults to 100ms. In most cases the follow up operation is to wait
1651 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1652 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1653 * caused, the caller must check and handle the return from this
1654 * function.
1655 */
1656 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1657 ENGINE_TRACE(engine,
1658 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1659 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1660 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1661
1662 /*
1663 * Sometimes we observe that the idle flag is not
1664 * set even though the ring is empty. So double
1665 * check before giving up.
1666 */
1667 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1668 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1669 err = -ETIMEDOUT;
1670 }
1671
1672 return err;
1673 }
1674
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1675 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1676 {
1677 ENGINE_TRACE(engine, "\n");
1678
1679 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1680 }
1681
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1682 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1683 {
1684 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1685 [RCS0] = MSG_IDLE_CS,
1686 [BCS0] = MSG_IDLE_BCS,
1687 [VCS0] = MSG_IDLE_VCS0,
1688 [VCS1] = MSG_IDLE_VCS1,
1689 [VCS2] = MSG_IDLE_VCS2,
1690 [VCS3] = MSG_IDLE_VCS3,
1691 [VCS4] = MSG_IDLE_VCS4,
1692 [VCS5] = MSG_IDLE_VCS5,
1693 [VCS6] = MSG_IDLE_VCS6,
1694 [VCS7] = MSG_IDLE_VCS7,
1695 [VECS0] = MSG_IDLE_VECS0,
1696 [VECS1] = MSG_IDLE_VECS1,
1697 [VECS2] = MSG_IDLE_VECS2,
1698 [VECS3] = MSG_IDLE_VECS3,
1699 [CCS0] = MSG_IDLE_CS,
1700 [CCS1] = MSG_IDLE_CS,
1701 [CCS2] = MSG_IDLE_CS,
1702 [CCS3] = MSG_IDLE_CS,
1703 };
1704 u32 val;
1705
1706 if (!_reg[engine->id].reg)
1707 return 0;
1708
1709 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1710
1711 /* bits[29:25] & bits[13:9] >> shift */
1712 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1713 }
1714
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1715 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1716 {
1717 int ret;
1718
1719 /* Ensure GPM receives fw up/down after CS is stopped */
1720 udelay(1);
1721
1722 /* Wait for forcewake request to complete in GPM */
1723 ret = __intel_wait_for_register_fw(gt->uncore,
1724 GEN9_PWRGT_DOMAIN_STATUS,
1725 fw_mask, fw_mask, 5000, 0, NULL);
1726
1727 /* Ensure CS receives fw ack from GPM */
1728 udelay(1);
1729
1730 if (ret)
1731 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1732 }
1733
1734 /*
1735 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1736 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1737 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1738 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1739 * are concerned only with the gt reset here, we use a logical OR of pending
1740 * forcewakeups from all reset domains and then wait for them to complete by
1741 * querying PWRGT_DOMAIN_STATUS.
