1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38 
39 
40 #define DP_LINK_STATUS_SIZE	6
41 #define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
42 
43 #define DP_LINK_CONFIGURATION_SIZE	9
44 
45 struct intel_dp {
46 	struct intel_encoder base;
47 	uint32_t output_reg;
48 	uint32_t DP;
49 	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 	bool has_audio;
51 	int force_audio;
52 	uint32_t color_range;
53 	int dpms_mode;
54 	uint8_t link_bw;
55 	uint8_t lane_count;
56 	uint8_t dpcd[4];
57 	struct i2c_adapter adapter;
58 	struct i2c_algo_dp_aux_data algo;
59 	bool is_pch_edp;
60 	uint8_t	train_set[4];
61 	uint8_t link_status[DP_LINK_STATUS_SIZE];
62 
63 	struct drm_property *force_audio_property;
64 };
65 
66 /**
67  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
68  * @intel_dp: DP struct
69  *
70  * If a CPU or PCH DP output is attached to an eDP panel, this function
71  * will return true, and false otherwise.
72  */
is_edp(struct intel_dp * intel_dp)73 static bool is_edp(struct intel_dp *intel_dp)
74 {
75 	return intel_dp->base.type == INTEL_OUTPUT_EDP;
76 }
77 
78 /**
79  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
80  * @intel_dp: DP struct
81  *
82  * Returns true if the given DP struct corresponds to a PCH DP port attached
83  * to an eDP panel, false otherwise.  Helpful for determining whether we
84  * may need FDI resources for a given DP output or not.
85  */
is_pch_edp(struct intel_dp * intel_dp)86 static bool is_pch_edp(struct intel_dp *intel_dp)
87 {
88 	return intel_dp->is_pch_edp;
89 }
90 
enc_to_intel_dp(struct drm_encoder * encoder)91 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
92 {
93 	return container_of(encoder, struct intel_dp, base.base);
94 }
95 
intel_attached_dp(struct drm_connector * connector)96 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
97 {
98 	return container_of(intel_attached_encoder(connector),
99 			    struct intel_dp, base);
100 }
101 
102 /**
103  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
104  * @encoder: DRM encoder
105  *
106  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
107  * by intel_display.c.
108  */
intel_encoder_is_pch_edp(struct drm_encoder * encoder)109 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
110 {
111 	struct intel_dp *intel_dp;
112 
113 	if (!encoder)
114 		return false;
115 
116 	intel_dp = enc_to_intel_dp(encoder);
117 
118 	return is_pch_edp(intel_dp);
119 }
120 
121 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
122 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
123 static void intel_dp_link_down(struct intel_dp *intel_dp);
124 
125 void
intel_edp_link_config(struct intel_encoder * intel_encoder,int * lane_num,int * link_bw)126 intel_edp_link_config (struct intel_encoder *intel_encoder,
127 		       int *lane_num, int *link_bw)
128 {
129 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
130 
131 	*lane_num = intel_dp->lane_count;
132 	if (intel_dp->link_bw == DP_LINK_BW_1_62)
133 		*link_bw = 162000;
134 	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
135 		*link_bw = 270000;
136 }
137 
138 static int
intel_dp_max_lane_count(struct intel_dp * intel_dp)139 intel_dp_max_lane_count(struct intel_dp *intel_dp)
140 {
141 	int max_lane_count = 4;
142 
143 	if (intel_dp->dpcd[0] >= 0x11) {
144 		max_lane_count = intel_dp->dpcd[2] & 0x1f;
145 		switch (max_lane_count) {
146 		case 1: case 2: case 4:
147 			break;
148 		default:
149 			max_lane_count = 4;
150 		}
151 	}
152 	return max_lane_count;
153 }
154 
155 static int
intel_dp_max_link_bw(struct intel_dp * intel_dp)156 intel_dp_max_link_bw(struct intel_dp *intel_dp)
157 {
158 	int max_link_bw = intel_dp->dpcd[1];
159 
160 	switch (max_link_bw) {
161 	case DP_LINK_BW_1_62:
162 	case DP_LINK_BW_2_7:
163 		break;
164 	default:
165 		max_link_bw = DP_LINK_BW_1_62;
166 		break;
167 	}
168 	return max_link_bw;
169 }
170 
171 static int
intel_dp_link_clock(uint8_t link_bw)172 intel_dp_link_clock(uint8_t link_bw)
173 {
174 	if (link_bw == DP_LINK_BW_2_7)
175 		return 270000;
176 	else
177 		return 162000;
178 }
179 
180 /* I think this is a fiction */
181 static int
intel_dp_link_required(struct drm_device * dev,struct intel_dp * intel_dp,int pixel_clock)182 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
183 {
184 	struct drm_i915_private *dev_priv = dev->dev_private;
185 
186 	if (is_edp(intel_dp))
187 		return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
188 	else
189 		return pixel_clock * 3;
190 }
191 
192 static int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 	return (max_link_clock * max_lanes * 8) / 10;
196 }
197 
198 static int
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)199 intel_dp_mode_valid(struct drm_connector *connector,
200 		    struct drm_display_mode *mode)
201 {
202 	struct intel_dp *intel_dp = intel_attached_dp(connector);
203 	struct drm_device *dev = connector->dev;
204 	struct drm_i915_private *dev_priv = dev->dev_private;
205 	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206 	int max_lanes = intel_dp_max_lane_count(intel_dp);
207 
208 	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209 		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210 			return MODE_PANEL;
211 
212 		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213 			return MODE_PANEL;
214 	}
215 
216 	/* only refuse the mode on non eDP since we have seen some weird eDP panels
217 	   which are outside spec tolerances but somehow work by magic */
218 	if (!is_edp(intel_dp) &&
219 	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220 	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221 		return MODE_CLOCK_HIGH;
222 
223 	if (mode->clock < 10000)
224 		return MODE_CLOCK_LOW;
225 
226 	return MODE_OK;
227 }
228 
229 static uint32_t
pack_aux(uint8_t * src,int src_bytes)230 pack_aux(uint8_t *src, int src_bytes)
231 {
232 	int	i;
233 	uint32_t v = 0;
234 
235 	if (src_bytes > 4)
236 		src_bytes = 4;
237 	for (i = 0; i < src_bytes; i++)
238 		v |= ((uint32_t) src[i]) << ((3-i) * 8);
239 	return v;
240 }
241 
242 static void
unpack_aux(uint32_t src,uint8_t * dst,int dst_bytes)243 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244 {
245 	int i;
246 	if (dst_bytes > 4)
247 		dst_bytes = 4;
248 	for (i = 0; i < dst_bytes; i++)
249 		dst[i] = src >> ((3-i) * 8);
250 }
251 
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
intel_hrawclk(struct drm_device * dev)254 intel_hrawclk(struct drm_device *dev)
255 {
256 	struct drm_i915_private *dev_priv = dev->dev_private;
257 	uint32_t clkcfg;
258 
259 	clkcfg = I915_READ(CLKCFG);
260 	switch (clkcfg & CLKCFG_FSB_MASK) {
261 	case CLKCFG_FSB_400:
262 		return 100;
263 	case CLKCFG_FSB_533:
264 		return 133;
265 	case CLKCFG_FSB_667:
266 		return 166;
267 	case CLKCFG_FSB_800:
268 		return 200;
269 	case CLKCFG_FSB_1067:
270 		return 266;
271 	case CLKCFG_FSB_1333:
272 		return 333;
273 	/* these two are just a guess; one of them might be right */
274 	case CLKCFG_FSB_1600:
275 	case CLKCFG_FSB_1600_ALT:
276 		return 400;
277 	default:
278 		return 133;
279 	}
280 }
281 
282 static int
intel_dp_aux_ch(struct intel_dp * intel_dp,uint8_t * send,int send_bytes,uint8_t * recv,int recv_size)283 intel_dp_aux_ch(struct intel_dp *intel_dp,
284 		uint8_t *send, int send_bytes,
285 		uint8_t *recv, int recv_size)
286 {
287 	uint32_t output_reg = intel_dp->output_reg;
288 	struct drm_device *dev = intel_dp->base.base.dev;
289 	struct drm_i915_private *dev_priv = dev->dev_private;
290 	uint32_t ch_ctl = output_reg + 0x10;
291 	uint32_t ch_data = ch_ctl + 4;
292 	int i;
293 	int recv_bytes;
294 	uint32_t status;
295 	uint32_t aux_clock_divider;
296 	int try, precharge;
297 
298 	/* The clock divider is based off the hrawclk,
299 	 * and would like to run at 2MHz. So, take the
300 	 * hrawclk value and divide by 2 and use that
301 	 *
302 	 * Note that PCH attached eDP panels should use a 125MHz input
303 	 * clock divider.
