1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5 #include <linux/kernel.h>
6 #include <linux/pm_qos.h>
7 #include <linux/slab.h>
8
9 #include <drm/drm_atomic_helper.h>
10 #include <drm/drm_fourcc.h>
11 #include <drm/drm_plane.h>
12 #include <drm/drm_plane_helper.h>
13 #include <drm/drm_vblank_work.h>
14
15 #include "i915_irq.h"
16 #include "i915_vgpu.h"
17 #include "i9xx_plane.h"
18 #include "icl_dsi.h"
19 #include "intel_atomic.h"
20 #include "intel_atomic_plane.h"
21 #include "intel_color.h"
22 #include "intel_crtc.h"
23 #include "intel_cursor.h"
24 #include "intel_display_debugfs.h"
25 #include "intel_display_trace.h"
26 #include "intel_display_types.h"
27 #include "intel_drrs.h"
28 #include "intel_dsi.h"
29 #include "intel_pipe_crc.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32 #include "intel_vrr.h"
33 #include "skl_universal_plane.h"
34
assert_vblank_disabled(struct drm_crtc * crtc)35 static void assert_vblank_disabled(struct drm_crtc *crtc)
36 {
37 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
38 drm_crtc_vblank_put(crtc);
39 }
40
intel_first_crtc(struct drm_i915_private * i915)41 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915)
42 {
43 return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0));
44 }
45
intel_crtc_for_pipe(struct drm_i915_private * i915,enum pipe pipe)46 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915,
47 enum pipe pipe)
48 {
49 struct intel_crtc *crtc;
50
51 for_each_intel_crtc(&i915->drm, crtc) {
52 if (crtc->pipe == pipe)
53 return crtc;
54 }
55
56 return NULL;
57 }
58
intel_crtc_wait_for_next_vblank(struct intel_crtc * crtc)59 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc)
60 {
61 drm_crtc_wait_one_vblank(&crtc->base);
62 }
63
intel_wait_for_vblank_if_active(struct drm_i915_private * i915,enum pipe pipe)64 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915,
65 enum pipe pipe)
66 {
67 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
68
69 if (crtc->active)
70 intel_crtc_wait_for_next_vblank(crtc);
71 }
72
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)73 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
74 {
75 struct drm_device *dev = crtc->base.dev;
76 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
77
78 if (!crtc->active)
79 return 0;
80
81 if (!vblank->max_vblank_count)
82 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
83
84 return crtc->base.funcs->get_vblank_counter(&crtc->base);
85 }
86
intel_crtc_max_vblank_count(const struct intel_crtc_state * crtc_state)87 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
88 {
89 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
90
91 /*
92 * From Gen 11, In case of dsi cmd mode, frame counter wouldnt
93 * have updated at the beginning of TE, if we want to use
94 * the hw counter, then we would find it updated in only
95 * the next TE, hence switching to sw counter.
96 */
97 if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 |
98 I915_MODE_FLAG_DSI_USE_TE1))
99 return 0;
100
101 /*
102 * On i965gm the hardware frame counter reads
103 * zero when the TV encoder is enabled :(
104 */
105 if (IS_I965GM(dev_priv) &&
106 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
107 return 0;
108
109 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
110 return 0xffffffff; /* full 32 bit counter */
111 else if (DISPLAY_VER(dev_priv) >= 3)
112 return 0xffffff; /* only 24 bits of frame count */
113 else
114 return 0; /* Gen2 doesn't have a hardware frame counter */
115 }
116
intel_crtc_vblank_on(const struct intel_crtc_state * crtc_state)117 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
118 {
119 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
120
121 assert_vblank_disabled(&crtc->base);
122 drm_crtc_set_max_vblank_count(&crtc->base,
123 intel_crtc_max_vblank_count(crtc_state));
124 drm_crtc_vblank_on(&crtc->base);
125
126 /*
127 * Should really happen exactly when we enable the pipe
128 * but we want the frame counters in the trace, and that
129 * requires vblank support on some platforms/outputs.