1742 */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1743 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1744 {
1745 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1746
1747 if (fw_pending)
1748 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1749 }
1750
1751 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1752 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1753 struct intel_instdone *instdone)
1754 {
1755 struct drm_i915_private *i915 = engine->i915;
1756 struct intel_uncore *uncore = engine->uncore;
1757 u32 mmio_base = engine->mmio_base;
1758 int slice;
1759 int subslice;
1760 int iter;
1761
1762 memset(instdone, 0, sizeof(*instdone));
1763
1764 if (GRAPHICS_VER(i915) >= 8) {
1765 instdone->instdone =
1766 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1767
1768 if (engine->id != RCS0)
1769 return;
1770
1771 instdone->slice_common =
1772 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1773 if (GRAPHICS_VER(i915) >= 12) {
1774 instdone->slice_common_extra[0] =
1775 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1776 instdone->slice_common_extra[1] =
1777 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1778 }
1779
1780 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1781 instdone->sampler[slice][subslice] =
1782 intel_gt_mcr_read(engine->gt,
1783 GEN8_SAMPLER_INSTDONE,
1784 slice, subslice);
1785 instdone->row[slice][subslice] =
1786 intel_gt_mcr_read(engine->gt,
1787 GEN8_ROW_INSTDONE,
1788 slice, subslice);
1789 }
1790
1791 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1792 for_each_ss_steering(iter, engine->gt, slice, subslice)
1793 instdone->geom_svg[slice][subslice] =
1794 intel_gt_mcr_read(engine->gt,
1795 XEHPG_INSTDONE_GEOM_SVG,
1796 slice, subslice);
1797 }
1798 } else if (GRAPHICS_VER(i915) >= 7) {
1799 instdone->instdone =
1800 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1801
1802 if (engine->id != RCS0)
1803 return;
1804
1805 instdone->slice_common =
1806 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1807 instdone->sampler[0][0] =
1808 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1809 instdone->row[0][0] =
1810 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1811 } else if (GRAPHICS_VER(i915) >= 4) {
1812 instdone->instdone =
1813 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1814 if (engine->id == RCS0)
1815 /* HACK: Using the wrong struct member */
1816 instdone->slice_common =
1817 intel_uncore_read(uncore, GEN4_INSTDONE1);
1818 } else {
1819 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1820 }
1821 }
1822
ring_is_idle(struct intel_engine_cs * engine)1823 static bool ring_is_idle(struct intel_engine_cs *engine)
1824 {
1825 bool idle = true;
1826
1827 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1828 return true;
1829
1830 if (!intel_engine_pm_get_if_awake(engine))
1831 return true;
1832
1833 /* First check that no commands are left in the ring */
1834 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1835 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1836 idle = false;
1837
1838 /* No bit for gen2, so assume the CS parser is idle */
1839 if (GRAPHICS_VER(engine->i915) > 2 &&
1840 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1841 idle = false;
1842
1843 intel_engine_pm_put(engine);
1844
1845 return idle;
1846 }
1847
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1848 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1849 {
1850 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1851
1852 if (!t->callback)
1853 return;
1854
1855 local_bh_disable();
1856 if (tasklet_trylock(t)) {
1857 /* Must wait for any GPU reset in progress. */
1858 if (__tasklet_is_enabled(t))
1859 t->callback(t);
1860 tasklet_unlock(t);
1861 }
1862 local_bh_enable();
1863
1864 /* Synchronise and wait for the tasklet on another CPU */
1865 if (sync)
1866 tasklet_unlock_wait(t);
1867 }
1868
1869 /**
1870 * intel_engine_is_idle() - Report if the engine has finished process all work
1871 * @engine: the intel_engine_cs
1872 *
1873 * Return true if there are no requests pending, nothing left to be submitted
1874 * to hardware, and that the engine is idle.
1875 */
intel_engine_is_idle(struct intel_engine_cs * engine)1876 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1877 {
1878 /* More white lies, if wedged, hw state is inconsistent */
1879 if (intel_gt_is_wedged(engine->gt))
1880 return true;
1881
1882 if (!intel_engine_pm_is_awake(engine))
1883 return true;
1884
1885 /* Waiting to drain ELSP? */
1886 intel_synchronize_hardirq(engine->i915);
1887 intel_engine_flush_submission(engine);
1888
1889 /* ELSP is empty, but there are ready requests? E.g. after reset */
1890 if (!i915_sched_engine_is_empty(engine->sched_engine))
1891 return false;
1892
1893 /* Ring stopped? */
1894 return ring_is_idle(engine);
1895 }
1896
intel_engines_are_idle(struct intel_gt * gt)1897 bool intel_engines_are_idle(struct intel_gt *gt)
1898 {
1899 struct intel_engine_cs *engine;
1900 enum intel_engine_id id;
1901
1902 /*
1903 * If the driver is wedged, HW state may be very inconsistent and
1904 * report that it is still busy, even though we have stopped using it.
