1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/module.h>
29 #include <linux/string_helpers.h>
30 #include <linux/pm_runtime.h>
31 
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35 
36 #include "display/intel_atomic.h"
37 #include "display/intel_atomic_plane.h"
38 #include "display/intel_bw.h"
39 #include "display/intel_de.h"
40 #include "display/intel_display_trace.h"
41 #include "display/intel_display_types.h"
42 #include "display/intel_fb.h"
43 #include "display/intel_fbc.h"
44 #include "display/intel_sprite.h"
45 #include "display/skl_universal_plane.h"
46 
47 #include "gt/intel_engine_regs.h"
48 #include "gt/intel_gt_regs.h"
49 #include "gt/intel_llc.h"
50 
51 #include "i915_drv.h"
52 #include "i915_fixed.h"
53 #include "i915_irq.h"
54 #include "intel_mchbar_regs.h"
55 #include "intel_pcode.h"
56 #include "intel_pm.h"
57 #include "vlv_sideband.h"
58 #include "../../../platform/x86/intel_ips.h"
59 
60 static void skl_sagv_disable(struct drm_i915_private *dev_priv);
61 
62 struct drm_i915_clock_gating_funcs {
63 	void (*init_clock_gating)(struct drm_i915_private *i915);
64 };
65 
66 /* Stores plane specific WM parameters */
67 struct skl_wm_params {
68 	bool x_tiled, y_tiled;
69 	bool rc_surface;
70 	bool is_planar;
71 	u32 width;
72 	u8 cpp;
73 	u32 plane_pixel_rate;
74 	u32 y_min_scanlines;
75 	u32 plane_bytes_per_line;
76 	uint_fixed_16_16_t plane_blocks_per_line;
77 	uint_fixed_16_16_t y_tile_minimum;
78 	u32 linetime_us;
79 	u32 dbuf_block_size;
80 };
81 
82 /* used in computing the new watermarks state */
83 struct intel_wm_config {
84 	unsigned int num_pipes_active;
85 	bool sprites_enabled;
86 	bool sprites_scaled;
87 };
88 
gen9_init_clock_gating(struct drm_i915_private * dev_priv)89 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
90 {
91 	if (HAS_LLC(dev_priv)) {
92 		/*
93 		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
94 		 * Display WA #0390: skl,kbl
95 		 *
96 		 * Must match Sampler, Pixel Back End, and Media. See
97 		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
98 		 */
99 		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
100 			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
101 			   SKL_DE_COMPRESSED_HASH_MODE);
102 	}
103 
104 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
105 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
106 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
107 
108 	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
109 	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
110 		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
111 
112 	/*
113 	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
114 	 * Display WA #0859: skl,bxt,kbl,glk,cfl
115 	 */
116 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
117 		   DISP_FBC_MEMORY_WAKE);
118 }
119 
bxt_init_clock_gating(struct drm_i915_private * dev_priv)120 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
121 {
122 	gen9_init_clock_gating(dev_priv);
123 
124 	/* WaDisableSDEUnitClockGating:bxt */
125 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
126 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
127 
128 	/*
129 	 * FIXME:
130 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
131 	 */
132 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
133 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
134 
135 	/*
136 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
137 	 * to stay fully on.
138 	 */
139 	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
140 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
141 
142 	/*
143 	 * Lower the display internal timeout.
144 	 * This is needed to avoid any hard hangs when DSI port PLL
145 	 * is off and a MMIO access is attempted by any privilege
146 	 * application, using batch buffers or any other means.
147 	 */
148 	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
149 
150 	/*
151 	 * WaFbcTurnOffFbcWatermark:bxt
152 	 * Display WA #0562: bxt
153 	 */
154 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
155 		   DISP_FBC_WM_DIS);
156 
157 	/*
158 	 * WaFbcHighMemBwCorruptionAvoidance:bxt
159 	 * Display WA #0883: bxt
160 	 */
161 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
162 			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
163 			   DPFC_DISABLE_DUMMY0);
164 }
165 
glk_init_clock_gating(struct drm_i915_private * dev_priv)166 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
167 {
168 	gen9_init_clock_gating(dev_priv);
169 
170 	/*
171 	 * WaDisablePWMClockGating:glk
172 	 * Backlight PWM may stop in the asserted state, causing backlight
173 	 * to stay fully on.
174 	 */
175 	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
176 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
177 }
178 
pnv_get_mem_freq(struct drm_i915_private * dev_priv)179 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
180 {
181 	u32 tmp;
182 
183 	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
184 
185 	switch (tmp & CLKCFG_FSB_MASK) {
186 	case CLKCFG_FSB_533:
187 		dev_priv->fsb_freq = 533; /* 133*4 */
188 		break;
189 	case CLKCFG_FSB_800:
190 		dev_priv->fsb_freq = 800; /* 200*4 */
191 		break;
192 	case CLKCFG_FSB_667:
193 		dev_priv->fsb_freq =  667; /* 167*4 */
194 		break;
195 	case CLKCFG_FSB_400:
196 		dev_priv->fsb_freq = 400; /* 100*4 */
197 		break;
198 	}
199 
200 	switch (tmp & CLKCFG_MEM_MASK) {
201 	case CLKCFG_MEM_533:
202 		dev_priv->mem_freq = 533;
203 		break;
204 	case CLKCFG_MEM_667:
205 		dev_priv->mem_freq = 667;
206 		break;
207 	case CLKCFG_MEM_800:
208 		dev_priv->mem_freq = 800;
209 		break;
210 	}
211 
212 	/* detect pineview DDR3 setting */
213 	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
214 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
215 }
216 
ilk_get_mem_freq(struct drm_i915_private * dev_priv)217 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
218 {
219 	u16 ddrpll, csipll;
220 
221 	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
222 	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
223 
224 	switch (ddrpll & 0xff) {
225 	case 0xc:
226 		dev_priv->mem_freq = 800;
227 		break;
228 	case 0x10:
229 		dev_priv->mem_freq = 1066;
230 		break;
231 	case 0x14:
232 		dev_priv->mem_freq = 1333;
233 		break;
234 	case 0x18:
235 		dev_priv->mem_freq = 1600;
236 		break;
237 	default:
238 		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
239 			ddrpll & 0xff);
240 		dev_priv->mem_freq = 0;
241 		break;
242 	}
243 
244 	switch (csipll & 0x3ff) {
245 	case 0x00c:
246 		dev_priv->fsb_freq = 3200;
247 		break;
248 	case 0x00e:
249 		dev_priv->fsb_freq = 3733;
250 		break;
251 	case 0x010:
252 		dev_priv->fsb_freq = 4266;
253 		break;
254 	case 0x012:
255 		dev_priv->fsb_freq = 4800;
256 		break;
257 	case 0x014:
258 		dev_priv->fsb_freq = 5333;
259 		break;
260 	case 0x016:
261 		dev_priv->fsb_freq = 5866;
262 		break;
263 	case 0x018:
264 		dev_priv->fsb_freq = 6400;
265 		break;
266 	default:
267 		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
268 			csipll & 0x3ff);
269 		dev_priv->fsb_freq = 0;
270 		break;
271 	}
272 }
273 
274 static const struct cxsr_latency cxsr_latency_table[] = {
275 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
276 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
277 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
278 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
279 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
280 
281 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
282 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
283 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
284 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
285 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
286 
287 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
288 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
289 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
290 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
291 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
292 
293 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
294 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
295 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
296 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
297 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
298 
299 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
300 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
301 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
302 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
303 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
304 
305 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
306 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
307 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
308 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
309 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
310 };
311 
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)312 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
313 							 bool is_ddr3,
314 							 int fsb,
315 							 int mem)
316 {
317 	const struct cxsr_latency *latency;
318 	int i;
319 
320 	if (fsb == 0 || mem == 0)
321 		return NULL;
322 
323 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
324 		latency = &cxsr_latency_table[i];
325 		if (is_desktop == latency->is_desktop &&
326 		    is_ddr3 == latency->is_ddr3 &&
327 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
328 			return latency;
329 	}
330 
331 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
332 
333 	return NULL;
334 }
335 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)336 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
337 {
338 	u32 val;
339 
340 	vlv_punit_get(dev_priv);
341 
342 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
343 	if (enable)
344 		val &= ~FORCE_DDR_HIGH_FREQ;
345 	else
346 		val |= FORCE_DDR_HIGH_FREQ;
347 	val &= ~FORCE_DDR_LOW_FREQ;
348 	val |= FORCE_DDR_FREQ_REQ_ACK;
349 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
350 
351 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
352 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
353 		drm_err(&dev_priv->drm,
354 			"timed out waiting for Punit DDR DVFS request\n");
355 
356 	vlv_punit_put(dev_priv);
357 }
358 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)359 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
360 {
361 	u32 val;
362 
363 	vlv_punit_get(dev_priv);
364 
365 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
366 	if (enable)
367 		val |= DSP_MAXFIFO_PM5_ENABLE;
368 	else
369 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
370 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
371 
372 	vlv_punit_put(dev_priv);
373 }
374 
375 #define FW_WM(value, plane) \
376 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
377 
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)378 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
379 {
380 	bool was_enabled;
381 	u32 val;
382 
383 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
384 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
385 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
386 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
387 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
388 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
389 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
390 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
391 	} else if (IS_PINEVIEW(dev_priv)) {
392 		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
393 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
394 		if (enable)
395 			val |= PINEVIEW_SELF_REFRESH_EN;
396 		else
397 			val &= ~PINEVIEW_SELF_REFRESH_EN;
398 		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
399 		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
400 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
401 		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
402 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
403 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
404 		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
405 		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
406 	} else if (IS_I915GM(dev_priv)) {
407 		/*
408 		 * FIXME can't find a bit like this for 915G, and
409 		 * and yet it does have the related watermark in
410 		 * FW_BLC_SELF. What's going on?
411 		 */
412 		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
413 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
414 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
415 		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
416 		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
417 	} else {
418 		return false;
419 	}
420 
421 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
422 
423 	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
424 		    str_enabled_disabled(enable),
425 		    str_enabled_disabled(was_enabled));
426 
427 	return was_enabled;
428 }
429 
430 /**
431  * intel_set_memory_cxsr - Configure CxSR state
432  * @dev_priv: i915 device
433  * @enable: Allow vs. disallow CxSR
434  *
435  * Allow or disallow the system to enter a special CxSR
436  * (C-state self refresh) state. What typically happens in CxSR mode
437  * is that several display FIFOs may get combined into a single larger
438  * FIFO for a particular plane (so called max FIFO mode) to allow the
439  * system to defer memory fetches longer, and the memory will enter
440  * self refresh.
441  *
442  * Note that enabling CxSR does not guarantee that the system enter
443  * this special mode, nor does it guarantee that the system stays
444  * in that mode once entered. So this just allows/disallows the system
445  * to autonomously utilize the CxSR mode. Other factors such as core
446  * C-states will affect when/if the system actually enters/exits the
447  * CxSR mode.
448  *
449  * Note that on VLV/CHV this actually only controls the max FIFO mode,
450  * and the system is free to enter/exit memory self refresh at any time
451  * even when the use of CxSR has been disallowed.
452  *
453  * While the system is actually in the CxSR/max FIFO mode, some plane
454  * control registers will not get latched on vblank. Thus in order to
455  * guarantee the system will respond to changes in the plane registers
456  * we must always disallow CxSR prior to making changes to those registers.
457  * Unfortunately the system will re-evaluate the CxSR conditions at
458  * frame start which happens after vblank start (which is when the plane
459  * registers would get latched), so we can't proceed with the plane update
460  * during the same frame where we disallowed CxSR.
461  *
462  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
463  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
464  * the hardware w.r.t. HPLL SR when writing to plane registers.
465  * Disallowing just CxSR is sufficient.
466  */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)467 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
468 {
469 	bool ret;
470 
471 	mutex_lock(&dev_priv->wm.wm_mutex);
472 	ret = _intel_set_memory_cxsr(dev_priv, enable);
473 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
474 		dev_priv->wm.vlv.cxsr = enable;
475 	else if (IS_G4X(dev_priv))
476 		dev_priv->wm.g4x.cxsr = enable;
477 	mutex_unlock(&dev_priv->wm.wm_mutex);
478 
479 	return ret;
480 }
481 
482 /*
483  * Latency for FIFO fetches is dependent on several factors:
484  *   - memory configuration (speed, channels)
485  *   - chipset
486  *   - current MCH state
487  * It can be fairly high in some situations, so here we assume a fairly
488  * pessimal value.  It's a tradeoff between extra memory fetches (if we
489  * set this value too high, the FIFO will fetch frequently to stay full)
490  * and power consumption (set it too low to save power and we might see
491  * FIFO underruns and display "flicker").
492  *
493  * A value of 5us seems to be a good balance; safe for very low end
494  * platforms but not overly aggressive on lower latency configs.
495  */
496 static const int pessimal_latency_ns = 5000;
497 
498 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
499 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
500 
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)501 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
502 {
503 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
504 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
505 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
506 	enum pipe pipe = crtc->pipe;
507 	int sprite0_start, sprite1_start;
508 	u32 dsparb, dsparb2, dsparb3;
509 
510 	switch (pipe) {
511 	case PIPE_A:
512 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
513 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
514 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
515 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
516 		break;
517 	case PIPE_B:
518 		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
519 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
520 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
521 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
522 		break;
523 	case PIPE_C:
524 		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
525 		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
526 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
527 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
528 		break;
529 	default:
530 		MISSING_CASE(pipe);
531 		return;
532 	}
533 
534 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
535 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
536 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
537 	fifo_state->plane[PLANE_CURSOR] = 63;
538 }
539 
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)540 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
541 			      enum i9xx_plane_id i9xx_plane)
542 {
543 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
544 	int size;
545 
546 	size = dsparb & 0x7f;
547 	if (i9xx_plane == PLANE_B)
548 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
549 
550 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
551 		    dsparb, plane_name(i9xx_plane), size);
552 
553 	return size;
554 }
555 
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)556 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
557 			      enum i9xx_plane_id i9xx_plane)
558 {
559 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
560 	int size;
561 
562 	size = dsparb & 0x1ff;
563 	if (i9xx_plane == PLANE_B)
564 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
565 	size >>= 1; /* Convert to cachelines */
566 
567 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
568 		    dsparb, plane_name(i9xx_plane), size);
569 
570 	return size;
571 }
572 
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)573 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
574 			      enum i9xx_plane_id i9xx_plane)
575 {
576 	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
577 	int size;
578 
579 	size = dsparb & 0x7f;
580 	size >>= 2; /* Convert to cachelines */
581 
582 	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
583 		    dsparb, plane_name(i9xx_plane), size);
584 
585 	return size;
586 }
587 
588 /* Pineview has different values for various configs */
589 static const struct intel_watermark_params pnv_display_wm = {
590 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
591 	.max_wm = PINEVIEW_MAX_WM,
592 	.default_wm = PINEVIEW_DFT_WM,
593 	.guard_size = PINEVIEW_GUARD_WM,
594 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 };
596 
597 static const struct intel_watermark_params pnv_display_hplloff_wm = {
598 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
599 	.max_wm = PINEVIEW_MAX_WM,
600 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
601 	.guard_size = PINEVIEW_GUARD_WM,
602 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
603 };
604 
605 static const struct intel_watermark_params pnv_cursor_wm = {
606 	.fifo_size = PINEVIEW_CURSOR_FIFO,
607 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
608 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
609 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
610 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
611 };
612 
613 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
614 	.fifo_size = PINEVIEW_CURSOR_FIFO,
615 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
616 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
617 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
618 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
619 };
620 
621 static const struct intel_watermark_params i965_cursor_wm_info = {
622 	.fifo_size = I965_CURSOR_FIFO,
623 	.max_wm = I965_CURSOR_MAX_WM,
624 	.default_wm = I965_CURSOR_DFT_WM,
625 	.guard_size = 2,
626 	.cacheline_size = I915_FIFO_LINE_SIZE,
627 };
628 
629 static const struct intel_watermark_params i945_wm_info = {
630 	.fifo_size = I945_FIFO_SIZE,
631 	.max_wm = I915_MAX_WM,
632 	.default_wm = 1,
633 	.guard_size = 2,
634 	.cacheline_size = I915_FIFO_LINE_SIZE,
635 };
636 
637 static const struct intel_watermark_params i915_wm_info = {
638 	.fifo_size = I915_FIFO_SIZE,
639 	.max_wm = I915_MAX_WM,
640 	.default_wm = 1,
641 	.guard_size = 2,
642 	.cacheline_size = I915_FIFO_LINE_SIZE,
643 };
644 
645 static const struct intel_watermark_params i830_a_wm_info = {
646 	.fifo_size = I855GM_FIFO_SIZE,
647 	.max_wm = I915_MAX_WM,
648 	.default_wm = 1,
649 	.guard_size = 2,
650 	.cacheline_size = I830_FIFO_LINE_SIZE,
651 };
652 
653 static const struct intel_watermark_params i830_bc_wm_info = {
654 	.fifo_size = I855GM_FIFO_SIZE,
655 	.max_wm = I915_MAX_WM/2,
656 	.default_wm = 1,
657 	.guard_size = 2,
658 	.cacheline_size = I830_FIFO_LINE_SIZE,
659 };
660 
661 static const struct intel_watermark_params i845_wm_info = {
662 	.fifo_size = I830_FIFO_SIZE,
663 	.max_wm = I915_MAX_WM,
664 	.default_wm = 1,
665 	.guard_size = 2,
666 	.cacheline_size = I830_FIFO_LINE_SIZE,
667 };
668 
669 /**
670  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
671  * @pixel_rate: Pipe pixel rate in kHz
672  * @cpp: Plane bytes per pixel
673  * @latency: Memory wakeup latency in 0.1us units
674  *
675  * Compute the watermark using the method 1 or "small buffer"
676  * formula. The caller may additonally add extra cachelines
677  * to account for TLB misses and clock crossings.
678  *
679  * This method is concerned with the short term drain rate
680  * of the FIFO, ie. it does not account for blanking periods
681  * which would effectively reduce the average drain rate across
682  * a longer period. The name "small" refers to the fact the
683  * FIFO is relatively small compared to the amount of data
684  * fetched.
685  *
686  * The FIFO level vs. time graph might look something like:
687  *
688  *   |\   |\
689  *   | \  | \
690  * __---__---__ (- plane active, _ blanking)
691  * -> time
692  *
693  * or perhaps like this:
694  *
695  *   |\|\  |\|\
696  * __----__----__ (- plane active, _ blanking)
697  * -> time
698  *
699  * Returns:
700  * The watermark in bytes
701  */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)702 static unsigned int intel_wm_method1(unsigned int pixel_rate,
703 				     unsigned int cpp,
704 				     unsigned int latency)
705 {
706 	u64 ret;
707 
708 	ret = mul_u32_u32(pixel_rate, cpp * latency);
709 	ret = DIV_ROUND_UP_ULL(ret, 10000);
710 
711 	return ret;
712 }
713 
714 /**
715  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
716  * @pixel_rate: Pipe pixel rate in kHz
717  * @htotal: Pipe horizontal total
718  * @width: Plane width in pixels
719  * @cpp: Plane bytes per pixel
720  * @latency: Memory wakeup latency in 0.1us units
721  *
722  * Compute the watermark using the method 2 or "large buffer"
723  * formula. The caller may additonally add extra cachelines
724  * to account for TLB misses and clock crossings.
725  *
726  * This method is concerned with the long term drain rate
727  * of the FIFO, ie. it does account for blanking periods
728  * which effectively reduce the average drain rate across
729  * a longer period. The name "large" refers to the fact the
730  * FIFO is relatively large compared to the amount of data
731  * fetched.
732  *
733  * The FIFO level vs. time graph might look something like:
734  *
735  *    |\___       |\___
736  *    |    \___   |    \___
737  *    |        \  |        \
738  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
739  * -> time
740  *
741  * Returns:
742  * The watermark in bytes
743  */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)744 static unsigned int intel_wm_method2(unsigned int pixel_rate,
745 				     unsigned int htotal,
746 				     unsigned int width,
747 				     unsigned int cpp,
748 				     unsigned int latency)
749 {
750 	unsigned int ret;
751 
752 	/*
753 	 * FIXME remove once all users are computing
754 	 * watermarks in the correct place.
755 	 */
756 	if (WARN_ON_ONCE(htotal == 0))
757 		htotal = 1;
758 
759 	ret = (latency * pixel_rate) / (htotal * 10000);
760 	ret = (ret + 1) * width * cpp;
761 
762 	return ret;
763 }
764 
765 /**
766  * intel_calculate_wm - calculate watermark level
767  * @pixel_rate: pixel clock
768  * @wm: chip FIFO params
769  * @fifo_size: size of the FIFO buffer
770  * @cpp: bytes per pixel
771  * @latency_ns: memory latency for the platform
772  *
773  * Calculate the watermark level (the level at which the display plane will
774  * start fetching from memory again).  Each chip has a different display
775  * FIFO size and allocation, so the caller needs to figure that out and pass
776  * in the correct intel_watermark_params structure.
777  *
778  * As the pixel clock runs, the FIFO will be drained at a rate that depends
779  * on the pixel size.  When it reaches the watermark level, it'll start
780  * fetching FIFO line sized based chunks from memory until the FIFO fills
781  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
782  * will occur, and a display engine hang could result.
783  */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)784 static unsigned int intel_calculate_wm(int pixel_rate,
785 				       const struct intel_watermark_params *wm,
786 				       int fifo_size, int cpp,
787 				       unsigned int latency_ns)
788 {
789 	int entries, wm_size;
790 
791 	/*
792 	 * Note: we need to make sure we don't overflow for various clock &
793 	 * latency values.
794 	 * clocks go from a few thousand to several hundred thousand.
795 	 * latency is usually a few thousand
796 	 */
797 	entries = intel_wm_method1(pixel_rate, cpp,
798 				   latency_ns / 100);
799 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
800 		wm->guard_size;
801 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
802 
803 	wm_size = fifo_size - entries;
804 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
805 
806 	/* Don't promote wm_size to unsigned... */
807 	if (wm_size > wm->max_wm)
808 		wm_size = wm->max_wm;
809 	if (wm_size <= 0)
810 		wm_size = wm->default_wm;
811 
812 	/*
813 	 * Bspec seems to indicate that the value shouldn't be lower than
814 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
815 	 * Lets go for 8 which is the burst size since certain platforms
816 	 * already use a hardcoded 8 (which is what the spec says should be
817 	 * done).
818 	 */
819 	if (wm_size <= 8)
820 		wm_size = 8;
821 
822 	return wm_size;
823 }
824 
is_disabling(int old,int new,int threshold)825 static bool is_disabling(int old, int new, int threshold)
826 {
827 	return old >= threshold && new < threshold;
828 }
829 
is_enabling(int old,int new,int threshold)830 static bool is_enabling(int old, int new, int threshold)
831 {
832 	return old < threshold && new >= threshold;
833 }
834 
intel_wm_num_levels(struct drm_i915_private * dev_priv)835 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
836 {
837 	return dev_priv->wm.max_level + 1;
838 }
839 
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)840 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
841 				   const struct intel_plane_state *plane_state)
842 {
843 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
844 
845 	/* FIXME check the 'enable' instead */
846 	if (!crtc_state->hw.active)
847 		return false;
848 
849 	/*
850 	 * Treat cursor with fb as always visible since cursor updates
851 	 * can happen faster than the vrefresh rate, and the current
852 	 * watermark code doesn't handle that correctly. Cursor updates
853 	 * which set/clear the fb or change the cursor size are going
854 	 * to get throttled by intel_legacy_cursor_update() to work
855 	 * around this problem with the watermark code.
856 	 */
857 	if (plane->id == PLANE_CURSOR)
858 		return plane_state->hw.fb != NULL;
859 	else
860 		return plane_state->uapi.visible;
861 }
862 
intel_crtc_active(struct intel_crtc * crtc)863 static bool intel_crtc_active(struct intel_crtc *crtc)
864 {
865 	/* Be paranoid as we can arrive here with only partial
866 	 * state retrieved from the hardware during setup.
867 	 *
868 	 * We can ditch the adjusted_mode.crtc_clock check as soon
869 	 * as Haswell has gained clock readout/fastboot support.
870 	 *
871 	 * We can ditch the crtc->primary->state->fb check as soon as we can
872 	 * properly reconstruct framebuffers.
873 	 *
874 	 * FIXME: The intel_crtc->active here should be switched to
875 	 * crtc->state->active once we have proper CRTC states wired up
876 	 * for atomic.
877 	 */
878 	return crtc && crtc->active && crtc->base.primary->state->fb &&
879 		crtc->config->hw.adjusted_mode.crtc_clock;
880 }
881 
single_enabled_crtc(struct drm_i915_private * dev_priv)882 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
883 {
884 	struct intel_crtc *crtc, *enabled = NULL;
885 
886 	for_each_intel_crtc(&dev_priv->drm, crtc) {
887 		if (intel_crtc_active(crtc)) {
888 			if (enabled)
889 				return NULL;
890 			enabled = crtc;
891 		}
892 	}
893 
894 	return enabled;
895 }
896 
pnv_update_wm(struct drm_i915_private * dev_priv)897 static void pnv_update_wm(struct drm_i915_private *dev_priv)
898 {
899 	struct intel_crtc *crtc;
900 	const struct cxsr_latency *latency;
901 	u32 reg;
902 	unsigned int wm;
903 
904 	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
905 					 dev_priv->is_ddr3,
906 					 dev_priv->fsb_freq,
907 					 dev_priv->mem_freq);
908 	if (!latency) {
909 		drm_dbg_kms(&dev_priv->drm,
910 			    "Unknown FSB/MEM found, disable CxSR\n");
911 		intel_set_memory_cxsr(dev_priv, false);
912 		return;
913 	}
914 
915 	crtc = single_enabled_crtc(dev_priv);
916 	if (crtc) {
917 		const struct drm_framebuffer *fb =
918 			crtc->base.primary->state->fb;
919 		int pixel_rate = crtc->config->pixel_rate;
920 		int cpp = fb->format->cpp[0];
921 
922 		/* Display SR */
923 		wm = intel_calculate_wm(pixel_rate, &pnv_display_wm,
924 					pnv_display_wm.fifo_size,
925 					cpp, latency->display_sr);
926 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
927 		reg &= ~DSPFW_SR_MASK;
928 		reg |= FW_WM(wm, SR);
929 		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
930 		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
931 
932 		/* cursor SR */
933 		wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm,
934 					pnv_display_wm.fifo_size,
935 					4, latency->cursor_sr);
936 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
937 		reg &= ~DSPFW_CURSOR_SR_MASK;
938 		reg |= FW_WM(wm, CURSOR_SR);
939 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
940 
941 		/* Display HPLL off SR */
942 		wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm,
943 					pnv_display_hplloff_wm.fifo_size,
944 					cpp, latency->display_hpll_disable);
945 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
946 		reg &= ~DSPFW_HPLL_SR_MASK;
947 		reg |= FW_WM(wm, HPLL_SR);
948 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
949 
950 		/* cursor HPLL off SR */
951 		wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm,
952 					pnv_display_hplloff_wm.fifo_size,
953 					4, latency->cursor_hpll_disable);
954 		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
955 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
956 		reg |= FW_WM(wm, HPLL_CURSOR);
957 		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
958 		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
959 
960 		intel_set_memory_cxsr(dev_priv, true);
961 	} else {
962 		intel_set_memory_cxsr(dev_priv, false);
963 	}
964 }
965 
966 /*
967  * Documentation says:
968  * "If the line size is small, the TLB fetches can get in the way of the
969  *  data fetches, causing some lag in the pixel data return which is not
970  *  accounted for in the above formulas. The following adjustment only
971  *  needs to be applied if eight whole lines fit in the buffer at once.
972  *  The WM is adjusted upwards by the difference between the FIFO size
973  *  and the size of 8 whole lines. This adjustment is always performed
974  *  in the actual pixel depth regardless of whether FBC is enabled or not."
975  */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)976 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
977 {
978 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
979 
980 	return max(0, tlb_miss);
981 }
982 
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)983 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
984 				const struct g4x_wm_values *wm)
985 {
986 	enum pipe pipe;
987 
988 	for_each_pipe(dev_priv, pipe)
989 		trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
990 
991 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
992 		   FW_WM(wm->sr.plane, SR) |
993 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
994 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
995 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
996 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
997 		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
998 		   FW_WM(wm->sr.fbc, FBC_SR) |
999 		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
1000 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
1001 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1002 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1003 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1004 		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
1005 		   FW_WM(wm->sr.cursor, CURSOR_SR) |
1006 		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1007 		   FW_WM(wm->hpll.plane, HPLL_SR));
1008 
1009 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1010 }
1011 
1012 #define FW_WM_VLV(value, plane) \
1013 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1014 
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)1015 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1016 				const struct vlv_wm_values *wm)
1017 {
1018 	enum pipe pipe;
1019 
1020 	for_each_pipe(dev_priv, pipe) {
1021 		trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
1022 
1023 		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1024 			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1025 			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1026 			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1027 			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1028 	}
1029 
1030 	/*
1031 	 * Zero the (unused) WM1 watermarks, and also clear all the
1032 	 * high order bits so that there are no out of bounds values
1033 	 * present in the registers during the reprogramming.
1034 	 */
1035 	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
1036 	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
1037 	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
1038 	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
1039 	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1040 
1041 	intel_uncore_write(&dev_priv->uncore, DSPFW1,
1042 		   FW_WM(wm->sr.plane, SR) |
1043 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1044 		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1045 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1046 	intel_uncore_write(&dev_priv->uncore, DSPFW2,
1047 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1048 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1049 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1050 	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1051 		   FW_WM(wm->sr.cursor, CURSOR_SR));
1052 
1053 	if (IS_CHERRYVIEW(dev_priv)) {
1054 		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1055 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1056 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1057 		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1058 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1059 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1060 		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1061 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1062 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1063 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1064 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1065 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1066 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1067 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1068 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1069 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1070 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1071 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1072 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1073 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1074 	} else {
1075 		intel_uncore_write(&dev_priv->uncore, DSPFW7,
1076 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1077 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1078 		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1079 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1080 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1081 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1082 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1083 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1084 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1085 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1086 	}
1087 
1088 	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1089 }
1090 
1091 #undef FW_WM_VLV
1092 
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1093 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1094 {
1095 	/* all latencies in usec */
1096 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1097 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1098 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1099 
1100 	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1101 }
1102 
g4x_plane_fifo_size(enum plane_id plane_id,int level)1103 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1104 {
1105 	/*
1106 	 * DSPCNTR[13] supposedly controls whether the
1107 	 * primary plane can use the FIFO space otherwise
1108 	 * reserved for the sprite plane. It's not 100% clear
1109 	 * what the actual FIFO size is, but it looks like we
1110 	 * can happily set both primary and sprite watermarks
1111 	 * up to 127 cachelines. So that would seem to mean
1112 	 * that either DSPCNTR[13] doesn't do anything, or that
1113 	 * the total FIFO is >= 256 cachelines in size. Either
1114 	 * way, we don't seem to have to worry about this
1115 	 * repartitioning as the maximum watermark value the
1116 	 * register can hold for each plane is lower than the
1117 	 * minimum FIFO size.
