1 /*
2 * Copyright © 2006-2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/time.h>
25
26 #include "hsw_ips.h"
27 #include "i915_reg.h"
28 #include "intel_atomic.h"
29 #include "intel_atomic_plane.h"
30 #include "intel_audio.h"
31 #include "intel_bw.h"
32 #include "intel_cdclk.h"
33 #include "intel_crtc.h"
34 #include "intel_de.h"
35 #include "intel_display_types.h"
36 #include "intel_mchbar_regs.h"
37 #include "intel_pci_config.h"
38 #include "intel_pcode.h"
39 #include "intel_psr.h"
40 #include "intel_vdsc.h"
41 #include "vlv_sideband.h"
42
43 /**
44 * DOC: CDCLK / RAWCLK
45 *
46 * The display engine uses several different clocks to do its work. There
47 * are two main clocks involved that aren't directly related to the actual
48 * pixel clock or any symbol/bit clock of the actual output port. These
49 * are the core display clock (CDCLK) and RAWCLK.
50 *
51 * CDCLK clocks most of the display pipe logic, and thus its frequency
52 * must be high enough to support the rate at which pixels are flowing
53 * through the pipes. Downscaling must also be accounted as that increases
54 * the effective pixel rate.
55 *
56 * On several platforms the CDCLK frequency can be changed dynamically
57 * to minimize power consumption for a given display configuration.
58 * Typically changes to the CDCLK frequency require all the display pipes
59 * to be shut down while the frequency is being changed.
60 *
61 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
62 * DMC will not change the active CDCLK frequency however, so that part
63 * will still be performed by the driver directly.
64 *
65 * RAWCLK is a fixed frequency clock, often used by various auxiliary
66 * blocks such as AUX CH or backlight PWM. Hence the only thing we
67 * really need to know about RAWCLK is its frequency so that various
68 * dividers can be programmed correctly.
69 */
70
71 struct intel_cdclk_funcs {
72 void (*get_cdclk)(struct drm_i915_private *i915,
73 struct intel_cdclk_config *cdclk_config);
74 void (*set_cdclk)(struct drm_i915_private *i915,
75 const struct intel_cdclk_config *cdclk_config,
76 enum pipe pipe);
77 int (*modeset_calc_cdclk)(struct intel_cdclk_state *state);
78 u8 (*calc_voltage_level)(int cdclk);
79 };
80
intel_cdclk_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)81 void intel_cdclk_get_cdclk(struct drm_i915_private *dev_priv,
82 struct intel_cdclk_config *cdclk_config)
83 {
84 dev_priv->display.funcs.cdclk->get_cdclk(dev_priv, cdclk_config);
85 }
86
intel_cdclk_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)87 static void intel_cdclk_set_cdclk(struct drm_i915_private *dev_priv,
88 const struct intel_cdclk_config *cdclk_config,
89 enum pipe pipe)
90 {
91 dev_priv->display.funcs.cdclk->set_cdclk(dev_priv, cdclk_config, pipe);
92 }
93
intel_cdclk_modeset_calc_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_state * cdclk_config)94 static int intel_cdclk_modeset_calc_cdclk(struct drm_i915_private *dev_priv,
95 struct intel_cdclk_state *cdclk_config)
96 {
97 return dev_priv->display.funcs.cdclk->modeset_calc_cdclk(cdclk_config);
98 }
99
intel_cdclk_calc_voltage_level(struct drm_i915_private * dev_priv,int cdclk)100 static u8 intel_cdclk_calc_voltage_level(struct drm_i915_private *dev_priv,
101 int cdclk)
102 {
103 return dev_priv->display.funcs.cdclk->calc_voltage_level(cdclk);
104 }
105
fixed_133mhz_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)106 static void fixed_133mhz_get_cdclk(struct drm_i915_private *dev_priv,
107 struct intel_cdclk_config *cdclk_config)
108 {
109 cdclk_config->cdclk = 133333;
110 }
111
fixed_200mhz_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)112 static void fixed_200mhz_get_cdclk(struct drm_i915_private *dev_priv,
113 struct intel_cdclk_config *cdclk_config)
114 {
115 cdclk_config->cdclk = 200000;
116 }
117
fixed_266mhz_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)118 static void fixed_266mhz_get_cdclk(struct drm_i915_private *dev_priv,
119 struct intel_cdclk_config *cdclk_config)
120 {
121 cdclk_config->cdclk = 266667;
122 }
123
fixed_333mhz_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)124 static void fixed_333mhz_get_cdclk(struct drm_i915_private *dev_priv,
125 struct intel_cdclk_config *cdclk_config)
126 {
127 cdclk_config->cdclk = 333333;
128 }
129
fixed_400mhz_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)130 static void fixed_400mhz_get_cdclk(struct drm_i915_private *dev_priv,
131 struct intel_cdclk_config *cdclk_config)
132 {
133 cdclk_config->cdclk = 400000;
134 }
135
fixed_450mhz_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)136 static void fixed_450mhz_get_cdclk(struct drm_i915_private *dev_priv,
137 struct intel_cdclk_config *cdclk_config)
138 {
139 cdclk_config->cdclk = 450000;
140 }
141
i85x_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)142 static void i85x_get_cdclk(struct drm_i915_private *dev_priv,
143 struct intel_cdclk_config *cdclk_config)
144 {
145 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
146 u16 hpllcc = 0;
147
148 /*
149 * 852GM/852GMV only supports 133 MHz and the HPLLCC
150 * encoding is different :(
151 * FIXME is this the right way to detect 852GM/852GMV?
