1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5 #include <linux/kernel.h>
6 #include <linux/pm_qos.h>
7 #include <linux/slab.h>
8
9 #include <drm/drm_atomic_helper.h>
10 #include <drm/drm_fourcc.h>
11 #include <drm/drm_plane.h>
12 #include <drm/drm_vblank_work.h>
13
14 #include "i915_irq.h"
15 #include "i915_vgpu.h"
16 #include "i9xx_plane.h"
17 #include "icl_dsi.h"
18 #include "intel_atomic.h"
19 #include "intel_atomic_plane.h"
20 #include "intel_color.h"
21 #include "intel_crtc.h"
22 #include "intel_cursor.h"
23 #include "intel_display_debugfs.h"
24 #include "intel_display_trace.h"
25 #include "intel_display_types.h"
26 #include "intel_drrs.h"
27 #include "intel_dsi.h"
28 #include "intel_pipe_crc.h"
29 #include "intel_psr.h"
30 #include "intel_sprite.h"
31 #include "intel_vrr.h"
32 #include "skl_universal_plane.h"
33
assert_vblank_disabled(struct drm_crtc * crtc)34 static void assert_vblank_disabled(struct drm_crtc *crtc)
35 {
36 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
37 drm_crtc_vblank_put(crtc);
38 }
39
intel_first_crtc(struct drm_i915_private * i915)40 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915)
41 {
42 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0));
43 }
44
intel_crtc_for_pipe(struct drm_i915_private * i915,enum pipe pipe)45 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915,
46 enum pipe pipe)
47 {
48 struct intel_crtc *crtc;
49
50 for_each_intel_crtc(&i915->drm, crtc) {
51 if (crtc->pipe == pipe)
52 return crtc;
53 }
54
55 return NULL;
56 }
57
intel_crtc_wait_for_next_vblank(struct intel_crtc * crtc)58 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc)
59 {
60 drm_crtc_wait_one_vblank(&crtc->base);
61 }
62
intel_wait_for_vblank_if_active(struct drm_i915_private * i915,enum pipe pipe)63 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915,
64 enum pipe pipe)
65 {
66 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
67
68 if (crtc->active)
69 intel_crtc_wait_for_next_vblank(crtc);
70 }
71
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)72 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
73 {
74 struct drm_device *dev = crtc->base.dev;
75 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
76
77 if (!crtc->active)
78 return 0;
79
80 if (!vblank->max_vblank_count)
81 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
82
83 return crtc->base.funcs->get_vblank_counter(&crtc->base);
84 }
85
intel_crtc_max_vblank_count(const struct intel_crtc_state * crtc_state)86 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
87 {
88 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
89
90 /*
91 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt
92 * have updated at the beginning of TE, if we want to use
93 * the hw counter, then we would find it updated in only
94 * the next TE, hence switching to sw counter.
95 */
96 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 |
97 I915_MODE_FLAG_DSI_USE_TE1))
98 return 0;
99
100 /*
101 * On i965gm the hardware frame counter reads
102 * zero when the TV encoder is enabled :(
103 */
104 if (IS_I965GM(dev_priv) &&
105 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
106 return 0;
107
108 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
109 return 0xffffffff; /* full 32 bit counter */
110 else if (DISPLAY_VER(dev_priv) >= 3)
111 return 0xffffff; /* only 24 bits of frame count */
112 else
113 return 0; /* Gen2 doesn't have a hardware frame counter */
114 }
115
intel_crtc_vblank_on(const struct intel_crtc_state * crtc_state)116 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
117 {
118 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
119
120 assert_vblank_disabled(&crtc->base);
121 drm_crtc_set_max_vblank_count(&crtc->base,
122 intel_crtc_max_vblank_count(crtc_state));
123 drm_crtc_vblank_on(&crtc->base);
124
125 /*
126 * Should really happen exactly when we enable the pipe
127 * but we want the frame counters in the trace, and that
128 * requires vblank support on some platforms/outputs.