1118 	 */
1119 	switch (plane_id) {
1120 	case PLANE_CURSOR:
1121 		return 63;
1122 	case PLANE_PRIMARY:
1123 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1124 	case PLANE_SPRITE0:
1125 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1126 	default:
1127 		MISSING_CASE(plane_id);
1128 		return 0;
1129 	}
1130 }
1131 
g4x_fbc_fifo_size(int level)1132 static int g4x_fbc_fifo_size(int level)
1133 {
1134 	switch (level) {
1135 	case G4X_WM_LEVEL_SR:
1136 		return 7;
1137 	case G4X_WM_LEVEL_HPLL:
1138 		return 15;
1139 	default:
1140 		MISSING_CASE(level);
1141 		return 0;
1142 	}
1143 }
1144 
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1145 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1146 			  const struct intel_plane_state *plane_state,
1147 			  int level)
1148 {
1149 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1150 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1151 	const struct drm_display_mode *pipe_mode =
1152 		&crtc_state->hw.pipe_mode;
1153 	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1154 	unsigned int pixel_rate, htotal, cpp, width, wm;
1155 
1156 	if (latency == 0)
1157 		return USHRT_MAX;
1158 
1159 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1160 		return 0;
1161 
1162 	cpp = plane_state->hw.fb->format->cpp[0];
1163 
1164 	/*
1165 	 * WaUse32BppForSRWM:ctg,elk
1166 	 *
1167 	 * The spec fails to list this restriction for the
1168 	 * HPLL watermark, which seems a little strange.
1169 	 * Let's use 32bpp for the HPLL watermark as well.
1170 	 */
1171 	if (plane->id == PLANE_PRIMARY &&
1172 	    level != G4X_WM_LEVEL_NORMAL)
1173 		cpp = max(cpp, 4u);
1174 
1175 	pixel_rate = crtc_state->pixel_rate;
1176 	htotal = pipe_mode->crtc_htotal;
1177 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1178 
1179 	if (plane->id == PLANE_CURSOR) {
1180 		wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1181 	} else if (plane->id == PLANE_PRIMARY &&
1182 		   level == G4X_WM_LEVEL_NORMAL) {
1183 		wm = intel_wm_method1(pixel_rate, cpp, latency);
1184 	} else {
1185 		unsigned int small, large;
1186 
1187 		small = intel_wm_method1(pixel_rate, cpp, latency);
1188 		large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
1189 
1190 		wm = min(small, large);
1191 	}
1192 
1193 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1194 			      width, cpp);
1195 
1196 	wm = DIV_ROUND_UP(wm, 64) + 2;
1197 
1198 	return min_t(unsigned int, wm, USHRT_MAX);
1199 }
1200 
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1201 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1202 				 int level, enum plane_id plane_id, u16 value)
1203 {
1204 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1205 	bool dirty = false;
1206 
1207 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1208 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1209 
1210 		dirty |= raw->plane[plane_id] != value;
1211 		raw->plane[plane_id] = value;
1212 	}
1213 
1214 	return dirty;
1215 }
1216 
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1217 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1218 			       int level, u16 value)
1219 {
1220 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1221 	bool dirty = false;
1222 
1223 	/* NORMAL level doesn't have an FBC watermark */
1224 	level = max(level, G4X_WM_LEVEL_SR);
1225 
1226 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1227 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1228 
1229 		dirty |= raw->fbc != value;
1230 		raw->fbc = value;
1231 	}
1232 
1233 	return dirty;
1234 }
1235 
1236 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1237 			      const struct intel_plane_state *plane_state,
1238 			      u32 pri_val);
1239 
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1240 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1241 				     const struct intel_plane_state *plane_state)
1242 {
1243 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1244 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1245 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1246 	enum plane_id plane_id = plane->id;
1247 	bool dirty = false;
1248 	int level;
1249 
1250 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1251 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1252 		if (plane_id == PLANE_PRIMARY)
1253 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1254 		goto out;
1255 	}
1256 
1257 	for (level = 0; level < num_levels; level++) {
1258 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1259 		int wm, max_wm;
1260 
1261 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1262 		max_wm = g4x_plane_fifo_size(plane_id, level);
1263 
1264 		if (wm > max_wm)
1265 			break;
1266 
1267 		dirty |= raw->plane[plane_id] != wm;
1268 		raw->plane[plane_id] = wm;
1269 
1270 		if (plane_id != PLANE_PRIMARY ||
1271 		    level == G4X_WM_LEVEL_NORMAL)
1272 			continue;
1273 
1274 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1275 					raw->plane[plane_id]);
1276 		max_wm = g4x_fbc_fifo_size(level);
1277 
1278 		/*
1279 		 * FBC wm is not mandatory as we
1280 		 * can always just disable its use.
1281 		 */
1282 		if (wm > max_wm)
1283 			wm = USHRT_MAX;
1284 
1285 		dirty |= raw->fbc != wm;
1286 		raw->fbc = wm;
1287 	}
1288 
1289 	/* mark watermarks as invalid */
1290 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1291 
1292 	if (plane_id == PLANE_PRIMARY)
1293 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1294 
1295  out:
1296 	if (dirty) {
1297 		drm_dbg_kms(&dev_priv->drm,
1298 			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1299 			    plane->base.name,
1300 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1301 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1302 			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1303 
1304 		if (plane_id == PLANE_PRIMARY)
1305 			drm_dbg_kms(&dev_priv->drm,
1306 				    "FBC watermarks: SR=%d, HPLL=%d\n",
1307 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1308 				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1309 	}
1310 
1311 	return dirty;
1312 }
1313 
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1314 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1315 				      enum plane_id plane_id, int level)
1316 {
1317 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1318 
1319 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1320 }
1321 
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1322 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1323 				     int level)
1324 {
1325 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1326 
1327 	if (level > dev_priv->wm.max_level)
1328 		return false;
1329 
1330 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1331 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1332 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1333 }
1334 
1335 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1336 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1337 			       struct g4x_wm_state *wm_state, int level)
1338 {
1339 	if (level <= G4X_WM_LEVEL_NORMAL) {
1340 		enum plane_id plane_id;
1341 
1342 		for_each_plane_id_on_crtc(crtc, plane_id)
1343 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1344 	}
1345 
1346 	if (level <= G4X_WM_LEVEL_SR) {
1347 		wm_state->cxsr = false;
1348 		wm_state->sr.cursor = USHRT_MAX;
1349 		wm_state->sr.plane = USHRT_MAX;
1350 		wm_state->sr.fbc = USHRT_MAX;
1351 	}
1352 
1353 	if (level <= G4X_WM_LEVEL_HPLL) {
1354 		wm_state->hpll_en = false;
1355 		wm_state->hpll.cursor = USHRT_MAX;
1356 		wm_state->hpll.plane = USHRT_MAX;
1357 		wm_state->hpll.fbc = USHRT_MAX;
1358 	}
1359 }
1360 
g4x_compute_fbc_en(const struct g4x_wm_state * wm_state,int level)1361 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1362 			       int level)
1363 {
1364 	if (level < G4X_WM_LEVEL_SR)
1365 		return false;
1366 
1367 	if (level >= G4X_WM_LEVEL_SR &&
1368 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1369 		return false;
1370 
1371 	if (level >= G4X_WM_LEVEL_HPLL &&
1372 	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1373 		return false;
1374 
1375 	return true;
1376 }
1377 
g4x_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1378 static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
1379 			       struct intel_crtc *crtc)
1380 {
1381 	struct intel_crtc_state *crtc_state =
1382 		intel_atomic_get_new_crtc_state(state, crtc);
1383 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1384 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1385 	const struct g4x_pipe_wm *raw;
1386 	const struct intel_plane_state *old_plane_state;
1387 	const struct intel_plane_state *new_plane_state;
1388 	struct intel_plane *plane;
1389 	enum plane_id plane_id;
1390 	int i, level;
1391 	unsigned int dirty = 0;
1392 
1393 	for_each_oldnew_intel_plane_in_state(state, plane,
1394 					     old_plane_state,
1395 					     new_plane_state, i) {
1396 		if (new_plane_state->hw.crtc != &crtc->base &&
1397 		    old_plane_state->hw.crtc != &crtc->base)
1398 			continue;
1399 
1400 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1401 			dirty |= BIT(plane->id);
1402 	}
1403 
1404 	if (!dirty)
1405 		return 0;
1406 
1407 	level = G4X_WM_LEVEL_NORMAL;
1408 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1409 		goto out;
1410 
1411 	raw = &crtc_state->wm.g4x.raw[level];
1412 	for_each_plane_id_on_crtc(crtc, plane_id)
1413 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1414 
1415 	level = G4X_WM_LEVEL_SR;
1416 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1417 		goto out;
1418 
1419 	raw = &crtc_state->wm.g4x.raw[level];
1420 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1421 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1422 	wm_state->sr.fbc = raw->fbc;
1423 
1424 	wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
1425 
1426 	level = G4X_WM_LEVEL_HPLL;
1427 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1428 		goto out;
1429 
1430 	raw = &crtc_state->wm.g4x.raw[level];
1431 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1432 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1433 	wm_state->hpll.fbc = raw->fbc;
1434 
1435 	wm_state->hpll_en = wm_state->cxsr;
1436 
1437 	level++;
1438 
1439  out:
1440 	if (level == G4X_WM_LEVEL_NORMAL)
1441 		return -EINVAL;
1442 
1443 	/* invalidate the higher levels */
1444 	g4x_invalidate_wms(crtc, wm_state, level);
1445 
1446 	/*
1447 	 * Determine if the FBC watermark(s) can be used. IF
1448 	 * this isn't the case we prefer to disable the FBC
1449 	 * watermark(s) rather than disable the SR/HPLL
1450 	 * level(s) entirely. 'level-1' is the highest valid
1451 	 * level here.
1452 	 */
1453 	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1454 
1455 	return 0;
1456 }
1457 
g4x_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1458 static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
1459 				       struct intel_crtc *crtc)
1460 {
1461 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1462 	struct intel_crtc_state *new_crtc_state =
1463 		intel_atomic_get_new_crtc_state(state, crtc);
1464 	const struct intel_crtc_state *old_crtc_state =
1465 		intel_atomic_get_old_crtc_state(state, crtc);
1466 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1467 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1468 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1469 	enum plane_id plane_id;
1470 
1471 	if (!new_crtc_state->hw.active ||
1472 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1473 		*intermediate = *optimal;
1474 
1475 		intermediate->cxsr = false;
1476 		intermediate->hpll_en = false;
1477 		goto out;
1478 	}
1479 
1480 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1481 		!new_crtc_state->disable_cxsr;
1482 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1483 		!new_crtc_state->disable_cxsr;
1484 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1485 
1486 	for_each_plane_id_on_crtc(crtc, plane_id) {
1487 		intermediate->wm.plane[plane_id] =
1488 			max(optimal->wm.plane[plane_id],
1489 			    active->wm.plane[plane_id]);
1490 
1491 		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1492 			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1493 	}
1494 
1495 	intermediate->sr.plane = max(optimal->sr.plane,
1496 				     active->sr.plane);
1497 	intermediate->sr.cursor = max(optimal->sr.cursor,
1498 				      active->sr.cursor);
1499 	intermediate->sr.fbc = max(optimal->sr.fbc,
1500 				   active->sr.fbc);
1501 
1502 	intermediate->hpll.plane = max(optimal->hpll.plane,
1503 				       active->hpll.plane);
1504 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1505 					active->hpll.cursor);
1506 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1507 				     active->hpll.fbc);
1508 
1509 	drm_WARN_ON(&dev_priv->drm,
1510 		    (intermediate->sr.plane >
1511 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1512 		     intermediate->sr.cursor >
1513 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1514 		    intermediate->cxsr);
1515 	drm_WARN_ON(&dev_priv->drm,
1516 		    (intermediate->sr.plane >
1517 		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1518 		     intermediate->sr.cursor >
1519 		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1520 		    intermediate->hpll_en);
1521 
1522 	drm_WARN_ON(&dev_priv->drm,
1523 		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1524 		    intermediate->fbc_en && intermediate->cxsr);
1525 	drm_WARN_ON(&dev_priv->drm,
1526 		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1527 		    intermediate->fbc_en && intermediate->hpll_en);
1528 
1529 out:
1530 	/*
1531 	 * If our intermediate WM are identical to the final WM, then we can
1532 	 * omit the post-vblank programming; only update if it's different.
1533 	 */
1534 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1535 		new_crtc_state->wm.need_postvbl_update = true;
1536 
1537 	return 0;
1538 }
1539 
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1540 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1541 			 struct g4x_wm_values *wm)
1542 {
1543 	struct intel_crtc *crtc;
1544 	int num_active_pipes = 0;
1545 
1546 	wm->cxsr = true;
1547 	wm->hpll_en = true;
1548 	wm->fbc_en = true;
1549 
1550 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1551 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1552 
1553 		if (!crtc->active)
1554 			continue;
1555 
1556 		if (!wm_state->cxsr)
1557 			wm->cxsr = false;
1558 		if (!wm_state->hpll_en)
1559 			wm->hpll_en = false;
1560 		if (!wm_state->fbc_en)
1561 			wm->fbc_en = false;
1562 
1563 		num_active_pipes++;
1564 	}
1565 
1566 	if (num_active_pipes != 1) {
1567 		wm->cxsr = false;
1568 		wm->hpll_en = false;
1569 		wm->fbc_en = false;
1570 	}
1571 
1572 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1573 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1574 		enum pipe pipe = crtc->pipe;
1575 
1576 		wm->pipe[pipe] = wm_state->wm;
1577 		if (crtc->active && wm->cxsr)
1578 			wm->sr = wm_state->sr;
1579 		if (crtc->active && wm->hpll_en)
1580 			wm->hpll = wm_state->hpll;
1581 	}
1582 }
1583 
g4x_program_watermarks(struct drm_i915_private * dev_priv)1584 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1585 {
1586 	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1587 	struct g4x_wm_values new_wm = {};
1588 
1589 	g4x_merge_wm(dev_priv, &new_wm);
1590 
1591 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1592 		return;
1593 
1594 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1595 		_intel_set_memory_cxsr(dev_priv, false);
1596 
1597 	g4x_write_wm_values(dev_priv, &new_wm);
1598 
1599 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1600 		_intel_set_memory_cxsr(dev_priv, true);
1601 
1602 	*old_wm = new_wm;
1603 }
1604 
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1605 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1606 				   struct intel_crtc *crtc)
1607 {
1608 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1609 	const struct intel_crtc_state *crtc_state =
1610 		intel_atomic_get_new_crtc_state(state, crtc);
1611 
1612 	mutex_lock(&dev_priv->wm.wm_mutex);
1613 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1614 	g4x_program_watermarks(dev_priv);
1615 	mutex_unlock(&dev_priv->wm.wm_mutex);
1616 }
1617 
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)1618 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1619 				    struct intel_crtc *crtc)
1620 {
1621 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1622 	const struct intel_crtc_state *crtc_state =
1623 		intel_atomic_get_new_crtc_state(state, crtc);
1624 
1625 	if (!crtc_state->wm.need_postvbl_update)
1626 		return;
1627 
1628 	mutex_lock(&dev_priv->wm.wm_mutex);
1629 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1630 	g4x_program_watermarks(dev_priv);
1631 	mutex_unlock(&dev_priv->wm.wm_mutex);
1632 }
1633 
1634 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1635 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1636 				   unsigned int htotal,
1637 				   unsigned int width,
1638 				   unsigned int cpp,
1639 				   unsigned int latency)
1640 {
1641 	unsigned int ret;
1642 
1643 	ret = intel_wm_method2(pixel_rate, htotal,
1644 			       width, cpp, latency);
1645 	ret = DIV_ROUND_UP(ret, 64);
1646 
1647 	return ret;
1648 }
1649 
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1650 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1651 {
1652 	/* all latencies in usec */
1653 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1654 
1655 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1656 
1657 	if (IS_CHERRYVIEW(dev_priv)) {
1658 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1659 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1660 
1661 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1662 	}
1663 }
1664 
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1665 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1666 				const struct intel_plane_state *plane_state,
1667 				int level)
1668 {
1669 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1670 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1671 	const struct drm_display_mode *pipe_mode =
1672 		&crtc_state->hw.pipe_mode;
1673 	unsigned int pixel_rate, htotal, cpp, width, wm;
1674 
1675 	if (dev_priv->wm.pri_latency[level] == 0)
1676 		return USHRT_MAX;
1677 
1678 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1679 		return 0;
1680 
1681 	cpp = plane_state->hw.fb->format->cpp[0];
1682 	pixel_rate = crtc_state->pixel_rate;
1683 	htotal = pipe_mode->crtc_htotal;
1684 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
1685 
1686 	if (plane->id == PLANE_CURSOR) {
1687 		/*
1688 		 * FIXME the formula gives values that are
1689 		 * too big for the cursor FIFO, and hence we
1690 		 * would never be able to use cursors. For
1691 		 * now just hardcode the watermark.
1692 		 */
1693 		wm = 63;
1694 	} else {
1695 		wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
1696 				    dev_priv->wm.pri_latency[level] * 10);
1697 	}
1698 
1699 	return min_t(unsigned int, wm, USHRT_MAX);
1700 }
1701 
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1702 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1703 {
1704 	return (active_planes & (BIT(PLANE_SPRITE0) |
1705 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1706 }
1707 
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1708 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1709 {
1710 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1711 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1712 	const struct g4x_pipe_wm *raw =
1713 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1714 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1715 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1716 	int num_active_planes = hweight8(active_planes);
1717 	const int fifo_size = 511;
1718 	int fifo_extra, fifo_left = fifo_size;
1719 	int sprite0_fifo_extra = 0;
1720 	unsigned int total_rate;
1721 	enum plane_id plane_id;
1722 
1723 	/*
1724 	 * When enabling sprite0 after sprite1 has already been enabled
1725 	 * we tend to get an underrun unless sprite0 already has some
1726 	 * FIFO space allcoated. Hence we always allocate at least one
1727 	 * cacheline for sprite0 whenever sprite1 is enabled.
1728 	 *
1729 	 * All other plane enable sequences appear immune to this problem.
1730 	 */
1731 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1732 		sprite0_fifo_extra = 1;
1733 
1734 	total_rate = raw->plane[PLANE_PRIMARY] +
1735 		raw->plane[PLANE_SPRITE0] +
1736 		raw->plane[PLANE_SPRITE1] +
1737 		sprite0_fifo_extra;
1738 
1739 	if (total_rate > fifo_size)
1740 		return -EINVAL;
1741 
1742 	if (total_rate == 0)
1743 		total_rate = 1;
1744 
1745 	for_each_plane_id_on_crtc(crtc, plane_id) {
1746 		unsigned int rate;
1747 
1748 		if ((active_planes & BIT(plane_id)) == 0) {
1749 			fifo_state->plane[plane_id] = 0;
1750 			continue;
1751 		}
1752 
1753 		rate = raw->plane[plane_id];
1754 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1755 		fifo_left -= fifo_state->plane[plane_id];
1756 	}
1757 
1758 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1759 	fifo_left -= sprite0_fifo_extra;
1760 
1761 	fifo_state->plane[PLANE_CURSOR] = 63;
1762 
1763 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1764 
1765 	/* spread the remainder evenly */
1766 	for_each_plane_id_on_crtc(crtc, plane_id) {
1767 		int plane_extra;
1768 
1769 		if (fifo_left == 0)
1770 			break;
1771 
1772 		if ((active_planes & BIT(plane_id)) == 0)
1773 			continue;
1774 
1775 		plane_extra = min(fifo_extra, fifo_left);
1776 		fifo_state->plane[plane_id] += plane_extra;
1777 		fifo_left -= plane_extra;
1778 	}
1779 
1780 	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1781 
1782 	/* give it all to the first plane if none are active */
1783 	if (active_planes == 0) {
1784 		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1785 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1792 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1793 			       struct vlv_wm_state *wm_state, int level)
1794 {
1795 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1796 
1797 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1798 		enum plane_id plane_id;
1799 
1800 		for_each_plane_id_on_crtc(crtc, plane_id)
1801 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1802 
1803 		wm_state->sr[level].cursor = USHRT_MAX;
1804 		wm_state->sr[level].plane = USHRT_MAX;
1805 	}
1806 }
1807 
vlv_invert_wm_value(u16 wm,u16 fifo_size)1808 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1809 {
1810 	if (wm > fifo_size)
1811 		return USHRT_MAX;
1812 	else
1813 		return fifo_size - wm;
1814 }
1815 
1816 /*
1817  * Starting from 'level' set all higher
1818  * levels to 'value' in the "raw" watermarks.
1819  */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1820 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1821 				 int level, enum plane_id plane_id, u16 value)
1822 {
1823 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1824 	int num_levels = intel_wm_num_levels(dev_priv);
1825 	bool dirty = false;
1826 
1827 	for (; level < num_levels; level++) {
1828 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1829 
1830 		dirty |= raw->plane[plane_id] != value;
1831 		raw->plane[plane_id] = value;
1832 	}
1833 
1834 	return dirty;
1835 }
1836 
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1837 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1838 				     const struct intel_plane_state *plane_state)
1839 {
1840 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1841 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1842 	enum plane_id plane_id = plane->id;
1843 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1844 	int level;
1845 	bool dirty = false;
1846 
1847 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1848 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1849 		goto out;
1850 	}
1851 
1852 	for (level = 0; level < num_levels; level++) {
1853 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1854 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1855 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1856 
1857 		if (wm > max_wm)
1858 			break;
1859 
1860 		dirty |= raw->plane[plane_id] != wm;
1861 		raw->plane[plane_id] = wm;
1862 	}
1863 
1864 	/* mark all higher levels as invalid */
1865 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1866 
1867 out:
1868 	if (dirty)
1869 		drm_dbg_kms(&dev_priv->drm,
1870 			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1871 			    plane->base.name,
1872 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1873 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1874 			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1875 
1876 	return dirty;
1877 }
1878 
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1879 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1880 				      enum plane_id plane_id, int level)
1881 {
1882 	const struct g4x_pipe_wm *raw =
1883 		&crtc_state->wm.vlv.raw[level];
1884 	const struct vlv_fifo_state *fifo_state =
1885 		&crtc_state->wm.vlv.fifo_state;
1886 
1887 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1888 }
1889 
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1890 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1891 {
1892 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1893 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1894 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1895 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1896 }
1897 
vlv_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)1898 static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
1899 			       struct intel_crtc *crtc)
1900 {
1901 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1902 	struct intel_crtc_state *crtc_state =
1903 		intel_atomic_get_new_crtc_state(state, crtc);
1904 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1905 	const struct vlv_fifo_state *fifo_state =
1906 		&crtc_state->wm.vlv.fifo_state;
1907 	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1908 	int num_active_planes = hweight8(active_planes);
1909 	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1910 	const struct intel_plane_state *old_plane_state;
1911 	const struct intel_plane_state *new_plane_state;
1912 	struct intel_plane *plane;
1913 	enum plane_id plane_id;
1914 	int level, ret, i;
1915 	unsigned int dirty = 0;
1916 
1917 	for_each_oldnew_intel_plane_in_state(state, plane,
1918 					     old_plane_state,
1919 					     new_plane_state, i) {
1920 		if (new_plane_state->hw.crtc != &crtc->base &&
1921 		    old_plane_state->hw.crtc != &crtc->base)
1922 			continue;
1923 
1924 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1925 			dirty |= BIT(plane->id);
1926 	}
1927 
1928 	/*
1929 	 * DSPARB registers may have been reset due to the
1930 	 * power well being turned off. Make sure we restore
1931 	 * them to a consistent state even if no primary/sprite
1932 	 * planes are initially active.
1933 	 */
1934 	if (needs_modeset)
1935 		crtc_state->fifo_changed = true;
1936 
1937 	if (!dirty)
1938 		return 0;
1939 
1940 	/* cursor changes don't warrant a FIFO recompute */
1941 	if (dirty & ~BIT(PLANE_CURSOR)) {
1942 		const struct intel_crtc_state *old_crtc_state =
1943 			intel_atomic_get_old_crtc_state(state, crtc);
1944 		const struct vlv_fifo_state *old_fifo_state =
1945 			&old_crtc_state->wm.vlv.fifo_state;
1946 
1947 		ret = vlv_compute_fifo(crtc_state);
1948 		if (ret)
1949 			return ret;
1950 
1951 		if (needs_modeset ||
1952 		    memcmp(old_fifo_state, fifo_state,
1953 			   sizeof(*fifo_state)) != 0)
1954 			crtc_state->fifo_changed = true;
1955 	}
1956 
1957 	/* initially allow all levels */
1958 	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1959 	/*
1960 	 * Note that enabling cxsr with no primary/sprite planes
1961 	 * enabled can wedge the pipe. Hence we only allow cxsr
1962 	 * with exactly one enabled primary/sprite plane.
1963 	 */
1964 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1965 
1966 	for (level = 0; level < wm_state->num_levels; level++) {
1967 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1968 		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1969 
1970 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1971 			break;
1972 
1973 		for_each_plane_id_on_crtc(crtc, plane_id) {
1974 			wm_state->wm[level].plane[plane_id] =
1975 				vlv_invert_wm_value(raw->plane[plane_id],
1976 						    fifo_state->plane[plane_id]);
1977 		}
1978 
1979 		wm_state->sr[level].plane =
1980 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1981 						 raw->plane[PLANE_SPRITE0],
1982 						 raw->plane[PLANE_SPRITE1]),
1983 					    sr_fifo_size);
1984 
1985 		wm_state->sr[level].cursor =
1986 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1987 					    63);
1988 	}
1989 
1990 	if (level == 0)
1991 		return -EINVAL;
1992 
1993 	/* limit to only levels we can actually handle */
1994 	wm_state->num_levels = level;
1995 
1996 	/* invalidate the higher levels */
1997 	vlv_invalidate_wms(crtc, wm_state, level);
1998 
1999 	return 0;
2000 }
2001 
2002 #define VLV_FIFO(plane, value) \
2003 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2004 
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc * crtc)2005 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2006 				   struct intel_crtc *crtc)
2007 {
2008 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2009 	struct intel_uncore *uncore = &dev_priv->uncore;
2010 	const struct intel_crtc_state *crtc_state =
2011 		intel_atomic_get_new_crtc_state(state, crtc);
2012 	const struct vlv_fifo_state *fifo_state =
2013 		&crtc_state->wm.vlv.fifo_state;
2014 	int sprite0_start, sprite1_start, fifo_size;
2015 	u32 dsparb, dsparb2, dsparb3;
2016 
2017 	if (!crtc_state->fifo_changed)
2018 		return;
2019 
2020 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2021 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2022 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2023 
2024 	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2025 	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2026 
2027 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2028 
2029 	/*
2030 	 * uncore.lock serves a double purpose here. It allows us to
2031 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2032 	 * it protects the DSPARB registers from getting clobbered by
2033 	 * parallel updates from multiple pipes.
2034 	 *
2035 	 * intel_pipe_update_start() has already disabled interrupts
2036 	 * for us, so a plain spin_lock() is sufficient here.
2037 	 */
2038 	spin_lock(&uncore->lock);
2039 
2040 	switch (crtc->pipe) {
2041 	case PIPE_A:
2042 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2043 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2044 
2045 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2046 			    VLV_FIFO(SPRITEB, 0xff));
2047 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2048 			   VLV_FIFO(SPRITEB, sprite1_start));
2049 
2050 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2051 			     VLV_FIFO(SPRITEB_HI, 0x1));
2052 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2053 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2054 
2055 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2056 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2057 		break;
2058 	case PIPE_B:
2059 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2060 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2061 
2062 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2063 			    VLV_FIFO(SPRITED, 0xff));
2064 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2065 			   VLV_FIFO(SPRITED, sprite1_start));
2066 
2067 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2068 			     VLV_FIFO(SPRITED_HI, 0xff));
2069 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2070 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2071 
2072 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2073 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2074 		break;
2075 	case PIPE_C:
2076 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2077 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2078 
2079 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2080 			     VLV_FIFO(SPRITEF, 0xff));
2081 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2082 			    VLV_FIFO(SPRITEF, sprite1_start));
2083 
2084 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2085 			     VLV_FIFO(SPRITEF_HI, 0xff));
2086 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2087 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2088 
2089 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2090 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2091 		break;
2092 	default:
2093 		break;
2094 	}
2095 
2096 	intel_uncore_posting_read_fw(uncore, DSPARB);
2097 
2098 	spin_unlock(&uncore->lock);
2099 }
2100 
2101 #undef VLV_FIFO
2102 
vlv_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2103 static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
2104 				       struct intel_crtc *crtc)
2105 {
2106 	struct intel_crtc_state *new_crtc_state =
2107 		intel_atomic_get_new_crtc_state(state, crtc);
2108 	const struct intel_crtc_state *old_crtc_state =
2109 		intel_atomic_get_old_crtc_state(state, crtc);
2110 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2111 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2112 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2113 	int level;
2114 
2115 	if (!new_crtc_state->hw.active ||
2116 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2117 		*intermediate = *optimal;
2118 
2119 		intermediate->cxsr = false;
2120 		goto out;
2121 	}
2122 
2123 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2124 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2125 		!new_crtc_state->disable_cxsr;
2126 
2127 	for (level = 0; level < intermediate->num_levels; level++) {
2128 		enum plane_id plane_id;
2129 
2130 		for_each_plane_id_on_crtc(crtc, plane_id) {
2131 			intermediate->wm[level].plane[plane_id] =
2132 				min(optimal->wm[level].plane[plane_id],
2133 				    active->wm[level].plane[plane_id]);
2134 		}
2135 
2136 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2137 						    active->sr[level].plane);
2138 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2139 						     active->sr[level].cursor);
2140 	}
2141 
2142 	vlv_invalidate_wms(crtc, intermediate, level);
2143 
2144 out:
2145 	/*
2146 	 * If our intermediate WM are identical to the final WM, then we can
2147 	 * omit the post-vblank programming; only update if it's different.