152 */
153 if (pdev->revision == 0x1) {
154 cdclk_config->cdclk = 133333;
155 return;
156 }
157
158 pci_bus_read_config_word(pdev->bus,
159 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
160
161 /* Assume that the hardware is in the high speed state. This
162 * should be the default.
163 */
164 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
165 case GC_CLOCK_133_200:
166 case GC_CLOCK_133_200_2:
167 case GC_CLOCK_100_200:
168 cdclk_config->cdclk = 200000;
169 break;
170 case GC_CLOCK_166_250:
171 cdclk_config->cdclk = 250000;
172 break;
173 case GC_CLOCK_100_133:
174 cdclk_config->cdclk = 133333;
175 break;
176 case GC_CLOCK_133_266:
177 case GC_CLOCK_133_266_2:
178 case GC_CLOCK_166_266:
179 cdclk_config->cdclk = 266667;
180 break;
181 }
182 }
183
i915gm_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)184 static void i915gm_get_cdclk(struct drm_i915_private *dev_priv,
185 struct intel_cdclk_config *cdclk_config)
186 {
187 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
188 u16 gcfgc = 0;
189
190 pci_read_config_word(pdev, GCFGC, &gcfgc);
191
192 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
193 cdclk_config->cdclk = 133333;
194 return;
195 }
196
197 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
198 case GC_DISPLAY_CLOCK_333_320_MHZ:
199 cdclk_config->cdclk = 333333;
200 break;
201 default:
202 case GC_DISPLAY_CLOCK_190_200_MHZ:
203 cdclk_config->cdclk = 190000;
204 break;
205 }
206 }
207
i945gm_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)208 static void i945gm_get_cdclk(struct drm_i915_private *dev_priv,
209 struct intel_cdclk_config *cdclk_config)
210 {
211 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
212 u16 gcfgc = 0;
213
214 pci_read_config_word(pdev, GCFGC, &gcfgc);
215
216 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
217 cdclk_config->cdclk = 133333;
218 return;
219 }
220
221 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
222 case GC_DISPLAY_CLOCK_333_320_MHZ:
223 cdclk_config->cdclk = 320000;
224 break;
225 default:
226 case GC_DISPLAY_CLOCK_190_200_MHZ:
227 cdclk_config->cdclk = 200000;
228 break;
229 }
230 }
231
intel_hpll_vco(struct drm_i915_private * dev_priv)232 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
233 {
234 static const unsigned int blb_vco[8] = {
235 [0] = 3200000,
236 [1] = 4000000,
237 [2] = 5333333,
238 [3] = 4800000,
239 [4] = 6400000,
240 };
241 static const unsigned int pnv_vco[8] = {
242 [0] = 3200000,
243 [1] = 4000000,
244 [2] = 5333333,
245 [3] = 4800000,
246 [4] = 2666667,
247 };
248 static const unsigned int cl_vco[8] = {
249 [0] = 3200000,
250 [1] = 4000000,
251 [2] = 5333333,
252 [3] = 6400000,
253 [4] = 3333333,
254 [5] = 3566667,
255 [6] = 4266667,
256 };
257 static const unsigned int elk_vco[8] = {
258 [0] = 3200000,
259 [1] = 4000000,
260 [2] = 5333333,
261 [3] = 4800000,
262 };
263 static const unsigned int ctg_vco[8] = {
264 [0] = 3200000,
265 [1] = 4000000,
266 [2] = 5333333,
267 [3] = 6400000,
268 [4] = 2666667,
269 [5] = 4266667,
270 };
271 const unsigned int *vco_table;
272 unsigned int vco;
273 u8 tmp = 0;
274
275 /* FIXME other chipsets? */
276 if (IS_GM45(dev_priv))
277 vco_table = ctg_vco;
278 else if (IS_G45(dev_priv))
279 vco_table = elk_vco;
280 else if (IS_I965GM(dev_priv))
281 vco_table = cl_vco;
282 else if (IS_PINEVIEW(dev_priv))
283 vco_table = pnv_vco;
284 else if (IS_G33(dev_priv))
285 vco_table = blb_vco;
286 else
287 return 0;
288
289 tmp = intel_de_read(dev_priv,
290 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
291
292 vco = vco_table[tmp & 0x7];
293 if (vco == 0)
294 drm_err(&dev_priv->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
295 tmp);
296 else
297 drm_dbg_kms(&dev_priv->drm, "HPLL VCO %u kHz\n", vco);
298
299 return vco;
300 }
301
g33_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)302 static void g33_get_cdclk(struct drm_i915_private *dev_priv,