304 	 */
305 	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306 		if (IS_GEN6(dev))
307 			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308 		else
309 			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310 	} else if (HAS_PCH_SPLIT(dev))
311 		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312 	else
313 		aux_clock_divider = intel_hrawclk(dev) / 2;
314 
315 	if (IS_GEN6(dev))
316 		precharge = 3;
317 	else
318 		precharge = 5;
319 
320 	if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
321 		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
322 			  I915_READ(ch_ctl));
323 		return -EBUSY;
324 	}
325 
326 	/* Must try at least 3 times according to DP spec */
327 	for (try = 0; try < 5; try++) {
328 		/* Load the send data into the aux channel data registers */
329 		for (i = 0; i < send_bytes; i += 4)
330 			I915_WRITE(ch_data + i,
331 				   pack_aux(send + i, send_bytes - i));
332 
333 		/* Send the command and wait for it to complete */
334 		I915_WRITE(ch_ctl,
335 			   DP_AUX_CH_CTL_SEND_BUSY |
336 			   DP_AUX_CH_CTL_TIME_OUT_400us |
337 			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
338 			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
339 			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
340 			   DP_AUX_CH_CTL_DONE |
341 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
342 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
343 		for (;;) {
344 			status = I915_READ(ch_ctl);
345 			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
346 				break;
347 			udelay(100);
348 		}
349 
350 		/* Clear done status and any errors */
351 		I915_WRITE(ch_ctl,
352 			   status |
353 			   DP_AUX_CH_CTL_DONE |
354 			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
355 			   DP_AUX_CH_CTL_RECEIVE_ERROR);
356 		if (status & DP_AUX_CH_CTL_DONE)
357 			break;
358 	}
359 
360 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
361 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
362 		return -EBUSY;
363 	}
364 
365 	/* Check for timeout or receive error.
366 	 * Timeouts occur when the sink is not connected
367 	 */
368 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
369 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
370 		return -EIO;
371 	}
372 
373 	/* Timeouts occur when the device isn't connected, so they're
374 	 * "normal" -- don't fill the kernel log with these */
375 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
376 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
377 		return -ETIMEDOUT;
378 	}
379 
380 	/* Unload any bytes sent back from the other side */
381 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
382 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
383 	if (recv_bytes > recv_size)
384 		recv_bytes = recv_size;
385 
386 	for (i = 0; i < recv_bytes; i += 4)
387 		unpack_aux(I915_READ(ch_data + i),
388 			   recv + i, recv_bytes - i);
389 
390 	return recv_bytes;
391 }
392 
393 /* Write data to the aux channel in native mode */
394 static int
intel_dp_aux_native_write(struct intel_dp * intel_dp,uint16_t address,uint8_t * send,int send_bytes)395 intel_dp_aux_native_write(struct intel_dp *intel_dp,
396 			  uint16_t address, uint8_t *send, int send_bytes)
397 {
398 	int ret;
399 	uint8_t	msg[20];
400 	int msg_bytes;
401 	uint8_t	ack;
402 
403 	if (send_bytes > 16)
404 		return -1;
405 	msg[0] = AUX_NATIVE_WRITE << 4;
406 	msg[1] = address >> 8;
407 	msg[2] = address & 0xff;
408 	msg[3] = send_bytes - 1;
409 	memcpy(&msg[4], send, send_bytes);
410 	msg_bytes = send_bytes + 4;
411 	for (;;) {
412 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
413 		if (ret < 0)
414 			return ret;
415 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
416 			break;
417 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
418 			udelay(100);
419 		else
420 			return -EIO;
421 	}
422 	return send_bytes;
423 }
424 
425 /* Write a single byte to the aux channel in native mode */
426 static int
intel_dp_aux_native_write_1(struct intel_dp * intel_dp,uint16_t address,uint8_t byte)427 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
428 			    uint16_t address, uint8_t byte)
429 {
430 	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
431 }
432 
433 /* read bytes from a native aux channel */
434 static int
intel_dp_aux_native_read(struct intel_dp * intel_dp,uint16_t address,uint8_t * recv,int recv_bytes)435 intel_dp_aux_native_read(struct intel_dp *intel_dp,
436 			 uint16_t address, uint8_t *recv, int recv_bytes)
437 {
438 	uint8_t msg[4];
439 	int msg_bytes;
440 	uint8_t reply[20];
441 	int reply_bytes;
442 	uint8_t ack;
443 	int ret;
444 
445 	msg[0] = AUX_NATIVE_READ << 4;
446 	msg[1] = address >> 8;
447 	msg[2] = address & 0xff;
448 	msg[3] = recv_bytes - 1;
449 
450 	msg_bytes = 4;
451 	reply_bytes = recv_bytes + 1;
452 
453 	for (;;) {
454 		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
455 				      reply, reply_bytes);
456 		if (ret == 0)
457 			return -EPROTO;
458 		if (ret < 0)
459 			return ret;
460 		ack = reply[0];
461 		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
462 			memcpy(recv, reply + 1, ret - 1);
463 			return ret - 1;
464 		}
465 		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
466 			udelay(100);
467 		else
468 			return -EIO;
469 	}
470 }
471 
472 static int
intel_dp_i2c_aux_ch(struct i2c_adapter * adapter,int mode,uint8_t write_byte,uint8_t * read_byte)473 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
474 		    uint8_t write_byte, uint8_t *read_byte)
475 {
476 	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
477 	struct intel_dp *intel_dp = container_of(adapter,
478 						struct intel_dp,
479 						adapter);
480 	uint16_t address = algo_data->address;
481 	uint8_t msg[5];
482 	uint8_t reply[2];
483 	unsigned retry;
484 	int msg_bytes;
485 	int reply_bytes;
486 	int ret;
487 
488 	/* Set up the command byte */
489 	if (mode & MODE_I2C_READ)
490 		msg[0] = AUX_I2C_READ << 4;
491 	else
492 		msg[0] = AUX_I2C_WRITE << 4;
493 
494 	if (!(mode & MODE_I2C_STOP))
495 		msg[0] |= AUX_I2C_MOT << 4;
496 
497 	msg[1] = address >> 8;
498 	msg[2] = address;
499 
500 	switch (mode) {
501 	case MODE_I2C_WRITE:
502 		msg[3] = 0;
503 		msg[4] = write_byte;
504 		msg_bytes = 5;
505 		reply_bytes = 1;
506 		break;
507 	case MODE_I2C_READ:
508 		msg[3] = 0;
509 		msg_bytes = 4;
510 		reply_bytes = 2;
511 		break;
512 	default:
513 		msg_bytes = 3;
514 		reply_bytes = 1;
515 		break;
516 	}
517 
518 	for (retry = 0; retry < 5; retry++) {
519 		ret = intel_dp_aux_ch(intel_dp,
520 				      msg, msg_bytes,
521 				      reply, reply_bytes);
522 		if (ret < 0) {
523 			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
524 			return ret;
525 		}
526 
527 		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
528 		case AUX_NATIVE_REPLY_ACK:
529 			/* I2C-over-AUX Reply field is only valid
530 			 * when paired with AUX ACK.