2148 	 */
2149 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2150 		new_crtc_state->wm.need_postvbl_update = true;
2151 
2152 	return 0;
2153 }
2154 
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2155 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2156 			 struct vlv_wm_values *wm)
2157 {
2158 	struct intel_crtc *crtc;
2159 	int num_active_pipes = 0;
2160 
2161 	wm->level = dev_priv->wm.max_level;
2162 	wm->cxsr = true;
2163 
2164 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2165 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2166 
2167 		if (!crtc->active)
2168 			continue;
2169 
2170 		if (!wm_state->cxsr)
2171 			wm->cxsr = false;
2172 
2173 		num_active_pipes++;
2174 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2175 	}
2176 
2177 	if (num_active_pipes != 1)
2178 		wm->cxsr = false;
2179 
2180 	if (num_active_pipes > 1)
2181 		wm->level = VLV_WM_LEVEL_PM2;
2182 
2183 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2184 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2185 		enum pipe pipe = crtc->pipe;
2186 
2187 		wm->pipe[pipe] = wm_state->wm[wm->level];
2188 		if (crtc->active && wm->cxsr)
2189 			wm->sr = wm_state->sr[wm->level];
2190 
2191 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2192 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2193 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2194 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2195 	}
2196 }
2197 
vlv_program_watermarks(struct drm_i915_private * dev_priv)2198 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2199 {
2200 	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2201 	struct vlv_wm_values new_wm = {};
2202 
2203 	vlv_merge_wm(dev_priv, &new_wm);
2204 
2205 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2206 		return;
2207 
2208 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2209 		chv_set_memory_dvfs(dev_priv, false);
2210 
2211 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2212 		chv_set_memory_pm5(dev_priv, false);
2213 
2214 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2215 		_intel_set_memory_cxsr(dev_priv, false);
2216 
2217 	vlv_write_wm_values(dev_priv, &new_wm);
2218 
2219 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2220 		_intel_set_memory_cxsr(dev_priv, true);
2221 
2222 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2223 		chv_set_memory_pm5(dev_priv, true);
2224 
2225 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2226 		chv_set_memory_dvfs(dev_priv, true);
2227 
2228 	*old_wm = new_wm;
2229 }
2230 
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2231 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2232 				   struct intel_crtc *crtc)
2233 {
2234 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2235 	const struct intel_crtc_state *crtc_state =
2236 		intel_atomic_get_new_crtc_state(state, crtc);
2237 
2238 	mutex_lock(&dev_priv->wm.wm_mutex);
2239 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2240 	vlv_program_watermarks(dev_priv);
2241 	mutex_unlock(&dev_priv->wm.wm_mutex);
2242 }
2243 
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)2244 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2245 				    struct intel_crtc *crtc)
2246 {
2247 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2248 	const struct intel_crtc_state *crtc_state =
2249 		intel_atomic_get_new_crtc_state(state, crtc);
2250 
2251 	if (!crtc_state->wm.need_postvbl_update)
2252 		return;
2253 
2254 	mutex_lock(&dev_priv->wm.wm_mutex);
2255 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2256 	vlv_program_watermarks(dev_priv);
2257 	mutex_unlock(&dev_priv->wm.wm_mutex);
2258 }
2259 
i965_update_wm(struct drm_i915_private * dev_priv)2260 static void i965_update_wm(struct drm_i915_private *dev_priv)
2261 {
2262 	struct intel_crtc *crtc;
2263 	int srwm = 1;
2264 	int cursor_sr = 16;
2265 	bool cxsr_enabled;
2266 
2267 	/* Calc sr entries for one plane configs */
2268 	crtc = single_enabled_crtc(dev_priv);
2269 	if (crtc) {
2270 		/* self-refresh has much higher latency */
2271 		static const int sr_latency_ns = 12000;
2272 		const struct drm_display_mode *pipe_mode =
2273 			&crtc->config->hw.pipe_mode;
2274 		const struct drm_framebuffer *fb =
2275 			crtc->base.primary->state->fb;
2276 		int pixel_rate = crtc->config->pixel_rate;
2277 		int htotal = pipe_mode->crtc_htotal;
2278 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2279 		int cpp = fb->format->cpp[0];
2280 		int entries;
2281 
2282 		entries = intel_wm_method2(pixel_rate, htotal,
2283 					   width, cpp, sr_latency_ns / 100);
2284 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2285 		srwm = I965_FIFO_SIZE - entries;
2286 		if (srwm < 0)
2287 			srwm = 1;
2288 		srwm &= 0x1ff;
2289 		drm_dbg_kms(&dev_priv->drm,
2290 			    "self-refresh entries: %d, wm: %d\n",
2291 			    entries, srwm);
2292 
2293 		entries = intel_wm_method2(pixel_rate, htotal,
2294 					   crtc->base.cursor->state->crtc_w, 4,
2295 					   sr_latency_ns / 100);
2296 		entries = DIV_ROUND_UP(entries,
2297 				       i965_cursor_wm_info.cacheline_size) +
2298 			i965_cursor_wm_info.guard_size;
2299 
2300 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2301 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2302 			cursor_sr = i965_cursor_wm_info.max_wm;
2303 
2304 		drm_dbg_kms(&dev_priv->drm,
2305 			    "self-refresh watermark: display plane %d "
2306 			    "cursor %d\n", srwm, cursor_sr);
2307 
2308 		cxsr_enabled = true;
2309 	} else {
2310 		cxsr_enabled = false;
2311 		/* Turn off self refresh if both pipes are enabled */
2312 		intel_set_memory_cxsr(dev_priv, false);
2313 	}
2314 
2315 	drm_dbg_kms(&dev_priv->drm,
2316 		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2317 		    srwm);
2318 
2319 	/* 965 has limitations... */
2320 	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2321 		   FW_WM(8, CURSORB) |
2322 		   FW_WM(8, PLANEB) |
2323 		   FW_WM(8, PLANEA));
2324 	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2325 		   FW_WM(8, PLANEC_OLD));
2326 	/* update cursor SR watermark */
2327 	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2328 
2329 	if (cxsr_enabled)
2330 		intel_set_memory_cxsr(dev_priv, true);
2331 }
2332 
2333 #undef FW_WM
2334 
intel_crtc_for_plane(struct drm_i915_private * i915,enum i9xx_plane_id i9xx_plane)2335 static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
2336 					       enum i9xx_plane_id i9xx_plane)
2337 {
2338 	struct intel_plane *plane;
2339 
2340 	for_each_intel_plane(&i915->drm, plane) {
2341 		if (plane->id == PLANE_PRIMARY &&
2342 		    plane->i9xx_plane == i9xx_plane)
2343 			return intel_crtc_for_pipe(i915, plane->pipe);
2344 	}
2345 
2346 	return NULL;
2347 }
2348 
i9xx_update_wm(struct drm_i915_private * dev_priv)2349 static void i9xx_update_wm(struct drm_i915_private *dev_priv)
2350 {
2351 	const struct intel_watermark_params *wm_info;
2352 	u32 fwater_lo;
2353 	u32 fwater_hi;
2354 	int cwm, srwm = 1;
2355 	int fifo_size;
2356 	int planea_wm, planeb_wm;
2357 	struct intel_crtc *crtc;
2358 
2359 	if (IS_I945GM(dev_priv))
2360 		wm_info = &i945_wm_info;
2361 	else if (DISPLAY_VER(dev_priv) != 2)
2362 		wm_info = &i915_wm_info;
2363 	else
2364 		wm_info = &i830_a_wm_info;
2365 
2366 	if (DISPLAY_VER(dev_priv) == 2)
2367 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
2368 	else
2369 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
2370 	crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
2371 	if (intel_crtc_active(crtc)) {
2372 		const struct drm_framebuffer *fb =
2373 			crtc->base.primary->state->fb;
2374 		int cpp;
2375 
2376 		if (DISPLAY_VER(dev_priv) == 2)
2377 			cpp = 4;
2378 		else
2379 			cpp = fb->format->cpp[0];
2380 
2381 		planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2382 					       wm_info, fifo_size, cpp,
2383 					       pessimal_latency_ns);
2384 	} else {
2385 		planea_wm = fifo_size - wm_info->guard_size;
2386 		if (planea_wm > (long)wm_info->max_wm)
2387 			planea_wm = wm_info->max_wm;
2388 	}
2389 
2390 	if (DISPLAY_VER(dev_priv) == 2)
2391 		wm_info = &i830_bc_wm_info;
2392 
2393 	if (DISPLAY_VER(dev_priv) == 2)
2394 		fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
2395 	else
2396 		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
2397 	crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
2398 	if (intel_crtc_active(crtc)) {
2399 		const struct drm_framebuffer *fb =
2400 			crtc->base.primary->state->fb;
2401 		int cpp;
2402 
2403 		if (DISPLAY_VER(dev_priv) == 2)
2404 			cpp = 4;
2405 		else
2406 			cpp = fb->format->cpp[0];
2407 
2408 		planeb_wm = intel_calculate_wm(crtc->config->pixel_rate,
2409 					       wm_info, fifo_size, cpp,
2410 					       pessimal_latency_ns);
2411 	} else {
2412 		planeb_wm = fifo_size - wm_info->guard_size;
2413 		if (planeb_wm > (long)wm_info->max_wm)
2414 			planeb_wm = wm_info->max_wm;
2415 	}
2416 
2417 	drm_dbg_kms(&dev_priv->drm,
2418 		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2419 
2420 	crtc = single_enabled_crtc(dev_priv);
2421 	if (IS_I915GM(dev_priv) && crtc) {
2422 		struct drm_i915_gem_object *obj;
2423 
2424 		obj = intel_fb_obj(crtc->base.primary->state->fb);
2425 
2426 		/* self-refresh seems busted with untiled */
2427 		if (!i915_gem_object_is_tiled(obj))
2428 			crtc = NULL;
2429 	}
2430 
2431 	/*
2432 	 * Overlay gets an aggressive default since video jitter is bad.
2433 	 */
2434 	cwm = 2;
2435 
2436 	/* Play safe and disable self-refresh before adjusting watermarks. */
2437 	intel_set_memory_cxsr(dev_priv, false);
2438 
2439 	/* Calc sr entries for one plane configs */
2440 	if (HAS_FW_BLC(dev_priv) && crtc) {
2441 		/* self-refresh has much higher latency */
2442 		static const int sr_latency_ns = 6000;
2443 		const struct drm_display_mode *pipe_mode =
2444 			&crtc->config->hw.pipe_mode;
2445 		const struct drm_framebuffer *fb =
2446 			crtc->base.primary->state->fb;
2447 		int pixel_rate = crtc->config->pixel_rate;
2448 		int htotal = pipe_mode->crtc_htotal;
2449 		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
2450 		int cpp;
2451 		int entries;
2452 
2453 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2454 			cpp = 4;
2455 		else
2456 			cpp = fb->format->cpp[0];
2457 
2458 		entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
2459 					   sr_latency_ns / 100);
2460 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2461 		drm_dbg_kms(&dev_priv->drm,
2462 			    "self-refresh entries: %d\n", entries);
2463 		srwm = wm_info->fifo_size - entries;
2464 		if (srwm < 0)
2465 			srwm = 1;
2466 
2467 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2468 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2469 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2470 		else
2471 			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2472 	}
2473 
2474 	drm_dbg_kms(&dev_priv->drm,
2475 		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2476 		     planea_wm, planeb_wm, cwm, srwm);
2477 
2478 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2479 	fwater_hi = (cwm & 0x1f);
2480 
2481 	/* Set request length to 8 cachelines per fetch */
2482 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2483 	fwater_hi = fwater_hi | (1 << 8);
2484 
2485 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2486 	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2487 
2488 	if (crtc)
2489 		intel_set_memory_cxsr(dev_priv, true);
2490 }
2491 
i845_update_wm(struct drm_i915_private * dev_priv)2492 static void i845_update_wm(struct drm_i915_private *dev_priv)
2493 {
2494 	struct intel_crtc *crtc;
2495 	u32 fwater_lo;
2496 	int planea_wm;
2497 
2498 	crtc = single_enabled_crtc(dev_priv);
2499 	if (crtc == NULL)
2500 		return;
2501 
2502 	planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
2503 				       &i845_wm_info,
2504 				       i845_get_fifo_size(dev_priv, PLANE_A),
2505 				       4, pessimal_latency_ns);
2506 	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2507 	fwater_lo |= (3<<8) | planea_wm;
2508 
2509 	drm_dbg_kms(&dev_priv->drm,
2510 		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2511 
2512 	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2513 }
2514 
2515 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2516 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2517 				   unsigned int cpp,
2518 				   unsigned int latency)
2519 {
2520 	unsigned int ret;
2521 
2522 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2523 	ret = DIV_ROUND_UP(ret, 64) + 2;
2524 
2525 	return ret;
2526 }
2527 
2528 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2529 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2530 				   unsigned int htotal,
2531 				   unsigned int width,
2532 				   unsigned int cpp,
2533 				   unsigned int latency)
2534 {
2535 	unsigned int ret;
2536 
2537 	ret = intel_wm_method2(pixel_rate, htotal,
2538 			       width, cpp, latency);
2539 	ret = DIV_ROUND_UP(ret, 64) + 2;
2540 
2541 	return ret;
2542 }
2543 
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2544 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2545 {
2546 	/*
2547 	 * Neither of these should be possible since this function shouldn't be
2548 	 * called if the CRTC is off or the plane is invisible.  But let's be
2549 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2550 	 * elsewhere in the driver.
2551 	 */
2552 	if (WARN_ON(!cpp))
2553 		return 0;
2554 	if (WARN_ON(!horiz_pixels))
2555 		return 0;
2556 
2557 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2558 }
2559 
2560 struct ilk_wm_maximums {
2561 	u16 pri;
2562 	u16 spr;
2563 	u16 cur;
2564 	u16 fbc;
2565 };
2566 
2567 /*
2568  * For both WM_PIPE and WM_LP.
2569  * mem_value must be in 0.1us units.
2570  */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2571 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2572 			      const struct intel_plane_state *plane_state,
2573 			      u32 mem_value, bool is_lp)
2574 {
2575 	u32 method1, method2;
2576 	int cpp;
2577 
2578 	if (mem_value == 0)
2579 		return U32_MAX;
2580 
2581 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2582 		return 0;
2583 
2584 	cpp = plane_state->hw.fb->format->cpp[0];
2585 
2586 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2587 
2588 	if (!is_lp)
2589 		return method1;
2590 
2591 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2592 				 crtc_state->hw.pipe_mode.crtc_htotal,
2593 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2594 				 cpp, mem_value);
2595 
2596 	return min(method1, method2);
2597 }
2598 
2599 /*
2600  * For both WM_PIPE and WM_LP.
2601  * mem_value must be in 0.1us units.
2602  */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2603 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2604 			      const struct intel_plane_state *plane_state,
2605 			      u32 mem_value)
2606 {
2607 	u32 method1, method2;
2608 	int cpp;
2609 
2610 	if (mem_value == 0)
2611 		return U32_MAX;
2612 
2613 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2614 		return 0;
2615 
2616 	cpp = plane_state->hw.fb->format->cpp[0];
2617 
2618 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2619 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2620 				 crtc_state->hw.pipe_mode.crtc_htotal,
2621 				 drm_rect_width(&plane_state->uapi.src) >> 16,
2622 				 cpp, mem_value);
2623 	return min(method1, method2);
2624 }
2625 
2626 /*
2627  * For both WM_PIPE and WM_LP.
2628  * mem_value must be in 0.1us units.
2629  */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2630 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2631 			      const struct intel_plane_state *plane_state,
2632 			      u32 mem_value)
2633 {
2634 	int cpp;
2635 
2636 	if (mem_value == 0)
2637 		return U32_MAX;
2638 
2639 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2640 		return 0;
2641 
2642 	cpp = plane_state->hw.fb->format->cpp[0];
2643 
2644 	return ilk_wm_method2(crtc_state->pixel_rate,
2645 			      crtc_state->hw.pipe_mode.crtc_htotal,
2646 			      drm_rect_width(&plane_state->uapi.src) >> 16,
2647 			      cpp, mem_value);
2648 }
2649 
2650 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2651 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2652 			      const struct intel_plane_state *plane_state,
2653 			      u32 pri_val)
2654 {
2655 	int cpp;
2656 
2657 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2658 		return 0;
2659 
2660 	cpp = plane_state->hw.fb->format->cpp[0];
2661 
2662 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
2663 			  cpp);
2664 }
2665 
2666 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2667 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2668 {
2669 	if (DISPLAY_VER(dev_priv) >= 8)
2670 		return 3072;
2671 	else if (DISPLAY_VER(dev_priv) >= 7)
2672 		return 768;
2673 	else
2674 		return 512;
2675 }
2676 
2677 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2678 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2679 		     int level, bool is_sprite)
2680 {
2681 	if (DISPLAY_VER(dev_priv) >= 8)
2682 		/* BDW primary/sprite plane watermarks */
2683 		return level == 0 ? 255 : 2047;
2684 	else if (DISPLAY_VER(dev_priv) >= 7)
2685 		/* IVB/HSW primary/sprite plane watermarks */
2686 		return level == 0 ? 127 : 1023;
2687 	else if (!is_sprite)
2688 		/* ILK/SNB primary plane watermarks */
2689 		return level == 0 ? 127 : 511;
2690 	else
2691 		/* ILK/SNB sprite plane watermarks */
2692 		return level == 0 ? 63 : 255;
2693 }
2694 
2695 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2696 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2697 {
2698 	if (DISPLAY_VER(dev_priv) >= 7)
2699 		return level == 0 ? 63 : 255;
2700 	else
2701 		return level == 0 ? 31 : 63;
2702 }
2703 
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2704 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2705 {
2706 	if (DISPLAY_VER(dev_priv) >= 8)
2707 		return 31;
2708 	else
2709 		return 15;
2710 }
2711 
2712 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2713 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2714 				     int level,
2715 				     const struct intel_wm_config *config,
2716 				     enum intel_ddb_partitioning ddb_partitioning,
2717 				     bool is_sprite)
2718 {
2719 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2720 
2721 	/* if sprites aren't enabled, sprites get nothing */
2722 	if (is_sprite && !config->sprites_enabled)
2723 		return 0;
2724 
2725 	/* HSW allows LP1+ watermarks even with multiple pipes */
2726 	if (level == 0 || config->num_pipes_active > 1) {
2727 		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2728 
2729 		/*
2730 		 * For some reason the non self refresh
2731 		 * FIFO size is only half of the self
2732 		 * refresh FIFO size on ILK/SNB.
2733 		 */
2734 		if (DISPLAY_VER(dev_priv) <= 6)
2735 			fifo_size /= 2;
2736 	}
2737 
2738 	if (config->sprites_enabled) {
2739 		/* level 0 is always calculated with 1:1 split */
2740 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2741 			if (is_sprite)
2742 				fifo_size *= 5;
2743 			fifo_size /= 6;
2744 		} else {
2745 			fifo_size /= 2;
2746 		}
2747 	}
2748 
2749 	/* clamp to max that the registers can hold */
2750 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2751 }
2752 
2753 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2754 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2755 				      int level,
2756 				      const struct intel_wm_config *config)
2757 {
2758 	/* HSW LP1+ watermarks w/ multiple pipes */
2759 	if (level > 0 && config->num_pipes_active > 1)
2760 		return 64;
2761 
2762 	/* otherwise just report max that registers can hold */
2763 	return ilk_cursor_wm_reg_max(dev_priv, level);
2764 }
2765 
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2766 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2767 				    int level,
2768 				    const struct intel_wm_config *config,
2769 				    enum intel_ddb_partitioning ddb_partitioning,
2770 				    struct ilk_wm_maximums *max)
2771 {
2772 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2773 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2774 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2775 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2776 }
2777 
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2778 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2779 					int level,
2780 					struct ilk_wm_maximums *max)
2781 {
2782 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2783 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2784 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2785 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2786 }
2787 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2788 static bool ilk_validate_wm_level(int level,
2789 				  const struct ilk_wm_maximums *max,
2790 				  struct intel_wm_level *result)
2791 {
2792 	bool ret;
2793 
2794 	/* already determined to be invalid? */
2795 	if (!result->enable)
2796 		return false;
2797 
2798 	result->enable = result->pri_val <= max->pri &&
2799 			 result->spr_val <= max->spr &&
2800 			 result->cur_val <= max->cur;
2801 
2802 	ret = result->enable;
2803 
2804 	/*
2805 	 * HACK until we can pre-compute everything,
2806 	 * and thus fail gracefully if LP0 watermarks
2807 	 * are exceeded...
2808 	 */
2809 	if (level == 0 && !result->enable) {
2810 		if (result->pri_val > max->pri)
2811 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2812 				      level, result->pri_val, max->pri);
2813 		if (result->spr_val > max->spr)
2814 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2815 				      level, result->spr_val, max->spr);
2816 		if (result->cur_val > max->cur)
2817 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2818 				      level, result->cur_val, max->cur);
2819 
2820 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2821 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2822 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2823 		result->enable = true;
2824 	}
2825 
2826 	return ret;
2827 }
2828 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2829 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2830 				 const struct intel_crtc *crtc,
2831 				 int level,
2832 				 struct intel_crtc_state *crtc_state,
2833 				 const struct intel_plane_state *pristate,
2834 				 const struct intel_plane_state *sprstate,
2835 				 const struct intel_plane_state *curstate,
2836 				 struct intel_wm_level *result)
2837 {
2838 	u16 pri_latency = dev_priv->wm.pri_latency[level];
2839 	u16 spr_latency = dev_priv->wm.spr_latency[level];
2840 	u16 cur_latency = dev_priv->wm.cur_latency[level];
2841 
2842 	/* WM1+ latency values stored in 0.5us units */
2843 	if (level > 0) {
2844 		pri_latency *= 5;
2845 		spr_latency *= 5;
2846 		cur_latency *= 5;
2847 	}
2848 
2849 	if (pristate) {
2850 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2851 						     pri_latency, level);
2852 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2853 	}
2854 
2855 	if (sprstate)
2856 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2857 
2858 	if (curstate)
2859 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2860 
2861 	result->enable = true;
2862 }
2863 
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[])2864 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2865 				  u16 wm[])
2866 {
2867 	struct intel_uncore *uncore = &dev_priv->uncore;
2868 
2869 	if (DISPLAY_VER(dev_priv) >= 9) {
2870 		u32 val;
2871 		int ret, i;
2872 		int level, max_level = ilk_wm_max_level(dev_priv);
2873 		int mult = IS_DG2(dev_priv) ? 2 : 1;
2874 
2875 		/* read the first set of memory latencies[0:3] */
2876 		val = 0; /* data0 to be programmed to 0 for first set */
2877 		ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY,
2878 				     &val, NULL);
2879 
2880 		if (ret) {
2881 			drm_err(&dev_priv->drm,
2882 				"SKL Mailbox read error = %d\n", ret);
2883 			return;
2884 		}
2885 
2886 		wm[0] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2887 		wm[1] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2888 				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2889 		wm[2] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2890 				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2891 		wm[3] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2892 				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2893 
2894 		/* read the second set of memory latencies[4:7] */
2895 		val = 1; /* data0 to be programmed to 1 for second set */
2896 		ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY,
2897 				     &val, NULL);
2898 		if (ret) {
2899 			drm_err(&dev_priv->drm,
2900 				"SKL Mailbox read error = %d\n", ret);
2901 			return;
2902 		}
2903 
2904 		wm[4] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2905 		wm[5] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2906 				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2907 		wm[6] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2908 				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2909 		wm[7] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2910 				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
2911 
2912 		/*
2913 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2914 		 * need to be disabled. We make sure to sanitize the values out
2915 		 * of the punit to satisfy this requirement.
2916 		 */
2917 		for (level = 1; level <= max_level; level++) {
2918 			if (wm[level] == 0) {
2919 				for (i = level + 1; i <= max_level; i++)
2920 					wm[i] = 0;
2921 
2922 				max_level = level - 1;
2923 
2924 				break;
2925 			}
2926 		}
2927 
2928 		/*
2929 		 * WaWmMemoryReadLatency
2930 		 *
2931 		 * punit doesn't take into account the read latency so we need
2932 		 * to add proper adjustement to each valid level we retrieve
2933 		 * from the punit when level 0 response data is 0us.
2934 		 */
2935 		if (wm[0] == 0) {
2936 			u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
2937 
2938 			for (level = 0; level <= max_level; level++)
2939 				wm[level] += adjust;
2940 		}
2941 
2942 		/*
2943 		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2944 		 * If we could not get dimm info enable this WA to prevent from
2945 		 * any underrun. If not able to get Dimm info assume 16GB dimm
2946 		 * to avoid any underrun.
2947 		 */
2948 		if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2949 			wm[0] += 1;
2950 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2951 		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2952 
2953 		wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
2954 		if (wm[0] == 0)
2955 			wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
2956 		wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
2957 		wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
2958 		wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
2959 		wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
2960 	} else if (DISPLAY_VER(dev_priv) >= 6) {
2961 		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2962 
2963 		wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
2964 		wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
2965 		wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
2966 		wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
2967 	} else if (DISPLAY_VER(dev_priv) >= 5) {
2968 		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2969 
2970 		/* ILK primary LP0 latency is 700 ns */
2971 		wm[0] = 7;
2972 		wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
2973 		wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
2974 	} else {
2975 		MISSING_CASE(INTEL_DEVID(dev_priv));
2976 	}
2977 }
2978 
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2979 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2980 				       u16 wm[5])
2981 {
2982 	/* ILK sprite LP0 latency is 1300 ns */
2983 	if (DISPLAY_VER(dev_priv) == 5)
2984 		wm[0] = 13;
2985 }
2986 
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2987 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2988 				       u16 wm[5])
2989 {
2990 	/* ILK cursor LP0 latency is 1300 ns */
2991 	if (DISPLAY_VER(dev_priv) == 5)
2992 		wm[0] = 13;
2993 }
2994 
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2995 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2996 {
2997 	/* how many WM levels are we expecting */
2998 	if (HAS_HW_SAGV_WM(dev_priv))
2999 		return 5;
3000 	else if (DISPLAY_VER(dev_priv) >= 9)
3001 		return 7;
3002 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3003 		return 4;
3004 	else if (DISPLAY_VER(dev_priv) >= 6)
3005 		return 3;
3006 	else
3007 		return 2;
3008 }
3009 
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[])3010 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3011 				   const char *name,
3012 				   const u16 wm[])
3013 {
3014 	int level, max_level = ilk_wm_max_level(dev_priv);
3015 
3016 	for (level = 0; level <= max_level; level++) {
3017 		unsigned int latency = wm[level];
3018 
3019 		if (latency == 0) {
3020 			drm_dbg_kms(&dev_priv->drm,
3021 				    "%s WM%d latency not provided\n",
3022 				    name, level);
3023 			continue;
3024 		}
3025 
3026 		/*
3027 		 * - latencies are in us on gen9.
3028 		 * - before then, WM1+ latency values are in 0.5us units
3029 		 */
3030 		if (DISPLAY_VER(dev_priv) >= 9)
3031 			latency *= 10;
3032 		else if (level > 0)
3033 			latency *= 5;
3034 
3035 		drm_dbg_kms(&dev_priv->drm,
3036 			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
3037 			    wm[level], latency / 10, latency % 10);
3038 	}
3039 }
3040 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)3041 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3042 				    u16 wm[5], u16 min)
3043 {
3044 	int level, max_level = ilk_wm_max_level(dev_priv);
3045 
3046 	if (wm[0] >= min)
3047 		return false;
3048 
3049 	wm[0] = max(wm[0], min);
3050 	for (level = 1; level <= max_level; level++)
3051 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3052 
3053 	return true;
3054 }
3055 
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3056 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3057 {
3058 	bool changed;
3059 
3060 	/*
3061 	 * The BIOS provided WM memory latency values are often
3062 	 * inadequate for high resolution displays. Adjust them.
3063 	 */
3064 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
3065 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
3066 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3067 
3068 	if (!changed)
3069 		return;
3070 
3071 	drm_dbg_kms(&dev_priv->drm,
3072 		    "WM latency values increased to avoid potential underruns\n");
3073 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3074 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3075 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3076 }
3077 
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3078 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3079 {
3080 	/*
3081 	 * On some SNB machines (Thinkpad X220 Tablet at least)
3082 	 * LP3 usage can cause vblank interrupts to be lost.
3083 	 * The DEIIR bit will go high but it looks like the CPU
3084 	 * never gets interrupted.
3085 	 *
3086 	 * It's not clear whether other interrupt source could
3087 	 * be affected or if this is somehow limited to vblank
3088 	 * interrupts only. To play it safe we disable LP3
3089 	 * watermarks entirely.
3090 	 */
3091 	if (dev_priv->wm.pri_latency[3] == 0 &&
3092 	    dev_priv->wm.spr_latency[3] == 0 &&
3093 	    dev_priv->wm.cur_latency[3] == 0)
3094 		return;
3095 
3096 	dev_priv->wm.pri_latency[3] = 0;
3097 	dev_priv->wm.spr_latency[3] = 0;
3098 	dev_priv->wm.cur_latency[3] = 0;
3099 
3100 	drm_dbg_kms(&dev_priv->drm,
3101 		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3102 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3103 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3104 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3105 }
3106 
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3107 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3108 {
3109 	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3110 
3111 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3112 	       sizeof(dev_priv->wm.pri_latency));
3113 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3114 	       sizeof(dev_priv->wm.pri_latency));
3115 
3116 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3117 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3118 
3119 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3120 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3121 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3122 
3123 	if (DISPLAY_VER(dev_priv) == 6) {
3124 		snb_wm_latency_quirk(dev_priv);
3125 		snb_wm_lp3_irq_quirk(dev_priv);
3126 	}
3127 }
3128 
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3129 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3130 {
3131 	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3132 	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3133 }
3134 
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3135 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3136 				 struct intel_pipe_wm *pipe_wm)
3137 {
3138 	/* LP0 watermark maximums depend on this pipe alone */
3139 	const struct intel_wm_config config = {
3140 		.num_pipes_active = 1,
3141 		.sprites_enabled = pipe_wm->sprites_enabled,
3142 		.sprites_scaled = pipe_wm->sprites_scaled,
3143 	};
3144 	struct ilk_wm_maximums max;
3145 
3146 	/* LP0 watermarks always use 1/2 DDB partitioning */
3147 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3148 
3149 	/* At least LP0 must be valid */
3150 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3151 		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3152 		return false;
3153 	}
3154 
3155 	return true;
3156 }
3157 
3158 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3159 static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
3160 			       struct intel_crtc *crtc)
3161 {
3162 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3163 	struct intel_crtc_state *crtc_state =
3164 		intel_atomic_get_new_crtc_state(state, crtc);
3165 	struct intel_pipe_wm *pipe_wm;
3166 	struct intel_plane *plane;
3167 	const struct intel_plane_state *plane_state;
3168 	const struct intel_plane_state *pristate = NULL;
3169 	const struct intel_plane_state *sprstate = NULL;
3170 	const struct intel_plane_state *curstate = NULL;
3171 	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3172 	struct ilk_wm_maximums max;
3173 
3174 	pipe_wm = &crtc_state->wm.ilk.optimal;
3175 
3176 	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3177 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3178 			pristate = plane_state;
3179 		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3180 			sprstate = plane_state;
3181 		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3182 			curstate = plane_state;
3183 	}
3184 
3185 	pipe_wm->pipe_enabled = crtc_state->hw.active;
3186 	pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
3187 	pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
3188 
3189 	usable_level = max_level;
3190 
3191 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3192 	if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3193 		usable_level = 1;
3194 
3195 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3196 	if (pipe_wm->sprites_scaled)
3197 		usable_level = 0;
3198 
3199 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3200 	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3201 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3202 
3203 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3204 		return -EINVAL;
3205 
3206 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3207 
3208 	for (level = 1; level <= usable_level; level++) {
3209 		struct intel_wm_level *wm = &pipe_wm->wm[level];
3210 
3211 		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3212 				     pristate, sprstate, curstate, wm);
3213 
3214 		/*
3215 		 * Disable any watermark level that exceeds the
3216 		 * register maximums since such watermarks are
3217 		 * always invalid.
3218 		 */
3219 		if (!ilk_validate_wm_level(level, &max, wm)) {
3220 			memset(wm, 0, sizeof(*wm));
3221 			break;
3222 		}
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 /*
3229  * Build a set of 'intermediate' watermark values that satisfy both the old
3230  * state and the new state.  These can be programmed to the hardware
3231  * immediately.
3232  */
ilk_compute_intermediate_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)3233 static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
3234 				       struct intel_crtc *crtc)
3235 {
3236 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3237 	struct intel_crtc_state *new_crtc_state =
3238 		intel_atomic_get_new_crtc_state(state, crtc);
3239 	const struct intel_crtc_state *old_crtc_state =
3240 		intel_atomic_get_old_crtc_state(state, crtc);
3241 	struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
3242 	const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
3243 	int level, max_level = ilk_wm_max_level(dev_priv);
3244 
3245 	/*
3246 	 * Start with the final, target watermarks, then combine with the
3247 	 * currently active watermarks to get values that are safe both before
3248 	 * and after the vblank.
3249 	 */
3250 	*a = new_crtc_state->wm.ilk.optimal;
3251 	if (!new_crtc_state->hw.active ||
3252 	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
3253 	    state->skip_intermediate_wm)
3254 		return 0;
3255 
3256 	a->pipe_enabled |= b->pipe_enabled;
3257 	a->sprites_enabled |= b->sprites_enabled;
3258 	a->sprites_scaled |= b->sprites_scaled;
3259 
3260 	for (level = 0; level <= max_level; level++) {
3261 		struct intel_wm_level *a_wm = &a->wm[level];
3262 		const struct intel_wm_level *b_wm = &b->wm[level];
3263 
3264 		a_wm->enable &= b_wm->enable;
3265 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3266 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3267 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3268 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3269 	}
3270 
3271 	/*
3272 	 * We need to make sure that these merged watermark values are
3273 	 * actually a valid configuration themselves.  If they're not,
3274 	 * there's no safe way to transition from the old state to
3275 	 * the new state, so we need to fail the atomic transaction.