303 struct intel_cdclk_config *cdclk_config)
304 {
305 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
306 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 };
307 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 };
308 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
309 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
310 const u8 *div_table;
311 unsigned int cdclk_sel;
312 u16 tmp = 0;
313
314 cdclk_config->vco = intel_hpll_vco(dev_priv);
315
316 pci_read_config_word(pdev, GCFGC, &tmp);
317
318 cdclk_sel = (tmp >> 4) & 0x7;
319
320 if (cdclk_sel >= ARRAY_SIZE(div_3200))
321 goto fail;
322
323 switch (cdclk_config->vco) {
324 case 3200000:
325 div_table = div_3200;
326 break;
327 case 4000000:
328 div_table = div_4000;
329 break;
330 case 4800000:
331 div_table = div_4800;
332 break;
333 case 5333333:
334 div_table = div_5333;
335 break;
336 default:
337 goto fail;
338 }
339
340 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
341 div_table[cdclk_sel]);
342 return;
343
344 fail:
345 drm_err(&dev_priv->drm,
346 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
347 cdclk_config->vco, tmp);
348 cdclk_config->cdclk = 190476;
349 }
350
pnv_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)351 static void pnv_get_cdclk(struct drm_i915_private *dev_priv,
352 struct intel_cdclk_config *cdclk_config)
353 {
354 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
355 u16 gcfgc = 0;
356
357 pci_read_config_word(pdev, GCFGC, &gcfgc);
358
359 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
360 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
361 cdclk_config->cdclk = 266667;
362 break;
363 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
364 cdclk_config->cdclk = 333333;
365 break;
366 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
367 cdclk_config->cdclk = 444444;
368 break;
369 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
370 cdclk_config->cdclk = 200000;
371 break;
372 default:
373 drm_err(&dev_priv->drm,
374 "Unknown pnv display core clock 0x%04x\n", gcfgc);
375 fallthrough;
376 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
377 cdclk_config->cdclk = 133333;
378 break;
379 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
380 cdclk_config->cdclk = 166667;
381 break;
382 }
383 }
384
i965gm_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)385 static void i965gm_get_cdclk(struct drm_i915_private *dev_priv,
386 struct intel_cdclk_config *cdclk_config)
387 {
388 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
389 static const u8 div_3200[] = { 16, 10, 8 };
390 static const u8 div_4000[] = { 20, 12, 10 };
391 static const u8 div_5333[] = { 24, 16, 14 };
392 const u8 *div_table;
393 unsigned int cdclk_sel;
394 u16 tmp = 0;
395
396 cdclk_config->vco = intel_hpll_vco(dev_priv);
397
398 pci_read_config_word(pdev, GCFGC, &tmp);
399
400 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
401
402 if (cdclk_sel >= ARRAY_SIZE(div_3200))
403 goto fail;
404
405 switch (cdclk_config->vco) {
406 case 3200000:
407 div_table = div_3200;
408 break;
409 case 4000000:
410 div_table = div_4000;
411 break;
412 case 5333333:
413 div_table = div_5333;
414 break;
415 default:
416 goto fail;
417 }
418
419 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
420 div_table[cdclk_sel]);
421 return;
422
423 fail:
424 drm_err(&dev_priv->drm,
425 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
426 cdclk_config->vco, tmp);
427 cdclk_config->cdclk = 200000;
428 }
429
gm45_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)430 static void gm45_get_cdclk(struct drm_i915_private *dev_priv,
431 struct intel_cdclk_config *cdclk_config)
432 {
433 struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
434 unsigned int cdclk_sel;
435 u16 tmp = 0;
436
437 cdclk_config->vco = intel_hpll_vco(dev_priv);
438