531 			 */
532 			break;
533 		case AUX_NATIVE_REPLY_NACK:
534 			DRM_DEBUG_KMS("aux_ch native nack\n");
535 			return -EREMOTEIO;
536 		case AUX_NATIVE_REPLY_DEFER:
537 			udelay(100);
538 			continue;
539 		default:
540 			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
541 				  reply[0]);
542 			return -EREMOTEIO;
543 		}
544 
545 		switch (reply[0] & AUX_I2C_REPLY_MASK) {
546 		case AUX_I2C_REPLY_ACK:
547 			if (mode == MODE_I2C_READ) {
548 				*read_byte = reply[1];
549 			}
550 			return reply_bytes - 1;
551 		case AUX_I2C_REPLY_NACK:
552 			DRM_DEBUG_KMS("aux_i2c nack\n");
553 			return -EREMOTEIO;
554 		case AUX_I2C_REPLY_DEFER:
555 			DRM_DEBUG_KMS("aux_i2c defer\n");
556 			udelay(100);
557 			break;
558 		default:
559 			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
560 			return -EREMOTEIO;
561 		}
562 	}
563 
564 	DRM_ERROR("too many retries, giving up\n");
565 	return -EREMOTEIO;
566 }
567 
568 static int
intel_dp_i2c_init(struct intel_dp * intel_dp,struct intel_connector * intel_connector,const char * name)569 intel_dp_i2c_init(struct intel_dp *intel_dp,
570 		  struct intel_connector *intel_connector, const char *name)
571 {
572 	DRM_DEBUG_KMS("i2c_init %s\n", name);
573 	intel_dp->algo.running = false;
574 	intel_dp->algo.address = 0;
575 	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
576 
577 	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
578 	intel_dp->adapter.owner = THIS_MODULE;
579 	intel_dp->adapter.class = I2C_CLASS_DDC;
580 	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
581 	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
582 	intel_dp->adapter.algo_data = &intel_dp->algo;
583 	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
584 
585 	return i2c_dp_aux_add_bus(&intel_dp->adapter);
586 }
587 
588 static bool
intel_dp_mode_fixup(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)589 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
590 		    struct drm_display_mode *adjusted_mode)
591 {
592 	struct drm_device *dev = encoder->dev;
593 	struct drm_i915_private *dev_priv = dev->dev_private;
594 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
595 	int lane_count, clock;
596 	int max_lane_count = intel_dp_max_lane_count(intel_dp);
597 	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
598 	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
599 
600 	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
601 		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
602 		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
603 					mode, adjusted_mode);
604 		/*
605 		 * the mode->clock is used to calculate the Data&Link M/N
606 		 * of the pipe. For the eDP the fixed clock should be used.
607 		 */
608 		mode->clock = dev_priv->panel_fixed_mode->clock;
609 	}
610 
611 	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
612 		for (clock = 0; clock <= max_clock; clock++) {
613 			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
614 
615 			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
616 					<= link_avail) {
617 				intel_dp->link_bw = bws[clock];
618 				intel_dp->lane_count = lane_count;
619 				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
620 				DRM_DEBUG_KMS("Display port link bw %02x lane "
621 						"count %d clock %d\n",
622 				       intel_dp->link_bw, intel_dp->lane_count,
623 				       adjusted_mode->clock);
624 				return true;
625 			}
626 		}
627 	}
628 
629 	if (is_edp(intel_dp)) {
630 		/* okay we failed just pick the highest */
631 		intel_dp->lane_count = max_lane_count;
632 		intel_dp->link_bw = bws[max_clock];
633 		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
634 		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
635 			      "count %d clock %d\n",
636 			      intel_dp->link_bw, intel_dp->lane_count,
637 			      adjusted_mode->clock);
638 
639 		return true;
640 	}
641 
642 	return false;
643 }
644 
645 struct intel_dp_m_n {
646 	uint32_t	tu;
647 	uint32_t	gmch_m;
648 	uint32_t	gmch_n;
649 	uint32_t	link_m;
650 	uint32_t	link_n;
651 };
652 
653 static void
intel_reduce_ratio(uint32_t * num,uint32_t * den)654 intel_reduce_ratio(uint32_t *num, uint32_t *den)
655 {
656 	while (*num > 0xffffff || *den > 0xffffff) {
657 		*num >>= 1;
658 		*den >>= 1;
659 	}
660 }
661 
662 static void
intel_dp_compute_m_n(int bpp,int nlanes,int pixel_clock,int link_clock,struct intel_dp_m_n * m_n)663 intel_dp_compute_m_n(int bpp,
664 		     int nlanes,
665 		     int pixel_clock,
666 		     int link_clock,
667 		     struct intel_dp_m_n *m_n)
668 {
669 	m_n->tu = 64;
670 	m_n->gmch_m = (pixel_clock * bpp) >> 3;
671 	m_n->gmch_n = link_clock * nlanes;
672 	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
673 	m_n->link_m = pixel_clock;
674 	m_n->link_n = link_clock;
675 	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
676 }
677 
678 void
intel_dp_set_m_n(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)679 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
680 		 struct drm_display_mode *adjusted_mode)
681 {
682 	struct drm_device *dev = crtc->dev;
683 	struct drm_mode_config *mode_config = &dev->mode_config;
684 	struct drm_encoder *encoder;
685 	struct drm_i915_private *dev_priv = dev->dev_private;
686 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
687 	int lane_count = 4, bpp = 24;
688 	struct intel_dp_m_n m_n;
689 	int pipe = intel_crtc->pipe;
690 
691 	/*
692 	 * Find the lane count in the intel_encoder private
693 	 */
694 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
695 		struct intel_dp *intel_dp;
696 
697 		if (encoder->crtc != crtc)
698 			continue;
699 
700 		intel_dp = enc_to_intel_dp(encoder);
701 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
702 			lane_count = intel_dp->lane_count;
703 			break;
704 		} else if (is_edp(intel_dp)) {
705 			lane_count = dev_priv->edp.lanes;
706 			bpp = dev_priv->edp.bpp;
707 			break;
708 		}
709 	}
710 
711 	/*
712 	 * Compute the GMCH and Link ratios. The '3' here is
713 	 * the number of bytes_per_pixel post-LUT, which we always
714 	 * set up for 8-bits of R/G/B, or 3 bytes total.
715 	 */
716 	intel_dp_compute_m_n(bpp, lane_count,
717 			     mode->clock, adjusted_mode->clock, &m_n);
718 
719 	if (HAS_PCH_SPLIT(dev)) {
720 		I915_WRITE(TRANSDATA_M1(pipe),
721 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
722 			   m_n.gmch_m);
723 		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
724 		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
725 		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
726 	} else {
727 		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
728 			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
729 			   m_n.gmch_m);
730 		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
731 		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
732 		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
733 	}
734 }
735 
736 static void
intel_dp_mode_set(struct drm_encoder * encoder,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)737 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
738 		  struct drm_display_mode *adjusted_mode)
739 {
740 	struct drm_device *dev = encoder->dev;
741 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
742 	struct drm_crtc *crtc = intel_dp->base.base.crtc;
743 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
744 
745 	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
746 	intel_dp->DP |= intel_dp->color_range;
747 
748 	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
749 		intel_dp->DP |= DP_SYNC_HS_HIGH;
750 	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
751 		intel_dp->DP |= DP_SYNC_VS_HIGH;
752 
753 	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
754 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
755 	else
756 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
757 
758 	switch (intel_dp->lane_count) {
759 	case 1:
760 		intel_dp->DP |= DP_PORT_WIDTH_1;
761 		break;
762 	case 2:
763 		intel_dp->DP |= DP_PORT_WIDTH_2;
764 		break;
765 	case 4:
766 		intel_dp->DP |= DP_PORT_WIDTH_4;
767 		break;
768 	}
769 	if (intel_dp->has_audio)
770 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
771 
772 	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
773 	intel_dp->link_configuration[0] = intel_dp->link_bw;
774 	intel_dp->link_configuration[1] = intel_dp->lane_count;
775 
776 	/*
777 	 * Check for DPCD version > 1.1 and enhanced framing support
778 	 */
779 	if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
780 		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
781 		intel_dp->DP |= DP_ENHANCED_FRAMING;
782 	}
783 
784 	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
785 	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
786 		intel_dp->DP |= DP_PIPEB_SELECT;
787 
788 	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
789 		/* don't miss out required setting for eDP */
790 		intel_dp->DP |= DP_PLL_ENABLE;
791 		if (adjusted_mode->clock < 200000)
792 			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
793 		else
794 			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
795 	}
796 }
797 
ironlake_edp_panel_vdd_on(struct intel_dp * intel_dp)798 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
799 {
800 	struct drm_device *dev = intel_dp->base.base.dev;
801 	struct drm_i915_private *dev_priv = dev->dev_private;
802 	u32 pp;
803 
804 	/*
805 	 * If the panel wasn't on, make sure there's not a currently
806 	 * active PP sequence before enabling AUX VDD.