129 */
130 trace_intel_pipe_enable(crtc);
131 }
132
intel_crtc_vblank_off(const struct intel_crtc_state * crtc_state)133 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
134 {
135 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
136
137 /*
138 * Should really happen exactly when we disable the pipe
139 * but we want the frame counters in the trace, and that
140 * requires vblank support on some platforms/outputs.
141 */
142 trace_intel_pipe_disable(crtc);
143
144 drm_crtc_vblank_off(&crtc->base);
145 assert_vblank_disabled(&crtc->base);
146 }
147
intel_crtc_state_alloc(struct intel_crtc * crtc)148 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
149 {
150 struct intel_crtc_state *crtc_state;
151
152 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
153
154 if (crtc_state)
155 intel_crtc_state_reset(crtc_state, crtc);
156
157 return crtc_state;
158 }
159
intel_crtc_state_reset(struct intel_crtc_state * crtc_state,struct intel_crtc * crtc)160 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
161 struct intel_crtc *crtc)
162 {
163 memset(crtc_state, 0, sizeof(*crtc_state));
164
165 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
166
167 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
168 crtc_state->master_transcoder = INVALID_TRANSCODER;
169 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
170 crtc_state->scaler_state.scaler_id = -1;
171 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
172 }
173
intel_crtc_alloc(void)174 static struct intel_crtc *intel_crtc_alloc(void)
175 {
176 struct intel_crtc_state *crtc_state;
177 struct intel_crtc *crtc;
178
179 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
180 if (!crtc)
181 return ERR_PTR(-ENOMEM);
182
183 crtc_state = intel_crtc_state_alloc(crtc);
184 if (!crtc_state) {
185 kfree(crtc);
186 return ERR_PTR(-ENOMEM);
187 }
188
189 crtc->base.state = &crtc_state->uapi;
190 crtc->config = crtc_state;
191
192 return crtc;
193 }
194
intel_crtc_free(struct intel_crtc * crtc)195 static void intel_crtc_free(struct intel_crtc *crtc)
196 {
197 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
198 kfree(crtc);
199 }
200
intel_crtc_destroy(struct drm_crtc * _crtc)201 static void intel_crtc_destroy(struct drm_crtc *_crtc)
202 {
203 struct intel_crtc *crtc = to_intel_crtc(_crtc);
204
205 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos);
206
207 drm_crtc_cleanup(&crtc->base);
208 kfree(crtc);
209 }
210
intel_crtc_late_register(struct drm_crtc * crtc)211 static int intel_crtc_late_register(struct drm_crtc *crtc)
212 {
213 intel_crtc_debugfs_add(crtc);
214 return 0;
215 }
216
217 #define INTEL_CRTC_FUNCS \
218 .set_config = drm_atomic_helper_set_config, \
219 .destroy = intel_crtc_destroy, \
220 .page_flip = drm_atomic_helper_page_flip, \
221 .atomic_duplicate_state = intel_crtc_duplicate_state, \
222 .atomic_destroy_state = intel_crtc_destroy_state, \
223 .set_crc_source = intel_crtc_set_crc_source, \
224 .verify_crc_source = intel_crtc_verify_crc_source, \
225 .get_crc_sources = intel_crtc_get_crc_sources, \
226 .late_register = intel_crtc_late_register
227
228 static const struct drm_crtc_funcs bdw_crtc_funcs = {
229 INTEL_CRTC_FUNCS,
230
231 .get_vblank_counter = g4x_get_vblank_counter,
232 .enable_vblank = bdw_enable_vblank,
233 .disable_vblank = bdw_disable_vblank,
234 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
235 };
236
237 static const struct drm_crtc_funcs ilk_crtc_funcs = {
238 INTEL_CRTC_FUNCS,
239
240 .get_vblank_counter = g4x_get_vblank_counter,
241 .enable_vblank = ilk_enable_vblank,
242 .disable_vblank = ilk_disable_vblank,
243 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