439 pci_read_config_word(pdev, GCFGC, &tmp);
440
441 cdclk_sel = (tmp >> 12) & 0x1;
442
443 switch (cdclk_config->vco) {
444 case 2666667:
445 case 4000000:
446 case 5333333:
447 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
448 break;
449 case 3200000:
450 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
451 break;
452 default:
453 drm_err(&dev_priv->drm,
454 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
455 cdclk_config->vco, tmp);
456 cdclk_config->cdclk = 222222;
457 break;
458 }
459 }
460
hsw_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)461 static void hsw_get_cdclk(struct drm_i915_private *dev_priv,
462 struct intel_cdclk_config *cdclk_config)
463 {
464 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
465 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
466
467 if (lcpll & LCPLL_CD_SOURCE_FCLK)
468 cdclk_config->cdclk = 800000;
469 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
470 cdclk_config->cdclk = 450000;
471 else if (freq == LCPLL_CLK_FREQ_450)
472 cdclk_config->cdclk = 450000;
473 else if (IS_HASWELL_ULT(dev_priv))
474 cdclk_config->cdclk = 337500;
475 else
476 cdclk_config->cdclk = 540000;
477 }
478
vlv_calc_cdclk(struct drm_i915_private * dev_priv,int min_cdclk)479 static int vlv_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
480 {
481 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ?
482 333333 : 320000;
483
484 /*
485 * We seem to get an unstable or solid color picture at 200MHz.
486 * Not sure what's wrong. For now use 200MHz only when all pipes
487 * are off.
488 */
489 if (IS_VALLEYVIEW(dev_priv) && min_cdclk > freq_320)
490 return 400000;
491 else if (min_cdclk > 266667)
492 return freq_320;
493 else if (min_cdclk > 0)
494 return 266667;
495 else
496 return 200000;
497 }
498
vlv_calc_voltage_level(struct drm_i915_private * dev_priv,int cdclk)499 static u8 vlv_calc_voltage_level(struct drm_i915_private *dev_priv, int cdclk)
500 {
501 if (IS_VALLEYVIEW(dev_priv)) {
502 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
503 return 2;
504 else if (cdclk >= 266667)
505 return 1;
506 else
507 return 0;
508 } else {
509 /*
510 * Specs are full of misinformation, but testing on actual
511 * hardware has shown that we just need to write the desired
512 * CCK divider into the Punit register.
513 */
514 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
515 }
516 }
517
vlv_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)518 static void vlv_get_cdclk(struct drm_i915_private *dev_priv,
519 struct intel_cdclk_config *cdclk_config)
520 {
521 u32 val;
522
523 vlv_iosf_sb_get(dev_priv,
524 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
525
526 cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
527 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, "cdclk",
528 CCK_DISPLAY_CLOCK_CONTROL,
529 cdclk_config->vco);
530
531 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
532
533 vlv_iosf_sb_put(dev_priv,
534 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
535
536 if (IS_VALLEYVIEW(dev_priv))
537 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
538 DSPFREQGUAR_SHIFT;
539 else
540 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
541 DSPFREQGUAR_SHIFT_CHV;
542 }
543
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)544 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
545 {
546 unsigned int credits, default_credits;
547
548 if (IS_CHERRYVIEW(dev_priv))
549 default_credits = PFI_CREDIT(12);
550 else
551 default_credits = PFI_CREDIT(8);
552
553 if (dev_priv->display.cdclk.hw.cdclk >= dev_priv->czclk_freq) {
554 /* CHV suggested value is 31 or 63 */
555 if (IS_CHERRYVIEW(dev_priv))
556 credits = PFI_CREDIT_63;
557 else
558 credits = PFI_CREDIT(15);
559 } else {
560 credits = default_credits;
561 }
562
563 /*
564 * WA - write default credits before re-programming
565 * FIXME: should we also set the resend bit here?