807 	 */
808 	if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
809 		msleep(dev_priv->panel_t3);
810 
811 	pp = I915_READ(PCH_PP_CONTROL);
812 	pp |= EDP_FORCE_VDD;
813 	I915_WRITE(PCH_PP_CONTROL, pp);
814 	POSTING_READ(PCH_PP_CONTROL);
815 }
816 
ironlake_edp_panel_vdd_off(struct intel_dp * intel_dp)817 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
818 {
819 	struct drm_device *dev = intel_dp->base.base.dev;
820 	struct drm_i915_private *dev_priv = dev->dev_private;
821 	u32 pp;
822 
823 	pp = I915_READ(PCH_PP_CONTROL);
824 	pp &= ~EDP_FORCE_VDD;
825 	I915_WRITE(PCH_PP_CONTROL, pp);
826 	POSTING_READ(PCH_PP_CONTROL);
827 
828 	/* Make sure sequencer is idle before allowing subsequent activity */
829 	msleep(dev_priv->panel_t12);
830 }
831 
832 /* Returns true if the panel was already on when called */
ironlake_edp_panel_on(struct intel_dp * intel_dp)833 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
834 {
835 	struct drm_device *dev = intel_dp->base.base.dev;
836 	struct drm_i915_private *dev_priv = dev->dev_private;
837 	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
838 
839 	if (I915_READ(PCH_PP_STATUS) & PP_ON)
840 		return true;
841 
842 	pp = I915_READ(PCH_PP_CONTROL);
843 
844 	/* ILK workaround: disable reset around power sequence */
845 	pp &= ~PANEL_POWER_RESET;
846 	I915_WRITE(PCH_PP_CONTROL, pp);
847 	POSTING_READ(PCH_PP_CONTROL);
848 
849 	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
850 	I915_WRITE(PCH_PP_CONTROL, pp);
851 	POSTING_READ(PCH_PP_CONTROL);
852 
853 	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
854 		     5000))
855 		DRM_ERROR("panel on wait timed out: 0x%08x\n",
856 			  I915_READ(PCH_PP_STATUS));
857 
858 	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
859 	I915_WRITE(PCH_PP_CONTROL, pp);
860 	POSTING_READ(PCH_PP_CONTROL);
861 
862 	return false;
863 }
864 
ironlake_edp_panel_off(struct drm_device * dev)865 static void ironlake_edp_panel_off (struct drm_device *dev)
866 {
867 	struct drm_i915_private *dev_priv = dev->dev_private;
868 	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
869 		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
870 
871 	pp = I915_READ(PCH_PP_CONTROL);
872 
873 	/* ILK workaround: disable reset around power sequence */
874 	pp &= ~PANEL_POWER_RESET;
875 	I915_WRITE(PCH_PP_CONTROL, pp);
876 	POSTING_READ(PCH_PP_CONTROL);
877 
878 	pp &= ~POWER_TARGET_ON;
879 	I915_WRITE(PCH_PP_CONTROL, pp);
880 	POSTING_READ(PCH_PP_CONTROL);
881 
882 	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
883 		DRM_ERROR("panel off wait timed out: 0x%08x\n",
884 			  I915_READ(PCH_PP_STATUS));
885 
886 	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
887 	I915_WRITE(PCH_PP_CONTROL, pp);
888 	POSTING_READ(PCH_PP_CONTROL);
889 }
890 
ironlake_edp_backlight_on(struct drm_device * dev)891 static void ironlake_edp_backlight_on (struct drm_device *dev)
892 {
893 	struct drm_i915_private *dev_priv = dev->dev_private;
894 	u32 pp;
895 
896 	DRM_DEBUG_KMS("\n");
897 	/*
898 	 * If we enable the backlight right away following a panel power
899 	 * on, we may see slight flicker as the panel syncs with the eDP
900 	 * link.  So delay a bit to make sure the image is solid before
901 	 * allowing it to appear.
902 	 */
903 	msleep(300);
904 	pp = I915_READ(PCH_PP_CONTROL);
905 	pp |= EDP_BLC_ENABLE;
906 	I915_WRITE(PCH_PP_CONTROL, pp);
907 }
908 
ironlake_edp_backlight_off(struct drm_device * dev)909 static void ironlake_edp_backlight_off (struct drm_device *dev)
910 {
911 	struct drm_i915_private *dev_priv = dev->dev_private;
912 	u32 pp;
913 
914 	DRM_DEBUG_KMS("\n");
915 	pp = I915_READ(PCH_PP_CONTROL);
916 	pp &= ~EDP_BLC_ENABLE;
917 	I915_WRITE(PCH_PP_CONTROL, pp);
918 }
919 
ironlake_edp_pll_on(struct drm_encoder * encoder)920 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
921 {
922 	struct drm_device *dev = encoder->dev;
923 	struct drm_i915_private *dev_priv = dev->dev_private;
924 	u32 dpa_ctl;
925 
926 	DRM_DEBUG_KMS("\n");
927 	dpa_ctl = I915_READ(DP_A);
928 	dpa_ctl |= DP_PLL_ENABLE;
929 	I915_WRITE(DP_A, dpa_ctl);
930 	POSTING_READ(DP_A);
931 	udelay(200);
932 }
933 
ironlake_edp_pll_off(struct drm_encoder * encoder)934 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
935 {
936 	struct drm_device *dev = encoder->dev;
937 	struct drm_i915_private *dev_priv = dev->dev_private;
938 	u32 dpa_ctl;
939 
940 	dpa_ctl = I915_READ(DP_A);
941 	dpa_ctl &= ~DP_PLL_ENABLE;
942 	I915_WRITE(DP_A, dpa_ctl);
943 	POSTING_READ(DP_A);
944 	udelay(200);
945 }
946 
intel_dp_prepare(struct drm_encoder * encoder)947 static void intel_dp_prepare(struct drm_encoder *encoder)
948 {
949 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
950 	struct drm_device *dev = encoder->dev;
951 
952 	if (is_edp(intel_dp)) {
953 		ironlake_edp_backlight_off(dev);
954 		ironlake_edp_panel_off(dev);
955 		if (!is_pch_edp(intel_dp))
956 			ironlake_edp_pll_on(encoder);
957 		else
958 			ironlake_edp_pll_off(encoder);
959 	}
960 	intel_dp_link_down(intel_dp);
961 }
962 
intel_dp_commit(struct drm_encoder * encoder)963 static void intel_dp_commit(struct drm_encoder *encoder)
964 {
965 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
966 	struct drm_device *dev = encoder->dev;
967 
968 	if (is_edp(intel_dp))
969 		ironlake_edp_panel_vdd_on(intel_dp);
970 
971 	intel_dp_start_link_train(intel_dp);
972 
973 	if (is_edp(intel_dp)) {
974 		ironlake_edp_panel_on(intel_dp);
975 		ironlake_edp_panel_vdd_off(intel_dp);
976 	}
977 
978 	intel_dp_complete_link_train(intel_dp);
979 
980 	if (is_edp(intel_dp))
981 		ironlake_edp_backlight_on(dev);
982 }
983 
984 static void
intel_dp_dpms(struct drm_encoder * encoder,int mode)985 intel_dp_dpms(struct drm_encoder *encoder, int mode)
986 {
987 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
988 	struct drm_device *dev = encoder->dev;
989 	struct drm_i915_private *dev_priv = dev->dev_private;
990 	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
991 
992 	if (mode != DRM_MODE_DPMS_ON) {
993 		if (is_edp(intel_dp))
994 			ironlake_edp_backlight_off(dev);
995 		intel_dp_link_down(intel_dp);
996 		if (is_edp(intel_dp))
997 			ironlake_edp_panel_off(dev);
998 		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
999 			ironlake_edp_pll_off(encoder);
1000 	} else {
1001 		if (is_edp(intel_dp))
1002 			ironlake_edp_panel_vdd_on(intel_dp);
1003 		if (!(dp_reg & DP_PORT_EN)) {
1004 			intel_dp_start_link_train(intel_dp);
1005 			if (is_edp(intel_dp)) {
1006 				ironlake_edp_panel_on(intel_dp);
1007 				ironlake_edp_panel_vdd_off(intel_dp);
1008 			}
1009 			intel_dp_complete_link_train(intel_dp);
1010 		}
1011 		if (is_edp(intel_dp))
1012 			ironlake_edp_backlight_on(dev);
1013 	}
1014 	intel_dp->dpms_mode = mode;
1015 }
1016 
1017 /*
1018  * Fetch AUX CH registers 0x202 - 0x207 which contain
1019  * link status information
1020  */
1021 static bool
intel_dp_get_link_status(struct intel_dp * intel_dp)1022 intel_dp_get_link_status(struct intel_dp *intel_dp)
1023 {
1024 	int ret;
1025 
1026 	ret = intel_dp_aux_native_read(intel_dp,
1027 				       DP_LANE0_1_STATUS,
1028 				       intel_dp->link_status, DP_LINK_STATUS_SIZE);
1029 	if (ret != DP_LINK_STATUS_SIZE)
1030 		return false;
1031 	return true;
1032 }
1033 
1034 static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int r)1035 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1036 		     int r)
1037 {
1038 	return link_status[r - DP_LANE0_1_STATUS];
1039 }
1040 
1041 static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1042 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1043 				 int lane)
1044 {
1045 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1046 	int	    s = ((lane & 1) ?