130 */
131 trace_intel_pipe_enable(crtc);
132 }
133
intel_crtc_vblank_off(const struct intel_crtc_state * crtc_state)134 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
135 {
136 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
137
138 /*
139 * Should really happen exactly when we disable the pipe
140 * but we want the frame counters in the trace, and that
141 * requires vblank support on some platforms/outputs.
142 */
143 trace_intel_pipe_disable(crtc);
144
145 drm_crtc_vblank_off(&crtc->base);
146 assert_vblank_disabled(&crtc->base);
147 }
148
intel_crtc_state_alloc(struct intel_crtc * crtc)149 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
150 {
151 struct intel_crtc_state *crtc_state;
152
153 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
154
155 if (crtc_state)
156 intel_crtc_state_reset(crtc_state, crtc);
157
158 return crtc_state;
159 }
160
intel_crtc_state_reset(struct intel_crtc_state * crtc_state,struct intel_crtc * crtc)161 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
162 struct intel_crtc *crtc)
163 {
164 memset(crtc_state, 0, sizeof(*crtc_state));
165
166 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
167
168 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
169 crtc_state->master_transcoder = INVALID_TRANSCODER;
170 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
171 crtc_state->scaler_state.scaler_id = -1;
172 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
173 }
174
intel_crtc_alloc(void)175 static struct intel_crtc *intel_crtc_alloc(void)
176 {
177 struct intel_crtc_state *crtc_state;
178 struct intel_crtc *crtc;
179
180 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
181 if (!crtc)
182 return ERR_PTR(-ENOMEM);
183
184 crtc_state = intel_crtc_state_alloc(crtc);
185 if (!crtc_state) {
186 kfree(crtc);
187 return ERR_PTR(-ENOMEM);
188 }
189
190 crtc->base.state = &crtc_state->uapi;
191 crtc->config = crtc_state;
192
193 return crtc;
194 }
195
intel_crtc_free(struct intel_crtc * crtc)196 static void intel_crtc_free(struct intel_crtc *crtc)
197 {
198 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
199 kfree(crtc);
200 }
201
intel_crtc_destroy(struct drm_crtc * _crtc)202 static void intel_crtc_destroy(struct drm_crtc *_crtc)
203 {
204 struct intel_crtc *crtc = to_intel_crtc(_crtc);
205
206 cpu_latency_qos_remove_request(&crtc->vblank_pm_qos);
207
208 drm_crtc_cleanup(&crtc->base);
209 kfree(crtc);
210 }
211
intel_crtc_late_register(struct drm_crtc * crtc)212 static int intel_crtc_late_register(struct drm_crtc *crtc)
213 {
214 intel_crtc_debugfs_add(crtc);
215 return 0;
216 }
217
218 #define INTEL_CRTC_FUNCS \
219 .set_config = drm_atomic_helper_set_config, \
220 .destroy = intel_crtc_destroy, \
221 .page_flip = drm_atomic_helper_page_flip, \
222 .atomic_duplicate_state = intel_crtc_duplicate_state, \
223 .atomic_destroy_state = intel_crtc_destroy_state, \
224 .set_crc_source = intel_crtc_set_crc_source, \
225 .verify_crc_source = intel_crtc_verify_crc_source, \
226 .get_crc_sources = intel_crtc_get_crc_sources, \
227 .late_register = intel_crtc_late_register
228
229 static const struct drm_crtc_funcs bdw_crtc_funcs = {
230 INTEL_CRTC_FUNCS,
231
232 .get_vblank_counter = g4x_get_vblank_counter,
233 .enable_vblank = bdw_enable_vblank,
234 .disable_vblank = bdw_disable_vblank,
235 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
236 };
237
238 static const struct drm_crtc_funcs ilk_crtc_funcs = {
239 INTEL_CRTC_FUNCS,
240
241 .get_vblank_counter = g4x_get_vblank_counter,
242 .enable_vblank = ilk_enable_vblank,
243 .disable_vblank = ilk_disable_vblank,
244 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