244 };
245
246 static const struct drm_crtc_funcs g4x_crtc_funcs = {
247 INTEL_CRTC_FUNCS,
248
249 .get_vblank_counter = g4x_get_vblank_counter,
250 .enable_vblank = i965_enable_vblank,
251 .disable_vblank = i965_disable_vblank,
252 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
253 };
254
255 static const struct drm_crtc_funcs i965_crtc_funcs = {
256 INTEL_CRTC_FUNCS,
257
258 .get_vblank_counter = i915_get_vblank_counter,
259 .enable_vblank = i965_enable_vblank,
260 .disable_vblank = i965_disable_vblank,
261 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
262 };
263
264 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
265 INTEL_CRTC_FUNCS,
266
267 .get_vblank_counter = i915_get_vblank_counter,
268 .enable_vblank = i915gm_enable_vblank,
269 .disable_vblank = i915gm_disable_vblank,
270 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
271 };
272
273 static const struct drm_crtc_funcs i915_crtc_funcs = {
274 INTEL_CRTC_FUNCS,
275
276 .get_vblank_counter = i915_get_vblank_counter,
277 .enable_vblank = i8xx_enable_vblank,
278 .disable_vblank = i8xx_disable_vblank,
279 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
280 };
281
282 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
283 INTEL_CRTC_FUNCS,
284
285 /* no hw vblank counter */
286 .enable_vblank = i8xx_enable_vblank,
287 .disable_vblank = i8xx_disable_vblank,
288 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
289 };
290
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)291 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
292 {
293 struct intel_plane *primary, *cursor;
294 const struct drm_crtc_funcs *funcs;
295 struct intel_crtc *crtc;
296 int sprite, ret;
297
298 crtc = intel_crtc_alloc();
299 if (IS_ERR(crtc))
300 return PTR_ERR(crtc);
301
302 crtc->pipe = pipe;
303 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
304
305 if (DISPLAY_VER(dev_priv) >= 9)
306 primary = skl_universal_plane_create(dev_priv, pipe,
307 PLANE_PRIMARY);
308 else
309 primary = intel_primary_plane_create(dev_priv, pipe);
310 if (IS_ERR(primary)) {
311 ret = PTR_ERR(primary);
312 goto fail;
313 }
314 crtc->plane_ids_mask |= BIT(primary->id);
315
316 for_each_sprite(dev_priv, pipe, sprite) {
317 struct intel_plane *plane;
318
319 if (DISPLAY_VER(dev_priv) >= 9)
320 plane = skl_universal_plane_create(dev_priv, pipe,
321 PLANE_SPRITE0 + sprite);
322 else
323 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
324 if (IS_ERR(plane)) {
325 ret = PTR_ERR(plane);
326 goto fail;
327 }
328 crtc->plane_ids_mask |= BIT(plane->id);
329 }
330
331 cursor = intel_cursor_plane_create(dev_priv, pipe);
332 if (IS_ERR(cursor)) {
333 ret = PTR_ERR(cursor);
334 goto fail;
335 }
336 crtc->plane_ids_mask |= BIT(cursor->id);
337
338 if (HAS_GMCH(dev_priv)) {
339 if (IS_CHERRYVIEW(dev_priv) ||
340 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
341 funcs = &g4x_crtc_funcs;
342 else if (DISPLAY_VER(dev_priv) == 4)
343 funcs = &i965_crtc_funcs;
344 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
345 funcs = &i915gm_crtc_funcs;
346 else if (DISPLAY_VER(dev_priv) == 3)
347 funcs = &i915_crtc_funcs;
348 else
349 funcs = &i8xx_crtc_funcs;
350 } else {
351 if (DISPLAY_VER(dev_priv) >= 8)
352 funcs = &bdw_crtc_funcs;
353 else
354 funcs = &ilk_crtc_funcs;
355 }
356
357 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
358 &primary->base, &cursor->base,
359 funcs, "pipe %c", pipe_name(pipe));
360 if (ret)
361 goto fail;
362
363 if (DISPLAY_VER(dev_priv) >= 11)
364 drm_crtc_create_scaling_filter_property(&crtc->base,
365 BIT(DRM_SCALING_FILTER_DEFAULT) |
366 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR));