566 */
567 intel_de_write(dev_priv, GCI_CONTROL,
568 VGA_FAST_MODE_DISABLE | default_credits);
569
570 intel_de_write(dev_priv, GCI_CONTROL,
571 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
572
573 /*
574 * FIXME is this guaranteed to clear
575 * immediately or should we poll for it?
576 */
577 drm_WARN_ON(&dev_priv->drm,
578 intel_de_read(dev_priv, GCI_CONTROL) & PFI_CREDIT_RESEND);
579 }
580
vlv_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)581 static void vlv_set_cdclk(struct drm_i915_private *dev_priv,
582 const struct intel_cdclk_config *cdclk_config,
583 enum pipe pipe)
584 {
585 int cdclk = cdclk_config->cdclk;
586 u32 val, cmd = cdclk_config->voltage_level;
587 intel_wakeref_t wakeref;
588
589 switch (cdclk) {
590 case 400000:
591 case 333333:
592 case 320000:
593 case 266667:
594 case 200000:
595 break;
596 default:
597 MISSING_CASE(cdclk);
598 return;
599 }
600
601 /* There are cases where we can end up here with power domains
602 * off and a CDCLK frequency other than the minimum, like when
603 * issuing a modeset without actually changing any display after
604 * a system suspend. So grab the display core domain, which covers
605 * the HW blocks needed for the following programming.
606 */
607 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
608
609 vlv_iosf_sb_get(dev_priv,
610 BIT(VLV_IOSF_SB_CCK) |
611 BIT(VLV_IOSF_SB_BUNIT) |
612 BIT(VLV_IOSF_SB_PUNIT));
613
614 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
615 val &= ~DSPFREQGUAR_MASK;
616 val |= (cmd << DSPFREQGUAR_SHIFT);
617 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
618 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
619 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
620 50)) {
621 drm_err(&dev_priv->drm,
622 "timed out waiting for CDclk change\n");
623 }
624
625 if (cdclk == 400000) {
626 u32 divider;
627
628 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
629 cdclk) - 1;
630
631 /* adjust cdclk divider */
632 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
633 val &= ~CCK_FREQUENCY_VALUES;
634 val |= divider;
635 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
636
637 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
638 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
639 50))
640 drm_err(&dev_priv->drm,
641 "timed out waiting for CDclk change\n");
642 }
643
644 /* adjust self-refresh exit latency value */
645 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
646 val &= ~0x7f;
647
648 /*
649 * For high bandwidth configs, we set a higher latency in the bunit
650 * so that the core display fetch happens in time to avoid underruns.
651 */
652 if (cdclk == 400000)
653 val |= 4500 / 250; /* 4.5 usec */
654 else
655 val |= 3000 / 250; /* 3.0 usec */
656 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
657
658 vlv_iosf_sb_put(dev_priv,
659 BIT(VLV_IOSF_SB_CCK) |
660 BIT(VLV_IOSF_SB_BUNIT) |
661 BIT(VLV_IOSF_SB_PUNIT));
662
663 intel_update_cdclk(dev_priv);
664
665 vlv_program_pfi_credits(dev_priv);
666
667 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
668 }
669
chv_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)670 static void chv_set_cdclk(struct drm_i915_private *dev_priv,
671 const struct intel_cdclk_config *cdclk_config,
672 enum pipe pipe)
673 {
674 int cdclk = cdclk_config->cdclk;
675 u32 val, cmd = cdclk_config->voltage_level;
676 intel_wakeref_t wakeref;
677
678 switch (cdclk) {
679 case 333333:
680 case 320000:
681 case 266667:
682 case 200000:
683 break;
684 default:
685 MISSING_CASE(cdclk);
686 return;
687 }
688
689 /* There are cases where we can end up here with power domains
690 * off and a CDCLK frequency other than the minimum, like when
691 * issuing a modeset without actually changing any display after
692 * a system suspend. So grab the display core domain, which covers
693 * the HW blocks needed for the following programming.