245 };
246
247 static const struct drm_crtc_funcs g4x_crtc_funcs = {
248 INTEL_CRTC_FUNCS,
249
250 .get_vblank_counter = g4x_get_vblank_counter,
251 .enable_vblank = i965_enable_vblank,
252 .disable_vblank = i965_disable_vblank,
253 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
254 };
255
256 static const struct drm_crtc_funcs i965_crtc_funcs = {
257 INTEL_CRTC_FUNCS,
258
259 .get_vblank_counter = i915_get_vblank_counter,
260 .enable_vblank = i965_enable_vblank,
261 .disable_vblank = i965_disable_vblank,
262 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
263 };
264
265 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
266 INTEL_CRTC_FUNCS,
267
268 .get_vblank_counter = i915_get_vblank_counter,
269 .enable_vblank = i915gm_enable_vblank,
270 .disable_vblank = i915gm_disable_vblank,
271 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
272 };
273
274 static const struct drm_crtc_funcs i915_crtc_funcs = {
275 INTEL_CRTC_FUNCS,
276
277 .get_vblank_counter = i915_get_vblank_counter,
278 .enable_vblank = i8xx_enable_vblank,
279 .disable_vblank = i8xx_disable_vblank,
280 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
281 };
282
283 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
284 INTEL_CRTC_FUNCS,
285
286 /* no hw vblank counter */
287 .enable_vblank = i8xx_enable_vblank,
288 .disable_vblank = i8xx_disable_vblank,
289 .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
290 };
291
intel_crtc_init(struct drm_i915_private * dev_priv,enum pipe pipe)292 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
293 {
294 struct intel_plane *primary, *cursor;
295 const struct drm_crtc_funcs *funcs;
296 struct intel_crtc *crtc;
297 int sprite, ret;
298
299 crtc = intel_crtc_alloc();
300 if (IS_ERR(crtc))
301 return PTR_ERR(crtc);
302
303 crtc->pipe = pipe;
304 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
305
306 if (DISPLAY_VER(dev_priv) >= 9)
307 primary = skl_universal_plane_create(dev_priv, pipe,
308 PLANE_PRIMARY);
309 else
310 primary = intel_primary_plane_create(dev_priv, pipe);
311 if (IS_ERR(primary)) {
312 ret = PTR_ERR(primary);
313 goto fail;
314 }
315 crtc->plane_ids_mask |= BIT(primary->id);
316
317 for_each_sprite(dev_priv, pipe, sprite) {
318 struct intel_plane *plane;
319
320 if (DISPLAY_VER(dev_priv) >= 9)
321 plane = skl_universal_plane_create(dev_priv, pipe,
322 PLANE_SPRITE0 + sprite);
323 else
324 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
325 if (IS_ERR(plane)) {
326 ret = PTR_ERR(plane);
327 goto fail;
328 }
329 crtc->plane_ids_mask |= BIT(plane->id);
330 }
331
332 cursor = intel_cursor_plane_create(dev_priv, pipe);
333 if (IS_ERR(cursor)) {
334 ret = PTR_ERR(cursor);
335 goto fail;
336 }
337 crtc->plane_ids_mask |= BIT(cursor->id);
338
339 if (HAS_GMCH(dev_priv)) {
340 if (IS_CHERRYVIEW(dev_priv) ||
341 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
342 funcs = &g4x_crtc_funcs;
343 else if (DISPLAY_VER(dev_priv) == 4)
344 funcs = &i965_crtc_funcs;
345 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
346 funcs = &i915gm_crtc_funcs;
347 else if (DISPLAY_VER(dev_priv) == 3)
348 funcs = &i915_crtc_funcs;
349 else
350 funcs = &i8xx_crtc_funcs;
351 } else {
352 if (DISPLAY_VER(dev_priv) >= 8)
353 funcs = &bdw_crtc_funcs;
354 else
355 funcs = &ilk_crtc_funcs;
356 }
357
358 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
359 &primary->base, &cursor->base,
360 funcs, "pipe %c", pipe_name(pipe));
361 if (ret)
362 goto fail;
363
364 if (DISPLAY_VER(dev_priv) >= 11)
365 drm_crtc_create_scaling_filter_property(&crtc->base,
366 BIT(DRM_SCALING_FILTER_DEFAULT) |
367 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR));