1905 */
1906 if (intel_gt_is_wedged(gt))
1907 return true;
1908
1909 /* Already parked (and passed an idleness test); must still be idle */
1910 if (!READ_ONCE(gt->awake))
1911 return true;
1912
1913 for_each_engine(engine, gt, id) {
1914 if (!intel_engine_is_idle(engine))
1915 return false;
1916 }
1917
1918 return true;
1919 }
1920
intel_engine_irq_enable(struct intel_engine_cs * engine)1921 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1922 {
1923 if (!engine->irq_enable)
1924 return false;
1925
1926 /* Caller disables interrupts */
1927 spin_lock(engine->gt->irq_lock);
1928 engine->irq_enable(engine);
1929 spin_unlock(engine->gt->irq_lock);
1930
1931 return true;
1932 }
1933
intel_engine_irq_disable(struct intel_engine_cs * engine)1934 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1935 {
1936 if (!engine->irq_disable)
1937 return;
1938
1939 /* Caller disables interrupts */
1940 spin_lock(engine->gt->irq_lock);
1941 engine->irq_disable(engine);
1942 spin_unlock(engine->gt->irq_lock);
1943 }
1944
intel_engines_reset_default_submission(struct intel_gt * gt)1945 void intel_engines_reset_default_submission(struct intel_gt *gt)
1946 {
1947 struct intel_engine_cs *engine;
1948 enum intel_engine_id id;
1949
1950 for_each_engine(engine, gt, id) {
1951 if (engine->sanitize)
1952 engine->sanitize(engine);
1953
1954 engine->set_default_submission(engine);
1955 }
1956 }
1957
intel_engine_can_store_dword(struct intel_engine_cs * engine)1958 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1959 {
1960 switch (GRAPHICS_VER(engine->i915)) {
1961 case 2:
1962 return false; /* uses physical not virtual addresses */
1963 case 3:
1964 /* maybe only uses physical not virtual addresses */
1965 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1966 case 4:
1967 return !IS_I965G(engine->i915); /* who knows! */
1968 case 6:
1969 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1970 default:
1971 return true;
1972 }
1973 }
1974
get_timeline(struct i915_request * rq)1975 static struct intel_timeline *get_timeline(struct i915_request *rq)
1976 {
1977 struct intel_timeline *tl;
1978
1979 /*
1980 * Even though we are holding the engine->sched_engine->lock here, there
1981 * is no control over the submission queue per-se and we are
1982 * inspecting the active state at a random point in time, with an
1983 * unknown queue. Play safe and make sure the timeline remains valid.
1984 * (Only being used for pretty printing, one extra kref shouldn't
1985 * cause a camel stampede!)
1986 */
1987 rcu_read_lock();
1988 tl = rcu_dereference(rq->timeline);
1989 if (!kref_get_unless_zero(&tl->kref))
1990 tl = NULL;
1991 rcu_read_unlock();
1992
1993 return tl;
1994 }
1995
print_ring(char * buf,int sz,struct i915_request * rq)1996 static int print_ring(char *buf, int sz, struct i915_request *rq)
1997 {
1998 int len = 0;
1999
2000 if (!i915_request_signaled(rq)) {
2001 struct intel_timeline *tl = get_timeline(rq);
2002
2003 len = scnprintf(buf, sz,
2004 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2005 i915_ggtt_offset(rq->ring->vma),
2006 tl ? tl->hwsp_offset : 0,
2007 hwsp_seqno(rq),
2008 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2009 1000 * 1000));
2010
2011 if (tl)
2012 intel_timeline_put(tl);
2013 }
2014
2015 return len;
2016 }
2017
hexdump(struct drm_printer * m,const void * buf,size_t len)2018 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2019 {
2020 const size_t rowsize = 8 * sizeof(u32);
2021 const void *prev = NULL;
2022 bool skip = false;
2023 size_t pos;
2024
2025 for (pos = 0; pos < len; pos += rowsize) {
2026 char line[128];
2027
2028 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2029 if (!skip) {
2030 drm_printf(m, "*\n");
2031 skip = true;
2032 }
2033 continue;
2034 }
2035
2036 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2037 rowsize, sizeof(u32),
2038 line, sizeof(line),
2039 false) >= sizeof(line));
2040 drm_printf(m, "[%04zx] %s\n", pos, line);
2041
2042 prev = buf + pos;
2043 skip = false;
2044 }
2045 }
2046
repr_timer(const struct timer_list * t)2047 static const char *repr_timer(const struct timer_list *t)
2048 {
2049 if (!READ_ONCE(t->expires))
2050 return "inactive";