3276 	 */
3277 	if (!ilk_validate_pipe_wm(dev_priv, a))
3278 		return -EINVAL;
3279 
3280 	/*
3281 	 * If our intermediate WM are identical to the final WM, then we can
3282 	 * omit the post-vblank programming; only update if it's different.
3283 	 */
3284 	if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
3285 		new_crtc_state->wm.need_postvbl_update = true;
3286 
3287 	return 0;
3288 }
3289 
3290 /*
3291  * Merge the watermarks from all active pipes for a specific level.
3292  */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3293 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3294 			       int level,
3295 			       struct intel_wm_level *ret_wm)
3296 {
3297 	const struct intel_crtc *crtc;
3298 
3299 	ret_wm->enable = true;
3300 
3301 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3302 		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
3303 		const struct intel_wm_level *wm = &active->wm[level];
3304 
3305 		if (!active->pipe_enabled)
3306 			continue;
3307 
3308 		/*
3309 		 * The watermark values may have been used in the past,
3310 		 * so we must maintain them in the registers for some
3311 		 * time even if the level is now disabled.
3312 		 */
3313 		if (!wm->enable)
3314 			ret_wm->enable = false;
3315 
3316 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3317 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3318 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3319 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3320 	}
3321 }
3322 
3323 /*
3324  * Merge all low power watermarks for all active pipes.
3325  */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3326 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3327 			 const struct intel_wm_config *config,
3328 			 const struct ilk_wm_maximums *max,
3329 			 struct intel_pipe_wm *merged)
3330 {
3331 	int level, max_level = ilk_wm_max_level(dev_priv);
3332 	int last_enabled_level = max_level;
3333 
3334 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3335 	if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3336 	    config->num_pipes_active > 1)
3337 		last_enabled_level = 0;
3338 
3339 	/* ILK: FBC WM must be disabled always */
3340 	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
3341 
3342 	/* merge each WM1+ level */
3343 	for (level = 1; level <= max_level; level++) {
3344 		struct intel_wm_level *wm = &merged->wm[level];
3345 
3346 		ilk_merge_wm_level(dev_priv, level, wm);
3347 
3348 		if (level > last_enabled_level)
3349 			wm->enable = false;
3350 		else if (!ilk_validate_wm_level(level, max, wm))
3351 			/* make sure all following levels get disabled */
3352 			last_enabled_level = level - 1;
3353 
3354 		/*
3355 		 * The spec says it is preferred to disable
3356 		 * FBC WMs instead of disabling a WM level.
3357 		 */
3358 		if (wm->fbc_val > max->fbc) {
3359 			if (wm->enable)
3360 				merged->fbc_wm_enabled = false;
3361 			wm->fbc_val = 0;
3362 		}
3363 	}
3364 
3365 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3366 	if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
3367 	    dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) {
3368 		for (level = 2; level <= max_level; level++) {
3369 			struct intel_wm_level *wm = &merged->wm[level];
3370 
3371 			wm->enable = false;
3372 		}
3373 	}
3374 }
3375 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3376 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3377 {
3378 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3379 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3380 }
3381 
3382 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3383 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3384 				      int level)
3385 {
3386 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3387 		return 2 * level;
3388 	else
3389 		return dev_priv->wm.pri_latency[level];
3390 }
3391 
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3392 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3393 				   const struct intel_pipe_wm *merged,
3394 				   enum intel_ddb_partitioning partitioning,
3395 				   struct ilk_wm_values *results)
3396 {
3397 	struct intel_crtc *crtc;
3398 	int level, wm_lp;
3399 
3400 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3401 	results->partitioning = partitioning;
3402 
3403 	/* LP1+ register values */
3404 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3405 		const struct intel_wm_level *r;
3406 
3407 		level = ilk_wm_lp_to_level(wm_lp, merged);
3408 
3409 		r = &merged->wm[level];
3410 
3411 		/*
3412 		 * Maintain the watermark values even if the level is
3413 		 * disabled. Doing otherwise could cause underruns.
3414 		 */
3415 		results->wm_lp[wm_lp - 1] =
3416 			WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
3417 			WM_LP_PRIMARY(r->pri_val) |
3418 			WM_LP_CURSOR(r->cur_val);
3419 
3420 		if (r->enable)
3421 			results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
3422 
3423 		if (DISPLAY_VER(dev_priv) >= 8)
3424 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
3425 		else
3426 			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
3427 
3428 		results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
3429 
3430 		/*
3431 		 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
3432 		 * level is disabled. Doing otherwise could cause underruns.
3433 		 */
3434 		if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
3435 			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3436 			results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
3437 		}
3438 	}
3439 
3440 	/* LP0 register values */
3441 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3442 		enum pipe pipe = crtc->pipe;
3443 		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
3444 		const struct intel_wm_level *r = &pipe_wm->wm[0];
3445 
3446 		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3447 			continue;
3448 
3449 		results->wm_pipe[pipe] =
3450 			WM0_PIPE_PRIMARY(r->pri_val) |
3451 			WM0_PIPE_SPRITE(r->spr_val) |
3452 			WM0_PIPE_CURSOR(r->cur_val);
3453 	}
3454 }
3455 
3456 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3457  * case both are at the same level. Prefer r1 in case they're the same. */
3458 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3459 ilk_find_best_result(struct drm_i915_private *dev_priv,
3460 		     struct intel_pipe_wm *r1,
3461 		     struct intel_pipe_wm *r2)
3462 {
3463 	int level, max_level = ilk_wm_max_level(dev_priv);
3464 	int level1 = 0, level2 = 0;
3465 
3466 	for (level = 1; level <= max_level; level++) {
3467 		if (r1->wm[level].enable)
3468 			level1 = level;
3469 		if (r2->wm[level].enable)
3470 			level2 = level;
3471 	}
3472 
3473 	if (level1 == level2) {
3474 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3475 			return r2;
3476 		else
3477 			return r1;
3478 	} else if (level1 > level2) {
3479 		return r1;
3480 	} else {
3481 		return r2;
3482 	}
3483 }
3484 
3485 /* dirty bits used to track which watermarks need changes */
3486 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3487 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3488 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3489 #define WM_DIRTY_FBC (1 << 24)
3490 #define WM_DIRTY_DDB (1 << 25)
3491 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3492 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3493 					 const struct ilk_wm_values *old,
3494 					 const struct ilk_wm_values *new)
3495 {
3496 	unsigned int dirty = 0;
3497 	enum pipe pipe;
3498 	int wm_lp;
3499 
3500 	for_each_pipe(dev_priv, pipe) {
3501 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3502 			dirty |= WM_DIRTY_PIPE(pipe);
3503 			/* Must disable LP1+ watermarks too */
3504 			dirty |= WM_DIRTY_LP_ALL;
3505 		}
3506 	}
3507 
3508 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3509 		dirty |= WM_DIRTY_FBC;
3510 		/* Must disable LP1+ watermarks too */
3511 		dirty |= WM_DIRTY_LP_ALL;
3512 	}
3513 
3514 	if (old->partitioning != new->partitioning) {
3515 		dirty |= WM_DIRTY_DDB;
3516 		/* Must disable LP1+ watermarks too */
3517 		dirty |= WM_DIRTY_LP_ALL;
3518 	}
3519 
3520 	/* LP1+ watermarks already deemed dirty, no need to continue */
3521 	if (dirty & WM_DIRTY_LP_ALL)
3522 		return dirty;
3523 
3524 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3525 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3526 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3527 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3528 			break;
3529 	}
3530 
3531 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3532 	for (; wm_lp <= 3; wm_lp++)
3533 		dirty |= WM_DIRTY_LP(wm_lp);
3534 
3535 	return dirty;
3536 }
3537 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3538 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3539 			       unsigned int dirty)
3540 {
3541 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3542 	bool changed = false;
3543 
3544 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
3545 		previous->wm_lp[2] &= ~WM_LP_ENABLE;
3546 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3547 		changed = true;
3548 	}
3549 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
3550 		previous->wm_lp[1] &= ~WM_LP_ENABLE;
3551 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3552 		changed = true;
3553 	}
3554 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
3555 		previous->wm_lp[0] &= ~WM_LP_ENABLE;
3556 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3557 		changed = true;
3558 	}
3559 
3560 	/*
3561 	 * Don't touch WM_LP_SPRITE_ENABLE here.
3562 	 * Doing so could cause underruns.
3563 	 */
3564 
3565 	return changed;
3566 }
3567 
3568 /*
3569  * The spec says we shouldn't write when we don't need, because every write
3570  * causes WMs to be re-evaluated, expending some power.
3571  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3572 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3573 				struct ilk_wm_values *results)
3574 {
3575 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3576 	unsigned int dirty;
3577 	u32 val;
3578 
3579 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3580 	if (!dirty)
3581 		return;
3582 
3583 	_ilk_disable_lp_wm(dev_priv, dirty);
3584 
3585 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3586 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3587 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3588 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3589 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3590 		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3591 
3592 	if (dirty & WM_DIRTY_DDB) {
3593 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3594 			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3595 			if (results->partitioning == INTEL_DDB_PART_1_2)
3596 				val &= ~WM_MISC_DATA_PARTITION_5_6;
3597 			else
3598 				val |= WM_MISC_DATA_PARTITION_5_6;
3599 			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3600 		} else {
3601 			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3602 			if (results->partitioning == INTEL_DDB_PART_1_2)
3603 				val &= ~DISP_DATA_PARTITION_5_6;
3604 			else
3605 				val |= DISP_DATA_PARTITION_5_6;
3606 			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3607 		}
3608 	}
3609 
3610 	if (dirty & WM_DIRTY_FBC) {
3611 		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3612 		if (results->enable_fbc_wm)
3613 			val &= ~DISP_FBC_WM_DIS;
3614 		else
3615 			val |= DISP_FBC_WM_DIS;
3616 		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3617 	}
3618 
3619 	if (dirty & WM_DIRTY_LP(1) &&
3620 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3621 		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3622 
3623 	if (DISPLAY_VER(dev_priv) >= 7) {
3624 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3625 			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3626 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3627 			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3628 	}
3629 
3630 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3631 		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3632 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3633 		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3634 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3635 		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3636 
3637 	dev_priv->wm.hw = *results;
3638 }
3639 
ilk_disable_lp_wm(struct drm_i915_private * dev_priv)3640 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3641 {
3642 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3643 }
3644 
intel_enabled_dbuf_slices_mask(struct drm_i915_private * dev_priv)3645 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3646 {
3647 	u8 enabled_slices = 0;
3648 	enum dbuf_slice slice;
3649 
3650 	for_each_dbuf_slice(dev_priv, slice) {
3651 		if (intel_uncore_read(&dev_priv->uncore,
3652 				      DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
3653 			enabled_slices |= BIT(slice);
3654 	}
3655 
3656 	return enabled_slices;
3657 }
3658 
3659 /*
3660  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3661  * so assume we'll always need it in order to avoid underruns.
3662  */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3663 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3664 {
3665 	return DISPLAY_VER(dev_priv) == 9;
3666 }
3667 
3668 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3669 intel_has_sagv(struct drm_i915_private *dev_priv)
3670 {
3671 	return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
3672 		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3673 }
3674 
3675 static u32
intel_sagv_block_time(struct drm_i915_private * dev_priv)3676 intel_sagv_block_time(struct drm_i915_private *dev_priv)
3677 {
3678 	if (DISPLAY_VER(dev_priv) >= 12) {
3679 		u32 val = 0;
3680 		int ret;
3681 
3682 		ret = snb_pcode_read(dev_priv,
3683 				     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3684 				     &val, NULL);
3685 		if (ret) {
3686 			drm_dbg_kms(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3687 			return 0;
3688 		}
3689 
3690 		return val;
3691 	} else if (DISPLAY_VER(dev_priv) == 11) {
3692 		return 10;
3693 	} else if (DISPLAY_VER(dev_priv) == 9 && !IS_LP(dev_priv)) {
3694 		return 30;
3695 	} else {
3696 		return 0;
3697 	}
3698 }
3699 
intel_sagv_init(struct drm_i915_private * i915)3700 static void intel_sagv_init(struct drm_i915_private *i915)
3701 {
3702 	if (!intel_has_sagv(i915))
3703 		i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
3704 
3705 	/*
3706 	 * Probe to see if we have working SAGV control.
3707 	 * For icl+ this was already determined by intel_bw_init_hw().
3708 	 */
3709 	if (DISPLAY_VER(i915) < 11)
3710 		skl_sagv_disable(i915);
3711 
3712 	drm_WARN_ON(&i915->drm, i915->sagv_status == I915_SAGV_UNKNOWN);
3713 
3714 	i915->sagv_block_time_us = intel_sagv_block_time(i915);
3715 
3716 	drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
3717 		    str_yes_no(intel_has_sagv(i915)), i915->sagv_block_time_us);
3718 
3719 	/* avoid overflow when adding with wm0 latency/etc. */
3720 	if (drm_WARN(&i915->drm, i915->sagv_block_time_us > U16_MAX,
3721 		     "Excessive SAGV block time %u, ignoring\n",
3722 		     i915->sagv_block_time_us))
3723 		i915->sagv_block_time_us = 0;
3724 
3725 	if (!intel_has_sagv(i915))
3726 		i915->sagv_block_time_us = 0;
3727 }
3728 
3729 /*
3730  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3731  * depending on power and performance requirements. The display engine access
3732  * to system memory is blocked during the adjustment time. Because of the
3733  * blocking time, having this enabled can cause full system hangs and/or pipe
3734  * underruns if we don't meet all of the following requirements:
3735  *
3736  *  - <= 1 pipe enabled
3737  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3738  *  - We're not using an interlaced display configuration
3739  */
skl_sagv_enable(struct drm_i915_private * dev_priv)3740 static void skl_sagv_enable(struct drm_i915_private *dev_priv)
3741 {
3742 	int ret;
3743 
3744 	if (!intel_has_sagv(dev_priv))
3745 		return;
3746 
3747 	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3748 		return;
3749 
3750 	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3751 	ret = snb_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3752 			      GEN9_SAGV_ENABLE);
3753 
3754 	/* We don't need to wait for SAGV when enabling */
3755 
3756 	/*
3757 	 * Some skl systems, pre-release machines in particular,
3758 	 * don't actually have SAGV.
3759 	 */
3760 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3761 		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3762 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3763 		return;
3764 	} else if (ret < 0) {
3765 		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3766 		return;
3767 	}
3768 
3769 	dev_priv->sagv_status = I915_SAGV_ENABLED;
3770 }
3771 
skl_sagv_disable(struct drm_i915_private * dev_priv)3772 static void skl_sagv_disable(struct drm_i915_private *dev_priv)
3773 {
3774 	int ret;
3775 
3776 	if (!intel_has_sagv(dev_priv))
3777 		return;
3778 
3779 	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3780 		return;
3781 
3782 	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3783 	/* bspec says to keep retrying for at least 1 ms */
3784 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3785 				GEN9_SAGV_DISABLE,
3786 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3787 				1);
3788 	/*
3789 	 * Some skl systems, pre-release machines in particular,
3790 	 * don't actually have SAGV.
3791 	 */
3792 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3793 		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3794 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3795 		return;
3796 	} else if (ret < 0) {
3797 		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3798 		return;
3799 	}
3800 
3801 	dev_priv->sagv_status = I915_SAGV_DISABLED;
3802 }
3803 
skl_sagv_pre_plane_update(struct intel_atomic_state * state)3804 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
3805 {
3806 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3807 	const struct intel_bw_state *new_bw_state =
3808 		intel_atomic_get_new_bw_state(state);
3809 
3810 	if (!new_bw_state)
3811 		return;
3812 
3813 	if (!intel_can_enable_sagv(i915, new_bw_state))
3814 		skl_sagv_disable(i915);
3815 }
3816 
skl_sagv_post_plane_update(struct intel_atomic_state * state)3817 static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
3818 {
3819 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3820 	const struct intel_bw_state *new_bw_state =
3821 		intel_atomic_get_new_bw_state(state);
3822 
3823 	if (!new_bw_state)
3824 		return;
3825 
3826 	if (intel_can_enable_sagv(i915, new_bw_state))
3827 		skl_sagv_enable(i915);
3828 }
3829 
icl_sagv_pre_plane_update(struct intel_atomic_state * state)3830 static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
3831 {
3832 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3833 	const struct intel_bw_state *old_bw_state =
3834 		intel_atomic_get_old_bw_state(state);
3835 	const struct intel_bw_state *new_bw_state =
3836 		intel_atomic_get_new_bw_state(state);
3837 	u16 old_mask, new_mask;
3838 
3839 	if (!new_bw_state)
3840 		return;
3841 
3842 	old_mask = old_bw_state->qgv_points_mask;
3843 	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3844 
3845 	if (old_mask == new_mask)
3846 		return;
3847 
3848 	WARN_ON(!new_bw_state->base.changed);
3849 
3850 	drm_dbg_kms(&dev_priv->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
3851 		    old_mask, new_mask);
3852 
3853 	/*
3854 	 * Restrict required qgv points before updating the configuration.
3855 	 * According to BSpec we can't mask and unmask qgv points at the same
3856 	 * time. Also masking should be done before updating the configuration
3857 	 * and unmasking afterwards.
3858 	 */
3859 	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3860 }
3861 
icl_sagv_post_plane_update(struct intel_atomic_state * state)3862 static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
3863 {
3864 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3865 	const struct intel_bw_state *old_bw_state =
3866 		intel_atomic_get_old_bw_state(state);
3867 	const struct intel_bw_state *new_bw_state =
3868 		intel_atomic_get_new_bw_state(state);
3869 	u16 old_mask, new_mask;
3870 
3871 	if (!new_bw_state)
3872 		return;
3873 
3874 	old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3875 	new_mask = new_bw_state->qgv_points_mask;
3876 
3877 	if (old_mask == new_mask)
3878 		return;
3879 
3880 	WARN_ON(!new_bw_state->base.changed);
3881 
3882 	drm_dbg_kms(&dev_priv->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
3883 		    old_mask, new_mask);
3884 
3885 	/*
3886 	 * Allow required qgv points after updating the configuration.
3887 	 * According to BSpec we can't mask and unmask qgv points at the same
3888 	 * time. Also masking should be done before updating the configuration
3889 	 * and unmasking afterwards.
3890 	 */
3891 	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3892 }
3893 
intel_sagv_pre_plane_update(struct intel_atomic_state * state)3894 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3895 {
3896 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3897 
3898 	/*
3899 	 * Just return if we can't control SAGV or don't have it.
3900 	 * This is different from situation when we have SAGV but just can't
3901 	 * afford it due to DBuf limitation - in case if SAGV is completely
3902 	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3903 	 * as it will throw an error. So have to check it here.
3904 	 */
3905 	if (!intel_has_sagv(i915))
3906 		return;
3907 
3908 	if (DISPLAY_VER(i915) >= 11)
3909 		icl_sagv_pre_plane_update(state);
3910 	else
3911 		skl_sagv_pre_plane_update(state);
3912 }
3913 
intel_sagv_post_plane_update(struct intel_atomic_state * state)3914 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3915 {
3916 	struct drm_i915_private *i915 = to_i915(state->base.dev);
3917 
3918 	/*
3919 	 * Just return if we can't control SAGV or don't have it.
3920 	 * This is different from situation when we have SAGV but just can't
3921 	 * afford it due to DBuf limitation - in case if SAGV is completely
3922 	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3923 	 * as it will throw an error. So have to check it here.
3924 	 */
3925 	if (!intel_has_sagv(i915))
3926 		return;
3927 
3928 	if (DISPLAY_VER(i915) >= 11)
3929 		icl_sagv_post_plane_update(state);
3930 	else
3931 		skl_sagv_post_plane_update(state);
3932 }
3933 
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3934 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3935 {
3936 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3937 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3938 	enum plane_id plane_id;
3939 	int max_level = INT_MAX;
3940 
3941 	if (!intel_has_sagv(dev_priv))
3942 		return false;
3943 
3944 	if (!crtc_state->hw.active)
3945 		return true;
3946 
3947 	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3948 		return false;
3949 
3950 	for_each_plane_id_on_crtc(crtc, plane_id) {
3951 		const struct skl_plane_wm *wm =
3952 			&crtc_state->wm.skl.optimal.planes[plane_id];
3953 		int level;
3954 
3955 		/* Skip this plane if it's not enabled */
3956 		if (!wm->wm[0].enable)
3957 			continue;
3958 
3959 		/* Find the highest enabled wm level for this plane */
3960 		for (level = ilk_wm_max_level(dev_priv);
3961 		     !wm->wm[level].enable; --level)
3962 		     { }
3963 
3964 		/* Highest common enabled wm level for all planes */
3965 		max_level = min(level, max_level);
3966 	}
3967 
3968 	/* No enabled planes? */
3969 	if (max_level == INT_MAX)
3970 		return true;
3971 
3972 	for_each_plane_id_on_crtc(crtc, plane_id) {
3973 		const struct skl_plane_wm *wm =
3974 			&crtc_state->wm.skl.optimal.planes[plane_id];
3975 
3976 		/*
3977 		 * All enabled planes must have enabled a common wm level that
3978 		 * can tolerate memory latencies higher than sagv_block_time_us
3979 		 */
3980 		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
3981 			return false;
3982 	}
3983 
3984 	return true;
3985 }
3986 
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)3987 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3988 {
3989 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3990 	enum plane_id plane_id;
3991 
3992 	if (!crtc_state->hw.active)
3993 		return true;
3994 
3995 	for_each_plane_id_on_crtc(crtc, plane_id) {
3996 		const struct skl_plane_wm *wm =
3997 			&crtc_state->wm.skl.optimal.planes[plane_id];
3998 
3999 		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
4000 			return false;
4001 	}
4002 
4003 	return true;
4004 }
4005 
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)4006 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
4007 {
4008 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4009 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4010 
4011 	if (DISPLAY_VER(dev_priv) >= 12)
4012 		return tgl_crtc_can_enable_sagv(crtc_state);
4013 	else
4014 		return skl_crtc_can_enable_sagv(crtc_state);
4015 }
4016 
intel_can_enable_sagv(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)4017 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
4018 			   const struct intel_bw_state *bw_state)
4019 {
4020 	if (DISPLAY_VER(dev_priv) < 11 &&
4021 	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
4022 		return false;
4023 
4024 	return bw_state->pipe_sagv_reject == 0;
4025 }
4026 
intel_compute_sagv_mask(struct intel_atomic_state * state)4027 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
4028 {
4029 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4030 	int ret;
4031 	struct intel_crtc *crtc;
4032 	struct intel_crtc_state *new_crtc_state;
4033 	struct intel_bw_state *new_bw_state = NULL;
4034 	const struct intel_bw_state *old_bw_state = NULL;
4035 	int i;
4036 
4037 	for_each_new_intel_crtc_in_state(state, crtc,
4038 					 new_crtc_state, i) {
4039 		new_bw_state = intel_atomic_get_bw_state(state);
4040 		if (IS_ERR(new_bw_state))
4041 			return PTR_ERR(new_bw_state);
4042 
4043 		old_bw_state = intel_atomic_get_old_bw_state(state);
4044 
4045 		if (intel_crtc_can_enable_sagv(new_crtc_state))
4046 			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
4047 		else
4048 			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
4049 	}
4050 
4051 	if (!new_bw_state)
4052 		return 0;
4053 
4054 	new_bw_state->active_pipes =
4055 		intel_calc_active_pipes(state, old_bw_state->active_pipes);
4056 
4057 	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4058 		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4059 		if (ret)
4060 			return ret;
4061 	}
4062 
4063 	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4064 	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4065 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4066 		if (ret)
4067 			return ret;
4068 	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4069 		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4070 		if (ret)
4071 			return ret;
4072 	}
4073 
4074 	for_each_new_intel_crtc_in_state(state, crtc,
4075 					 new_crtc_state, i) {
4076 		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4077 
4078 		/*
4079 		 * We store use_sagv_wm in the crtc state rather than relying on
4080 		 * that bw state since we have no convenient way to get at the
4081 		 * latter from the plane commit hooks (especially in the legacy
4082 		 * cursor case)
4083 		 */
4084 		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
4085 			DISPLAY_VER(dev_priv) >= 12 &&
4086 			intel_can_enable_sagv(dev_priv, new_bw_state);
4087 	}
4088 
4089 	return 0;
4090 }
4091 
skl_ddb_entry_init(struct skl_ddb_entry * entry,u16 start,u16 end)4092 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
4093 			      u16 start, u16 end)
4094 {
4095 	entry->start = start;
4096 	entry->end = end;
4097 
4098 	return end;
4099 }
4100 
intel_dbuf_slice_size(struct drm_i915_private * dev_priv)4101 static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
4102 {
4103 	return INTEL_INFO(dev_priv)->dbuf.size /
4104 		hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
4105 }
4106 
4107 static void
skl_ddb_entry_for_slices(struct drm_i915_private * dev_priv,u8 slice_mask,struct skl_ddb_entry * ddb)4108 skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
4109 			 struct skl_ddb_entry *ddb)
4110 {
4111 	int slice_size = intel_dbuf_slice_size(dev_priv);
4112 
4113 	if (!slice_mask) {
4114 		ddb->start = 0;
4115 		ddb->end = 0;
4116 		return;
4117 	}
4118 
4119 	ddb->start = (ffs(slice_mask) - 1) * slice_size;
4120 	ddb->end = fls(slice_mask) * slice_size;
4121 
4122 	WARN_ON(ddb->start >= ddb->end);
4123 	WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
4124 }
4125 
mbus_ddb_offset(struct drm_i915_private * i915,u8 slice_mask)4126 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
4127 {
4128 	struct skl_ddb_entry ddb;
4129 
4130 	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
4131 		slice_mask = BIT(DBUF_S1);
4132 	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
4133 		slice_mask = BIT(DBUF_S3);
4134 
4135 	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
4136 
4137 	return ddb.start;
4138 }
4139 
skl_ddb_dbuf_slice_mask(struct drm_i915_private * dev_priv,const struct skl_ddb_entry * entry)4140 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4141 			    const struct skl_ddb_entry *entry)
4142 {
4143 	int slice_size = intel_dbuf_slice_size(dev_priv);
4144 	enum dbuf_slice start_slice, end_slice;
4145 	u8 slice_mask = 0;
4146 
4147 	if (!skl_ddb_entry_size(entry))
4148 		return 0;
4149 
4150 	start_slice = entry->start / slice_size;
4151 	end_slice = (entry->end - 1) / slice_size;
4152 
4153 	/*
4154 	 * Per plane DDB entry can in a really worst case be on multiple slices
4155 	 * but single entry is anyway contigious.
4156 	 */
4157 	while (start_slice <= end_slice) {
4158 		slice_mask |= BIT(start_slice);
4159 		start_slice++;
4160 	}
4161 
4162 	return slice_mask;
4163 }
4164 
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)4165 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
4166 {
4167 	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
4168 	int hdisplay, vdisplay;
4169 
4170 	if (!crtc_state->hw.active)
4171 		return 0;
4172 
4173 	/*
4174 	 * Watermark/ddb requirement highly depends upon width of the
4175 	 * framebuffer, So instead of allocating DDB equally among pipes
4176 	 * distribute DDB based on resolution/width of the display.
4177 	 */
4178 	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
4179 
4180 	return hdisplay;
4181 }
4182 
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)4183 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
4184 				    enum pipe for_pipe,
4185 				    unsigned int *weight_start,
4186 				    unsigned int *weight_end,
4187 				    unsigned int *weight_total)
4188 {
4189 	struct drm_i915_private *dev_priv =
4190 		to_i915(dbuf_state->base.state->base.dev);
4191 	enum pipe pipe;
4192 
4193 	*weight_start = 0;
4194 	*weight_end = 0;
4195 	*weight_total = 0;
4196 
4197 	for_each_pipe(dev_priv, pipe) {
4198 		int weight = dbuf_state->weight[pipe];
4199 
4200 		/*
4201 		 * Do not account pipes using other slice sets
4202 		 * luckily as of current BSpec slice sets do not partially
4203 		 * intersect(pipes share either same one slice or same slice set
4204 		 * i.e no partial intersection), so it is enough to check for
4205 		 * equality for now.
4206 		 */
4207 		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4208 			continue;
4209 
4210 		*weight_total += weight;
4211 		if (pipe < for_pipe) {
4212 			*weight_start += weight;
4213 			*weight_end += weight;
4214 		} else if (pipe == for_pipe) {
4215 			*weight_end += weight;
4216 		}
4217 	}
4218 }
4219 
4220 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)4221 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4222 {
4223 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4224 	unsigned int weight_total, weight_start, weight_end;
4225 	const struct intel_dbuf_state *old_dbuf_state =
4226 		intel_atomic_get_old_dbuf_state(state);
4227 	struct intel_dbuf_state *new_dbuf_state =
4228 		intel_atomic_get_new_dbuf_state(state);
4229 	struct intel_crtc_state *crtc_state;
4230 	struct skl_ddb_entry ddb_slices;
4231 	enum pipe pipe = crtc->pipe;
4232 	unsigned int mbus_offset = 0;
4233 	u32 ddb_range_size;
4234 	u32 dbuf_slice_mask;
4235 	u32 start, end;
4236 	int ret;
4237 
4238 	if (new_dbuf_state->weight[pipe] == 0) {
4239 		skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
4240 		goto out;
4241 	}
4242 
4243 	dbuf_slice_mask = new_dbuf_state->slices[pipe];
4244 
4245 	skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
4246 	mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
4247 	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
4248 
4249 	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
4250 				&weight_start, &weight_end, &weight_total);
4251 
4252 	start = ddb_range_size * weight_start / weight_total;
4253 	end = ddb_range_size * weight_end / weight_total;
4254 
4255 	skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
4256 			   ddb_slices.start - mbus_offset + start,
4257 			   ddb_slices.start - mbus_offset + end);
4258 
4259 out:
4260 	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
4261 	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
4262 				&new_dbuf_state->ddb[pipe]))
4263 		return 0;
4264 
4265 	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
4266 	if (ret)
4267 		return ret;
4268 
4269 	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
4270 	if (IS_ERR(crtc_state))
4271 		return PTR_ERR(crtc_state);
4272 
4273 	/*
4274 	 * Used for checking overlaps, so we need absolute
4275 	 * offsets instead of MBUS relative offsets.