1047 			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1048 			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1049 	uint8_t l = intel_dp_link_status(link_status, i);
1050 
1051 	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1052 }
1053 
1054 static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1055 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1056 				      int lane)
1057 {
1058 	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1059 	int	    s = ((lane & 1) ?
1060 			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1061 			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1062 	uint8_t l = intel_dp_link_status(link_status, i);
1063 
1064 	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1065 }
1066 
1067 
1068 #if 0
1069 static char	*voltage_names[] = {
1070 	"0.4V", "0.6V", "0.8V", "1.2V"
1071 };
1072 static char	*pre_emph_names[] = {
1073 	"0dB", "3.5dB", "6dB", "9.5dB"
1074 };
1075 static char	*link_train_names[] = {
1076 	"pattern 1", "pattern 2", "idle", "off"
1077 };
1078 #endif
1079 
1080 /*
1081  * These are source-specific values; current Intel hardware supports
1082  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1083  */
1084 #define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1085 
1086 static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)1087 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1088 {
1089 	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1090 	case DP_TRAIN_VOLTAGE_SWING_400:
1091 		return DP_TRAIN_PRE_EMPHASIS_6;
1092 	case DP_TRAIN_VOLTAGE_SWING_600:
1093 		return DP_TRAIN_PRE_EMPHASIS_6;
1094 	case DP_TRAIN_VOLTAGE_SWING_800:
1095 		return DP_TRAIN_PRE_EMPHASIS_3_5;
1096 	case DP_TRAIN_VOLTAGE_SWING_1200:
1097 	default:
1098 		return DP_TRAIN_PRE_EMPHASIS_0;
1099 	}
1100 }
1101 
1102 static void
intel_get_adjust_train(struct intel_dp * intel_dp)1103 intel_get_adjust_train(struct intel_dp *intel_dp)
1104 {
1105 	uint8_t v = 0;
1106 	uint8_t p = 0;
1107 	int lane;
1108 
1109 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1110 		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1111 		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1112 
1113 		if (this_v > v)
1114 			v = this_v;
1115 		if (this_p > p)
1116 			p = this_p;
1117 	}
1118 
1119 	if (v >= I830_DP_VOLTAGE_MAX)
1120 		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1121 
1122 	if (p >= intel_dp_pre_emphasis_max(v))
1123 		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1124 
1125 	for (lane = 0; lane < 4; lane++)
1126 		intel_dp->train_set[lane] = v | p;
1127 }
1128 
1129 static uint32_t
intel_dp_signal_levels(uint8_t train_set,int lane_count)1130 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1131 {
1132 	uint32_t	signal_levels = 0;
1133 
1134 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1135 	case DP_TRAIN_VOLTAGE_SWING_400:
1136 	default:
1137 		signal_levels |= DP_VOLTAGE_0_4;
1138 		break;
1139 	case DP_TRAIN_VOLTAGE_SWING_600:
1140 		signal_levels |= DP_VOLTAGE_0_6;
1141 		break;
1142 	case DP_TRAIN_VOLTAGE_SWING_800:
1143 		signal_levels |= DP_VOLTAGE_0_8;
1144 		break;
1145 	case DP_TRAIN_VOLTAGE_SWING_1200:
1146 		signal_levels |= DP_VOLTAGE_1_2;
1147 		break;
1148 	}
1149 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1150 	case DP_TRAIN_PRE_EMPHASIS_0:
1151 	default:
1152 		signal_levels |= DP_PRE_EMPHASIS_0;
1153 		break;
1154 	case DP_TRAIN_PRE_EMPHASIS_3_5:
1155 		signal_levels |= DP_PRE_EMPHASIS_3_5;
1156 		break;
1157 	case DP_TRAIN_PRE_EMPHASIS_6:
1158 		signal_levels |= DP_PRE_EMPHASIS_6;
1159 		break;
1160 	case DP_TRAIN_PRE_EMPHASIS_9_5:
1161 		signal_levels |= DP_PRE_EMPHASIS_9_5;
1162 		break;
1163 	}
1164 	return signal_levels;
1165 }
1166 
1167 /* Gen6's DP voltage swing and pre-emphasis control */
1168 static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)1169 intel_gen6_edp_signal_levels(uint8_t train_set)
1170 {
1171 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1172 					 DP_TRAIN_PRE_EMPHASIS_MASK);
1173 	switch (signal_levels) {
1174 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1175 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1176 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1177 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1178 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1179 	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1180 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1181 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1182 	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1183 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1184 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1185 	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1186 	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1187 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1188 	default:
1189 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1190 			      "0x%x\n", signal_levels);
1191 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1192 	}
1193 }
1194 
1195 static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane)1196 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1197 		      int lane)
1198 {
1199 	int i = DP_LANE0_1_STATUS + (lane >> 1);
1200 	int s = (lane & 1) * 4;
1201 	uint8_t l = intel_dp_link_status(link_status, i);
1202 
1203 	return (l >> s) & 0xf;
1204 }
1205 
1206 /* Check for clock recovery is done on all channels */
1207 static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE],int lane_count)1208 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1209 {
1210 	int lane;
1211 	uint8_t lane_status;
1212 
1213 	for (lane = 0; lane < lane_count; lane++) {
1214 		lane_status = intel_get_lane_status(link_status, lane);
1215 		if ((lane_status & DP_LANE_CR_DONE) == 0)
1216 			return false;
1217 	}
1218 	return true;
1219 }
1220 
1221 /* Check to see if channel eq is done on all channels */
1222 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1223 			 DP_LANE_CHANNEL_EQ_DONE|\
1224 			 DP_LANE_SYMBOL_LOCKED)
1225 static bool
intel_channel_eq_ok(struct intel_dp * intel_dp)1226 intel_channel_eq_ok(struct intel_dp *intel_dp)
1227 {
1228 	uint8_t lane_align;
1229 	uint8_t lane_status;
1230 	int lane;
1231 
1232 	lane_align = intel_dp_link_status(intel_dp->link_status,
1233 					  DP_LANE_ALIGN_STATUS_UPDATED);
1234 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1235 		return false;
1236 	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1237 		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1238 		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1239 			return false;
1240 	}
1241 	return true;
1242 }
1243 
1244 static bool
intel_dp_set_link_train(struct intel_dp * intel_dp,uint32_t dp_reg_value,uint8_t dp_train_pat)1245 intel_dp_set_link_train(struct intel_dp *intel_dp,
1246 			uint32_t dp_reg_value,
1247 			uint8_t dp_train_pat)
1248 {
1249 	struct drm_device *dev = intel_dp->base.base.dev;
1250 	struct drm_i915_private *dev_priv = dev->dev_private;
1251 	int ret;
1252 
1253 	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1254 	POSTING_READ(intel_dp->output_reg);
1255 
1256 	intel_dp_aux_native_write_1(intel_dp,
1257 				    DP_TRAINING_PATTERN_SET,
1258 				    dp_train_pat);
1259 
1260 	ret = intel_dp_aux_native_write(intel_dp,
1261 					DP_TRAINING_LANE0_SET,
1262 					intel_dp->train_set, 4);
1263 	if (ret != 4)
1264 		return false;