2051
2052 if (timer_pending(t))
2053 return "active";
2054
2055 return "expired";
2056 }
2057
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)2058 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2059 struct drm_printer *m)
2060 {
2061 struct drm_i915_private *i915 = engine->i915;
2062 struct intel_engine_execlists * const execlists = &engine->execlists;
2063 u64 addr;
2064
2065 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2066 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2067 if (HAS_EXECLISTS(i915)) {
2068 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2069 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2070 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2071 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2072 }
2073 drm_printf(m, "\tRING_START: 0x%08x\n",
2074 ENGINE_READ(engine, RING_START));
2075 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
2076 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2077 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
2078 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2079 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
2080 ENGINE_READ(engine, RING_CTL),
2081 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2082 if (GRAPHICS_VER(engine->i915) > 2) {
2083 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
2084 ENGINE_READ(engine, RING_MI_MODE),
2085 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2086 }
2087
2088 if (GRAPHICS_VER(i915) >= 6) {
2089 drm_printf(m, "\tRING_IMR: 0x%08x\n",
2090 ENGINE_READ(engine, RING_IMR));
2091 drm_printf(m, "\tRING_ESR: 0x%08x\n",
2092 ENGINE_READ(engine, RING_ESR));
2093 drm_printf(m, "\tRING_EMR: 0x%08x\n",
2094 ENGINE_READ(engine, RING_EMR));
2095 drm_printf(m, "\tRING_EIR: 0x%08x\n",
2096 ENGINE_READ(engine, RING_EIR));
2097 }
2098
2099 addr = intel_engine_get_active_head(engine);
2100 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
2101 upper_32_bits(addr), lower_32_bits(addr));
2102 addr = intel_engine_get_last_batch_head(engine);
2103 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2104 upper_32_bits(addr), lower_32_bits(addr));
2105 if (GRAPHICS_VER(i915) >= 8)
2106 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2107 else if (GRAPHICS_VER(i915) >= 4)
2108 addr = ENGINE_READ(engine, RING_DMA_FADD);
2109 else
2110 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2111 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2112 upper_32_bits(addr), lower_32_bits(addr));
2113 if (GRAPHICS_VER(i915) >= 4) {
2114 drm_printf(m, "\tIPEIR: 0x%08x\n",
2115 ENGINE_READ(engine, RING_IPEIR));
2116 drm_printf(m, "\tIPEHR: 0x%08x\n",
2117 ENGINE_READ(engine, RING_IPEHR));
2118 } else {
2119 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2120 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2121 }
2122
2123 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2124 struct i915_request * const *port, *rq;
2125 const u32 *hws =
2126 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2127 const u8 num_entries = execlists->csb_size;
2128 unsigned int idx;
2129 u8 read, write;
2130
2131 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2132 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2133 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2134 repr_timer(&engine->execlists.preempt),
2135 repr_timer(&engine->execlists.timer));
2136
2137 read = execlists->csb_head;
2138 write = READ_ONCE(*execlists->csb_write);
2139
2140 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2141 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2142 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2143 read, write, num_entries);
2144
2145 if (read >= num_entries)
2146 read = 0;
2147 if (write >= num_entries)
2148 write = 0;
2149 if (read > write)
2150 write += num_entries;
2151 while (read < write) {
2152 idx = ++read % num_entries;
2153 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2154 idx, hws[idx * 2], hws[idx * 2 + 1]);
2155 }
2156
2157 i915_sched_engine_active_lock_bh(engine->sched_engine);
2158 rcu_read_lock();
2159 for (port = execlists->active; (rq = *port); port++) {
2160 char hdr[160];
2161 int len;