4276 	 */
4277 	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
4278 	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
4279 
4280 	drm_dbg_kms(&dev_priv->drm,
4281 		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4282 		    crtc->base.base.id, crtc->base.name,
4283 		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
4284 		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
4285 		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
4286 		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4287 
4288 	return 0;
4289 }
4290 
4291 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4292 				 int width, const struct drm_format_info *format,
4293 				 u64 modifier, unsigned int rotation,
4294 				 u32 plane_pixel_rate, struct skl_wm_params *wp,
4295 				 int color_plane);
4296 
4297 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4298 				 struct intel_plane *plane,
4299 				 int level,
4300 				 unsigned int latency,
4301 				 const struct skl_wm_params *wp,
4302 				 const struct skl_wm_level *result_prev,
4303 				 struct skl_wm_level *result /* out */);
4304 
4305 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)4306 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4307 		      int num_active)
4308 {
4309 	struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
4310 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4311 	int level, max_level = ilk_wm_max_level(dev_priv);
4312 	struct skl_wm_level wm = {};
4313 	int ret, min_ddb_alloc = 0;
4314 	struct skl_wm_params wp;
4315 
4316 	ret = skl_compute_wm_params(crtc_state, 256,
4317 				    drm_format_info(DRM_FORMAT_ARGB8888),
4318 				    DRM_FORMAT_MOD_LINEAR,
4319 				    DRM_MODE_ROTATE_0,
4320 				    crtc_state->pixel_rate, &wp, 0);
4321 	drm_WARN_ON(&dev_priv->drm, ret);
4322 
4323 	for (level = 0; level <= max_level; level++) {
4324 		unsigned int latency = dev_priv->wm.skl_latency[level];
4325 
4326 		skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
4327 		if (wm.min_ddb_alloc == U16_MAX)
4328 			break;
4329 
4330 		min_ddb_alloc = wm.min_ddb_alloc;
4331 	}
4332 
4333 	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4334 }
4335 
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)4336 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
4337 {
4338 	skl_ddb_entry_init(entry,
4339 			   REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
4340 			   REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
4341 	if (entry->end)
4342 		entry->end++;
4343 }
4344 
4345 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)4346 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4347 			   const enum pipe pipe,
4348 			   const enum plane_id plane_id,
4349 			   struct skl_ddb_entry *ddb,
4350 			   struct skl_ddb_entry *ddb_y)
4351 {
4352 	u32 val;
4353 
4354 	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
4355 	if (plane_id == PLANE_CURSOR) {
4356 		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4357 		skl_ddb_entry_init_from_hw(ddb, val);
4358 		return;
4359 	}
4360 
4361 	val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4362 	skl_ddb_entry_init_from_hw(ddb, val);
4363 
4364 	if (DISPLAY_VER(dev_priv) >= 11)
4365 		return;
4366 
4367 	val = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4368 	skl_ddb_entry_init_from_hw(ddb_y, val);
4369 }
4370 
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)4371 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4372 			       struct skl_ddb_entry *ddb,
4373 			       struct skl_ddb_entry *ddb_y)
4374 {
4375 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4376 	enum intel_display_power_domain power_domain;
4377 	enum pipe pipe = crtc->pipe;
4378 	intel_wakeref_t wakeref;
4379 	enum plane_id plane_id;
4380 
4381 	power_domain = POWER_DOMAIN_PIPE(pipe);
4382 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4383 	if (!wakeref)
4384 		return;
4385 
4386 	for_each_plane_id_on_crtc(crtc, plane_id)
4387 		skl_ddb_get_hw_plane_state(dev_priv, pipe,
4388 					   plane_id,
4389 					   &ddb[plane_id],
4390 					   &ddb_y[plane_id]);
4391 
4392 	intel_display_power_put(dev_priv, power_domain, wakeref);
4393 }
4394 
4395 struct dbuf_slice_conf_entry {
4396 	u8 active_pipes;
4397 	u8 dbuf_mask[I915_MAX_PIPES];
4398 	bool join_mbus;
4399 };
4400 
4401 /*
4402  * Table taken from Bspec 12716
4403  * Pipes do have some preferred DBuf slice affinity,
4404  * plus there are some hardcoded requirements on how
4405  * those should be distributed for multipipe scenarios.
4406  * For more DBuf slices algorithm can get even more messy
4407  * and less readable, so decided to use a table almost
4408  * as is from BSpec itself - that way it is at least easier
4409  * to compare, change and check.
4410  */
4411 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4412 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4413 {
4414 	{
4415 		.active_pipes = BIT(PIPE_A),
4416 		.dbuf_mask = {
4417 			[PIPE_A] = BIT(DBUF_S1),
4418 		},
4419 	},
4420 	{
4421 		.active_pipes = BIT(PIPE_B),
4422 		.dbuf_mask = {
4423 			[PIPE_B] = BIT(DBUF_S1),
4424 		},
4425 	},
4426 	{
4427 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4428 		.dbuf_mask = {
4429 			[PIPE_A] = BIT(DBUF_S1),
4430 			[PIPE_B] = BIT(DBUF_S2),
4431 		},
4432 	},
4433 	{
4434 		.active_pipes = BIT(PIPE_C),
4435 		.dbuf_mask = {
4436 			[PIPE_C] = BIT(DBUF_S2),
4437 		},
4438 	},
4439 	{
4440 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4441 		.dbuf_mask = {
4442 			[PIPE_A] = BIT(DBUF_S1),
4443 			[PIPE_C] = BIT(DBUF_S2),
4444 		},
4445 	},
4446 	{
4447 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4448 		.dbuf_mask = {
4449 			[PIPE_B] = BIT(DBUF_S1),
4450 			[PIPE_C] = BIT(DBUF_S2),
4451 		},
4452 	},
4453 	{
4454 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4455 		.dbuf_mask = {
4456 			[PIPE_A] = BIT(DBUF_S1),
4457 			[PIPE_B] = BIT(DBUF_S1),
4458 			[PIPE_C] = BIT(DBUF_S2),
4459 		},
4460 	},
4461 	{}
4462 };
4463 
4464 /*
4465  * Table taken from Bspec 49255
4466  * Pipes do have some preferred DBuf slice affinity,
4467  * plus there are some hardcoded requirements on how
4468  * those should be distributed for multipipe scenarios.
4469  * For more DBuf slices algorithm can get even more messy
4470  * and less readable, so decided to use a table almost
4471  * as is from BSpec itself - that way it is at least easier
4472  * to compare, change and check.
4473  */
4474 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4475 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4476 {
4477 	{
4478 		.active_pipes = BIT(PIPE_A),
4479 		.dbuf_mask = {
4480 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4481 		},
4482 	},
4483 	{
4484 		.active_pipes = BIT(PIPE_B),
4485 		.dbuf_mask = {
4486 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4487 		},
4488 	},
4489 	{
4490 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4491 		.dbuf_mask = {
4492 			[PIPE_A] = BIT(DBUF_S2),
4493 			[PIPE_B] = BIT(DBUF_S1),
4494 		},
4495 	},
4496 	{
4497 		.active_pipes = BIT(PIPE_C),
4498 		.dbuf_mask = {
4499 			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4500 		},
4501 	},
4502 	{
4503 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4504 		.dbuf_mask = {
4505 			[PIPE_A] = BIT(DBUF_S1),
4506 			[PIPE_C] = BIT(DBUF_S2),
4507 		},
4508 	},
4509 	{
4510 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4511 		.dbuf_mask = {
4512 			[PIPE_B] = BIT(DBUF_S1),
4513 			[PIPE_C] = BIT(DBUF_S2),
4514 		},
4515 	},
4516 	{
4517 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4518 		.dbuf_mask = {
4519 			[PIPE_A] = BIT(DBUF_S1),
4520 			[PIPE_B] = BIT(DBUF_S1),
4521 			[PIPE_C] = BIT(DBUF_S2),
4522 		},
4523 	},
4524 	{
4525 		.active_pipes = BIT(PIPE_D),
4526 		.dbuf_mask = {
4527 			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4528 		},
4529 	},
4530 	{
4531 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4532 		.dbuf_mask = {
4533 			[PIPE_A] = BIT(DBUF_S1),
4534 			[PIPE_D] = BIT(DBUF_S2),
4535 		},
4536 	},
4537 	{
4538 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4539 		.dbuf_mask = {
4540 			[PIPE_B] = BIT(DBUF_S1),
4541 			[PIPE_D] = BIT(DBUF_S2),
4542 		},
4543 	},
4544 	{
4545 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4546 		.dbuf_mask = {
4547 			[PIPE_A] = BIT(DBUF_S1),
4548 			[PIPE_B] = BIT(DBUF_S1),
4549 			[PIPE_D] = BIT(DBUF_S2),
4550 		},
4551 	},
4552 	{
4553 		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4554 		.dbuf_mask = {
4555 			[PIPE_C] = BIT(DBUF_S1),
4556 			[PIPE_D] = BIT(DBUF_S2),
4557 		},
4558 	},
4559 	{
4560 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4561 		.dbuf_mask = {
4562 			[PIPE_A] = BIT(DBUF_S1),
4563 			[PIPE_C] = BIT(DBUF_S2),
4564 			[PIPE_D] = BIT(DBUF_S2),
4565 		},
4566 	},
4567 	{
4568 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4569 		.dbuf_mask = {
4570 			[PIPE_B] = BIT(DBUF_S1),
4571 			[PIPE_C] = BIT(DBUF_S2),
4572 			[PIPE_D] = BIT(DBUF_S2),
4573 		},
4574 	},
4575 	{
4576 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4577 		.dbuf_mask = {
4578 			[PIPE_A] = BIT(DBUF_S1),
4579 			[PIPE_B] = BIT(DBUF_S1),
4580 			[PIPE_C] = BIT(DBUF_S2),
4581 			[PIPE_D] = BIT(DBUF_S2),
4582 		},
4583 	},
4584 	{}
4585 };
4586 
4587 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
4588 	{
4589 		.active_pipes = BIT(PIPE_A),
4590 		.dbuf_mask = {
4591 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4592 		},
4593 	},
4594 	{
4595 		.active_pipes = BIT(PIPE_B),
4596 		.dbuf_mask = {
4597 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4598 		},
4599 	},
4600 	{
4601 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4602 		.dbuf_mask = {
4603 			[PIPE_A] = BIT(DBUF_S1),
4604 			[PIPE_B] = BIT(DBUF_S2),
4605 		},
4606 	},
4607 	{
4608 		.active_pipes = BIT(PIPE_C),
4609 		.dbuf_mask = {
4610 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4611 		},
4612 	},
4613 	{
4614 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4615 		.dbuf_mask = {
4616 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4617 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4618 		},
4619 	},
4620 	{
4621 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4622 		.dbuf_mask = {
4623 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4624 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4625 		},
4626 	},
4627 	{
4628 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4629 		.dbuf_mask = {
4630 			[PIPE_A] = BIT(DBUF_S1),
4631 			[PIPE_B] = BIT(DBUF_S2),
4632 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4633 		},
4634 	},
4635 	{
4636 		.active_pipes = BIT(PIPE_D),
4637 		.dbuf_mask = {
4638 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4639 		},
4640 	},
4641 	{
4642 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4643 		.dbuf_mask = {
4644 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4645 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4646 		},
4647 	},
4648 	{
4649 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4650 		.dbuf_mask = {
4651 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4652 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4653 		},
4654 	},
4655 	{
4656 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4657 		.dbuf_mask = {
4658 			[PIPE_A] = BIT(DBUF_S1),
4659 			[PIPE_B] = BIT(DBUF_S2),
4660 			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
4661 		},
4662 	},
4663 	{
4664 		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4665 		.dbuf_mask = {
4666 			[PIPE_C] = BIT(DBUF_S3),
4667 			[PIPE_D] = BIT(DBUF_S4),
4668 		},
4669 	},
4670 	{
4671 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4672 		.dbuf_mask = {
4673 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4674 			[PIPE_C] = BIT(DBUF_S3),
4675 			[PIPE_D] = BIT(DBUF_S4),
4676 		},
4677 	},
4678 	{
4679 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4680 		.dbuf_mask = {
4681 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4682 			[PIPE_C] = BIT(DBUF_S3),
4683 			[PIPE_D] = BIT(DBUF_S4),
4684 		},
4685 	},
4686 	{
4687 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4688 		.dbuf_mask = {
4689 			[PIPE_A] = BIT(DBUF_S1),
4690 			[PIPE_B] = BIT(DBUF_S2),
4691 			[PIPE_C] = BIT(DBUF_S3),
4692 			[PIPE_D] = BIT(DBUF_S4),
4693 		},
4694 	},
4695 	{}
4696 };
4697 
4698 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
4699 	/*
4700 	 * Keep the join_mbus cases first so check_mbus_joined()
4701 	 * will prefer them over the !join_mbus cases.
4702 	 */
4703 	{
4704 		.active_pipes = BIT(PIPE_A),
4705 		.dbuf_mask = {
4706 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4707 		},
4708 		.join_mbus = true,
4709 	},
4710 	{
4711 		.active_pipes = BIT(PIPE_B),
4712 		.dbuf_mask = {
4713 			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
4714 		},
4715 		.join_mbus = true,
4716 	},
4717 	{
4718 		.active_pipes = BIT(PIPE_A),
4719 		.dbuf_mask = {
4720 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4721 		},
4722 		.join_mbus = false,
4723 	},
4724 	{
4725 		.active_pipes = BIT(PIPE_B),
4726 		.dbuf_mask = {
4727 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4728 		},
4729 		.join_mbus = false,
4730 	},
4731 	{
4732 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4733 		.dbuf_mask = {
4734 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4735 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4736 		},
4737 	},
4738 	{
4739 		.active_pipes = BIT(PIPE_C),
4740 		.dbuf_mask = {
4741 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4742 		},
4743 	},
4744 	{
4745 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4746 		.dbuf_mask = {
4747 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4748 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4749 		},
4750 	},
4751 	{
4752 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4753 		.dbuf_mask = {
4754 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4755 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4756 		},
4757 	},
4758 	{
4759 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4760 		.dbuf_mask = {
4761 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4762 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4763 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4764 		},
4765 	},
4766 	{
4767 		.active_pipes = BIT(PIPE_D),
4768 		.dbuf_mask = {
4769 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4770 		},
4771 	},
4772 	{
4773 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4774 		.dbuf_mask = {
4775 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4776 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4777 		},
4778 	},
4779 	{
4780 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4781 		.dbuf_mask = {
4782 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4783 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4784 		},
4785 	},
4786 	{
4787 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4788 		.dbuf_mask = {
4789 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4790 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4791 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4792 		},
4793 	},
4794 	{
4795 		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4796 		.dbuf_mask = {
4797 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4798 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4799 		},
4800 	},
4801 	{
4802 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4803 		.dbuf_mask = {
4804 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4805 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4806 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4807 		},
4808 	},
4809 	{
4810 		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4811 		.dbuf_mask = {
4812 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4813 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4814 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4815 		},
4816 	},
4817 	{
4818 		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4819 		.dbuf_mask = {
4820 			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4821 			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
4822 			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
4823 			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
4824 		},
4825 	},
4826 	{}
4827 
4828 };
4829 
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)4830 static bool check_mbus_joined(u8 active_pipes,
4831 			      const struct dbuf_slice_conf_entry *dbuf_slices)
4832 {
4833 	int i;
4834 
4835 	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
4836 		if (dbuf_slices[i].active_pipes == active_pipes)
4837 			return dbuf_slices[i].join_mbus;
4838 	}
4839 	return false;
4840 }
4841 
adlp_check_mbus_joined(u8 active_pipes)4842 static bool adlp_check_mbus_joined(u8 active_pipes)
4843 {
4844 	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
4845 }
4846 
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus,const struct dbuf_slice_conf_entry * dbuf_slices)4847 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
4848 			      const struct dbuf_slice_conf_entry *dbuf_slices)
4849 {
4850 	int i;
4851 
4852 	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
4853 		if (dbuf_slices[i].active_pipes == active_pipes &&
4854 		    dbuf_slices[i].join_mbus == join_mbus)
4855 			return dbuf_slices[i].dbuf_mask[pipe];
4856 	}
4857 	return 0;
4858 }
4859 
4860 /*
4861  * This function finds an entry with same enabled pipe configuration and
4862  * returns correspondent DBuf slice mask as stated in BSpec for particular
4863  * platform.
4864  */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4865 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4866 {
4867 	/*
4868 	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4869 	 * required calculating "pipe ratio" in order to determine
4870 	 * if one or two slices can be used for single pipe configurations
4871 	 * as additional constraint to the existing table.
4872 	 * However based on recent info, it should be not "pipe ratio"
4873 	 * but rather ratio between pixel_rate and cdclk with additional
4874 	 * constants, so for now we are using only table until this is
4875 	 * clarified. Also this is the reason why crtc_state param is
4876 	 * still here - we will need it once those additional constraints
4877 	 * pop up.
4878 	 */
4879 	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4880 				   icl_allowed_dbufs);
4881 }
4882 
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4883 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4884 {
4885 	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4886 				   tgl_allowed_dbufs);
4887 }
4888 
adlp_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4889 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4890 {
4891 	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4892 				   adlp_allowed_dbufs);
4893 }
4894 
dg2_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)4895 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
4896 {
4897 	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
4898 				   dg2_allowed_dbufs);
4899 }
4900 
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes,bool join_mbus)4901 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
4902 {
4903 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4904 	enum pipe pipe = crtc->pipe;
4905 
4906 	if (IS_DG2(dev_priv))
4907 		return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4908 	else if (IS_ALDERLAKE_P(dev_priv))
4909 		return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4910 	else if (DISPLAY_VER(dev_priv) == 12)
4911 		return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4912 	else if (DISPLAY_VER(dev_priv) == 11)
4913 		return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
4914 	/*
4915 	 * For anything else just return one slice yet.
4916 	 * Should be extended for other platforms.
4917 	 */
4918 	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4919 }
4920 
4921 static bool
use_minimal_wm0_only(const struct intel_crtc_state * crtc_state,struct intel_plane * plane)4922 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
4923 		     struct intel_plane *plane)
4924 {
4925 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
4926 
4927 	return DISPLAY_VER(i915) >= 13 &&
4928 	       crtc_state->uapi.async_flip &&
4929 	       plane->async_flip;
4930 }
4931 
4932 static u64
skl_total_relative_data_rate(const struct intel_crtc_state * crtc_state)4933 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
4934 {
4935 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4936 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
4937 	enum plane_id plane_id;
4938 	u64 data_rate = 0;
4939 
4940 	for_each_plane_id_on_crtc(crtc, plane_id) {
4941 		if (plane_id == PLANE_CURSOR)
4942 			continue;
4943 
4944 		data_rate += crtc_state->rel_data_rate[plane_id];
4945 
4946 		if (DISPLAY_VER(i915) < 11)
4947 			data_rate += crtc_state->rel_data_rate_y[plane_id];
4948 	}
4949 
4950 	return data_rate;
4951 }
4952 
4953 const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)4954 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
4955 		   enum plane_id plane_id,
4956 		   int level)
4957 {
4958 	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4959 
4960 	if (level == 0 && pipe_wm->use_sagv_wm)
4961 		return &wm->sagv.wm0;
4962 
4963 	return &wm->wm[level];
4964 }
4965 
4966 const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)4967 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
4968 		   enum plane_id plane_id)
4969 {
4970 	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4971 
4972 	if (pipe_wm->use_sagv_wm)
4973 		return &wm->sagv.trans_wm;
4974 
4975 	return &wm->trans_wm;
4976 }
4977 
4978 /*
4979  * We only disable the watermarks for each plane if
4980  * they exceed the ddb allocation of said plane. This
4981  * is done so that we don't end up touching cursor
4982  * watermarks needlessly when some other plane reduces
4983  * our max possible watermark level.
4984  *
4985  * Bspec has this to say about the PLANE_WM enable bit:
4986  * "All the watermarks at this level for all enabled
4987  *  planes must be enabled before the level will be used."
4988  * So this is actually safe to do.
4989  */
4990 static void
skl_check_wm_level(struct skl_wm_level * wm,const struct skl_ddb_entry * ddb)4991 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
4992 {
4993 	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
4994 		memset(wm, 0, sizeof(*wm));
4995 }
4996 
4997 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,const struct skl_ddb_entry * ddb_y,const struct skl_ddb_entry * ddb)4998 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
4999 			const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
5000 {
5001 	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
5002 	    uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
5003 		memset(wm, 0, sizeof(*wm));
5004 		memset(uv_wm, 0, sizeof(*uv_wm));
5005 	}
5006 }
5007 
icl_need_wm1_wa(struct drm_i915_private * i915,enum plane_id plane_id)5008 static bool icl_need_wm1_wa(struct drm_i915_private *i915,
5009 			    enum plane_id plane_id)
5010 {
5011 	/*
5012 	 * Wa_1408961008:icl, ehl
5013 	 * Wa_14012656716:tgl, adl
5014 	 * Underruns with WM1+ disabled
5015 	 */
5016 	return DISPLAY_VER(i915) == 11 ||
5017 	       (IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR);
5018 }
5019 
5020 struct skl_plane_ddb_iter {
5021 	u64 data_rate;
5022 	u16 start, size;
5023 };
5024 
5025 static void
skl_allocate_plane_ddb(struct skl_plane_ddb_iter * iter,struct skl_ddb_entry * ddb,const struct skl_wm_level * wm,u64 data_rate)5026 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
5027 		       struct skl_ddb_entry *ddb,
5028 		       const struct skl_wm_level *wm,
5029 		       u64 data_rate)
5030 {
5031 	u16 size, extra = 0;
5032 
5033 	if (data_rate) {
5034 		extra = min_t(u16, iter->size,
5035 			      DIV64_U64_ROUND_UP(iter->size * data_rate,
5036 						 iter->data_rate));
5037 		iter->size -= extra;
5038 		iter->data_rate -= data_rate;
5039 	}
5040 
5041 	/*
5042 	 * Keep ddb entry of all disabled planes explicitly zeroed
5043 	 * to avoid skl_ddb_add_affected_planes() adding them to
5044 	 * the state when other planes change their allocations.
5045 	 */
5046 	size = wm->min_ddb_alloc + extra;
5047 	if (size)
5048 		iter->start = skl_ddb_entry_init(ddb, iter->start,
5049 						 iter->start + size);
5050 }
5051 
5052 static int
skl_crtc_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)5053 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
5054 			    struct intel_crtc *crtc)
5055 {
5056 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5057 	struct intel_crtc_state *crtc_state =
5058 		intel_atomic_get_new_crtc_state(state, crtc);
5059 	const struct intel_dbuf_state *dbuf_state =
5060 		intel_atomic_get_new_dbuf_state(state);
5061 	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
5062 	int num_active = hweight8(dbuf_state->active_pipes);
5063 	struct skl_plane_ddb_iter iter;
5064 	enum plane_id plane_id;
5065 	u16 cursor_size;
5066 	u32 blocks;
5067 	int level;
5068 
5069 	/* Clear the partitioning for disabled planes. */
5070 	memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
5071 	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
5072 
5073 	if (!crtc_state->hw.active)
5074 		return 0;
5075 
5076 	iter.start = alloc->start;
5077 	iter.size = skl_ddb_entry_size(alloc);
5078 	if (iter.size == 0)
5079 		return 0;
5080 
5081 	/* Allocate fixed number of blocks for cursor. */
5082 	cursor_size = skl_cursor_allocation(crtc_state, num_active);
5083 	iter.size -= cursor_size;
5084 	skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
5085 			   alloc->end - cursor_size, alloc->end);
5086 
5087 	iter.data_rate = skl_total_relative_data_rate(crtc_state);
5088 
5089 	/*
5090 	 * Find the highest watermark level for which we can satisfy the block
5091 	 * requirement of active planes.
5092 	 */
5093 	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
5094 		blocks = 0;
5095 		for_each_plane_id_on_crtc(crtc, plane_id) {
5096 			const struct skl_plane_wm *wm =
5097 				&crtc_state->wm.skl.optimal.planes[plane_id];
5098 
5099 			if (plane_id == PLANE_CURSOR) {
5100 				const struct skl_ddb_entry *ddb =
5101 					&crtc_state->wm.skl.plane_ddb[plane_id];
5102 
5103 				if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
5104 					drm_WARN_ON(&dev_priv->drm,
5105 						    wm->wm[level].min_ddb_alloc != U16_MAX);
5106 					blocks = U32_MAX;
5107 					break;
5108 				}
5109 				continue;
5110 			}
5111 
5112 			blocks += wm->wm[level].min_ddb_alloc;
5113 			blocks += wm->uv_wm[level].min_ddb_alloc;
5114 		}
5115 
5116 		if (blocks <= iter.size) {
5117 			iter.size -= blocks;
5118 			break;
5119 		}
5120 	}
5121 
5122 	if (level < 0) {
5123 		drm_dbg_kms(&dev_priv->drm,
5124 			    "Requested display configuration exceeds system DDB limitations");
5125 		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
5126 			    blocks, iter.size);
5127 		return -EINVAL;
5128 	}
5129 
5130 	/* avoid the WARN later when we don't allocate any extra DDB */
5131 	if (iter.data_rate == 0)
5132 		iter.size = 0;
5133 
5134 	/*
5135 	 * Grant each plane the blocks it requires at the highest achievable
5136 	 * watermark level, plus an extra share of the leftover blocks
5137 	 * proportional to its relative data rate.
5138 	 */
5139 	for_each_plane_id_on_crtc(crtc, plane_id) {
5140 		struct skl_ddb_entry *ddb =
5141 			&crtc_state->wm.skl.plane_ddb[plane_id];
5142 		struct skl_ddb_entry *ddb_y =
5143 			&crtc_state->wm.skl.plane_ddb_y[plane_id];
5144 		const struct skl_plane_wm *wm =
5145 			&crtc_state->wm.skl.optimal.planes[plane_id];
5146 
5147 		if (plane_id == PLANE_CURSOR)
5148 			continue;
5149 
5150 		if (DISPLAY_VER(dev_priv) < 11 &&
5151 		    crtc_state->nv12_planes & BIT(plane_id)) {
5152 			skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
5153 					       crtc_state->rel_data_rate_y[plane_id]);
5154 			skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
5155 					       crtc_state->rel_data_rate[plane_id]);
5156 		} else {
5157 			skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
5158 					       crtc_state->rel_data_rate[plane_id]);
5159 		}
5160 	}
5161 	drm_WARN_ON(&dev_priv->drm, iter.size != 0 || iter.data_rate != 0);
5162 
5163 	/*
5164 	 * When we calculated watermark values we didn't know how high
5165 	 * of a level we'd actually be able to hit, so we just marked
5166 	 * all levels as "enabled."  Go back now and disable the ones
5167 	 * that aren't actually possible.
5168 	 */
5169 	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5170 		for_each_plane_id_on_crtc(crtc, plane_id) {
5171 			const struct skl_ddb_entry *ddb =
5172 				&crtc_state->wm.skl.plane_ddb[plane_id];
5173 			const struct skl_ddb_entry *ddb_y =
5174 				&crtc_state->wm.skl.plane_ddb_y[plane_id];
5175 			struct skl_plane_wm *wm =
5176 				&crtc_state->wm.skl.optimal.planes[plane_id];
5177 
5178 			if (DISPLAY_VER(dev_priv) < 11 &&
5179 			    crtc_state->nv12_planes & BIT(plane_id))
5180 				skl_check_nv12_wm_level(&wm->wm[level],
5181 							&wm->uv_wm[level],
5182 							ddb_y, ddb);
5183 			else
5184 				skl_check_wm_level(&wm->wm[level], ddb);
5185 
5186 			if (icl_need_wm1_wa(dev_priv, plane_id) &&
5187 			    level == 1 && wm->wm[0].enable) {
5188 				wm->wm[level].blocks = wm->wm[0].blocks;
5189 				wm->wm[level].lines = wm->wm[0].lines;
5190 				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5191 			}
5192 		}
5193 	}
5194 
5195 	/*
5196 	 * Go back and disable the transition and SAGV watermarks
5197 	 * if it turns out we don't have enough DDB blocks for them.
5198 	 */
5199 	for_each_plane_id_on_crtc(crtc, plane_id) {
5200 		const struct skl_ddb_entry *ddb =
5201 			&crtc_state->wm.skl.plane_ddb[plane_id];
5202 		const struct skl_ddb_entry *ddb_y =
5203 			&crtc_state->wm.skl.plane_ddb_y[plane_id];
5204 		struct skl_plane_wm *wm =
5205 			&crtc_state->wm.skl.optimal.planes[plane_id];
5206 
5207 		if (DISPLAY_VER(dev_priv) < 11 &&
5208 		    crtc_state->nv12_planes & BIT(plane_id)) {
5209 			skl_check_wm_level(&wm->trans_wm, ddb_y);
5210 		} else {
5211 			WARN_ON(skl_ddb_entry_size(ddb_y));
5212 
5213 			skl_check_wm_level(&wm->trans_wm, ddb);
5214 		}
5215 
5216 		skl_check_wm_level(&wm->sagv.wm0, ddb);
5217 		skl_check_wm_level(&wm->sagv.trans_wm, ddb);
5218 	}
5219 
5220 	return 0;
5221 }
5222 
5223 /*
5224  * The max latency should be 257 (max the punit can code is 255 and we add 2us
5225  * for the read latency) and cpp should always be <= 8, so that
5226  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5227  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5228 */
5229 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)5230 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5231 	       u8 cpp, u32 latency, u32 dbuf_block_size)
5232 {
5233 	u32 wm_intermediate_val;
5234 	uint_fixed_16_16_t ret;
5235 
5236 	if (latency == 0)
5237 		return FP_16_16_MAX;
5238 
5239 	wm_intermediate_val = latency * pixel_rate * cpp;
5240 	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5241 
5242 	if (DISPLAY_VER(dev_priv) >= 10)
5243 		ret = add_fixed16_u32(ret, 1);
5244 
5245 	return ret;
5246 }
5247 
5248 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)5249 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5250 	       uint_fixed_16_16_t plane_blocks_per_line)
5251 {
5252 	u32 wm_intermediate_val;
5253 	uint_fixed_16_16_t ret;
5254 
5255 	if (latency == 0)
5256 		return FP_16_16_MAX;
5257 
5258 	wm_intermediate_val = latency * pixel_rate;
5259 	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5260 					   pipe_htotal * 1000);
5261 	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5262 	return ret;
5263 }
5264 
5265 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)5266 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5267 {
5268 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5269 	u32 pixel_rate;
5270 	u32 crtc_htotal;
5271 	uint_fixed_16_16_t linetime_us;
5272 
5273 	if (!crtc_state->hw.active)
5274 		return u32_to_fixed16(0);
5275 
5276 	pixel_rate = crtc_state->pixel_rate;
5277 
5278 	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5279 		return u32_to_fixed16(0);
5280 
5281 	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5282 	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5283 
5284 	return linetime_us;
5285 }
5286 
5287 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)5288 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5289 		      int width, const struct drm_format_info *format,
5290 		      u64 modifier, unsigned int rotation,
5291 		      u32 plane_pixel_rate, struct skl_wm_params *wp,
5292 		      int color_plane)
5293 {
5294 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5295 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5296 	u32 interm_pbpl;
5297 
5298 	/* only planar format has two planes */
5299 	if (color_plane == 1 &&
5300 	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5301 		drm_dbg_kms(&dev_priv->drm,
5302 			    "Non planar format have single plane\n");
5303 		return -EINVAL;
5304 	}
5305 
5306 	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5307 		      modifier == I915_FORMAT_MOD_4_TILED ||
5308 		      modifier == I915_FORMAT_MOD_Yf_TILED ||
5309 		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5310 		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5311 	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5312 	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5313 			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5314 	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5315 
5316 	wp->width = width;
5317 	if (color_plane == 1 && wp->is_planar)
5318 		wp->width /= 2;
5319 
5320 	wp->cpp = format->cpp[color_plane];
5321 	wp->plane_pixel_rate = plane_pixel_rate;
5322 
5323 	if (DISPLAY_VER(dev_priv) >= 11 &&
5324 	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5325 		wp->dbuf_block_size = 256;
5326 	else
5327 		wp->dbuf_block_size = 512;
5328 
5329 	if (drm_rotation_90_or_270(rotation)) {
5330 		switch (wp->cpp) {
5331 		case 1:
5332 			wp->y_min_scanlines = 16;
5333 			break;
5334 		case 2:
5335 			wp->y_min_scanlines = 8;
5336 			break;
5337 		case 4:
5338 			wp->y_min_scanlines = 4;
5339 			break;
5340 		default:
5341 			MISSING_CASE(wp->cpp);
5342 			return -EINVAL;
5343 		}
5344 	} else {
5345 		wp->y_min_scanlines = 4;
5346 	}
5347 
5348 	if (skl_needs_memory_bw_wa(dev_priv))
5349 		wp->y_min_scanlines *= 2;
5350 
5351 	wp->plane_bytes_per_line = wp->width * wp->cpp;
5352 	if (wp->y_tiled) {
5353 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5354 					   wp->y_min_scanlines,
5355 					   wp->dbuf_block_size);
5356 
5357 		if (DISPLAY_VER(dev_priv) >= 10)
5358 			interm_pbpl++;
5359 
5360 		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5361 							wp->y_min_scanlines);
5362 	} else {
5363 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5364 					   wp->dbuf_block_size);
5365 
5366 		if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
5367 			interm_pbpl++;
5368 
5369 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5370 	}
5371 
5372 	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5373 					     wp->plane_blocks_per_line);
5374 
5375 	wp->linetime_us = fixed16_to_u32_round_up(
5376 					intel_get_linetime_us(crtc_state));
5377 
5378 	return 0;
5379 }
5380 
5381 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)5382 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5383 			    const struct intel_plane_state *plane_state,
5384 			    struct skl_wm_params *wp, int color_plane)
5385 {
5386 	const struct drm_framebuffer *fb = plane_state->hw.fb;
5387 	int width;
5388 
5389 	/*
5390 	 * Src coordinates are already rotated by 270 degrees for
5391 	 * the 90/270 degree plane rotation cases (to match the
5392 	 * GTT mapping), hence no need to account for rotation here.