1265 
1266 	return true;
1267 }
1268 
1269 /* Enable corresponding port and start training pattern 1 */
1270 static void
intel_dp_start_link_train(struct intel_dp * intel_dp)1271 intel_dp_start_link_train(struct intel_dp *intel_dp)
1272 {
1273 	struct drm_device *dev = intel_dp->base.base.dev;
1274 	struct drm_i915_private *dev_priv = dev->dev_private;
1275 	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1276 	int i;
1277 	uint8_t voltage;
1278 	bool clock_recovery = false;
1279 	int tries;
1280 	u32 reg;
1281 	uint32_t DP = intel_dp->DP;
1282 
1283 	/* Enable output, wait for it to become active */
1284 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1285 	POSTING_READ(intel_dp->output_reg);
1286 	intel_wait_for_vblank(dev, intel_crtc->pipe);
1287 
1288 	/* Write the link configuration data */
1289 	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1290 				  intel_dp->link_configuration,
1291 				  DP_LINK_CONFIGURATION_SIZE);
1292 
1293 	DP |= DP_PORT_EN;
1294 	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1295 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1296 	else
1297 		DP &= ~DP_LINK_TRAIN_MASK;
1298 	memset(intel_dp->train_set, 0, 4);
1299 	voltage = 0xff;
1300 	tries = 0;
1301 	clock_recovery = false;
1302 	for (;;) {
1303 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1304 		uint32_t    signal_levels;
1305 		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1306 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1307 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1308 		} else {
1309 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1310 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1311 		}
1312 
1313 		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1314 			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1315 		else
1316 			reg = DP | DP_LINK_TRAIN_PAT_1;
1317 
1318 		if (!intel_dp_set_link_train(intel_dp, reg,
1319 					     DP_TRAINING_PATTERN_1))
1320 			break;
1321 		/* Set training pattern 1 */
1322 
1323 		udelay(100);
1324 		if (!intel_dp_get_link_status(intel_dp))
1325 			break;
1326 
1327 		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1328 			clock_recovery = true;
1329 			break;
1330 		}
1331 
1332 		/* Check to see if we've tried the max voltage */
1333 		for (i = 0; i < intel_dp->lane_count; i++)
1334 			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1335 				break;
1336 		if (i == intel_dp->lane_count)
1337 			break;
1338 
1339 		/* Check to see if we've tried the same voltage 5 times */
1340 		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1341 			++tries;
1342 			if (tries == 5)
1343 				break;
1344 		} else
1345 			tries = 0;
1346 		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1347 
1348 		/* Compute new intel_dp->train_set as requested by target */
1349 		intel_get_adjust_train(intel_dp);
1350 	}
1351 
1352 	intel_dp->DP = DP;
1353 }
1354 
1355 static void
intel_dp_complete_link_train(struct intel_dp * intel_dp)1356 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1357 {
1358 	struct drm_device *dev = intel_dp->base.base.dev;
1359 	struct drm_i915_private *dev_priv = dev->dev_private;
1360 	bool channel_eq = false;
1361 	int tries, cr_tries;
1362 	u32 reg;
1363 	uint32_t DP = intel_dp->DP;
1364 
1365 	/* channel equalization */
1366 	tries = 0;
1367 	cr_tries = 0;
1368 	channel_eq = false;
1369 	for (;;) {
1370 		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1371 		uint32_t    signal_levels;
1372 
1373 		if (cr_tries > 5) {
1374 			DRM_ERROR("failed to train DP, aborting\n");
1375 			intel_dp_link_down(intel_dp);
1376 			break;
1377 		}
1378 
1379 		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1380 			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1381 			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1382 		} else {
1383 			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1384 			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1385 		}
1386 
1387 		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1388 			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1389 		else
1390 			reg = DP | DP_LINK_TRAIN_PAT_2;
1391 
1392 		/* channel eq pattern */
1393 		if (!intel_dp_set_link_train(intel_dp, reg,
1394 					     DP_TRAINING_PATTERN_2))
1395 			break;
1396 
1397 		udelay(400);
1398 		if (!intel_dp_get_link_status(intel_dp))
1399 			break;
1400 
1401 		/* Make sure clock is still ok */
1402 		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1403 			intel_dp_start_link_train(intel_dp);
1404 			cr_tries++;
1405 			continue;
1406 		}
1407 
1408 		if (intel_channel_eq_ok(intel_dp)) {
1409 			channel_eq = true;
1410 			break;
1411 		}
1412 
1413 		/* Try 5 times, then try clock recovery if that fails */
1414 		if (tries > 5) {
1415 			intel_dp_link_down(intel_dp);
1416 			intel_dp_start_link_train(intel_dp);
1417 			tries = 0;
1418 			cr_tries++;
1419 			continue;
1420 		}
1421 
1422 		/* Compute new intel_dp->train_set as requested by target */
1423 		intel_get_adjust_train(intel_dp);
1424 		++tries;
1425 	}
1426 
1427 	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1428 		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1429 	else
1430 		reg = DP | DP_LINK_TRAIN_OFF;
1431 
1432 	I915_WRITE(intel_dp->output_reg, reg);
1433 	POSTING_READ(intel_dp->output_reg);
1434 	intel_dp_aux_native_write_1(intel_dp,
1435 				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1436 }
1437 
1438 static void
intel_dp_link_down(struct intel_dp * intel_dp)1439 intel_dp_link_down(struct intel_dp *intel_dp)
1440 {
1441 	struct drm_device *dev = intel_dp->base.base.dev;
1442 	struct drm_i915_private *dev_priv = dev->dev_private;
1443 	uint32_t DP = intel_dp->DP;
1444 
1445 	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1446 		return;
1447 
1448 	DRM_DEBUG_KMS("\n");
1449 
1450 	if (is_edp(intel_dp)) {
1451 		DP &= ~DP_PLL_ENABLE;
1452 		I915_WRITE(intel_dp->output_reg, DP);
1453 		POSTING_READ(intel_dp->output_reg);
1454 		udelay(100);
1455 	}
1456 
1457 	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1458 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1459 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1460 	} else {
1461 		DP &= ~DP_LINK_TRAIN_MASK;
1462 		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1463 	}
1464 	POSTING_READ(intel_dp->output_reg);
1465 
1466 	msleep(17);
1467 
1468 	if (is_edp(intel_dp))
1469 		DP |= DP_LINK_TRAIN_OFF;
1470 
1471 	if (!HAS_PCH_CPT(dev) &&
1472 	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1473 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1474 
1475 		/* Hardware workaround: leaving our transcoder select
1476 		 * set to transcoder B while it's off will prevent the
1477 		 * corresponding HDMI output on transcoder A.
1478 		 *
1479 		 * Combine this with another hardware workaround:
1480 		 * transcoder select bit can only be cleared while the
1481 		 * port is enabled.
1482 		 */
1483 		DP &= ~DP_PIPEB_SELECT;
1484 		I915_WRITE(intel_dp->output_reg, DP);
1485 
1486 		/* Changes to enable or select take place the vblank
1487 		 * after being written.
1488 		 */
1489 		if (crtc == NULL) {
1490 			/* We can arrive here never having been attached
1491 			 * to a CRTC, for instance, due to inheriting
1492 			 * random state from the BIOS.
1493 			 *
1494 			 * If the pipe is not running, play safe and
1495 			 * wait for the clocks to stabilise before
1496 			 * continuing.