368
369 intel_color_init(crtc);
370
371 intel_crtc_drrs_init(crtc);
372 intel_crtc_crc_init(crtc);
373
374 cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE);
375
376 drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
377
378 return 0;
379
380 fail:
381 intel_crtc_free(crtc);
382
383 return ret;
384 }
385
intel_crtc_needs_vblank_work(const struct intel_crtc_state * crtc_state)386 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state)
387 {
388 return crtc_state->hw.active &&
389 !intel_crtc_needs_modeset(crtc_state) &&
390 !crtc_state->preload_luts &&
391 (crtc_state->uapi.color_mgmt_changed ||
392 crtc_state->update_pipe);
393 }
394
intel_crtc_vblank_work(struct kthread_work * base)395 static void intel_crtc_vblank_work(struct kthread_work *base)
396 {
397 struct drm_vblank_work *work = to_drm_vblank_work(base);
398 struct intel_crtc_state *crtc_state =
399 container_of(work, typeof(*crtc_state), vblank_work);
400 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
401
402 trace_intel_crtc_vblank_work_start(crtc);
403
404 intel_color_load_luts(crtc_state);
405
406 if (crtc_state->uapi.event) {
407 spin_lock_irq(&crtc->base.dev->event_lock);
408 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event);
409 crtc_state->uapi.event = NULL;
410 spin_unlock_irq(&crtc->base.dev->event_lock);
411 }
412
413 trace_intel_crtc_vblank_work_end(crtc);
414 }
415
intel_crtc_vblank_work_init(struct intel_crtc_state * crtc_state)416 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state)
417 {
418 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
419
420 drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base,
421 intel_crtc_vblank_work);
422 /*
423 * Interrupt latency is critical for getting the vblank
424 * work executed as early as possible during the vblank.
425 */
426 cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0);
427 }
428
intel_wait_for_vblank_workers(struct intel_atomic_state * state)429 void intel_wait_for_vblank_workers(struct intel_atomic_state *state)
430 {
431 struct intel_crtc_state *crtc_state;
432 struct intel_crtc *crtc;
433 int i;
434
435 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
436 if (!intel_crtc_needs_vblank_work(crtc_state))
437 continue;
438
439 drm_vblank_work_flush(&crtc_state->vblank_work);
440 cpu_latency_qos_update_request(&crtc->vblank_pm_qos,
441 PM_QOS_DEFAULT_VALUE);
442 }
443 }
444
intel_usecs_to_scanlines(const struct drm_display_mode * adjusted_mode,int usecs)445 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode,
446 int usecs)
447 {
448 /* paranoia */
449 if (!adjusted_mode->crtc_htotal)
450 return 1;
451
452 return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock,
453 1000 * adjusted_mode->crtc_htotal);
454 }
455
intel_mode_vblank_start(const struct drm_display_mode * mode)456 static int intel_mode_vblank_start(const struct drm_display_mode *mode)
457 {
458 int vblank_start = mode->crtc_vblank_start;
459
460 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
461 vblank_start = DIV_ROUND_UP(vblank_start, 2);
462
463 return vblank_start;
464 }
465
466 /**
467 * intel_pipe_update_start() - start update of a set of display registers
468 * @new_crtc_state: the new crtc state
469 *
470 * Mark the start of an update to pipe registers that should be updated
471 * atomically regarding vblank. If the next vblank will happens within
472 * the next 100 us, this function waits until the vblank passes.
473 *
474 * After a successful call to this function, interrupts will be disabled
475 * until a subsequent call to intel_pipe_update_end(). That is done to
476 * avoid random delays.