694 */
695 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_DISPLAY_CORE);
696
697 vlv_punit_get(dev_priv);
698 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
699 val &= ~DSPFREQGUAR_MASK_CHV;
700 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
701 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
702 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
703 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
704 50)) {
705 drm_err(&dev_priv->drm,
706 "timed out waiting for CDclk change\n");
707 }
708
709 vlv_punit_put(dev_priv);
710
711 intel_update_cdclk(dev_priv);
712
713 vlv_program_pfi_credits(dev_priv);
714
715 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
716 }
717
bdw_calc_cdclk(int min_cdclk)718 static int bdw_calc_cdclk(int min_cdclk)
719 {
720 if (min_cdclk > 540000)
721 return 675000;
722 else if (min_cdclk > 450000)
723 return 540000;
724 else if (min_cdclk > 337500)
725 return 450000;
726 else
727 return 337500;
728 }
729
bdw_calc_voltage_level(int cdclk)730 static u8 bdw_calc_voltage_level(int cdclk)
731 {
732 switch (cdclk) {
733 default:
734 case 337500:
735 return 2;
736 case 450000:
737 return 0;
738 case 540000:
739 return 1;
740 case 675000:
741 return 3;
742 }
743 }
744
bdw_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)745 static void bdw_get_cdclk(struct drm_i915_private *dev_priv,
746 struct intel_cdclk_config *cdclk_config)
747 {
748 u32 lcpll = intel_de_read(dev_priv, LCPLL_CTL);
749 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
750
751 if (lcpll & LCPLL_CD_SOURCE_FCLK)
752 cdclk_config->cdclk = 800000;
753 else if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
754 cdclk_config->cdclk = 450000;
755 else if (freq == LCPLL_CLK_FREQ_450)
756 cdclk_config->cdclk = 450000;
757 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
758 cdclk_config->cdclk = 540000;
759 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
760 cdclk_config->cdclk = 337500;
761 else
762 cdclk_config->cdclk = 675000;
763
764 /*
765 * Can't read this out :( Let's assume it's
766 * at least what the CDCLK frequency requires.
767 */
768 cdclk_config->voltage_level =
769 bdw_calc_voltage_level(cdclk_config->cdclk);
770 }
771
bdw_cdclk_freq_sel(int cdclk)772 static u32 bdw_cdclk_freq_sel(int cdclk)
773 {
774 switch (cdclk) {
775 default:
776 MISSING_CASE(cdclk);
777 fallthrough;
778 case 337500:
779 return LCPLL_CLK_FREQ_337_5_BDW;
780 case 450000:
781 return LCPLL_CLK_FREQ_450;
782 case 540000:
783 return LCPLL_CLK_FREQ_54O_BDW;
784 case 675000:
785 return LCPLL_CLK_FREQ_675_BDW;
786 }
787 }
788
bdw_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)789 static void bdw_set_cdclk(struct drm_i915_private *dev_priv,
790 const struct intel_cdclk_config *cdclk_config,
791 enum pipe pipe)
792 {
793 int cdclk = cdclk_config->cdclk;
794 int ret;
795
796 if (drm_WARN(&dev_priv->drm,
797 (intel_de_read(dev_priv, LCPLL_CTL) &
798 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
799 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
800 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
801 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
802 "trying to change cdclk frequency with cdclk not enabled\n"))
803 return;
804
805 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
806 if (ret) {
807 drm_err(&dev_priv->drm,
808 "failed to inform pcode about cdclk change\n");
809 return;
810 }
811
812 intel_de_rmw(dev_priv, LCPLL_CTL,
813 0, LCPLL_CD_SOURCE_FCLK);
814
815 /*
816 * According to the spec, it should be enough to poll for this 1 us.
817 * However, extensive testing shows that this can take longer.