367
368 intel_color_init(crtc);
369
370 intel_crtc_drrs_init(crtc);
371 intel_crtc_crc_init(crtc);
372
373 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE);
374
375 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
376
377 return 0;
378
379 fail:
380 intel_crtc_free(crtc);
381
382 return ret;
383 }
384
intel_crtc_needs_vblank_work(const struct intel_crtc_state * crtc_state)385 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state)
386 {
387 return crtc_state->hw.active &&
388 !intel_crtc_needs_modeset(crtc_state) &&
389 !crtc_state->preload_luts &&
390 (crtc_state->uapi.color_mgmt_changed ||
391 crtc_state->update_pipe);
392 }
393
intel_crtc_vblank_work(struct kthread_work * base)394 static void intel_crtc_vblank_work(struct kthread_work *base)
395 {
396 struct drm_vblank_work *work = to_drm_vblank_work(base);
397 struct intel_crtc_state *crtc_state =
398 container_of(work, typeof(*crtc_state), vblank_work);
399 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
400
401 trace_intel_crtc_vblank_work_start(crtc);
402
403 intel_color_load_luts(crtc_state);
404
405 if (crtc_state->uapi.event) {
406 spin_lock_irq(&crtc->base.dev->event_lock);
407 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event);
408 crtc_state->uapi.event = NULL;
409 spin_unlock_irq(&crtc->base.dev->event_lock);
410 }
411
412 trace_intel_crtc_vblank_work_end(crtc);
413 }
414
intel_crtc_vblank_work_init(struct intel_crtc_state * crtc_state)415 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state)
416 {
417 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
418
419 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base,
420 intel_crtc_vblank_work);
421 /*
422 * Interrupt latency is critical for getting the vblank
423 * work executed as early as possible during the vblank.
424 */
425 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0);
426 }
427
intel_wait_for_vblank_workers(struct intel_atomic_state * state)428 void intel_wait_for_vblank_workers(struct intel_atomic_state *state)
429 {
430 struct intel_crtc_state *crtc_state;
431 struct intel_crtc *crtc;
432 int i;
433
434 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
435 if (!intel_crtc_needs_vblank_work(crtc_state))
436 continue;
437
438 drm_vblank_work_flush(&crtc_state->vblank_work);
439 cpu_latency_qos_update_request(&crtc->vblank_pm_qos,
440 PM_QOS_DEFAULT_VALUE);
441 }
442 }
443
intel_usecs_to_scanlines(const struct drm_display_mode * adjusted_mode,int usecs)444 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode,
445 int usecs)
446 {
447 /* paranoia */
448 if (!adjusted_mode->crtc_htotal)
449 return 1;
450
451 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock,
452 1000 * adjusted_mode->crtc_htotal);
453 }
454
intel_mode_vblank_start(const struct drm_display_mode * mode)455 static int intel_mode_vblank_start(const struct drm_display_mode *mode)
456 {
457 int vblank_start = mode->crtc_vblank_start;
458
459 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
460 vblank_start = DIV_ROUND_UP(vblank_start, 2);
461
462 return vblank_start;
463 }
464
465 /**
466 * intel_pipe_update_start() - start update of a set of display registers
467 * @new_crtc_state: the new crtc state
468 *
469 * Mark the start of an update to pipe registers that should be updated
470 * atomically regarding vblank. If the next vblank will happens within
471 * the next 100 us, this function waits until the vblank passes.
472 *
473 * After a successful call to this function, interrupts will be disabled
474 * until a subsequent call to intel_pipe_update_end(). That is done to
475 * avoid random delays.