477 */
intel_pipe_update_start(struct intel_crtc_state * new_crtc_state)478 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state)
479 {
480 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
481 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
482 const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode;
483 long timeout = msecs_to_jiffies_timeout(1);
484 int scanline, min, max, vblank_start;
485 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
486 bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
487 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
488 DEFINE_WAIT(wait);
489
490 intel_psr_lock(new_crtc_state);
491
492 if (new_crtc_state->do_async_flip)
493 return;
494
495 if (intel_crtc_needs_vblank_work(new_crtc_state))
496 intel_crtc_vblank_work_init(new_crtc_state);
497
498 if (new_crtc_state->vrr.enable) {
499 if (intel_vrr_is_push_sent(new_crtc_state))
500 vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state);
501 else
502 vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state);
503 } else {
504 vblank_start = intel_mode_vblank_start(adjusted_mode);
505 }
506
507 /* FIXME needs to be calibrated sensibly */
508 min = vblank_start - intel_usecs_to_scanlines(adjusted_mode,
509 VBLANK_EVASION_TIME_US);
510 max = vblank_start - 1;
511
512 if (min <= 0 || max <= 0)
513 goto irq_disable;
514
515 if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base)))
516 goto irq_disable;
517
518 /*
519 * Wait for psr to idle out after enabling the VBL interrupts
520 * VBL interrupts will start the PSR exit and prevent a PSR
521 * re-entry as well.
522 */
523 intel_psr_wait_for_idle_locked(new_crtc_state);
524
525 local_irq_disable();
526
527 crtc->debug.min_vbl = min;
528 crtc->debug.max_vbl = max;
529 trace_intel_pipe_update_start(crtc);
530
531 for (;;) {
532 /*
533 * prepare_to_wait() has a memory barrier, which guarantees
534 * other CPUs can see the task state update by the time we
535 * read the scanline.
536 */
537 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
538
539 scanline = intel_get_crtc_scanline(crtc);
540 if (scanline < min || scanline > max)
541 break;
542
543 if (!timeout) {
544 drm_err(&dev_priv->drm,
545 "Potential atomic update failure on pipe %c\n",
546 pipe_name(crtc->pipe));
547 break;
548 }
549
550 local_irq_enable();
551
552 timeout = schedule_timeout(timeout);
553
554 local_irq_disable();
555 }
556
557 finish_wait(wq, &wait);
558
559 drm_crtc_vblank_put(&crtc->base);
560
561 /*
562 * On VLV/CHV DSI the scanline counter would appear to
563 * increment approx. 1/3 of a scanline before start of vblank.
564 * The registers still get latched at start of vblank however.
565 * This means we must not write any registers on the first
566 * line of vblank (since not the whole line is actually in
567 * vblank). And unfortunately we can't use the interrupt to
568 * wait here since it will fire too soon. We could use the
569 * frame start interrupt instead since it will fire after the
570 * critical scanline, but that would require more changes
571 * in the interrupt code. So for now we'll just do the nasty
572 * thing and poll for the bad scanline to pass us by.
573 *
574 * FIXME figure out if BXT+ DSI suffers from this as well
575 */
576 while (need_vlv_dsi_wa && scanline == vblank_start)
577 scanline = intel_get_crtc_scanline(crtc);
578
579 crtc->debug.scanline_start = scanline;
580 crtc->debug.start_vbl_time = ktime_get();
581 crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc);
582
583 trace_intel_pipe_update_vblank_evaded(crtc);
584 return;
585
586 irq_disable:
587 local_irq_disable();
588 }
589
590 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE)
dbg_vblank_evade(struct intel_crtc * crtc,ktime_t end)591 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end)
592 {
593 u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time));
594 unsigned int h;
595
596 h = ilog2(delta >> 9);
597 if (h >= ARRAY_SIZE(crtc->debug.vbl.times))
598 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1;
599 crtc->debug.vbl.times[h]++;
600
601 crtc->debug.vbl.sum += delta;
602 if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min)
603 crtc->debug.vbl.min = delta;
604 if (delta > crtc->debug.vbl.max)
605 crtc->debug.vbl.max = delta;
606
607 if (delta > 1000 * VBLANK_EVASION_TIME_US) {
608 drm_dbg_kms(crtc->base.dev,
609 "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n",
610 pipe_name(crtc->pipe),
611 div_u64(delta, 1000),
612 VBLANK_EVASION_TIME_US);
613 crtc->debug.vbl.over++;
614 }
615 }
616 #else
dbg_vblank_evade(struct intel_crtc * crtc,ktime_t end)617 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {}
618 #endif
619
620 /**
621 * intel_pipe_update_end() - end update of a set of display registers
622 * @new_crtc_state: the new crtc state
623 *
624 * Mark the end of an update started with intel_pipe_update_start(). This
625 * re-enables interrupts and verifies the update was actually completed
626 * before a vblank.