2162
2163 len = scnprintf(hdr, sizeof(hdr),
2164 "\t\tActive[%d]: ccid:%08x%s%s, ",
2165 (int)(port - execlists->active),
2166 rq->context->lrc.ccid,
2167 intel_context_is_closed(rq->context) ? "!" : "",
2168 intel_context_is_banned(rq->context) ? "*" : "");
2169 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2170 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2171 i915_request_show(m, rq, hdr, 0);
2172 }
2173 for (port = execlists->pending; (rq = *port); port++) {
2174 char hdr[160];
2175 int len;
2176
2177 len = scnprintf(hdr, sizeof(hdr),
2178 "\t\tPending[%d]: ccid:%08x%s%s, ",
2179 (int)(port - execlists->pending),
2180 rq->context->lrc.ccid,
2181 intel_context_is_closed(rq->context) ? "!" : "",
2182 intel_context_is_banned(rq->context) ? "*" : "");
2183 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2184 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2185 i915_request_show(m, rq, hdr, 0);
2186 }
2187 rcu_read_unlock();
2188 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2189 } else if (GRAPHICS_VER(i915) > 6) {
2190 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2191 ENGINE_READ(engine, RING_PP_DIR_BASE));
2192 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2193 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2194 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2195 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2196 }
2197 }
2198
print_request_ring(struct drm_printer * m,struct i915_request * rq)2199 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2200 {
2201 struct i915_vma_resource *vma_res = rq->batch_res;
2202 void *ring;
2203 int size;
2204
2205 drm_printf(m,
2206 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2207 rq->head, rq->postfix, rq->tail,
2208 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2209 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2210
2211 size = rq->tail - rq->head;
2212 if (rq->tail < rq->head)
2213 size += rq->ring->size;
2214
2215 ring = kmalloc(size, GFP_ATOMIC);
2216 if (ring) {
2217 const void *vaddr = rq->ring->vaddr;
2218 unsigned int head = rq->head;
2219 unsigned int len = 0;
2220
2221 if (rq->tail < head) {
2222 len = rq->ring->size - head;
2223 memcpy(ring, vaddr + head, len);
2224 head = 0;
2225 }
2226 memcpy(ring + len, vaddr + head, size - len);
2227
2228 hexdump(m, ring, size);
2229 kfree(ring);
2230 }
2231 }
2232
read_ul(void * p,size_t x)2233 static unsigned long read_ul(void *p, size_t x)
2234 {
2235 return *(unsigned long *)(p + x);
2236 }
2237
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2238 static void print_properties(struct intel_engine_cs *engine,
2239 struct drm_printer *m)
2240 {
2241 static const struct pmap {
2242 size_t offset;
2243 const char *name;
2244 } props[] = {
2245 #define P(x) { \
2246 .offset = offsetof(typeof(engine->props), x), \
2247 .name = #x \
2248 }
2249 P(heartbeat_interval_ms),
2250 P(max_busywait_duration_ns),
2251 P(preempt_timeout_ms),
2252 P(stop_timeout_ms),
2253 P(timeslice_duration_ms),
2254
2255 {},
2256 #undef P
2257 };
2258 const struct pmap *p;
2259
2260 drm_printf(m, "\tProperties:\n");
2261 for (p = props; p->name; p++)
2262 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2263 p->name,
2264 read_ul(&engine->props, p->offset),
2265 read_ul(&engine->defaults, p->offset));
2266 }
2267
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2268 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2269 {
2270 struct intel_timeline *tl = get_timeline(rq);
2271
2272 i915_request_show(m, rq, msg, 0);
2273
2274 drm_printf(m, "\t\tring->start: 0x%08x\n",
2275 i915_ggtt_offset(rq->ring->vma));
2276 drm_printf(m, "\t\tring->head: 0x%08x\n",
2277 rq->ring->head);
2278 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2279 rq->ring->tail);
2280 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2281 rq->ring->emit);
2282 drm_printf(m, "\t\tring->space: 0x%08x\n",
2283 rq->ring->space);
2284
2285 if (tl) {
2286 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2287 tl->hwsp_offset);
2288 intel_timeline_put(tl);
2289 }
2290
2291 print_request_ring(m, rq);
2292
2293 if (rq->context->lrc_reg_state) {