818 */
819 if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
820 LCPLL_CD_SOURCE_FCLK_DONE, 100))
821 drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
822
823 intel_de_rmw(dev_priv, LCPLL_CTL,
824 LCPLL_CLK_FREQ_MASK, bdw_cdclk_freq_sel(cdclk));
825
826 intel_de_rmw(dev_priv, LCPLL_CTL,
827 LCPLL_CD_SOURCE_FCLK, 0);
828
829 if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
830 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
831 drm_err(&dev_priv->drm, "Switching back to LCPLL failed\n");
832
833 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
834 cdclk_config->voltage_level);
835
836 intel_de_write(dev_priv, CDCLK_FREQ,
837 DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
838
839 intel_update_cdclk(dev_priv);
840 }
841
skl_calc_cdclk(int min_cdclk,int vco)842 static int skl_calc_cdclk(int min_cdclk, int vco)
843 {
844 if (vco == 8640000) {
845 if (min_cdclk > 540000)
846 return 617143;
847 else if (min_cdclk > 432000)
848 return 540000;
849 else if (min_cdclk > 308571)
850 return 432000;
851 else
852 return 308571;
853 } else {
854 if (min_cdclk > 540000)
855 return 675000;
856 else if (min_cdclk > 450000)
857 return 540000;
858 else if (min_cdclk > 337500)
859 return 450000;
860 else
861 return 337500;
862 }
863 }
864
skl_calc_voltage_level(int cdclk)865 static u8 skl_calc_voltage_level(int cdclk)
866 {
867 if (cdclk > 540000)
868 return 3;
869 else if (cdclk > 450000)
870 return 2;
871 else if (cdclk > 337500)
872 return 1;
873 else
874 return 0;
875 }
876
skl_dpll0_update(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)877 static void skl_dpll0_update(struct drm_i915_private *dev_priv,
878 struct intel_cdclk_config *cdclk_config)
879 {
880 u32 val;
881
882 cdclk_config->ref = 24000;
883 cdclk_config->vco = 0;
884
885 val = intel_de_read(dev_priv, LCPLL1_CTL);
886 if ((val & LCPLL_PLL_ENABLE) == 0)
887 return;
888
889 if (drm_WARN_ON(&dev_priv->drm, (val & LCPLL_PLL_LOCK) == 0))
890 return;
891
892 val = intel_de_read(dev_priv, DPLL_CTRL1);
893
894 if (drm_WARN_ON(&dev_priv->drm,
895 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
896 DPLL_CTRL1_SSC(SKL_DPLL0) |
897 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
898 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
899 return;
900
901 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
902 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
903 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
904 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
905 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
906 cdclk_config->vco = 8100000;
907 break;
908 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
909 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
910 cdclk_config->vco = 8640000;
911 break;
912 default:
913 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
914 break;
915 }
916 }
917
skl_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)918 static void skl_get_cdclk(struct drm_i915_private *dev_priv,
919 struct intel_cdclk_config *cdclk_config)
920 {
921 u32 cdctl;
922
923 skl_dpll0_update(dev_priv, cdclk_config);
924
925 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
926
927 if (cdclk_config->vco == 0)
928 goto out;
929
930 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
931
932 if (cdclk_config->vco == 8640000) {
933 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
934 case CDCLK_FREQ_450_432:
935 cdclk_config->cdclk = 432000;
936 break;
937 case CDCLK_FREQ_337_308:
938 cdclk_config->cdclk = 308571;
939 break;
940 case CDCLK_FREQ_540:
941 cdclk_config->cdclk = 540000;
942 break;
943 case CDCLK_FREQ_675_617:
944 cdclk_config->cdclk = 617143;
945 break;
946 default:
947 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
948 break;
949 }
950 } else {
951 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
952 case CDCLK_FREQ_450_432:
953 cdclk_config->cdclk = 450000;
954 break;
955 case CDCLK_FREQ_337_308:
956 cdclk_config->cdclk = 337500;
957 break;
958 case CDCLK_FREQ_540:
959 cdclk_config->cdclk = 540000;
960 break;
961 case CDCLK_FREQ_675_617:
962 cdclk_config->cdclk = 675000;
963 break;
964 default:
965 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
966 break;
967 }
968 }
969
970 out:
971 /*
972 * Can't read this out :( Let's assume it's
973 * at least what the CDCLK frequency requires.
974 */
975 cdclk_config->voltage_level =
976 skl_calc_voltage_level(cdclk_config->cdclk);
977 }
978
979 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
skl_cdclk_decimal(int cdclk)980 static int skl_cdclk_decimal(int cdclk)
981 {
982 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
983 }
984
skl_set_preferred_cdclk_vco(struct drm_i915_private * dev_priv,int vco)985 static void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv,
986 int vco)
987 {
988 bool changed = dev_priv->skl_preferred_vco_freq != vco;
989
990 dev_priv->skl_preferred_vco_freq = vco;
991
992 if (changed)
993 intel_update_max_cdclk(dev_priv);
994 }
995
skl_dpll0_link_rate(struct drm_i915_private * dev_priv,int vco)996 static u32 skl_dpll0_link_rate(struct drm_i915_private *dev_priv, int vco)
997 {
998 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
999
1000 /*
1001 * We always enable DPLL0 with the lowest link rate possible, but still
1002 * taking into account the VCO required to operate the eDP panel at the
1003 * desired frequency. The usual DP link rates operate with a VCO of
1004 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1005 * The modeset code is responsible for the selection of the exact link
1006 * rate later on, with the constraint of choosing a frequency that
1007 * works with vco.