1497 			 */
1498 			POSTING_READ(intel_dp->output_reg);
1499 			msleep(50);
1500 		} else
1501 			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1502 	}
1503 
1504 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1505 	POSTING_READ(intel_dp->output_reg);
1506 }
1507 
1508 /*
1509  * According to DP spec
1510  * 5.1.2:
1511  *  1. Read DPCD
1512  *  2. Configure link according to Receiver Capabilities
1513  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1514  *  4. Check link status on receipt of hot-plug interrupt
1515  */
1516 
1517 static void
intel_dp_check_link_status(struct intel_dp * intel_dp)1518 intel_dp_check_link_status(struct intel_dp *intel_dp)
1519 {
1520 	if (!intel_dp->base.base.crtc)
1521 		return;
1522 
1523 	if (!intel_dp_get_link_status(intel_dp)) {
1524 		intel_dp_link_down(intel_dp);
1525 		return;
1526 	}
1527 
1528 	if (!intel_channel_eq_ok(intel_dp)) {
1529 		intel_dp_start_link_train(intel_dp);
1530 		intel_dp_complete_link_train(intel_dp);
1531 	}
1532 }
1533 
1534 static enum drm_connector_status
ironlake_dp_detect(struct intel_dp * intel_dp)1535 ironlake_dp_detect(struct intel_dp *intel_dp)
1536 {
1537 	enum drm_connector_status status;
1538 
1539 	/* Can't disconnect eDP, but you can close the lid... */
1540 	if (is_edp(intel_dp)) {
1541 		status = intel_panel_detect(intel_dp->base.base.dev);
1542 		if (status == connector_status_unknown)
1543 			status = connector_status_connected;
1544 		return status;
1545 	}
1546 
1547 	status = connector_status_disconnected;
1548 	if (intel_dp_aux_native_read(intel_dp,
1549 				     0x000, intel_dp->dpcd,
1550 				     sizeof (intel_dp->dpcd))
1551 	    == sizeof(intel_dp->dpcd)) {
1552 		if (intel_dp->dpcd[0] != 0)
1553 			status = connector_status_connected;
1554 	}
1555 	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1556 		      intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1557 	return status;
1558 }
1559 
1560 static enum drm_connector_status
g4x_dp_detect(struct intel_dp * intel_dp)1561 g4x_dp_detect(struct intel_dp *intel_dp)
1562 {
1563 	struct drm_device *dev = intel_dp->base.base.dev;
1564 	struct drm_i915_private *dev_priv = dev->dev_private;
1565 	enum drm_connector_status status;
1566 	uint32_t temp, bit;
1567 
1568 	switch (intel_dp->output_reg) {
1569 	case DP_B:
1570 		bit = DPB_HOTPLUG_INT_STATUS;
1571 		break;
1572 	case DP_C:
1573 		bit = DPC_HOTPLUG_INT_STATUS;
1574 		break;
1575 	case DP_D:
1576 		bit = DPD_HOTPLUG_INT_STATUS;
1577 		break;
1578 	default:
1579 		return connector_status_unknown;
1580 	}
1581 
1582 	temp = I915_READ(PORT_HOTPLUG_STAT);
1583 
1584 	if ((temp & bit) == 0)
1585 		return connector_status_disconnected;
1586 
1587 	status = connector_status_disconnected;
1588 	if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1589 				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1590 	{
1591 		if (intel_dp->dpcd[0] != 0)
1592 			status = connector_status_connected;
1593 	}
1594 
1595 	return status;
1596 }
1597 
1598 /**
1599  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1600  *
1601  * \return true if DP port is connected.
1602  * \return false if DP port is disconnected.
1603  */
1604 static enum drm_connector_status
intel_dp_detect(struct drm_connector * connector,bool force)1605 intel_dp_detect(struct drm_connector *connector, bool force)
1606 {
1607 	struct intel_dp *intel_dp = intel_attached_dp(connector);
1608 	struct drm_device *dev = intel_dp->base.base.dev;
1609 	enum drm_connector_status status;
1610 	struct edid *edid = NULL;
1611 
1612 	intel_dp->has_audio = false;
1613 
1614 	if (HAS_PCH_SPLIT(dev))
1615 		status = ironlake_dp_detect(intel_dp);
1616 	else
1617 		status = g4x_dp_detect(intel_dp);
1618 	if (status != connector_status_connected)
1619 		return status;
1620 
1621 	if (intel_dp->force_audio) {
1622 		intel_dp->has_audio = intel_dp->force_audio > 0;
1623 	} else {
1624 		edid = drm_get_edid(connector, &intel_dp->adapter);
1625 		if (edid) {
1626 			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1627 			connector->display_info.raw_edid = NULL;
1628 			kfree(edid);
1629 		}
1630 	}
1631 
1632 	return connector_status_connected;
1633 }
1634 
intel_dp_get_modes(struct drm_connector * connector)1635 static int intel_dp_get_modes(struct drm_connector *connector)
1636 {
1637 	struct intel_dp *intel_dp = intel_attached_dp(connector);
1638 	struct drm_device *dev = intel_dp->base.base.dev;
1639 	struct drm_i915_private *dev_priv = dev->dev_private;
1640 	int ret;
1641 
1642 	/* We should parse the EDID data and find out if it has an audio sink
1643 	 */
1644 
1645 	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1646 	if (ret) {
1647 		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1648 			struct drm_display_mode *newmode;
1649 			list_for_each_entry(newmode, &connector->probed_modes,
1650 					    head) {
1651 				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1652 					dev_priv->panel_fixed_mode =
1653 						drm_mode_duplicate(dev, newmode);
1654 					break;
1655 				}
1656 			}
1657 		}
1658 
1659 		return ret;
1660 	}
1661 
1662 	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1663 	if (is_edp(intel_dp)) {
1664 		if (dev_priv->panel_fixed_mode != NULL) {
1665 			struct drm_display_mode *mode;
1666 			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1667 			drm_mode_probed_add(connector, mode);
1668 			return 1;
1669 		}
1670 	}
1671 	return 0;
1672 }
1673 
1674 static bool
intel_dp_detect_audio(struct drm_connector * connector)1675 intel_dp_detect_audio(struct drm_connector *connector)
1676 {
1677 	struct intel_dp *intel_dp = intel_attached_dp(connector);
1678 	struct edid *edid;
1679 	bool has_audio = false;
1680 
1681 	edid = drm_get_edid(connector, &intel_dp->adapter);
1682 	if (edid) {
1683 		has_audio = drm_detect_monitor_audio(edid);
1684 
1685 		connector->display_info.raw_edid = NULL;
1686 		kfree(edid);
1687 	}
1688 
1689 	return has_audio;
1690 }
1691 
1692 static int
intel_dp_set_property(struct drm_connector * connector,struct drm_property * property,uint64_t val)1693 intel_dp_set_property(struct drm_connector *connector,
1694 		      struct drm_property *property,
1695 		      uint64_t val)
1696 {
1697 	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1698 	struct intel_dp *intel_dp = intel_attached_dp(connector);
1699 	int ret;
1700 
1701 	ret = drm_connector_property_set_value(connector, property, val);
1702 	if (ret)
1703 		return ret;
1704 
1705 	if (property == intel_dp->force_audio_property) {
1706 		int i = val;
1707 		bool has_audio;
1708 
1709 		if (i == intel_dp->force_audio)
1710 			return 0;
1711 
1712 		intel_dp->force_audio = i;
1713 
1714 		if (i == 0)
1715 			has_audio = intel_dp_detect_audio(connector);
1716 		else
1717 			has_audio = i > 0;
1718 
1719 		if (has_audio == intel_dp->has_audio)
1720 			return 0;
1721 
1722 		intel_dp->has_audio = has_audio;
1723 		goto done;
1724 	}
1725 
1726 	if (property == dev_priv->broadcast_rgb_property) {
1727 		if (val == !!intel_dp->color_range)
1728 			return 0;
1729 
1730 		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1731 		goto done;
1732 	}
1733 
1734 	return -EINVAL;
1735 
1736 done:
1737 	if (intel_dp->base.base.crtc) {
1738 		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1739 		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1740 					 crtc->x, crtc->y,
1741 					 crtc->fb);
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 static void
intel_dp_destroy(struct drm_connector * connector)1748 intel_dp_destroy (struct drm_connector *connector)
1749 {
1750 	drm_sysfs_connector_remove(connector);
1751 	drm_connector_cleanup(connector);
1752 	kfree(connector);
1753 }
1754 
intel_dp_encoder_destroy(struct drm_encoder * encoder)1755 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1756 {
1757 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1758 
1759 	i2c_del_adapter(&intel_dp->adapter);
1760 	drm_encoder_cleanup(encoder);
1761 	kfree(intel_dp);
1762 }
1763 
1764 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1765 	.dpms = intel_dp_dpms,