2294 drm_printf(m, "Logical Ring Context:\n");
2295 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2296 }
2297 }
2298
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2299 void intel_engine_dump_active_requests(struct list_head *requests,
2300 struct i915_request *hung_rq,
2301 struct drm_printer *m)
2302 {
2303 struct i915_request *rq;
2304 const char *msg;
2305 enum i915_request_state state;
2306
2307 list_for_each_entry(rq, requests, sched.link) {
2308 if (rq == hung_rq)
2309 continue;
2310
2311 state = i915_test_request_state(rq);
2312 if (state < I915_REQUEST_QUEUED)
2313 continue;
2314
2315 if (state == I915_REQUEST_ACTIVE)
2316 msg = "\t\tactive on engine";
2317 else
2318 msg = "\t\tactive in queue";
2319
2320 engine_dump_request(rq, m, msg);
2321 }
2322 }
2323
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2324 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2325 struct drm_printer *m)
2326 {
2327 struct intel_context *hung_ce = NULL;
2328 struct i915_request *hung_rq = NULL;
2329
2330 /*
2331 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2332 * The GPU is still running so requests are still executing and any
2333 * hardware reads will be out of date by the time they are reported.
2334 * But the intention here is just to report an instantaneous snapshot
2335 * so that's fine.
2336 */
2337 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2338
2339 drm_printf(m, "\tRequests:\n");
2340
2341 if (hung_rq)
2342 engine_dump_request(hung_rq, m, "\t\thung");
2343 else if (hung_ce)
2344 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2345
2346 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2347 intel_guc_dump_active_requests(engine, hung_rq, m);
2348 else
2349 intel_execlists_dump_active_requests(engine, hung_rq, m);
2350
2351 if (hung_rq)
2352 i915_request_put(hung_rq);
2353 }
2354
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2355 void intel_engine_dump(struct intel_engine_cs *engine,
2356 struct drm_printer *m,
2357 const char *header, ...)
2358 {
2359 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2360 struct i915_request *rq;
2361 intel_wakeref_t wakeref;
2362 ktime_t dummy;
2363
2364 if (header) {
2365 va_list ap;
2366
2367 va_start(ap, header);
2368 drm_vprintf(m, header, &ap);
2369 va_end(ap);
2370 }
2371
2372 if (intel_gt_is_wedged(engine->gt))
2373 drm_printf(m, "*** WEDGED ***\n");
2374
2375 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2376 drm_printf(m, "\tBarriers?: %s\n",
2377 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2378 drm_printf(m, "\tLatency: %luus\n",
2379 ewma__engine_latency_read(&engine->latency));
2380 if (intel_engine_supports_stats(engine))
2381 drm_printf(m, "\tRuntime: %llums\n",
2382 ktime_to_ms(intel_engine_get_busy_time(engine,
2383 &dummy)));
2384 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2385 engine->fw_domain, READ_ONCE(engine->fw_active));
2386
2387 rcu_read_lock();
2388 rq = READ_ONCE(engine->heartbeat.systole);
2389 if (rq)
2390 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2391 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2392 rcu_read_unlock();
2393 drm_printf(m, "\tReset count: %d (global %d)\n",
2394 i915_reset_engine_count(error, engine),
2395 i915_reset_count(error));
2396 print_properties(engine, m);
2397
2398 engine_dump_active_requests(engine, m);
2399
2400 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2401 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2402 if (wakeref) {
2403 intel_engine_print_registers(engine, m);
2404 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2405 } else {
2406 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2407 }
2408
2409 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2410
2411 drm_printf(m, "HWSP:\n");
2412 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2413
2414 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2415
2416 intel_engine_print_breadcrumbs(engine, m);
2417 }
2418
2419 /**
2420 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2421 * @engine: engine to report on
2422 * @now: monotonic timestamp of sampling
2423 *
2424 * Returns accumulated time @engine was busy since engine stats were enabled.