476 */
intel_pipe_update_start(struct intel_crtc_state * new_crtc_state)477 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state)
478 {
479 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
480 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
481 const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode;
482 long timeout = msecs_to_jiffies_timeout(1);
483 int scanline, min, max, vblank_start;
484 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
485 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
486 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
487 DEFINE_WAIT(wait);
488
489 intel_psr_lock(new_crtc_state);
490
491 if (new_crtc_state->do_async_flip)
492 return;
493
494 if (intel_crtc_needs_vblank_work(new_crtc_state))
495 intel_crtc_vblank_work_init(new_crtc_state);
496
497 if (new_crtc_state->vrr.enable) {
498 if (intel_vrr_is_push_sent(new_crtc_state))
499 vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state);
500 else
501 vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state);
502 } else {
503 vblank_start = intel_mode_vblank_start(adjusted_mode);
504 }
505
506 /* FIXME needs to be calibrated sensibly */
507 min = vblank_start - intel_usecs_to_scanlines(adjusted_mode,
508 VBLANK_EVASION_TIME_US);
509 max = vblank_start - 1;
510
511 if (min <= 0 || max <= 0)
512 goto irq_disable;
513
514 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base)))
515 goto irq_disable;
516
517 /*
518 * Wait for psr to idle out after enabling the VBL interrupts
519 * VBL interrupts will start the PSR exit and prevent a PSR
520 * re-entry as well.
521 */
522 intel_psr_wait_for_idle_locked(new_crtc_state);
523
524 local_irq_disable();
525
526 crtc->debug.min_vbl = min;
527 crtc->debug.max_vbl = max;
528 trace_intel_pipe_update_start(crtc);
529
530 for (;;) {
531 /*
532 * prepare_to_wait() has a memory barrier, which guarantees
533 * other CPUs can see the task state update by the time we
534 * read the scanline.
535 */
536 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
537
538 scanline = intel_get_crtc_scanline(crtc);
539 if (scanline < min || scanline > max)
540 break;
541
542 if (!timeout) {
543 drm_err(&dev_priv->drm,
544 "Potential atomic update failure on pipe %c\n",
545 pipe_name(crtc->pipe));
546 break;
547 }
548
549 local_irq_enable();
550
551 timeout = schedule_timeout(timeout);
552
553 local_irq_disable();
554 }
555
556 finish_wait(wq, &wait);
557
558 drm_crtc_vblank_put(&crtc->base);
559
560 /*
561 * On VLV/CHV DSI the scanline counter would appear to
562 * increment approx. 1/3 of a scanline before start of vblank.
563 * The registers still get latched at start of vblank however.
564 * This means we must not write any registers on the first
565 * line of vblank (since not the whole line is actually in
566 * vblank). And unfortunately we can't use the interrupt to
567 * wait here since it will fire too soon. We could use the
568 * frame start interrupt instead since it will fire after the
569 * critical scanline, but that would require more changes
570 * in the interrupt code. So for now we'll just do the nasty
571 * thing and poll for the bad scanline to pass us by.
572 *
573 * FIXME figure out if BXT+ DSI suffers from this as well
574 */
575 while (need_vlv_dsi_wa && scanline == vblank_start)
576 scanline = intel_get_crtc_scanline(crtc);
577
578 crtc->debug.scanline_start = scanline;
579 crtc->debug.start_vbl_time = ktime_get();
580 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc);
581
582 trace_intel_pipe_update_vblank_evaded(crtc);
583 return;
584
585 irq_disable:
586 local_irq_disable();
587 }
588
589 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE)
dbg_vblank_evade(struct intel_crtc * crtc,ktime_t end)590 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end)
591 {
592 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time));
593 unsigned int h;
594
595 h = ilog2(delta >> 9);
596 if (h >= ARRAY_SIZE(crtc->debug.vbl.times))
597 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1;
598 crtc->debug.vbl.times[h]++;
599
600 crtc->debug.vbl.sum += delta;
601 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min)
602 crtc->debug.vbl.min = delta;
603 if (delta > crtc->debug.vbl.max)
604 crtc->debug.vbl.max = delta;
605
606 if (delta > 1000 * VBLANK_EVASION_TIME_US) {
607 drm_dbg_kms(crtc->base.dev,
608 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n",
609 pipe_name(crtc->pipe),
610 div_u64(delta, 1000),
611 VBLANK_EVASION_TIME_US);
612 crtc->debug.vbl.over++;
613 }
614 }
615 #else
dbg_vblank_evade(struct intel_crtc * crtc,ktime_t end)616 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {}
617 #endif
618
619 /**
620 * intel_pipe_update_end() - end update of a set of display registers
621 * @new_crtc_state: the new crtc state
622 *
623 * Mark the end of an update started with intel_pipe_update_start(). This
624 * re-enables interrupts and verifies the update was actually completed
625 * before a vblank.