5393 	 */
5394 	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5395 
5396 	return skl_compute_wm_params(crtc_state, width,
5397 				     fb->format, fb->modifier,
5398 				     plane_state->hw.rotation,
5399 				     intel_plane_pixel_rate(crtc_state, plane_state),
5400 				     wp, color_plane);
5401 }
5402 
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)5403 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5404 {
5405 	if (DISPLAY_VER(dev_priv) >= 10)
5406 		return true;
5407 
5408 	/* The number of lines are ignored for the level 0 watermark. */
5409 	return level > 0;
5410 }
5411 
skl_wm_max_lines(struct drm_i915_private * dev_priv)5412 static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
5413 {
5414 	if (DISPLAY_VER(dev_priv) >= 13)
5415 		return 255;
5416 	else
5417 		return 31;
5418 }
5419 
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)5420 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5421 				 struct intel_plane *plane,
5422 				 int level,
5423 				 unsigned int latency,
5424 				 const struct skl_wm_params *wp,
5425 				 const struct skl_wm_level *result_prev,
5426 				 struct skl_wm_level *result /* out */)
5427 {
5428 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5429 	uint_fixed_16_16_t method1, method2;
5430 	uint_fixed_16_16_t selected_result;
5431 	u32 blocks, lines, min_ddb_alloc = 0;
5432 
5433 	if (latency == 0 ||
5434 	    (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
5435 		/* reject it */
5436 		result->min_ddb_alloc = U16_MAX;
5437 		return;
5438 	}
5439 
5440 	/*
5441 	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5442 	 * Display WA #1141: kbl,cfl
5443 	 */
5444 	if ((IS_KABYLAKE(dev_priv) ||
5445 	     IS_COFFEELAKE(dev_priv) ||
5446 	     IS_COMETLAKE(dev_priv)) &&
5447 	    dev_priv->ipc_enabled)
5448 		latency += 4;
5449 
5450 	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5451 		latency += 15;
5452 
5453 	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5454 				 wp->cpp, latency, wp->dbuf_block_size);
5455 	method2 = skl_wm_method2(wp->plane_pixel_rate,
5456 				 crtc_state->hw.pipe_mode.crtc_htotal,
5457 				 latency,
5458 				 wp->plane_blocks_per_line);
5459 
5460 	if (wp->y_tiled) {
5461 		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5462 	} else {
5463 		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5464 		     wp->dbuf_block_size < 1) &&
5465 		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5466 			selected_result = method2;
5467 		} else if (latency >= wp->linetime_us) {
5468 			if (DISPLAY_VER(dev_priv) == 9)
5469 				selected_result = min_fixed16(method1, method2);
5470 			else
5471 				selected_result = method2;
5472 		} else {
5473 			selected_result = method1;
5474 		}
5475 	}
5476 
5477 	blocks = fixed16_to_u32_round_up(selected_result) + 1;
5478 	/*
5479 	 * Lets have blocks at minimum equivalent to plane_blocks_per_line
5480 	 * as there will be at minimum one line for lines configuration. This
5481 	 * is a work around for FIFO underruns observed with resolutions like
5482 	 * 4k 60 Hz in single channel DRAM configurations.
5483 	 *
5484 	 * As per the Bspec 49325, if the ddb allocation can hold at least
5485 	 * one plane_blocks_per_line, we should have selected method2 in
5486 	 * the above logic. Assuming that modern versions have enough dbuf
5487 	 * and method2 guarantees blocks equivalent to at least 1 line,
5488 	 * select the blocks as plane_blocks_per_line.
5489 	 *
5490 	 * TODO: Revisit the logic when we have better understanding on DRAM
5491 	 * channels' impact on the level 0 memory latency and the relevant
5492 	 * wm calculations.
5493 	 */
5494 	if (skl_wm_has_lines(dev_priv, level))
5495 		blocks = max(blocks,
5496 			     fixed16_to_u32_round_up(wp->plane_blocks_per_line));
5497 	lines = div_round_up_fixed16(selected_result,
5498 				     wp->plane_blocks_per_line);
5499 
5500 	if (DISPLAY_VER(dev_priv) == 9) {
5501 		/* Display WA #1125: skl,bxt,kbl */
5502 		if (level == 0 && wp->rc_surface)
5503 			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5504 
5505 		/* Display WA #1126: skl,bxt,kbl */
5506 		if (level >= 1 && level <= 7) {
5507 			if (wp->y_tiled) {
5508 				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
5509 				lines += wp->y_min_scanlines;
5510 			} else {
5511 				blocks++;
5512 			}
5513 
5514 			/*
5515 			 * Make sure result blocks for higher latency levels are
5516 			 * atleast as high as level below the current level.
5517 			 * Assumption in DDB algorithm optimization for special
5518 			 * cases. Also covers Display WA #1125 for RC.
5519 			 */
5520 			if (result_prev->blocks > blocks)
5521 				blocks = result_prev->blocks;
5522 		}
5523 	}
5524 
5525 	if (DISPLAY_VER(dev_priv) >= 11) {
5526 		if (wp->y_tiled) {
5527 			int extra_lines;
5528 
5529 			if (lines % wp->y_min_scanlines == 0)
5530 				extra_lines = wp->y_min_scanlines;
5531 			else
5532 				extra_lines = wp->y_min_scanlines * 2 -
5533 					lines % wp->y_min_scanlines;
5534 
5535 			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
5536 								 wp->plane_blocks_per_line);
5537 		} else {
5538 			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
5539 		}
5540 	}
5541 
5542 	if (!skl_wm_has_lines(dev_priv, level))
5543 		lines = 0;
5544 
5545 	if (lines > skl_wm_max_lines(dev_priv)) {
5546 		/* reject it */
5547 		result->min_ddb_alloc = U16_MAX;
5548 		return;
5549 	}
5550 
5551 	/*
5552 	 * If lines is valid, assume we can use this watermark level
5553 	 * for now.  We'll come back and disable it after we calculate the
5554 	 * DDB allocation if it turns out we don't actually have enough
5555 	 * blocks to satisfy it.
5556 	 */
5557 	result->blocks = blocks;
5558 	result->lines = lines;
5559 	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5560 	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
5561 	result->enable = true;
5562 
5563 	if (DISPLAY_VER(dev_priv) < 12 && dev_priv->sagv_block_time_us)
5564 		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5565 }
5566 
5567 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)5568 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5569 		      struct intel_plane *plane,
5570 		      const struct skl_wm_params *wm_params,
5571 		      struct skl_wm_level *levels)
5572 {
5573 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5574 	int level, max_level = ilk_wm_max_level(dev_priv);
5575 	struct skl_wm_level *result_prev = &levels[0];
5576 
5577 	for (level = 0; level <= max_level; level++) {
5578 		struct skl_wm_level *result = &levels[level];
5579 		unsigned int latency = dev_priv->wm.skl_latency[level];
5580 
5581 		skl_compute_plane_wm(crtc_state, plane, level, latency,
5582 				     wm_params, result_prev, result);
5583 
5584 		result_prev = result;
5585 	}
5586 }
5587 
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)5588 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5589 				struct intel_plane *plane,
5590 				const struct skl_wm_params *wm_params,
5591 				struct skl_plane_wm *plane_wm)
5592 {
5593 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5594 	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5595 	struct skl_wm_level *levels = plane_wm->wm;
5596 	unsigned int latency = 0;
5597 
5598 	if (dev_priv->sagv_block_time_us)
5599 		latency = dev_priv->sagv_block_time_us + dev_priv->wm.skl_latency[0];
5600 
5601 	skl_compute_plane_wm(crtc_state, plane, 0, latency,
5602 			     wm_params, &levels[0],
5603 			     sagv_wm);
5604 }
5605 
skl_compute_transition_wm(struct drm_i915_private * dev_priv,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)5606 static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
5607 				      struct skl_wm_level *trans_wm,
5608 				      const struct skl_wm_level *wm0,
5609 				      const struct skl_wm_params *wp)
5610 {
5611 	u16 trans_min, trans_amount, trans_y_tile_min;
5612 	u16 wm0_blocks, trans_offset, blocks;
5613 
5614 	/* Transition WM don't make any sense if ipc is disabled */
5615 	if (!dev_priv->ipc_enabled)
5616 		return;
5617 
5618 	/*
5619 	 * WaDisableTWM:skl,kbl,cfl,bxt
5620 	 * Transition WM are not recommended by HW team for GEN9
5621 	 */
5622 	if (DISPLAY_VER(dev_priv) == 9)
5623 		return;
5624 
5625 	if (DISPLAY_VER(dev_priv) >= 11)
5626 		trans_min = 4;
5627 	else
5628 		trans_min = 14;
5629 
5630 	/* Display WA #1140: glk,cnl */
5631 	if (DISPLAY_VER(dev_priv) == 10)
5632 		trans_amount = 0;
5633 	else
5634 		trans_amount = 10; /* This is configurable amount */
5635 
5636 	trans_offset = trans_min + trans_amount;
5637 
5638 	/*
5639 	 * The spec asks for Selected Result Blocks for wm0 (the real value),
5640 	 * not Result Blocks (the integer value). Pay attention to the capital
5641 	 * letters. The value wm_l0->blocks is actually Result Blocks, but
5642 	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5643 	 * and since we later will have to get the ceiling of the sum in the
5644 	 * transition watermarks calculation, we can just pretend Selected
5645 	 * Result Blocks is Result Blocks minus 1 and it should work for the
5646 	 * current platforms.
5647 	 */
5648 	wm0_blocks = wm0->blocks - 1;
5649 
5650 	if (wp->y_tiled) {
5651 		trans_y_tile_min =
5652 			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5653 		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
5654 	} else {
5655 		blocks = wm0_blocks + trans_offset;
5656 	}
5657 	blocks++;
5658 
5659 	/*
5660 	 * Just assume we can enable the transition watermark.  After
5661 	 * computing the DDB we'll come back and disable it if that
5662 	 * assumption turns out to be false.
5663 	 */
5664 	trans_wm->blocks = blocks;
5665 	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
5666 	trans_wm->enable = true;
5667 }
5668 
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane,int color_plane)5669 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5670 				     const struct intel_plane_state *plane_state,
5671 				     struct intel_plane *plane, int color_plane)
5672 {
5673 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5674 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5675 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
5676 	struct skl_wm_params wm_params;
5677 	int ret;
5678 
5679 	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5680 					  &wm_params, color_plane);
5681 	if (ret)
5682 		return ret;
5683 
5684 	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
5685 
5686 	skl_compute_transition_wm(dev_priv, &wm->trans_wm,
5687 				  &wm->wm[0], &wm_params);
5688 
5689 	if (DISPLAY_VER(dev_priv) >= 12) {
5690 		tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
5691 
5692 		skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
5693 					  &wm->sagv.wm0, &wm_params);
5694 	}
5695 
5696 	return 0;
5697 }
5698 
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane)5699 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5700 				 const struct intel_plane_state *plane_state,
5701 				 struct intel_plane *plane)
5702 {
5703 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
5704 	struct skl_wm_params wm_params;
5705 	int ret;
5706 
5707 	wm->is_planar = true;
5708 
5709 	/* uv plane watermarks must also be validated for NV12/Planar */
5710 	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5711 					  &wm_params, 1);
5712 	if (ret)
5713 		return ret;
5714 
5715 	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
5716 
5717 	return 0;
5718 }
5719 
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5720 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5721 			      const struct intel_plane_state *plane_state)
5722 {
5723 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5724 	enum plane_id plane_id = plane->id;
5725 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5726 	const struct drm_framebuffer *fb = plane_state->hw.fb;
5727 	int ret;
5728 
5729 	memset(wm, 0, sizeof(*wm));
5730 
5731 	if (!intel_wm_plane_visible(crtc_state, plane_state))
5732 		return 0;
5733 
5734 	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5735 					plane, 0);
5736 	if (ret)
5737 		return ret;
5738 
5739 	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5740 		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5741 					    plane);
5742 		if (ret)
5743 			return ret;
5744 	}
5745 
5746 	return 0;
5747 }
5748 
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5749 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5750 			      const struct intel_plane_state *plane_state)
5751 {
5752 	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5753 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5754 	enum plane_id plane_id = plane->id;
5755 	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5756 	int ret;
5757 
5758 	/* Watermarks calculated in master */
5759 	if (plane_state->planar_slave)
5760 		return 0;
5761 
5762 	memset(wm, 0, sizeof(*wm));
5763 
5764 	if (plane_state->planar_linked_plane) {
5765 		const struct drm_framebuffer *fb = plane_state->hw.fb;
5766 
5767 		drm_WARN_ON(&dev_priv->drm,
5768 			    !intel_wm_plane_visible(crtc_state, plane_state));
5769 		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5770 			    fb->format->num_planes == 1);
5771 
5772 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5773 						plane_state->planar_linked_plane, 0);
5774 		if (ret)
5775 			return ret;
5776 
5777 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5778 						plane, 1);
5779 		if (ret)
5780 			return ret;
5781 	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5782 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5783 						plane, 0);
5784 		if (ret)
5785 			return ret;
5786 	}
5787 
5788 	return 0;
5789 }
5790 
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)5791 static int skl_build_pipe_wm(struct intel_atomic_state *state,
5792 			     struct intel_crtc *crtc)
5793 {
5794 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5795 	struct intel_crtc_state *crtc_state =
5796 		intel_atomic_get_new_crtc_state(state, crtc);
5797 	const struct intel_plane_state *plane_state;
5798 	struct intel_plane *plane;
5799 	int ret, i;
5800 
5801 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
5802 		/*
5803 		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
5804 		 * instead but we don't populate that correctly for NV12 Y
5805 		 * planes so for now hack this.
5806 		 */
5807 		if (plane->pipe != crtc->pipe)
5808 			continue;
5809 
5810 		if (DISPLAY_VER(dev_priv) >= 11)
5811 			ret = icl_build_plane_wm(crtc_state, plane_state);
5812 		else
5813 			ret = skl_build_plane_wm(crtc_state, plane_state);
5814 		if (ret)
5815 			return ret;
5816 	}
5817 
5818 	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
5819 
5820 	return 0;
5821 }
5822 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5823 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5824 				i915_reg_t reg,
5825 				const struct skl_ddb_entry *entry)
5826 {
5827 	if (entry->end)
5828 		intel_de_write_fw(dev_priv, reg,
5829 				  PLANE_BUF_END(entry->end - 1) |
5830 				  PLANE_BUF_START(entry->start));
5831 	else
5832 		intel_de_write_fw(dev_priv, reg, 0);
5833 }
5834 
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5835 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5836 			       i915_reg_t reg,
5837 			       const struct skl_wm_level *level)
5838 {
5839 	u32 val = 0;
5840 
5841 	if (level->enable)
5842 		val |= PLANE_WM_EN;
5843 	if (level->ignore_lines)
5844 		val |= PLANE_WM_IGNORE_LINES;
5845 	val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
5846 	val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
5847 
5848 	intel_de_write_fw(dev_priv, reg, val);
5849 }
5850 
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5851 void skl_write_plane_wm(struct intel_plane *plane,
5852 			const struct intel_crtc_state *crtc_state)
5853 {
5854 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5855 	int level, max_level = ilk_wm_max_level(dev_priv);
5856 	enum plane_id plane_id = plane->id;
5857 	enum pipe pipe = plane->pipe;
5858 	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5859 	const struct skl_ddb_entry *ddb =
5860 		&crtc_state->wm.skl.plane_ddb[plane_id];
5861 	const struct skl_ddb_entry *ddb_y =
5862 		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5863 
5864 	for (level = 0; level <= max_level; level++)
5865 		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5866 				   skl_plane_wm_level(pipe_wm, plane_id, level));
5867 
5868 	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5869 			   skl_plane_trans_wm(pipe_wm, plane_id));
5870 
5871 	if (HAS_HW_SAGV_WM(dev_priv)) {
5872 		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5873 
5874 		skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
5875 				   &wm->sagv.wm0);
5876 		skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
5877 				   &wm->sagv.trans_wm);
5878 	}
5879 
5880 	skl_ddb_entry_write(dev_priv,
5881 			    PLANE_BUF_CFG(pipe, plane_id), ddb);
5882 
5883 	if (DISPLAY_VER(dev_priv) < 11)
5884 		skl_ddb_entry_write(dev_priv,
5885 				    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
5886 }
5887 
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5888 void skl_write_cursor_wm(struct intel_plane *plane,
5889 			 const struct intel_crtc_state *crtc_state)
5890 {
5891 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5892 	int level, max_level = ilk_wm_max_level(dev_priv);
5893 	enum plane_id plane_id = plane->id;
5894 	enum pipe pipe = plane->pipe;
5895 	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5896 	const struct skl_ddb_entry *ddb =
5897 		&crtc_state->wm.skl.plane_ddb[plane_id];
5898 
5899 	for (level = 0; level <= max_level; level++)
5900 		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5901 				   skl_plane_wm_level(pipe_wm, plane_id, level));
5902 
5903 	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
5904 			   skl_plane_trans_wm(pipe_wm, plane_id));
5905 
5906 	if (HAS_HW_SAGV_WM(dev_priv)) {
5907 		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5908 
5909 		skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
5910 				   &wm->sagv.wm0);
5911 		skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
5912 				   &wm->sagv.trans_wm);
5913 	}
5914 
5915 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5916 }
5917 
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5918 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5919 			 const struct skl_wm_level *l2)
5920 {
5921 	return l1->enable == l2->enable &&
5922 		l1->ignore_lines == l2->ignore_lines &&
5923 		l1->lines == l2->lines &&
5924 		l1->blocks == l2->blocks;
5925 }
5926 
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5927 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5928 				const struct skl_plane_wm *wm1,
5929 				const struct skl_plane_wm *wm2)
5930 {
5931 	int level, max_level = ilk_wm_max_level(dev_priv);
5932 
5933 	for (level = 0; level <= max_level; level++) {
5934 		/*
5935 		 * We don't check uv_wm as the hardware doesn't actually
5936 		 * use it. It only gets used for calculating the required
5937 		 * ddb allocation.
5938 		 */
5939 		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5940 			return false;
5941 	}
5942 
5943 	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5944 		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
5945 		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5946 }
5947 
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5948 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5949 				    const struct skl_ddb_entry *b)
5950 {
5951 	return a->start < b->end && b->start < a->end;
5952 }
5953 
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5954 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
5955 				const struct skl_ddb_entry *b)
5956 {
5957 	if (a->end && b->end) {
5958 		a->start = min(a->start, b->start);
5959 		a->end = max(a->end, b->end);
5960 	} else if (b->end) {
5961 		a->start = b->start;
5962 		a->end = b->end;
5963 	}
5964 }
5965 
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)5966 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5967 				 const struct skl_ddb_entry *entries,
5968 				 int num_entries, int ignore_idx)
5969 {
5970 	int i;
5971 
5972 	for (i = 0; i < num_entries; i++) {
5973 		if (i != ignore_idx &&
5974 		    skl_ddb_entries_overlap(ddb, &entries[i]))
5975 			return true;
5976 	}
5977 
5978 	return false;
5979 }
5980 
5981 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)5982 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5983 			    struct intel_crtc_state *new_crtc_state)
5984 {
5985 	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5986 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5987 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5988 	struct intel_plane *plane;
5989 
5990 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5991 		struct intel_plane_state *plane_state;
5992 		enum plane_id plane_id = plane->id;
5993 
5994 		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
5995 					&new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
5996 		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5997 					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
5998 			continue;
5999 
6000 		plane_state = intel_atomic_get_plane_state(state, plane);
6001 		if (IS_ERR(plane_state))
6002 			return PTR_ERR(plane_state);
6003 
6004 		new_crtc_state->update_planes |= BIT(plane_id);
6005 	}
6006 
6007 	return 0;
6008 }
6009 
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)6010 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
6011 {
6012 	struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
6013 	u8 enabled_slices;
6014 	enum pipe pipe;
6015 
6016 	/*
6017 	 * FIXME: For now we always enable slice S1 as per
6018 	 * the Bspec display initialization sequence.
6019 	 */
6020 	enabled_slices = BIT(DBUF_S1);
6021 
6022 	for_each_pipe(dev_priv, pipe)
6023 		enabled_slices |= dbuf_state->slices[pipe];
6024 
6025 	return enabled_slices;
6026 }
6027 
6028 static int
skl_compute_ddb(struct intel_atomic_state * state)6029 skl_compute_ddb(struct intel_atomic_state *state)
6030 {
6031 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6032 	const struct intel_dbuf_state *old_dbuf_state;
6033 	struct intel_dbuf_state *new_dbuf_state = NULL;
6034 	const struct intel_crtc_state *old_crtc_state;
6035 	struct intel_crtc_state *new_crtc_state;
6036 	struct intel_crtc *crtc;
6037 	int ret, i;
6038 
6039 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6040 		new_dbuf_state = intel_atomic_get_dbuf_state(state);
6041 		if (IS_ERR(new_dbuf_state))
6042 			return PTR_ERR(new_dbuf_state);
6043 
6044 		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6045 		break;
6046 	}
6047 
6048 	if (!new_dbuf_state)
6049 		return 0;
6050 
6051 	new_dbuf_state->active_pipes =
6052 		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6053 
6054 	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
6055 		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6056 		if (ret)
6057 			return ret;
6058 	}
6059 
6060 	if (HAS_MBUS_JOINING(dev_priv))
6061 		new_dbuf_state->joined_mbus =
6062 			adlp_check_mbus_joined(new_dbuf_state->active_pipes);
6063 
6064 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6065 		enum pipe pipe = crtc->pipe;
6066 
6067 		new_dbuf_state->slices[pipe] =
6068 			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
6069 						new_dbuf_state->joined_mbus);
6070 
6071 		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
6072 			continue;
6073 
6074 		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6075 		if (ret)
6076 			return ret;
6077 	}
6078 
6079 	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
6080 
6081 	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
6082 	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6083 		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
6084 		if (ret)
6085 			return ret;
6086 
6087 		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
6088 			/* TODO: Implement vblank synchronized MBUS joining changes */
6089 			ret = intel_modeset_all_pipes(state);
6090 			if (ret)
6091 				return ret;
6092 		}
6093 
6094 		drm_dbg_kms(&dev_priv->drm,
6095 			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
6096 			    old_dbuf_state->enabled_slices,
6097 			    new_dbuf_state->enabled_slices,
6098 			    INTEL_INFO(dev_priv)->dbuf.slice_mask,
6099 			    str_yes_no(old_dbuf_state->joined_mbus),
6100 			    str_yes_no(new_dbuf_state->joined_mbus));
6101 	}
6102 
6103 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6104 		enum pipe pipe = crtc->pipe;
6105 
6106 		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
6107 
6108 		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
6109 			continue;
6110 
6111 		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6112 		if (ret)
6113 			return ret;
6114 	}
6115 
6116 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6117 		ret = skl_crtc_allocate_ddb(state, crtc);
6118 		if (ret)
6119 			return ret;
6120 	}
6121 
6122 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6123 					    new_crtc_state, i) {
6124 		ret = skl_crtc_allocate_plane_ddb(state, crtc);
6125 		if (ret)
6126 			return ret;
6127 
6128 		ret = skl_ddb_add_affected_planes(old_crtc_state,
6129 						  new_crtc_state);
6130 		if (ret)
6131 			return ret;
6132 	}
6133 
6134 	return 0;
6135 }
6136 
enast(bool enable)6137 static char enast(bool enable)
6138 {
6139 	return enable ? '*' : ' ';
6140 }
6141 
6142 static void
skl_print_wm_changes(struct intel_atomic_state * state)6143 skl_print_wm_changes(struct intel_atomic_state *state)
6144 {
6145 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6146 	const struct intel_crtc_state *old_crtc_state;
6147 	const struct intel_crtc_state *new_crtc_state;
6148 	struct intel_plane *plane;
6149 	struct intel_crtc *crtc;
6150 	int i;
6151 
6152 	if (!drm_debug_enabled(DRM_UT_KMS))
6153 		return;
6154 
6155 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6156 					    new_crtc_state, i) {
6157 		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
6158 
6159 		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
6160 		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
6161 
6162 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6163 			enum plane_id plane_id = plane->id;
6164 			const struct skl_ddb_entry *old, *new;
6165 
6166 			old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
6167 			new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
6168 
6169 			if (skl_ddb_entry_equal(old, new))
6170 				continue;
6171 
6172 			drm_dbg_kms(&dev_priv->drm,
6173 				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
6174 				    plane->base.base.id, plane->base.name,
6175 				    old->start, old->end, new->start, new->end,
6176 				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
6177 		}
6178 
6179 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6180 			enum plane_id plane_id = plane->id;
6181 			const struct skl_plane_wm *old_wm, *new_wm;
6182 
6183 			old_wm = &old_pipe_wm->planes[plane_id];
6184 			new_wm = &new_pipe_wm->planes[plane_id];
6185 
6186 			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
6187 				continue;
6188 
6189 			drm_dbg_kms(&dev_priv->drm,
6190 				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
6191 				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
6192 				    plane->base.base.id, plane->base.name,
6193 				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
6194 				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
6195 				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
6196 				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
6197 				    enast(old_wm->trans_wm.enable),
6198 				    enast(old_wm->sagv.wm0.enable),
6199 				    enast(old_wm->sagv.trans_wm.enable),
6200 				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
6201 				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
6202 				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
6203 				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
6204 				    enast(new_wm->trans_wm.enable),
6205 				    enast(new_wm->sagv.wm0.enable),
6206 				    enast(new_wm->sagv.trans_wm.enable));
6207 
6208 			drm_dbg_kms(&dev_priv->drm,
6209 				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
6210 				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
6211 				    plane->base.base.id, plane->base.name,
6212 				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
6213 				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
6214 				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
6215 				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
6216 				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
6217 				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
6218 				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
6219 				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
6220 				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
6221 				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
6222 				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
6223 				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
6224 				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
6225 				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
6226 				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
6227 				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
6228 				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
6229 				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
6230 				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
6231 				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
6232 				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
6233 				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
6234 
6235 			drm_dbg_kms(&dev_priv->drm,
6236 				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6237 				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6238 				    plane->base.base.id, plane->base.name,
6239 				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
6240 				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
6241 				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
6242 				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
6243 				    old_wm->trans_wm.blocks,
6244 				    old_wm->sagv.wm0.blocks,
6245 				    old_wm->sagv.trans_wm.blocks,
6246 				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
6247 				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
6248 				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
6249 				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
6250 				    new_wm->trans_wm.blocks,
6251 				    new_wm->sagv.wm0.blocks,
6252 				    new_wm->sagv.trans_wm.blocks);
6253 
6254 			drm_dbg_kms(&dev_priv->drm,
6255 				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
6256 				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
6257 				    plane->base.base.id, plane->base.name,
6258 				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
6259 				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
6260 				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
6261 				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
6262 				    old_wm->trans_wm.min_ddb_alloc,
6263 				    old_wm->sagv.wm0.min_ddb_alloc,
6264 				    old_wm->sagv.trans_wm.min_ddb_alloc,
6265 				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
6266 				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
6267 				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
6268 				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
6269 				    new_wm->trans_wm.min_ddb_alloc,
6270 				    new_wm->sagv.wm0.min_ddb_alloc,
6271 				    new_wm->sagv.trans_wm.min_ddb_alloc);
6272 		}
6273 	}
6274 }
6275 
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)6276 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
6277 					 const struct skl_pipe_wm *old_pipe_wm,
6278 					 const struct skl_pipe_wm *new_pipe_wm)
6279 {
6280 	struct drm_i915_private *i915 = to_i915(plane->base.dev);
6281 	int level, max_level = ilk_wm_max_level(i915);
6282 
6283 	for (level = 0; level <= max_level; level++) {
6284 		/*
6285 		 * We don't check uv_wm as the hardware doesn't actually
6286 		 * use it. It only gets used for calculating the required
6287 		 * ddb allocation.
6288 		 */
6289 		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
6290 					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
6291 			return false;
6292 	}
6293 
6294 	if (HAS_HW_SAGV_WM(i915)) {
6295 		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
6296 		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
6297 
6298 		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
6299 		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
6300 			return false;
6301 	}
6302 
6303 	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
6304 				   skl_plane_trans_wm(new_pipe_wm, plane->id));
6305 }
6306 
6307 /*
6308  * To make sure the cursor watermark registers are always consistent
6309  * with our computed state the following scenario needs special
6310  * treatment:
6311  *
6312  * 1. enable cursor
6313  * 2. move cursor entirely offscreen
6314  * 3. disable cursor
6315  *
6316  * Step 2. does call .disable_plane() but does not zero the watermarks
6317  * (since we consider an offscreen cursor still active for the purposes
6318  * of watermarks). Step 3. would not normally call .disable_plane()
6319  * because the actual plane visibility isn't changing, and we don't
6320  * deallocate the cursor ddb until the pipe gets disabled. So we must
6321  * force step 3. to call .disable_plane() to update the watermark
6322  * registers properly.
6323  *
6324  * Other planes do not suffer from this issues as their watermarks are
6325  * calculated based on the actual plane visibility. The only time this
6326  * can trigger for the other planes is during the initial readout as the
6327  * default value of the watermarks registers is not zero.
6328  */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)6329 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6330 				      struct intel_crtc *crtc)
6331 {
6332 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6333 	const struct intel_crtc_state *old_crtc_state =
6334 		intel_atomic_get_old_crtc_state(state, crtc);
6335 	struct intel_crtc_state *new_crtc_state =
6336 		intel_atomic_get_new_crtc_state(state, crtc);
6337 	struct intel_plane *plane;
6338 
6339 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6340 		struct intel_plane_state *plane_state;
6341 		enum plane_id plane_id = plane->id;
6342 
6343 		/*
6344 		 * Force a full wm update for every plane on modeset.
6345 		 * Required because the reset value of the wm registers
6346 		 * is non-zero, whereas we want all disabled planes to
6347 		 * have zero watermarks. So if we turn off the relevant
6348 		 * power well the hardware state will go out of sync
6349 		 * with the software state.