1766 	.mode_fixup = intel_dp_mode_fixup,
1767 	.prepare = intel_dp_prepare,
1768 	.mode_set = intel_dp_mode_set,
1769 	.commit = intel_dp_commit,
1770 };
1771 
1772 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1773 	.dpms = drm_helper_connector_dpms,
1774 	.detect = intel_dp_detect,
1775 	.fill_modes = drm_helper_probe_single_connector_modes,
1776 	.set_property = intel_dp_set_property,
1777 	.destroy = intel_dp_destroy,
1778 };
1779 
1780 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1781 	.get_modes = intel_dp_get_modes,
1782 	.mode_valid = intel_dp_mode_valid,
1783 	.best_encoder = intel_best_encoder,
1784 };
1785 
1786 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1787 	.destroy = intel_dp_encoder_destroy,
1788 };
1789 
1790 static void
intel_dp_hot_plug(struct intel_encoder * intel_encoder)1791 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1792 {
1793 	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1794 
1795 	if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1796 		intel_dp_check_link_status(intel_dp);
1797 }
1798 
1799 /* Return which DP Port should be selected for Transcoder DP control */
1800 int
intel_trans_dp_port_sel(struct drm_crtc * crtc)1801 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1802 {
1803 	struct drm_device *dev = crtc->dev;
1804 	struct drm_mode_config *mode_config = &dev->mode_config;
1805 	struct drm_encoder *encoder;
1806 
1807 	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1808 		struct intel_dp *intel_dp;
1809 
1810 		if (encoder->crtc != crtc)
1811 			continue;
1812 
1813 		intel_dp = enc_to_intel_dp(encoder);
1814 		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1815 			return intel_dp->output_reg;
1816 	}
1817 
1818 	return -1;
1819 }
1820 
1821 /* check the VBT to see whether the eDP is on DP-D port */
intel_dpd_is_edp(struct drm_device * dev)1822 bool intel_dpd_is_edp(struct drm_device *dev)
1823 {
1824 	struct drm_i915_private *dev_priv = dev->dev_private;
1825 	struct child_device_config *p_child;
1826 	int i;
1827 
1828 	if (!dev_priv->child_dev_num)
1829 		return false;
1830 
1831 	for (i = 0; i < dev_priv->child_dev_num; i++) {
1832 		p_child = dev_priv->child_dev + i;
1833 
1834 		if (p_child->dvo_port == PORT_IDPD &&
1835 		    p_child->device_type == DEVICE_TYPE_eDP)
1836 			return true;
1837 	}
1838 	return false;
1839 }
1840 
1841 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)1842 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1843 {
1844 	struct drm_device *dev = connector->dev;
1845 
1846 	intel_dp->force_audio_property =
1847 		drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
1848 	if (intel_dp->force_audio_property) {
1849 		intel_dp->force_audio_property->values[0] = -1;
1850 		intel_dp->force_audio_property->values[1] = 1;
1851 		drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
1852 	}
1853 
1854 	intel_attach_broadcast_rgb_property(connector);
1855 }
1856 
1857 void
intel_dp_init(struct drm_device * dev,int output_reg)1858 intel_dp_init(struct drm_device *dev, int output_reg)
1859 {
1860 	struct drm_i915_private *dev_priv = dev->dev_private;
1861 	struct drm_connector *connector;
1862 	struct intel_dp *intel_dp;
1863 	struct intel_encoder *intel_encoder;
1864 	struct intel_connector *intel_connector;
1865 	const char *name = NULL;
1866 	int type;
1867 
1868 	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1869 	if (!intel_dp)
1870 		return;
1871 
1872 	intel_dp->output_reg = output_reg;
1873 	intel_dp->dpms_mode = -1;
1874 
1875 	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1876 	if (!intel_connector) {
1877 		kfree(intel_dp);
1878 		return;
1879 	}
1880 	intel_encoder = &intel_dp->base;
1881 
1882 	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1883 		if (intel_dpd_is_edp(dev))
1884 			intel_dp->is_pch_edp = true;
1885 
1886 	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1887 		type = DRM_MODE_CONNECTOR_eDP;
1888 		intel_encoder->type = INTEL_OUTPUT_EDP;
1889 	} else {
1890 		type = DRM_MODE_CONNECTOR_DisplayPort;
1891 		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1892 	}
1893 
1894 	connector = &intel_connector->base;
1895 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1896 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1897 
1898 	connector->polled = DRM_CONNECTOR_POLL_HPD;
1899 
1900 	if (output_reg == DP_B || output_reg == PCH_DP_B)
1901 		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1902 	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1903 		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1904 	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1905 		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1906 
1907 	if (is_edp(intel_dp))
1908 		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1909 
1910 	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1911 	connector->interlace_allowed = true;
1912 	connector->doublescan_allowed = 0;
1913 
1914 	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1915 			 DRM_MODE_ENCODER_TMDS);
1916 	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1917 
1918 	intel_connector_attach_encoder(intel_connector, intel_encoder);
1919 	drm_sysfs_connector_add(connector);
1920 
1921 	/* Set up the DDC bus. */
1922 	switch (output_reg) {
1923 		case DP_A:
1924 			name = "DPDDC-A";
1925 			break;
1926 		case DP_B:
1927 		case PCH_DP_B:
1928 			dev_priv->hotplug_supported_mask |=
1929 				HDMIB_HOTPLUG_INT_STATUS;
1930 			name = "DPDDC-B";
1931 			break;
1932 		case DP_C:
1933 		case PCH_DP_C:
1934 			dev_priv->hotplug_supported_mask |=
1935 				HDMIC_HOTPLUG_INT_STATUS;
1936 			name = "DPDDC-C";
1937 			break;
1938 		case DP_D:
1939 		case PCH_DP_D:
1940 			dev_priv->hotplug_supported_mask |=
1941 				HDMID_HOTPLUG_INT_STATUS;
1942 			name = "DPDDC-D";
1943 			break;
1944 	}
1945 
1946 	intel_dp_i2c_init(intel_dp, intel_connector, name);
1947 
1948 	/* Cache some DPCD data in the eDP case */
1949 	if (is_edp(intel_dp)) {
1950 		int ret;
1951 		u32 pp_on, pp_div;
1952 
1953 		pp_on = I915_READ(PCH_PP_ON_DELAYS);
1954 		pp_div = I915_READ(PCH_PP_DIVISOR);
1955 
1956 		/* Get T3 & T12 values (note: VESA not bspec terminology) */
1957 		dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
1958 		dev_priv->panel_t3 /= 10; /* t3 in 100us units */
1959 		dev_priv->panel_t12 = pp_div & 0xf;
1960 		dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
1961 
1962 		ironlake_edp_panel_vdd_on(intel_dp);
1963 		ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1964 					       intel_dp->dpcd,
1965 					       sizeof(intel_dp->dpcd));
1966 		ironlake_edp_panel_vdd_off(intel_dp);
1967 		if (ret == sizeof(intel_dp->dpcd)) {
1968 			if (intel_dp->dpcd[0] >= 0x11)
1969 				dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1970 					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1971 		} else {
1972 			/* if this fails, presume the device is a ghost */
1973 			DRM_INFO("failed to retrieve link info, disabling eDP\n");
1974 			intel_dp_encoder_destroy(&intel_dp->base.base);
1975 			intel_dp_destroy(&intel_connector->base);
1976 			return;
1977 		}
1978 	}
1979 
1980 	intel_encoder->hot_plug = intel_dp_hot_plug;
1981 
1982 	if (is_edp(intel_dp)) {
1983 		/* initialize panel mode from VBT if available for eDP */
1984 		if (dev_priv->lfp_lvds_vbt_mode) {
1985 			dev_priv->panel_fixed_mode =
1986 				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1987 			if (dev_priv->panel_fixed_mode) {
1988 				dev_priv->panel_fixed_mode->type |=
1989 					DRM_MODE_TYPE_PREFERRED;
1990 			}
1991 		}
1992 	}
1993 
1994 	intel_dp_add_properties(intel_dp, connector);
1995 
1996 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1997 	 * 0xd.  Failure to do so will result in spurious interrupts being
1998 	 * generated on the port when a cable is not attached.
1999 	 */
2000 	if (IS_G4X(dev) && !IS_GM45(dev)) {
2001 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2002 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2003 	}
2004 }
2005