2425 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2426 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2427 {
2428 return engine->busyness(engine, now);
2429 }
2430
2431 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2432 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2433 unsigned int count, unsigned long flags)
2434 {
2435 if (count == 0)
2436 return ERR_PTR(-EINVAL);
2437
2438 if (count == 1 && !(flags & FORCE_VIRTUAL))
2439 return intel_context_create(siblings[0]);
2440
2441 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2442 return siblings[0]->cops->create_virtual(siblings, count, flags);
2443 }
2444
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2445 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2446 {
2447 struct i915_request *request, *active = NULL;
2448
2449 /*
2450 * This search does not work in GuC submission mode. However, the GuC
2451 * will report the hanging context directly to the driver itself. So
2452 * the driver should never get here when in GuC mode.
2453 */
2454 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2455
2456 /*
2457 * We are called by the error capture, reset and to dump engine
2458 * state at random points in time. In particular, note that neither is
2459 * crucially ordered with an interrupt. After a hang, the GPU is dead
2460 * and we assume that no more writes can happen (we waited long enough
2461 * for all writes that were in transaction to be flushed) - adding an
2462 * extra delay for a recent interrupt is pointless. Hence, we do
2463 * not need an engine->irq_seqno_barrier() before the seqno reads.
2464 * At all other times, we must assume the GPU is still running, but
2465 * we only care about the snapshot of this moment.
2466 */
2467 lockdep_assert_held(&engine->sched_engine->lock);
2468
2469 rcu_read_lock();
2470 request = execlists_active(&engine->execlists);
2471 if (request) {
2472 struct intel_timeline *tl = request->context->timeline;
2473
2474 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2475 if (__i915_request_is_complete(request))
2476 break;
2477
2478 active = request;
2479 }
2480 }
2481 rcu_read_unlock();
2482 if (active)
2483 return active;
2484
2485 list_for_each_entry(request, &engine->sched_engine->requests,
2486 sched.link) {
2487 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2488 continue;
2489
2490 active = request;
2491 break;
2492 }
2493
2494 return active;
2495 }
2496
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2497 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2498 struct intel_context **ce, struct i915_request **rq)
2499 {
2500 unsigned long flags;
2501
2502 *ce = intel_engine_get_hung_context(engine);
2503 if (*ce) {
2504 intel_engine_clear_hung_context(engine);
2505
2506 *rq = intel_context_get_active_request(*ce);
2507 return;
2508 }
2509
2510 /*
2511 * Getting here with GuC enabled means it is a forced error capture
2512 * with no actual hang. So, no need to attempt the execlist search.
2513 */
2514 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2515 return;
2516
2517 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2518 *rq = engine_execlist_find_hung_request(engine);
2519 if (*rq)
2520 *rq = i915_request_get_rcu(*rq);
2521 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2522 }
2523
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2524 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2525 {
2526 /*
2527 * If there are any non-fused-off CCS engines, we need to enable CCS
2528 * support in the RCU_MODE register. This only needs to be done once,
2529 * so for simplicity we'll take care of this in the RCS engine's
2530 * resume handler; since the RCS and all CCS engines belong to the
2531 * same reset domain and are reset together, this will also take care
2532 * of re-applying the setting after i915-triggered resets.
2533 */
2534 if (!CCS_MASK(engine->gt))
2535 return;
2536
2537 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2538 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2539 }
2540
2541 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2542 #include "mock_engine.c"
2543 #include "selftest_engine.c"
2544 #include "selftest_engine_cs.c"
2545 #endif
2546