627 */
intel_pipe_update_end(struct intel_crtc_state * new_crtc_state)628 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state)
629 {
630 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
631 enum pipe pipe = crtc->pipe;
632 int scanline_end = intel_get_crtc_scanline(crtc);
633 u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc);
634 ktime_t end_vbl_time = ktime_get();
635 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
636
637 intel_psr_unlock(new_crtc_state);
638
639 if (new_crtc_state->do_async_flip)
640 return;
641
642 trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end);
643
644 /*
645 * Incase of mipi dsi command mode, we need to set frame update
646 * request for every commit.
647 */
648 if (DISPLAY_VER(dev_priv) >= 11 &&
649 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
650 icl_dsi_frame_update(new_crtc_state);
651
652 /* We're still in the vblank-evade critical section, this can't race.
653 * Would be slightly nice to just grab the vblank count and arm the
654 * event outside of the critical section - the spinlock might spin for a
655 * while ... */
656 if (intel_crtc_needs_vblank_work(new_crtc_state)) {
657 drm_vblank_work_schedule(&new_crtc_state->vblank_work,
658 drm_crtc_accurate_vblank_count(&crtc->base) + 1,
659 false);
660 } else if (new_crtc_state->uapi.event) {
661 drm_WARN_ON(&dev_priv->drm,
662 drm_crtc_vblank_get(&crtc->base) != 0);
663
664 spin_lock(&crtc->base.dev->event_lock);
665 drm_crtc_arm_vblank_event(&crtc->base,
666 new_crtc_state->uapi.event);
667 spin_unlock(&crtc->base.dev->event_lock);
668
669 new_crtc_state->uapi.event = NULL;
670 }
671
672 /*
673 * Send VRR Push to terminate Vblank. If we are already in vblank
674 * this has to be done _after_ sampling the frame counter, as
675 * otherwise the push would immediately terminate the vblank and
676 * the sampled frame counter would correspond to the next frame
677 * instead of the current frame.
678 *
679 * There is a tiny race here (iff vblank evasion failed us) where
680 * we might sample the frame counter just before vmax vblank start
681 * but the push would be sent just after it. That would cause the
682 * push to affect the next frame instead of the current frame,
683 * which would cause the next frame to terminate already at vmin
684 * vblank start instead of vmax vblank start.
685 */
686 intel_vrr_send_push(new_crtc_state);
687
688 local_irq_enable();
689
690 if (intel_vgpu_active(dev_priv))
691 return;
692
693 if (crtc->debug.start_vbl_count &&
694 crtc->debug.start_vbl_count != end_vbl_count) {
695 drm_err(&dev_priv->drm,
696 "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n",
697 pipe_name(pipe), crtc->debug.start_vbl_count,
698 end_vbl_count,
699 ktime_us_delta(end_vbl_time,
700 crtc->debug.start_vbl_time),
701 crtc->debug.min_vbl, crtc->debug.max_vbl,
702 crtc->debug.scanline_start, scanline_end);
703 }
704
705 dbg_vblank_evade(crtc, end_vbl_time);
706 }
707