6350 		 */
6351 		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6352 		    skl_plane_selected_wm_equals(plane,
6353 						 &old_crtc_state->wm.skl.optimal,
6354 						 &new_crtc_state->wm.skl.optimal))
6355 			continue;
6356 
6357 		plane_state = intel_atomic_get_plane_state(state, plane);
6358 		if (IS_ERR(plane_state))
6359 			return PTR_ERR(plane_state);
6360 
6361 		new_crtc_state->update_planes |= BIT(plane_id);
6362 	}
6363 
6364 	return 0;
6365 }
6366 
6367 static int
skl_compute_wm(struct intel_atomic_state * state)6368 skl_compute_wm(struct intel_atomic_state *state)
6369 {
6370 	struct intel_crtc *crtc;
6371 	struct intel_crtc_state *new_crtc_state;
6372 	int ret, i;
6373 
6374 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6375 		ret = skl_build_pipe_wm(state, crtc);
6376 		if (ret)
6377 			return ret;
6378 	}
6379 
6380 	ret = skl_compute_ddb(state);
6381 	if (ret)
6382 		return ret;
6383 
6384 	ret = intel_compute_sagv_mask(state);
6385 	if (ret)
6386 		return ret;
6387 
6388 	/*
6389 	 * skl_compute_ddb() will have adjusted the final watermarks
6390 	 * based on how much ddb is available. Now we can actually
6391 	 * check if the final watermarks changed.
6392 	 */
6393 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6394 		ret = skl_wm_add_affected_planes(state, crtc);
6395 		if (ret)
6396 			return ret;
6397 	}
6398 
6399 	skl_print_wm_changes(state);
6400 
6401 	return 0;
6402 }
6403 
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)6404 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6405 				  struct intel_wm_config *config)
6406 {
6407 	struct intel_crtc *crtc;
6408 
6409 	/* Compute the currently _active_ config */
6410 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6411 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6412 
6413 		if (!wm->pipe_enabled)
6414 			continue;
6415 
6416 		config->sprites_enabled |= wm->sprites_enabled;
6417 		config->sprites_scaled |= wm->sprites_scaled;
6418 		config->num_pipes_active++;
6419 	}
6420 }
6421 
ilk_program_watermarks(struct drm_i915_private * dev_priv)6422 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6423 {
6424 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6425 	struct ilk_wm_maximums max;
6426 	struct intel_wm_config config = {};
6427 	struct ilk_wm_values results = {};
6428 	enum intel_ddb_partitioning partitioning;
6429 
6430 	ilk_compute_wm_config(dev_priv, &config);
6431 
6432 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6433 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6434 
6435 	/* 5/6 split only in single pipe config on IVB+ */
6436 	if (DISPLAY_VER(dev_priv) >= 7 &&
6437 	    config.num_pipes_active == 1 && config.sprites_enabled) {
6438 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6439 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6440 
6441 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6442 	} else {
6443 		best_lp_wm = &lp_wm_1_2;
6444 	}
6445 
6446 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6447 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6448 
6449 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6450 
6451 	ilk_write_wm_values(dev_priv, &results);
6452 }
6453 
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6454 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6455 				   struct intel_crtc *crtc)
6456 {
6457 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6458 	const struct intel_crtc_state *crtc_state =
6459 		intel_atomic_get_new_crtc_state(state, crtc);
6460 
6461 	mutex_lock(&dev_priv->wm.wm_mutex);
6462 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6463 	ilk_program_watermarks(dev_priv);
6464 	mutex_unlock(&dev_priv->wm.wm_mutex);
6465 }
6466 
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc * crtc)6467 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6468 				    struct intel_crtc *crtc)
6469 {
6470 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6471 	const struct intel_crtc_state *crtc_state =
6472 		intel_atomic_get_new_crtc_state(state, crtc);
6473 
6474 	if (!crtc_state->wm.need_postvbl_update)
6475 		return;
6476 
6477 	mutex_lock(&dev_priv->wm.wm_mutex);
6478 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6479 	ilk_program_watermarks(dev_priv);
6480 	mutex_unlock(&dev_priv->wm.wm_mutex);
6481 }
6482 
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)6483 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6484 {
6485 	level->enable = val & PLANE_WM_EN;
6486 	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6487 	level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
6488 	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
6489 }
6490 
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)6491 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6492 			      struct skl_pipe_wm *out)
6493 {
6494 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6495 	enum pipe pipe = crtc->pipe;
6496 	int level, max_level;
6497 	enum plane_id plane_id;
6498 	u32 val;
6499 
6500 	max_level = ilk_wm_max_level(dev_priv);
6501 
6502 	for_each_plane_id_on_crtc(crtc, plane_id) {
6503 		struct skl_plane_wm *wm = &out->planes[plane_id];
6504 
6505 		for (level = 0; level <= max_level; level++) {
6506 			if (plane_id != PLANE_CURSOR)
6507 				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6508 			else
6509 				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6510 
6511 			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6512 		}
6513 
6514 		if (plane_id != PLANE_CURSOR)
6515 			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6516 		else
6517 			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6518 
6519 		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6520 
6521 		if (HAS_HW_SAGV_WM(dev_priv)) {
6522 			if (plane_id != PLANE_CURSOR)
6523 				val = intel_uncore_read(&dev_priv->uncore,
6524 							PLANE_WM_SAGV(pipe, plane_id));
6525 			else
6526 				val = intel_uncore_read(&dev_priv->uncore,
6527 							CUR_WM_SAGV(pipe));
6528 
6529 			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
6530 
6531 			if (plane_id != PLANE_CURSOR)
6532 				val = intel_uncore_read(&dev_priv->uncore,
6533 							PLANE_WM_SAGV_TRANS(pipe, plane_id));
6534 			else
6535 				val = intel_uncore_read(&dev_priv->uncore,
6536 							CUR_WM_SAGV_TRANS(pipe));
6537 
6538 			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
6539 		} else if (DISPLAY_VER(dev_priv) >= 12) {
6540 			wm->sagv.wm0 = wm->wm[0];
6541 			wm->sagv.trans_wm = wm->trans_wm;
6542 		}
6543 	}
6544 }
6545 
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)6546 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6547 {
6548 	struct intel_dbuf_state *dbuf_state =
6549 		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6550 	struct intel_crtc *crtc;
6551 
6552 	if (HAS_MBUS_JOINING(dev_priv))
6553 		dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
6554 
6555 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6556 		struct intel_crtc_state *crtc_state =
6557 			to_intel_crtc_state(crtc->base.state);
6558 		enum pipe pipe = crtc->pipe;
6559 		unsigned int mbus_offset;
6560 		enum plane_id plane_id;
6561 		u8 slices;
6562 
6563 		memset(&crtc_state->wm.skl.optimal, 0,
6564 		       sizeof(crtc_state->wm.skl.optimal));
6565 		if (crtc_state->hw.active)
6566 			skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6567 		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6568 
6569 		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
6570 
6571 		for_each_plane_id_on_crtc(crtc, plane_id) {
6572 			struct skl_ddb_entry *ddb =
6573 				&crtc_state->wm.skl.plane_ddb[plane_id];
6574 			struct skl_ddb_entry *ddb_y =
6575 				&crtc_state->wm.skl.plane_ddb_y[plane_id];
6576 
6577 			if (!crtc_state->hw.active)
6578 				continue;
6579 
6580 			skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
6581 						   plane_id, ddb, ddb_y);
6582 
6583 			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
6584 			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
6585 		}
6586 
6587 		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
6588 
6589 		/*
6590 		 * Used for checking overlaps, so we need absolute
6591 		 * offsets instead of MBUS relative offsets.
6592 		 */
6593 		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
6594 						 dbuf_state->joined_mbus);
6595 		mbus_offset = mbus_ddb_offset(dev_priv, slices);
6596 		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
6597 		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
6598 
6599 		/* The slices actually used by the planes on the pipe */
6600 		dbuf_state->slices[pipe] =
6601 			skl_ddb_dbuf_slice_mask(dev_priv, &crtc_state->wm.skl.ddb);
6602 
6603 		drm_dbg_kms(&dev_priv->drm,
6604 			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
6605 			    crtc->base.base.id, crtc->base.name,
6606 			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
6607 			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
6608 			    str_yes_no(dbuf_state->joined_mbus));
6609 	}
6610 
6611 	dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6612 }
6613 
skl_dbuf_is_misconfigured(struct drm_i915_private * i915)6614 static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
6615 {
6616 	const struct intel_dbuf_state *dbuf_state =
6617 		to_intel_dbuf_state(i915->dbuf.obj.state);
6618 	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
6619 	struct intel_crtc *crtc;
6620 
6621 	for_each_intel_crtc(&i915->drm, crtc) {
6622 		const struct intel_crtc_state *crtc_state =
6623 			to_intel_crtc_state(crtc->base.state);
6624 
6625 		entries[crtc->pipe] = crtc_state->wm.skl.ddb;
6626 	}
6627 
6628 	for_each_intel_crtc(&i915->drm, crtc) {
6629 		const struct intel_crtc_state *crtc_state =
6630 			to_intel_crtc_state(crtc->base.state);
6631 		u8 slices;
6632 
6633 		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
6634 						 dbuf_state->joined_mbus);
6635 		if (dbuf_state->slices[crtc->pipe] & ~slices)
6636 			return true;
6637 
6638 		if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
6639 						I915_MAX_PIPES, crtc->pipe))
6640 			return true;
6641 	}
6642 
6643 	return false;
6644 }
6645 
skl_wm_sanitize(struct drm_i915_private * i915)6646 void skl_wm_sanitize(struct drm_i915_private *i915)
6647 {
6648 	struct intel_crtc *crtc;
6649 
6650 	/*
6651 	 * On TGL/RKL (at least) the BIOS likes to assign the planes
6652 	 * to the wrong DBUF slices. This will cause an infinite loop
6653 	 * in skl_commit_modeset_enables() as it can't find a way to
6654 	 * transition between the old bogus DBUF layout to the new
6655 	 * proper DBUF layout without DBUF allocation overlaps between
6656 	 * the planes (which cannot be allowed or else the hardware
6657 	 * may hang). If we detect a bogus DBUF layout just turn off
6658 	 * all the planes so that skl_commit_modeset_enables() can
6659 	 * simply ignore them.
6660 	 */
6661 	if (!skl_dbuf_is_misconfigured(i915))
6662 		return;
6663 
6664 	drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
6665 
6666 	for_each_intel_crtc(&i915->drm, crtc) {
6667 		struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6668 		const struct intel_plane_state *plane_state =
6669 			to_intel_plane_state(plane->base.state);
6670 		struct intel_crtc_state *crtc_state =
6671 			to_intel_crtc_state(crtc->base.state);
6672 
6673 		if (plane_state->uapi.visible)
6674 			intel_plane_disable_noatomic(crtc, plane);
6675 
6676 		drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
6677 
6678 		memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
6679 	}
6680 }
6681 
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)6682 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6683 {
6684 	struct drm_device *dev = crtc->base.dev;
6685 	struct drm_i915_private *dev_priv = to_i915(dev);
6686 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6687 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6688 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6689 	enum pipe pipe = crtc->pipe;
6690 
6691 	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6692 
6693 	memset(active, 0, sizeof(*active));
6694 
6695 	active->pipe_enabled = crtc->active;
6696 
6697 	if (active->pipe_enabled) {
6698 		u32 tmp = hw->wm_pipe[pipe];
6699 
6700 		/*
6701 		 * For active pipes LP0 watermark is marked as
6702 		 * enabled, and LP1+ watermaks as disabled since
6703 		 * we can't really reverse compute them in case
6704 		 * multiple pipes are active.
6705 		 */
6706 		active->wm[0].enable = true;
6707 		active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
6708 		active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
6709 		active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
6710 	} else {
6711 		int level, max_level = ilk_wm_max_level(dev_priv);
6712 
6713 		/*
6714 		 * For inactive pipes, all watermark levels
6715 		 * should be marked as enabled but zeroed,
6716 		 * which is what we'd compute them to.
6717 		 */
6718 		for (level = 0; level <= max_level; level++)
6719 			active->wm[level].enable = true;
6720 	}
6721 
6722 	crtc->wm.active.ilk = *active;
6723 }
6724 
6725 #define _FW_WM(value, plane) \
6726 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6727 #define _FW_WM_VLV(value, plane) \
6728 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6729 
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)6730 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6731 			       struct g4x_wm_values *wm)
6732 {
6733 	u32 tmp;
6734 
6735 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6736 	wm->sr.plane = _FW_WM(tmp, SR);
6737 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6738 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6739 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6740 
6741 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6742 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6743 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6744 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6745 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6746 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6747 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6748 
6749 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6750 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6751 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6752 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6753 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6754 }
6755 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)6756 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6757 			       struct vlv_wm_values *wm)
6758 {
6759 	enum pipe pipe;
6760 	u32 tmp;
6761 
6762 	for_each_pipe(dev_priv, pipe) {
6763 		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6764 
6765 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6766 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6767 		wm->ddl[pipe].plane[PLANE_CURSOR] =
6768 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6769 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6770 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6771 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6772 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6773 	}
6774 
6775 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6776 	wm->sr.plane = _FW_WM(tmp, SR);
6777 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6778 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6779 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6780 
6781 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6782 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6783 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6784 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6785 
6786 	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6787 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6788 
6789 	if (IS_CHERRYVIEW(dev_priv)) {
6790 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6791 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6792 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6793 
6794 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6795 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6796 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6797 
6798 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6799 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6800 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6801 
6802 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6803 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6804 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6805 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6806 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6807 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6808 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6809 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6810 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6811 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6812 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6813 	} else {
6814 		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6815 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6816 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6817 
6818 		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6819 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6820 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6821 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6822 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6823 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6824 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6825 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6826 	}
6827 }
6828 
6829 #undef _FW_WM
6830 #undef _FW_WM_VLV
6831 
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)6832 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6833 {
6834 	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6835 	struct intel_crtc *crtc;
6836 
6837 	g4x_read_wm_values(dev_priv, wm);
6838 
6839 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6840 
6841 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6842 		struct intel_crtc_state *crtc_state =
6843 			to_intel_crtc_state(crtc->base.state);
6844 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
6845 		struct g4x_pipe_wm *raw;
6846 		enum pipe pipe = crtc->pipe;
6847 		enum plane_id plane_id;
6848 		int level, max_level;
6849 
6850 		active->cxsr = wm->cxsr;
6851 		active->hpll_en = wm->hpll_en;
6852 		active->fbc_en = wm->fbc_en;
6853 
6854 		active->sr = wm->sr;
6855 		active->hpll = wm->hpll;
6856 
6857 		for_each_plane_id_on_crtc(crtc, plane_id) {
6858 			active->wm.plane[plane_id] =
6859 				wm->pipe[pipe].plane[plane_id];
6860 		}
6861 
6862 		if (wm->cxsr && wm->hpll_en)
6863 			max_level = G4X_WM_LEVEL_HPLL;
6864 		else if (wm->cxsr)
6865 			max_level = G4X_WM_LEVEL_SR;
6866 		else
6867 			max_level = G4X_WM_LEVEL_NORMAL;
6868 
6869 		level = G4X_WM_LEVEL_NORMAL;
6870 		raw = &crtc_state->wm.g4x.raw[level];
6871 		for_each_plane_id_on_crtc(crtc, plane_id)
6872 			raw->plane[plane_id] = active->wm.plane[plane_id];
6873 
6874 		level = G4X_WM_LEVEL_SR;
6875 		if (level > max_level)
6876 			goto out;
6877 
6878 		raw = &crtc_state->wm.g4x.raw[level];
6879 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
6880 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
6881 		raw->plane[PLANE_SPRITE0] = 0;
6882 		raw->fbc = active->sr.fbc;
6883 
6884 		level = G4X_WM_LEVEL_HPLL;
6885 		if (level > max_level)
6886 			goto out;
6887 
6888 		raw = &crtc_state->wm.g4x.raw[level];
6889 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6890 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6891 		raw->plane[PLANE_SPRITE0] = 0;
6892 		raw->fbc = active->hpll.fbc;
6893 
6894 		level++;
6895 	out:
6896 		for_each_plane_id_on_crtc(crtc, plane_id)
6897 			g4x_raw_plane_wm_set(crtc_state, level,
6898 					     plane_id, USHRT_MAX);
6899 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6900 
6901 		crtc_state->wm.g4x.optimal = *active;
6902 		crtc_state->wm.g4x.intermediate = *active;
6903 
6904 		drm_dbg_kms(&dev_priv->drm,
6905 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6906 			    pipe_name(pipe),
6907 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
6908 			    wm->pipe[pipe].plane[PLANE_CURSOR],
6909 			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6910 	}
6911 
6912 	drm_dbg_kms(&dev_priv->drm,
6913 		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6914 		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6915 	drm_dbg_kms(&dev_priv->drm,
6916 		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6917 		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6918 	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6919 		    str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
6920 		    str_yes_no(wm->fbc_en));
6921 }
6922 
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6923 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6924 {
6925 	struct intel_plane *plane;
6926 	struct intel_crtc *crtc;
6927 
6928 	mutex_lock(&dev_priv->wm.wm_mutex);
6929 
6930 	for_each_intel_plane(&dev_priv->drm, plane) {
6931 		struct intel_crtc *crtc =
6932 			intel_crtc_for_pipe(dev_priv, plane->pipe);
6933 		struct intel_crtc_state *crtc_state =
6934 			to_intel_crtc_state(crtc->base.state);
6935 		struct intel_plane_state *plane_state =
6936 			to_intel_plane_state(plane->base.state);
6937 		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6938 		enum plane_id plane_id = plane->id;
6939 		int level;
6940 
6941 		if (plane_state->uapi.visible)
6942 			continue;
6943 
6944 		for (level = 0; level < 3; level++) {
6945 			struct g4x_pipe_wm *raw =
6946 				&crtc_state->wm.g4x.raw[level];
6947 
6948 			raw->plane[plane_id] = 0;
6949 			wm_state->wm.plane[plane_id] = 0;
6950 		}
6951 
6952 		if (plane_id == PLANE_PRIMARY) {
6953 			for (level = 0; level < 3; level++) {
6954 				struct g4x_pipe_wm *raw =
6955 					&crtc_state->wm.g4x.raw[level];
6956 				raw->fbc = 0;
6957 			}
6958 
6959 			wm_state->sr.fbc = 0;
6960 			wm_state->hpll.fbc = 0;
6961 			wm_state->fbc_en = false;
6962 		}
6963 	}
6964 
6965 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6966 		struct intel_crtc_state *crtc_state =
6967 			to_intel_crtc_state(crtc->base.state);
6968 
6969 		crtc_state->wm.g4x.intermediate =
6970 			crtc_state->wm.g4x.optimal;
6971 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6972 	}
6973 
6974 	g4x_program_watermarks(dev_priv);
6975 
6976 	mutex_unlock(&dev_priv->wm.wm_mutex);
6977 }
6978 
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6979 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6980 {
6981 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6982 	struct intel_crtc *crtc;
6983 	u32 val;
6984 
6985 	vlv_read_wm_values(dev_priv, wm);
6986 
6987 	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6988 	wm->level = VLV_WM_LEVEL_PM2;
6989 
6990 	if (IS_CHERRYVIEW(dev_priv)) {
6991 		vlv_punit_get(dev_priv);
6992 
6993 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6994 		if (val & DSP_MAXFIFO_PM5_ENABLE)
6995 			wm->level = VLV_WM_LEVEL_PM5;
6996 
6997 		/*
6998 		 * If DDR DVFS is disabled in the BIOS, Punit
6999 		 * will never ack the request. So if that happens
7000 		 * assume we don't have to enable/disable DDR DVFS
7001 		 * dynamically. To test that just set the REQ_ACK
7002 		 * bit to poke the Punit, but don't change the
7003 		 * HIGH/LOW bits so that we don't actually change
7004 		 * the current state.
7005 		 */
7006 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
7007 		val |= FORCE_DDR_FREQ_REQ_ACK;
7008 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
7009 
7010 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
7011 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
7012 			drm_dbg_kms(&dev_priv->drm,
7013 				    "Punit not acking DDR DVFS request, "
7014 				    "assuming DDR DVFS is disabled\n");
7015 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
7016 		} else {
7017 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
7018 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
7019 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
7020 		}
7021 
7022 		vlv_punit_put(dev_priv);
7023 	}
7024 
7025 	for_each_intel_crtc(&dev_priv->drm, crtc) {
7026 		struct intel_crtc_state *crtc_state =
7027 			to_intel_crtc_state(crtc->base.state);
7028 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
7029 		const struct vlv_fifo_state *fifo_state =
7030 			&crtc_state->wm.vlv.fifo_state;
7031 		enum pipe pipe = crtc->pipe;
7032 		enum plane_id plane_id;
7033 		int level;
7034 
7035 		vlv_get_fifo_size(crtc_state);
7036 
7037 		active->num_levels = wm->level + 1;
7038 		active->cxsr = wm->cxsr;
7039 
7040 		for (level = 0; level < active->num_levels; level++) {
7041 			struct g4x_pipe_wm *raw =
7042 				&crtc_state->wm.vlv.raw[level];
7043 
7044 			active->sr[level].plane = wm->sr.plane;
7045 			active->sr[level].cursor = wm->sr.cursor;
7046 
7047 			for_each_plane_id_on_crtc(crtc, plane_id) {
7048 				active->wm[level].plane[plane_id] =
7049 					wm->pipe[pipe].plane[plane_id];
7050 
7051 				raw->plane[plane_id] =
7052 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
7053 							    fifo_state->plane[plane_id]);
7054 			}
7055 		}
7056 
7057 		for_each_plane_id_on_crtc(crtc, plane_id)
7058 			vlv_raw_plane_wm_set(crtc_state, level,
7059 					     plane_id, USHRT_MAX);
7060 		vlv_invalidate_wms(crtc, active, level);
7061 
7062 		crtc_state->wm.vlv.optimal = *active;
7063 		crtc_state->wm.vlv.intermediate = *active;
7064 
7065 		drm_dbg_kms(&dev_priv->drm,
7066 			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
7067 			    pipe_name(pipe),
7068 			    wm->pipe[pipe].plane[PLANE_PRIMARY],
7069 			    wm->pipe[pipe].plane[PLANE_CURSOR],
7070 			    wm->pipe[pipe].plane[PLANE_SPRITE0],
7071 			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
7072 	}
7073 
7074 	drm_dbg_kms(&dev_priv->drm,
7075 		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
7076 		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
7077 }
7078 
vlv_wm_sanitize(struct drm_i915_private * dev_priv)7079 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
7080 {
7081 	struct intel_plane *plane;
7082 	struct intel_crtc *crtc;
7083 
7084 	mutex_lock(&dev_priv->wm.wm_mutex);
7085 
7086 	for_each_intel_plane(&dev_priv->drm, plane) {
7087 		struct intel_crtc *crtc =
7088 			intel_crtc_for_pipe(dev_priv, plane->pipe);
7089 		struct intel_crtc_state *crtc_state =
7090 			to_intel_crtc_state(crtc->base.state);
7091 		struct intel_plane_state *plane_state =
7092 			to_intel_plane_state(plane->base.state);
7093 		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
7094 		const struct vlv_fifo_state *fifo_state =
7095 			&crtc_state->wm.vlv.fifo_state;
7096 		enum plane_id plane_id = plane->id;
7097 		int level;
7098 
7099 		if (plane_state->uapi.visible)
7100 			continue;
7101 
7102 		for (level = 0; level < wm_state->num_levels; level++) {
7103 			struct g4x_pipe_wm *raw =
7104 				&crtc_state->wm.vlv.raw[level];
7105 
7106 			raw->plane[plane_id] = 0;
7107 
7108 			wm_state->wm[level].plane[plane_id] =
7109 				vlv_invert_wm_value(raw->plane[plane_id],
7110 						    fifo_state->plane[plane_id]);
7111 		}
7112 	}
7113 
7114 	for_each_intel_crtc(&dev_priv->drm, crtc) {
7115 		struct intel_crtc_state *crtc_state =
7116 			to_intel_crtc_state(crtc->base.state);
7117 
7118 		crtc_state->wm.vlv.intermediate =
7119 			crtc_state->wm.vlv.optimal;
7120 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
7121 	}
7122 
7123 	vlv_program_watermarks(dev_priv);
7124 
7125 	mutex_unlock(&dev_priv->wm.wm_mutex);
7126 }
7127 
7128 /*
7129  * FIXME should probably kill this and improve
7130  * the real watermark readout/sanitation instead
7131  */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)7132 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7133 {
7134 	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM_LP_ENABLE);
7135 	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM_LP_ENABLE);
7136 	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM_LP_ENABLE);
7137 
7138 	/*
7139 	 * Don't touch WM_LP_SPRITE_ENABLE here.
7140 	 * Doing so could cause underruns.
7141 	 */
7142 }
7143 
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)7144 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
7145 {
7146 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
7147 	struct intel_crtc *crtc;
7148 
7149 	ilk_init_lp_watermarks(dev_priv);
7150 
7151 	for_each_intel_crtc(&dev_priv->drm, crtc)
7152 		ilk_pipe_wm_get_hw_state(crtc);
7153 
7154 	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
7155 	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
7156 	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
7157 
7158 	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
7159 	if (DISPLAY_VER(dev_priv) >= 7) {
7160 		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
7161 		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
7162 	}
7163 
7164 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7165 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
7166 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7167 	else if (IS_IVYBRIDGE(dev_priv))
7168 		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
7169 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
7170 
7171 	hw->enable_fbc_wm =
7172 		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
7173 }
7174 
intel_enable_ipc(struct drm_i915_private * dev_priv)7175 void intel_enable_ipc(struct drm_i915_private *dev_priv)
7176 {
7177 	u32 val;
7178 
7179 	if (!HAS_IPC(dev_priv))
7180 		return;
7181 
7182 	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
7183 
7184 	if (dev_priv->ipc_enabled)
7185 		val |= DISP_IPC_ENABLE;
7186 	else
7187 		val &= ~DISP_IPC_ENABLE;
7188 
7189 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
7190 }
7191 
intel_can_enable_ipc(struct drm_i915_private * dev_priv)7192 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
7193 {
7194 	/* Display WA #0477 WaDisableIPC: skl */
7195 	if (IS_SKYLAKE(dev_priv))
7196 		return false;
7197 
7198 	/* Display WA #1141: SKL:all KBL:all CFL */
7199 	if (IS_KABYLAKE(dev_priv) ||
7200 	    IS_COFFEELAKE(dev_priv) ||
7201 	    IS_COMETLAKE(dev_priv))
7202 		return dev_priv->dram_info.symmetric_memory;
7203 
7204 	return true;
7205 }
7206 
intel_init_ipc(struct drm_i915_private * dev_priv)7207 void intel_init_ipc(struct drm_i915_private *dev_priv)
7208 {
7209 	if (!HAS_IPC(dev_priv))
7210 		return;
7211 
7212 	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
7213 
7214 	intel_enable_ipc(dev_priv);
7215 }
7216 
ibx_init_clock_gating(struct drm_i915_private * dev_priv)7217 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7218 {
7219 	/*
7220 	 * On Ibex Peak and Cougar Point, we need to disable clock
7221 	 * gating for the panel power sequencer or it will fail to
7222 	 * start up when no ports are active.
7223 	 */
7224 	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7225 }
7226 
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)7227 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7228 {
7229 	enum pipe pipe;
7230 
7231 	for_each_pipe(dev_priv, pipe) {
7232 		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
7233 			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
7234 			   DISP_TRICKLE_FEED_DISABLE);
7235 
7236 		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
7237 		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
7238 	}
7239 }
7240 
ilk_init_clock_gating(struct drm_i915_private * dev_priv)7241 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7242 {
7243 	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7244 
7245 	/*
7246 	 * Required for FBC
7247 	 * WaFbcDisableDpfcClockGating:ilk
7248 	 */
7249 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7250 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7251 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7252 
7253 	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
7254 		   MARIUNIT_CLOCK_GATE_DISABLE |
7255 		   SVSMUNIT_CLOCK_GATE_DISABLE);
7256 	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
7257 		   VFMUNIT_CLOCK_GATE_DISABLE);
7258 
7259 	/*
7260 	 * According to the spec the following bits should be set in
7261 	 * order to enable memory self-refresh
7262 	 * The bit 22/21 of 0x42004
7263 	 * The bit 5 of 0x42020
7264 	 * The bit 15 of 0x45000
7265 	 */
7266 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7267 		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7268 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7269 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7270 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
7271 		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7272 		    DISP_FBC_WM_DIS));
7273 
7274 	/*
7275 	 * Based on the document from hardware guys the following bits
7276 	 * should be set unconditionally in order to enable FBC.
7277 	 * The bit 22 of 0x42000
7278 	 * The bit 22 of 0x42004
7279 	 * The bit 7,8,9 of 0x42020.
7280 	 */
7281 	if (IS_IRONLAKE_M(dev_priv)) {
7282 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7283 		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7284 			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7285 			   ILK_FBCQ_DIS);
7286 		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7287 			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7288 			   ILK_DPARB_GATE);
7289 	}
7290 
7291 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7292 
7293 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7294 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7295 		   ILK_ELPIN_409_SELECT);
7296 
7297 	g4x_disable_trickle_feed(dev_priv);
7298 
7299 	ibx_init_clock_gating(dev_priv);
7300 }
7301 
cpt_init_clock_gating(struct drm_i915_private * dev_priv)7302 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7303 {
7304 	enum pipe pipe;
7305 	u32 val;
7306 
7307 	/*
7308 	 * On Ibex Peak and Cougar Point, we need to disable clock
7309 	 * gating for the panel power sequencer or it will fail to
7310 	 * start up when no ports are active.
7311 	 */
7312 	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7313 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7314 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7315 	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
7316 		   DPLS_EDP_PPS_FIX_DIS);
7317 	/* The below fixes the weird display corruption, a few pixels shifted
7318 	 * downward, on (only) LVDS of some HP laptops with IVY.
7319 	 */
7320 	for_each_pipe(dev_priv, pipe) {
7321 		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
7322 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7323 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7324 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7325 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7326 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7327 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7328 		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
7329 	}
7330 	/* WADP0ClockGatingDisable */
7331 	for_each_pipe(dev_priv, pipe) {
7332 		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
7333 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7334 	}
7335 }
7336 
gen6_check_mch_setup(struct drm_i915_private * dev_priv)7337 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7338 {
7339 	u32 tmp;
7340 
7341 	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
7342 	if (REG_FIELD_GET(SSKPD_WM0_MASK_SNB, tmp) != 12)
7343 		drm_dbg_kms(&dev_priv->drm,
7344 			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7345 			    tmp);
7346 }
7347 
gen6_init_clock_gating(struct drm_i915_private * dev_priv)7348 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7349 {
7350 	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7351 
7352 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
7353 
7354 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7355 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7356 		   ILK_ELPIN_409_SELECT);
7357 
7358 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7359 		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7360 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7361 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7362 
7363 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7364 	 * gating disable must be set.  Failure to set it results in
7365 	 * flickering pixels due to Z write ordering failures after
7366 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
7367 	 * Sanctuary and Tropics, and apparently anything else with
7368 	 * alpha test or pixel discard.
7369 	 *
7370 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
7371 	 * but we didn't debug actual testcases to find it out.