626 */
intel_pipe_update_end(struct intel_crtc_state * new_crtc_state)627 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state)
628 {
629 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
630 enum pipe pipe = crtc->pipe;
631 int scanline_end = intel_get_crtc_scanline(crtc);
632 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc);
633 ktime_t end_vbl_time = ktime_get();
634 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
635
636 intel_psr_unlock(new_crtc_state);
637
638 if (new_crtc_state->do_async_flip)
639 return;
640
641 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end);
642
643 /*
644 * Incase of mipi dsi command mode, we need to set frame update
645 * request for every commit.
646 */
647 if (DISPLAY_VER(dev_priv) >= 11 &&
648 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
649 icl_dsi_frame_update(new_crtc_state);
650
651 /* We're still in the vblank-evade critical section, this can't race.
652 * Would be slightly nice to just grab the vblank count and arm the
653 * event outside of the critical section - the spinlock might spin for a
654 * while ... */
655 if (intel_crtc_needs_vblank_work(new_crtc_state)) {
656 drm_vblank_work_schedule(&new_crtc_state->vblank_work,
657 drm_crtc_accurate_vblank_count(&crtc->base) + 1,
658 false);
659 } else if (new_crtc_state->uapi.event) {
660 drm_WARN_ON(&dev_priv->drm,
661 drm_crtc_vblank_get(&crtc->base) != 0);
662
663 spin_lock(&crtc->base.dev->event_lock);
664 drm_crtc_arm_vblank_event(&crtc->base,
665 new_crtc_state->uapi.event);
666 spin_unlock(&crtc->base.dev->event_lock);
667
668 new_crtc_state->uapi.event = NULL;
669 }
670
671 /*
672 * Send VRR Push to terminate Vblank. If we are already in vblank
673 * this has to be done _after_ sampling the frame counter, as
674 * otherwise the push would immediately terminate the vblank and
675 * the sampled frame counter would correspond to the next frame
676 * instead of the current frame.
677 *
678 * There is a tiny race here (iff vblank evasion failed us) where
679 * we might sample the frame counter just before vmax vblank start
680 * but the push would be sent just after it. That would cause the
681 * push to affect the next frame instead of the current frame,
682 * which would cause the next frame to terminate already at vmin
683 * vblank start instead of vmax vblank start.
684 */
685 intel_vrr_send_push(new_crtc_state);
686
687 local_irq_enable();
688
689 if (intel_vgpu_active(dev_priv))
690 return;
691
692 if (crtc->debug.start_vbl_count &&
693 crtc->debug.start_vbl_count != end_vbl_count) {
694 drm_err(&dev_priv->drm,
695 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n",
696 pipe_name(pipe), crtc->debug.start_vbl_count,
697 end_vbl_count,
698 ktime_us_delta(end_vbl_time,
699 crtc->debug.start_vbl_time),
700 crtc->debug.min_vbl, crtc->debug.max_vbl,
701 crtc->debug.scanline_start, scanline_end);
702 }
703
704 dbg_vblank_evade(crtc, end_vbl_time);
705 }
706