7372 	 *
7373 	 * WaDisableRCCUnitClockGating:snb
7374 	 * WaDisableRCPBUnitClockGating:snb
7375 	 */
7376 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7377 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7378 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7379 
7380 	/*
7381 	 * According to the spec the following bits should be
7382 	 * set in order to enable memory self-refresh and fbc:
7383 	 * The bit21 and bit22 of 0x42000
7384 	 * The bit21 and bit22 of 0x42004
7385 	 * The bit5 and bit7 of 0x42020
7386 	 * The bit14 of 0x70180
7387 	 * The bit14 of 0x71180
7388 	 *
7389 	 * WaFbcAsynchFlipDisableFbcQueue:snb
7390 	 */
7391 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7392 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7393 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7394 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
7395 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7396 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7397 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
7398 		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7399 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7400 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7401 
7402 	g4x_disable_trickle_feed(dev_priv);
7403 
7404 	cpt_init_clock_gating(dev_priv);
7405 
7406 	gen6_check_mch_setup(dev_priv);
7407 }
7408 
lpt_init_clock_gating(struct drm_i915_private * dev_priv)7409 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7410 {
7411 	/*
7412 	 * TODO: this bit should only be enabled when really needed, then
7413 	 * disabled when not needed anymore in order to save power.
7414 	 */
7415 	if (HAS_PCH_LPT_LP(dev_priv))
7416 		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
7417 			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7418 			   PCH_LP_PARTITION_LEVEL_DISABLE);
7419 
7420 	/* WADPOClockGatingDisable:hsw */
7421 	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
7422 		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7423 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7424 }
7425 
lpt_suspend_hw(struct drm_i915_private * dev_priv)7426 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7427 {
7428 	if (HAS_PCH_LPT_LP(dev_priv)) {
7429 		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7430 
7431 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7432 		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7433 	}
7434 }
7435 
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)7436 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7437 				   int general_prio_credits,
7438 				   int high_prio_credits)
7439 {
7440 	u32 misccpctl;
7441 	u32 val;
7442 
7443 	/* WaTempDisableDOPClkGating:bdw */
7444 	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
7445 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7446 
7447 	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7448 	val &= ~L3_PRIO_CREDITS_MASK;
7449 	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7450 	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7451 	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7452 
7453 	/*
7454 	 * Wait at least 100 clocks before re-enabling clock gating.
7455 	 * See the definition of L3SQCREG1 in BSpec.
7456 	 */
7457 	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7458 	udelay(1);
7459 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7460 }
7461 
icl_init_clock_gating(struct drm_i915_private * dev_priv)7462 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7463 {
7464 	/* Wa_1409120013:icl,ehl */
7465 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7466 			   DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7467 
7468 	/*Wa_14010594013:icl, ehl */
7469 	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7470 			 0, ICL_DELAY_PMRSP);
7471 }
7472 
gen12lp_init_clock_gating(struct drm_i915_private * dev_priv)7473 static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7474 {
7475 	/* Wa_1409120013:tgl,rkl,adl-s,dg1,dg2 */
7476 	if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
7477 	    IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_DG2(dev_priv))
7478 		intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7479 				   DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7480 
7481 	/* Wa_1409825376:tgl (pre-prod)*/
7482 	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
7483 		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7484 			   TGL_VRH_GATING_DIS);
7485 
7486 	/* Wa_14013723622:tgl,rkl,dg1,adl-s */
7487 	if (DISPLAY_VER(dev_priv) == 12)
7488 		intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
7489 				 CLKREQ_POLICY_MEM_UP_OVRD, 0);
7490 }
7491 
adlp_init_clock_gating(struct drm_i915_private * dev_priv)7492 static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
7493 {
7494 	gen12lp_init_clock_gating(dev_priv);
7495 
7496 	/* Wa_22011091694:adlp */
7497 	intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
7498 
7499 	/* Bspec/49189 Initialize Sequence */
7500 	intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, DDI_CLOCK_REG_ACCESS, 0);
7501 }
7502 
dg1_init_clock_gating(struct drm_i915_private * dev_priv)7503 static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7504 {
7505 	gen12lp_init_clock_gating(dev_priv);
7506 
7507 	/* Wa_1409836686:dg1[a0] */
7508 	if (IS_DG1_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
7509 		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7510 			   DPT_GATING_DIS);
7511 }
7512 
xehpsdv_init_clock_gating(struct drm_i915_private * dev_priv)7513 static void xehpsdv_init_clock_gating(struct drm_i915_private *dev_priv)
7514 {
7515 	/* Wa_22010146351:xehpsdv */
7516 	if (IS_XEHPSDV_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
7517 		intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS);
7518 }
7519 
dg2_init_clock_gating(struct drm_i915_private * i915)7520 static void dg2_init_clock_gating(struct drm_i915_private *i915)
7521 {
7522 	/* Wa_22010954014:dg2_g10 */
7523 	if (IS_DG2_G10(i915))
7524 		intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
7525 				 SGSI_SIDECLK_DIS);
7526 
7527 	/*
7528 	 * Wa_14010733611:dg2_g10
7529 	 * Wa_22010146351:dg2_g10
7530 	 */
7531 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
7532 		intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
7533 				 SGR_DIS | SGGI_DIS);
7534 }
7535 
cnp_init_clock_gating(struct drm_i915_private * dev_priv)7536 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7537 {
7538 	if (!HAS_PCH_CNP(dev_priv))
7539 		return;
7540 
7541 	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7542 	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7543 		   CNP_PWM_CGE_GATING_DISABLE);
7544 }
7545 
cfl_init_clock_gating(struct drm_i915_private * dev_priv)7546 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7547 {
7548 	cnp_init_clock_gating(dev_priv);
7549 	gen9_init_clock_gating(dev_priv);
7550 
7551 	/* WAC6entrylatency:cfl */
7552 	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7553 		   FBC_LLC_FULLY_OPEN);
7554 
7555 	/*
7556 	 * WaFbcTurnOffFbcWatermark:cfl
7557 	 * Display WA #0562: cfl
7558 	 */
7559 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7560 		   DISP_FBC_WM_DIS);
7561 
7562 	/*
7563 	 * WaFbcNukeOnHostModify:cfl
7564 	 * Display WA #0873: cfl
7565 	 */
7566 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7567 			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7568 			   DPFC_NUKE_ON_ANY_MODIFICATION);
7569 }
7570 
kbl_init_clock_gating(struct drm_i915_private * dev_priv)7571 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7572 {
7573 	gen9_init_clock_gating(dev_priv);
7574 
7575 	/* WAC6entrylatency:kbl */
7576 	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7577 		   FBC_LLC_FULLY_OPEN);
7578 
7579 	/* WaDisableSDEUnitClockGating:kbl */
7580 	if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
7581 		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7582 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7583 
7584 	/* WaDisableGamClockGating:kbl */
7585 	if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
7586 		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7587 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7588 
7589 	/*
7590 	 * WaFbcTurnOffFbcWatermark:kbl
7591 	 * Display WA #0562: kbl
7592 	 */
7593 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7594 		   DISP_FBC_WM_DIS);
7595 
7596 	/*
7597 	 * WaFbcNukeOnHostModify:kbl
7598 	 * Display WA #0873: kbl
7599 	 */
7600 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7601 			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7602 			   DPFC_NUKE_ON_ANY_MODIFICATION);
7603 }
7604 
skl_init_clock_gating(struct drm_i915_private * dev_priv)7605 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7606 {
7607 	gen9_init_clock_gating(dev_priv);
7608 
7609 	/* WaDisableDopClockGating:skl */
7610 	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7611 		   ~GEN7_DOP_CLOCK_GATE_ENABLE);
7612 
7613 	/* WAC6entrylatency:skl */
7614 	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7615 		   FBC_LLC_FULLY_OPEN);
7616 
7617 	/*
7618 	 * WaFbcTurnOffFbcWatermark:skl
7619 	 * Display WA #0562: skl
7620 	 */
7621 	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7622 		   DISP_FBC_WM_DIS);
7623 
7624 	/*
7625 	 * WaFbcNukeOnHostModify:skl
7626 	 * Display WA #0873: skl
7627 	 */
7628 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7629 			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7630 			   DPFC_NUKE_ON_ANY_MODIFICATION);
7631 
7632 	/*
7633 	 * WaFbcHighMemBwCorruptionAvoidance:skl
7634 	 * Display WA #0883: skl
7635 	 */
7636 	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
7637 			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
7638 			   DPFC_DISABLE_DUMMY0);
7639 }
7640 
bdw_init_clock_gating(struct drm_i915_private * dev_priv)7641 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7642 {
7643 	enum pipe pipe;
7644 
7645 	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7646 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7647 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7648 		   HSW_FBCQ_DIS);
7649 
7650 	/* WaSwitchSolVfFArbitrationPriority:bdw */
7651 	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7652 
7653 	/* WaPsrDPAMaskVBlankInSRD:bdw */
7654 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
7655 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7656 
7657 	for_each_pipe(dev_priv, pipe) {
7658 		/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7659 		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
7660 			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7661 			   BDW_DPRS_MASK_VBLANK_SRD);
7662 	}
7663 
7664 	/* WaVSRefCountFullforceMissDisable:bdw */
7665 	/* WaDSRefCountFullforceMissDisable:bdw */
7666 	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7667 		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7668 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7669 
7670 	intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
7671 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7672 
7673 	/* WaDisableSDEUnitClockGating:bdw */
7674 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7675 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7676 
7677 	/* WaProgramL3SqcReg1Default:bdw */
7678 	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7679 
7680 	/* WaKVMNotificationOnConfigChange:bdw */
7681 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7682 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7683 
7684 	lpt_init_clock_gating(dev_priv);
7685 
7686 	/* WaDisableDopClockGating:bdw
7687 	 *
7688 	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7689 	 * clock gating.
7690 	 */
7691 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
7692 		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7693 }
7694 
hsw_init_clock_gating(struct drm_i915_private * dev_priv)7695 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7696 {
7697 	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7698 	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
7699 		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7700 		   HSW_FBCQ_DIS);
7701 
7702 	/* This is required by WaCatErrorRejectionIssue:hsw */
7703 	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7704 		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7705 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7706 
7707 	/* WaSwitchSolVfFArbitrationPriority:hsw */
7708 	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7709 
7710 	lpt_init_clock_gating(dev_priv);
7711 }
7712 
ivb_init_clock_gating(struct drm_i915_private * dev_priv)7713 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7714 {
7715 	u32 snpcr;
7716 
7717 	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7718 
7719 	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7720 	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
7721 		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7722 		   ILK_FBCQ_DIS);
7723 
7724 	/* WaDisableBackToBackFlipFix:ivb */
7725 	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7726 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7727 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7728 
7729 	if (IS_IVB_GT1(dev_priv))
7730 		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7731 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7732 	else {
7733 		/* must write both registers */
7734 		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7735 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7736 		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7737 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7738 	}
7739 
7740 	/*
7741 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7742 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7743 	 */
7744 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7745 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7746 
7747 	/* This is required by WaCatErrorRejectionIssue:ivb */
7748 	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7749 			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7750 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7751 
7752 	g4x_disable_trickle_feed(dev_priv);
7753 
7754 	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7755 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
7756 	snpcr |= GEN6_MBC_SNPCR_MED;
7757 	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7758 
7759 	if (!HAS_PCH_NOP(dev_priv))
7760 		cpt_init_clock_gating(dev_priv);
7761 
7762 	gen6_check_mch_setup(dev_priv);
7763 }
7764 
vlv_init_clock_gating(struct drm_i915_private * dev_priv)7765 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7766 {
7767 	/* WaDisableBackToBackFlipFix:vlv */
7768 	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7769 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7770 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7771 
7772 	/* WaDisableDopClockGating:vlv */
7773 	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7774 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7775 
7776 	/* This is required by WaCatErrorRejectionIssue:vlv */
7777 	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7778 		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7779 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7780 
7781 	/*
7782 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7783 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7784 	 */
7785 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7786 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7787 
7788 	/* WaDisableL3Bank2xClockGate:vlv
7789 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7790 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7791 	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
7792 		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7793 
7794 	/*
7795 	 * WaDisableVLVClockGating_VBIIssue:vlv
7796 	 * Disable clock gating on th GCFG unit to prevent a delay
7797 	 * in the reporting of vblank events.
7798 	 */
7799 	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7800 }
7801 
chv_init_clock_gating(struct drm_i915_private * dev_priv)7802 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7803 {
7804 	/* WaVSRefCountFullforceMissDisable:chv */
7805 	/* WaDSRefCountFullforceMissDisable:chv */
7806 	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
7807 		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7808 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7809 
7810 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7811 	intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
7812 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7813 
7814 	/* WaDisableCSUnitClockGating:chv */
7815 	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7816 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7817 
7818 	/* WaDisableSDEUnitClockGating:chv */
7819 	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7820 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7821 
7822 	/*
7823 	 * WaProgramL3SqcReg1Default:chv
7824 	 * See gfxspecs/Related Documents/Performance Guide/
7825 	 * LSQC Setting Recommendations.
7826 	 */
7827 	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7828 }
7829 
g4x_init_clock_gating(struct drm_i915_private * dev_priv)7830 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7831 {
7832 	u32 dspclk_gate;
7833 
7834 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
7835 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7836 		   GS_UNIT_CLOCK_GATE_DISABLE |
7837 		   CL_UNIT_CLOCK_GATE_DISABLE);
7838 	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7839 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7840 		OVRUNIT_CLOCK_GATE_DISABLE |
7841 		OVCUNIT_CLOCK_GATE_DISABLE;
7842 	if (IS_GM45(dev_priv))
7843 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7844 	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7845 
7846 	g4x_disable_trickle_feed(dev_priv);
7847 }
7848 
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)7849 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7850 {
7851 	struct intel_uncore *uncore = &dev_priv->uncore;
7852 
7853 	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7854 	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7855 	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7856 	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7857 	intel_uncore_write16(uncore, DEUC, 0);
7858 	intel_uncore_write(uncore,
7859 			   MI_ARB_STATE,
7860 			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7861 }
7862 
i965g_init_clock_gating(struct drm_i915_private * dev_priv)7863 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7864 {
7865 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7866 		   I965_RCC_CLOCK_GATE_DISABLE |
7867 		   I965_RCPB_CLOCK_GATE_DISABLE |
7868 		   I965_ISC_CLOCK_GATE_DISABLE |
7869 		   I965_FBC_CLOCK_GATE_DISABLE);
7870 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
7871 	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7872 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7873 }
7874 
gen3_init_clock_gating(struct drm_i915_private * dev_priv)7875 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7876 {
7877 	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7878 
7879 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7880 		DSTATE_DOT_CLOCK_GATING;
7881 	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7882 
7883 	if (IS_PINEVIEW(dev_priv))
7884 		intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
7885 				   _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7886 
7887 	/* IIR "flip pending" means done if this bit is set */
7888 	intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
7889 			   _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7890 
7891 	/* interrupts should cause a wake up from C3 */
7892 	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7893 
7894 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7895 	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7896 
7897 	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7898 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7899 }
7900 
i85x_init_clock_gating(struct drm_i915_private * dev_priv)7901 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7902 {
7903 	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7904 
7905 	/* interrupts should cause a wake up from C3 */
7906 	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7907 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7908 
7909 	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7910 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7911 
7912 	/*
7913 	 * Have FBC ignore 3D activity since we use software
7914 	 * render tracking, and otherwise a pure 3D workload
7915 	 * (even if it just renders a single frame and then does
7916 	 * abosultely nothing) would not allow FBC to recompress
7917 	 * until a 2D blit occurs.
7918 	 */
7919 	intel_uncore_write(&dev_priv->uncore, SCPD0,
7920 		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7921 }
7922 
i830_init_clock_gating(struct drm_i915_private * dev_priv)7923 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7924 {
7925 	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7926 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7927 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7928 }
7929 
intel_init_clock_gating(struct drm_i915_private * dev_priv)7930 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7931 {
7932 	dev_priv->clock_gating_funcs->init_clock_gating(dev_priv);
7933 }
7934 
intel_suspend_hw(struct drm_i915_private * dev_priv)7935 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7936 {
7937 	if (HAS_PCH_LPT(dev_priv))
7938 		lpt_suspend_hw(dev_priv);
7939 }
7940 
nop_init_clock_gating(struct drm_i915_private * dev_priv)7941 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7942 {
7943 	drm_dbg_kms(&dev_priv->drm,
7944 		    "No clock gating settings or workarounds applied.\n");
7945 }
7946 
7947 #define CG_FUNCS(platform)						\
7948 static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \
7949 	.init_clock_gating = platform##_init_clock_gating,		\
7950 }
7951 
7952 CG_FUNCS(dg2);
7953 CG_FUNCS(xehpsdv);
7954 CG_FUNCS(adlp);
7955 CG_FUNCS(dg1);
7956 CG_FUNCS(gen12lp);
7957 CG_FUNCS(icl);
7958 CG_FUNCS(cfl);
7959 CG_FUNCS(skl);
7960 CG_FUNCS(kbl);
7961 CG_FUNCS(bxt);
7962 CG_FUNCS(glk);
7963 CG_FUNCS(bdw);
7964 CG_FUNCS(chv);
7965 CG_FUNCS(hsw);
7966 CG_FUNCS(ivb);
7967 CG_FUNCS(vlv);
7968 CG_FUNCS(gen6);
7969 CG_FUNCS(ilk);
7970 CG_FUNCS(g4x);
7971 CG_FUNCS(i965gm);
7972 CG_FUNCS(i965g);
7973 CG_FUNCS(gen3);
7974 CG_FUNCS(i85x);
7975 CG_FUNCS(i830);
7976 CG_FUNCS(nop);
7977 #undef CG_FUNCS
7978 
7979 /**
7980  * intel_init_clock_gating_hooks - setup the clock gating hooks
7981  * @dev_priv: device private
7982  *
7983  * Setup the hooks that configure which clocks of a given platform can be
7984  * gated and also apply various GT and display specific workarounds for these
7985  * platforms. Note that some GT specific workarounds are applied separately
7986  * when GPU contexts or batchbuffers start their execution.
7987  */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)7988 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7989 {
7990 	if (IS_DG2(dev_priv))
7991 		dev_priv->clock_gating_funcs = &dg2_clock_gating_funcs;
7992 	else if (IS_XEHPSDV(dev_priv))
7993 		dev_priv->clock_gating_funcs = &xehpsdv_clock_gating_funcs;
7994 	else if (IS_ALDERLAKE_P(dev_priv))
7995 		dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs;
7996 	else if (IS_DG1(dev_priv))
7997 		dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs;
7998 	else if (GRAPHICS_VER(dev_priv) == 12)
7999 		dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs;
8000 	else if (GRAPHICS_VER(dev_priv) == 11)
8001 		dev_priv->clock_gating_funcs = &icl_clock_gating_funcs;
8002 	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
8003 		dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs;
8004 	else if (IS_SKYLAKE(dev_priv))
8005 		dev_priv->clock_gating_funcs = &skl_clock_gating_funcs;
8006 	else if (IS_KABYLAKE(dev_priv))
8007 		dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs;
8008 	else if (IS_BROXTON(dev_priv))
8009 		dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs;
8010 	else if (IS_GEMINILAKE(dev_priv))
8011 		dev_priv->clock_gating_funcs = &glk_clock_gating_funcs;
8012 	else if (IS_BROADWELL(dev_priv))
8013 		dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs;
8014 	else if (IS_CHERRYVIEW(dev_priv))
8015 		dev_priv->clock_gating_funcs = &chv_clock_gating_funcs;
8016 	else if (IS_HASWELL(dev_priv))
8017 		dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs;
8018 	else if (IS_IVYBRIDGE(dev_priv))
8019 		dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs;
8020 	else if (IS_VALLEYVIEW(dev_priv))
8021 		dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs;
8022 	else if (GRAPHICS_VER(dev_priv) == 6)
8023 		dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs;
8024 	else if (GRAPHICS_VER(dev_priv) == 5)
8025 		dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs;
8026 	else if (IS_G4X(dev_priv))
8027 		dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs;
8028 	else if (IS_I965GM(dev_priv))
8029 		dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs;
8030 	else if (IS_I965G(dev_priv))
8031 		dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs;
8032 	else if (GRAPHICS_VER(dev_priv) == 3)
8033 		dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs;
8034 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8035 		dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs;
8036 	else if (GRAPHICS_VER(dev_priv) == 2)
8037 		dev_priv->clock_gating_funcs = &i830_clock_gating_funcs;
8038 	else {
8039 		MISSING_CASE(INTEL_DEVID(dev_priv));
8040 		dev_priv->clock_gating_funcs = &nop_clock_gating_funcs;
8041 	}
8042 }
8043 
8044 static const struct drm_i915_wm_disp_funcs skl_wm_funcs = {
8045 	.compute_global_watermarks = skl_compute_wm,
8046 };
8047 
8048 static const struct drm_i915_wm_disp_funcs ilk_wm_funcs = {
8049 	.compute_pipe_wm = ilk_compute_pipe_wm,
8050 	.compute_intermediate_wm = ilk_compute_intermediate_wm,
8051 	.initial_watermarks = ilk_initial_watermarks,
8052 	.optimize_watermarks = ilk_optimize_watermarks,
8053 };
8054 
8055 static const struct drm_i915_wm_disp_funcs vlv_wm_funcs = {
8056 	.compute_pipe_wm = vlv_compute_pipe_wm,
8057 	.compute_intermediate_wm = vlv_compute_intermediate_wm,
8058 	.initial_watermarks = vlv_initial_watermarks,
8059 	.optimize_watermarks = vlv_optimize_watermarks,
8060 	.atomic_update_watermarks = vlv_atomic_update_fifo,
8061 };
8062 
8063 static const struct drm_i915_wm_disp_funcs g4x_wm_funcs = {
8064 	.compute_pipe_wm = g4x_compute_pipe_wm,
8065 	.compute_intermediate_wm = g4x_compute_intermediate_wm,
8066 	.initial_watermarks = g4x_initial_watermarks,
8067 	.optimize_watermarks = g4x_optimize_watermarks,
8068 };
8069 
8070 static const struct drm_i915_wm_disp_funcs pnv_wm_funcs = {
8071 	.update_wm = pnv_update_wm,
8072 };
8073 
8074 static const struct drm_i915_wm_disp_funcs i965_wm_funcs = {
8075 	.update_wm = i965_update_wm,
8076 };
8077 
8078 static const struct drm_i915_wm_disp_funcs i9xx_wm_funcs = {
8079 	.update_wm = i9xx_update_wm,
8080 };
8081 
8082 static const struct drm_i915_wm_disp_funcs i845_wm_funcs = {
8083 	.update_wm = i845_update_wm,
8084 };
8085 
8086 static const struct drm_i915_wm_disp_funcs nop_funcs = {
8087 };
8088 
8089 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)8090 void intel_init_pm(struct drm_i915_private *dev_priv)
8091 {
8092 	/* For cxsr */
8093 	if (IS_PINEVIEW(dev_priv))
8094 		pnv_get_mem_freq(dev_priv);
8095 	else if (GRAPHICS_VER(dev_priv) == 5)
8096 		ilk_get_mem_freq(dev_priv);
8097 
8098 	intel_sagv_init(dev_priv);
8099 
8100 	/* For FIFO watermark updates */
8101 	if (DISPLAY_VER(dev_priv) >= 9) {
8102 		skl_setup_wm_latency(dev_priv);
8103 		dev_priv->wm_disp = &skl_wm_funcs;
8104 	} else if (HAS_PCH_SPLIT(dev_priv)) {
8105 		ilk_setup_wm_latency(dev_priv);
8106 
8107 		if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
8108 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8109 		    (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
8110 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8111 			dev_priv->wm_disp = &ilk_wm_funcs;
8112 		} else {
8113 			drm_dbg_kms(&dev_priv->drm,
8114 				    "Failed to read display plane latency. "
8115 				    "Disable CxSR\n");
8116 			dev_priv->wm_disp = &nop_funcs;
8117 		}
8118 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8119 		vlv_setup_wm_latency(dev_priv);
8120 		dev_priv->wm_disp = &vlv_wm_funcs;
8121 	} else if (IS_G4X(dev_priv)) {
8122 		g4x_setup_wm_latency(dev_priv);
8123 		dev_priv->wm_disp = &g4x_wm_funcs;
8124 	} else if (IS_PINEVIEW(dev_priv)) {
8125 		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
8126 					    dev_priv->is_ddr3,
8127 					    dev_priv->fsb_freq,
8128 					    dev_priv->mem_freq)) {
8129 			drm_info(&dev_priv->drm,
8130 				 "failed to find known CxSR latency "
8131 				 "(found ddr%s fsb freq %d, mem freq %d), "
8132 				 "disabling CxSR\n",
8133 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8134 				 dev_priv->fsb_freq, dev_priv->mem_freq);
8135 			/* Disable CxSR and never update its watermark again */
8136 			intel_set_memory_cxsr(dev_priv, false);
8137 			dev_priv->wm_disp = &nop_funcs;
8138 		} else
8139 			dev_priv->wm_disp = &pnv_wm_funcs;
8140 	} else if (DISPLAY_VER(dev_priv) == 4) {
8141 		dev_priv->wm_disp = &i965_wm_funcs;
8142 	} else if (DISPLAY_VER(dev_priv) == 3) {
8143 		dev_priv->wm_disp = &i9xx_wm_funcs;
8144 	} else if (DISPLAY_VER(dev_priv) == 2) {
8145 		if (INTEL_NUM_PIPES(dev_priv) == 1)
8146 			dev_priv->wm_disp = &i845_wm_funcs;
8147 		else
8148 			dev_priv->wm_disp = &i9xx_wm_funcs;
8149 	} else {
8150 		drm_err(&dev_priv->drm,
8151 			"unexpected fall-through in %s\n", __func__);
8152 		dev_priv->wm_disp = &nop_funcs;
8153 	}
8154 }
8155 
intel_pm_setup(struct drm_i915_private * dev_priv)8156 void intel_pm_setup(struct drm_i915_private *dev_priv)
8157 {
8158 	dev_priv->runtime_pm.suspended = false;
8159 	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
8160 }
8161 
intel_dbuf_duplicate_state(struct intel_global_obj * obj)8162 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
8163 {
8164 	struct intel_dbuf_state *dbuf_state;
8165 
8166 	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
8167 	if (!dbuf_state)
8168 		return NULL;
8169 
8170 	return &dbuf_state->base;
8171 }
8172 
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)8173 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
8174 				     struct intel_global_state *state)
8175 {
8176 	kfree(state);
8177 }
8178 
8179 static const struct intel_global_state_funcs intel_dbuf_funcs = {
8180 	.atomic_duplicate_state = intel_dbuf_duplicate_state,
8181 	.atomic_destroy_state = intel_dbuf_destroy_state,
8182 };
8183 
8184 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)8185 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
8186 {
8187 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8188 	struct intel_global_state *dbuf_state;
8189 
8190 	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
8191 	if (IS_ERR(dbuf_state))
8192 		return ERR_CAST(dbuf_state);
8193 
8194 	return to_intel_dbuf_state(dbuf_state);
8195 }
8196 
intel_dbuf_init(struct drm_i915_private * dev_priv)8197 int intel_dbuf_init(struct drm_i915_private *dev_priv)
8198 {
8199 	struct intel_dbuf_state *dbuf_state;
8200 
8201 	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
8202 	if (!dbuf_state)
8203 		return -ENOMEM;
8204 
8205 	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
8206 				     &dbuf_state->base, &intel_dbuf_funcs);
8207 
8208 	return 0;
8209 }
8210 
8211 /*
8212  * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
8213  * update the request state of all DBUS slices.
8214  */
update_mbus_pre_enable(struct intel_atomic_state * state)8215 static void update_mbus_pre_enable(struct intel_atomic_state *state)
8216 {
8217 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8218 	u32 mbus_ctl, dbuf_min_tracker_val;
8219 	enum dbuf_slice slice;
8220 	const struct intel_dbuf_state *dbuf_state =
8221 		intel_atomic_get_new_dbuf_state(state);
8222 
8223 	if (!HAS_MBUS_JOINING(dev_priv))
8224 		return;
8225 
8226 	/*
8227 	 * TODO: Implement vblank synchronized MBUS joining changes.
8228 	 * Must be properly coordinated with dbuf reprogramming.
8229 	 */
8230 	if (dbuf_state->joined_mbus) {
8231 		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
8232 			MBUS_JOIN_PIPE_SELECT_NONE;
8233 		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
8234 	} else {
8235 		mbus_ctl = MBUS_HASHING_MODE_2x2 |
8236 			MBUS_JOIN_PIPE_SELECT_NONE;
8237 		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
8238 	}
8239 
8240 	intel_de_rmw(dev_priv, MBUS_CTL,
8241 		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
8242 		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
8243 
8244 	for_each_dbuf_slice(dev_priv, slice)
8245 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
8246 			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
8247 			     dbuf_min_tracker_val);
8248 }
8249 
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)8250 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
8251 {
8252 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8253 	const struct intel_dbuf_state *new_dbuf_state =
8254 		intel_atomic_get_new_dbuf_state(state);
8255 	const struct intel_dbuf_state *old_dbuf_state =
8256 		intel_atomic_get_old_dbuf_state(state);
8257 
8258 	if (!new_dbuf_state ||
8259 	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8260 	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8261 		return;
8262 
8263 	WARN_ON(!new_dbuf_state->base.changed);
8264 
8265 	update_mbus_pre_enable(state);
8266 	gen9_dbuf_slices_update(dev_priv,
8267 				old_dbuf_state->enabled_slices |
8268 				new_dbuf_state->enabled_slices);
8269 }
8270 
intel_dbuf_post_plane_update(struct intel_atomic_state * state)8271 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
8272 {
8273 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
8274 	const struct intel_dbuf_state *new_dbuf_state =
8275 		intel_atomic_get_new_dbuf_state(state);
8276 	const struct intel_dbuf_state *old_dbuf_state =
8277 		intel_atomic_get_old_dbuf_state(state);
8278 
8279 	if (!new_dbuf_state ||
8280 	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
8281 	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
8282 		return;
8283 
8284 	WARN_ON(!new_dbuf_state->base.changed);
8285 
8286 	gen9_dbuf_slices_update(dev_priv,
8287 				new_dbuf_state->enabled_slices);
8288 }
8289 
intel_mbus_dbox_update(struct intel_atomic_state * state)8290 void intel_mbus_dbox_update(struct intel_atomic_state *state)
8291 {
8292 	struct drm_i915_private *i915 = to_i915(state->base.dev);
8293 	const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
8294 	const struct intel_crtc_state *new_crtc_state;
8295 	const struct intel_crtc *crtc;
8296 	u32 val = 0;
8297 	int i;
8298 
8299 	if (DISPLAY_VER(i915) < 11)
8300 		return;
8301 
8302 	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
8303 	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
8304 	if (!new_dbuf_state ||
8305 	    (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
8306 	     new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
8307 		return;
8308 
8309 	if (DISPLAY_VER(i915) >= 12) {
8310 		val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
8311 		val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
8312 		val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
8313 	}
8314 
8315 	/* Wa_22010947358:adl-p */
8316 	if (IS_ALDERLAKE_P(i915))
8317 		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
8318 						     MBUS_DBOX_A_CREDIT(4);
8319 	else
8320 		val |= MBUS_DBOX_A_CREDIT(2);
8321 
8322 	if (IS_ALDERLAKE_P(i915)) {
8323 		val |= MBUS_DBOX_BW_CREDIT(2);
8324 		val |= MBUS_DBOX_B_CREDIT(8);
8325 	} else if (DISPLAY_VER(i915) >= 12) {
8326 		val |= MBUS_DBOX_BW_CREDIT(2);
8327 		val |= MBUS_DBOX_B_CREDIT(12);
8328 	} else {
8329 		val |= MBUS_DBOX_BW_CREDIT(1);
8330 		val |= MBUS_DBOX_B_CREDIT(8);
8331 	}
8332 
8333 	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
8334 		if (!new_crtc_state->hw.active ||
8335 		    !intel_crtc_needs_modeset(new_crtc_state))
8336 			continue;
8337 
8338 		intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), val);
8339 	}
8340 }
8341