1008 */
1009 if (vco == 8640000)
1010 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1011 else
1012 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1013 }
1014
skl_dpll0_enable(struct drm_i915_private * dev_priv,int vco)1015 static void skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
1016 {
1017 intel_de_rmw(dev_priv, DPLL_CTRL1,
1018 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1019 DPLL_CTRL1_SSC(SKL_DPLL0) |
1020 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1021 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1022 skl_dpll0_link_rate(dev_priv, vco));
1023 intel_de_posting_read(dev_priv, DPLL_CTRL1);
1024
1025 intel_de_rmw(dev_priv, LCPLL1_CTL,
1026 0, LCPLL_PLL_ENABLE);
1027
1028 if (intel_de_wait_for_set(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 5))
1029 drm_err(&dev_priv->drm, "DPLL0 not locked\n");
1030
1031 dev_priv->display.cdclk.hw.vco = vco;
1032
1033 /* We'll want to keep using the current vco from now on. */
1034 skl_set_preferred_cdclk_vco(dev_priv, vco);
1035 }
1036
skl_dpll0_disable(struct drm_i915_private * dev_priv)1037 static void skl_dpll0_disable(struct drm_i915_private *dev_priv)
1038 {
1039 intel_de_rmw(dev_priv, LCPLL1_CTL,
1040 LCPLL_PLL_ENABLE, 0);
1041
1042 if (intel_de_wait_for_clear(dev_priv, LCPLL1_CTL, LCPLL_PLL_LOCK, 1))
1043 drm_err(&dev_priv->drm, "Couldn't disable DPLL0\n");
1044
1045 dev_priv->display.cdclk.hw.vco = 0;
1046 }
1047
skl_cdclk_freq_sel(struct drm_i915_private * dev_priv,int cdclk,int vco)1048 static u32 skl_cdclk_freq_sel(struct drm_i915_private *dev_priv,
1049 int cdclk, int vco)
1050 {
1051 switch (cdclk) {
1052 default:
1053 drm_WARN_ON(&dev_priv->drm,
1054 cdclk != dev_priv->display.cdclk.hw.bypass);
1055 drm_WARN_ON(&dev_priv->drm, vco != 0);
1056 fallthrough;
1057 case 308571:
1058 case 337500:
1059 return CDCLK_FREQ_337_308;
1060 case 450000:
1061 case 432000:
1062 return CDCLK_FREQ_450_432;
1063 case 540000:
1064 return CDCLK_FREQ_540;
1065 case 617143:
1066 case 675000:
1067 return CDCLK_FREQ_675_617;
1068 }
1069 }
1070
skl_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)1071 static void skl_set_cdclk(struct drm_i915_private *dev_priv,
1072 const struct intel_cdclk_config *cdclk_config,
1073 enum pipe pipe)
1074 {
1075 int cdclk = cdclk_config->cdclk;
1076 int vco = cdclk_config->vco;
1077 u32 freq_select, cdclk_ctl;
1078 int ret;
1079
1080 /*
1081 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1082 * unsupported on SKL. In theory this should never happen since only
1083 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1084 * supported on SKL either, see the above WA. WARN whenever trying to
1085 * use the corresponding VCO freq as that always leads to using the
1086 * minimum 308MHz CDCLK.
1087 */
1088 drm_WARN_ON_ONCE(&dev_priv->drm,
1089 IS_SKYLAKE(dev_priv) && vco == 8640000);
1090
1091 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1092 SKL_CDCLK_PREPARE_FOR_CHANGE,
1093 SKL_CDCLK_READY_FOR_CHANGE,
1094 SKL_CDCLK_READY_FOR_CHANGE, 3);
1095 if (ret) {
1096 drm_err(&dev_priv->drm,
1097 "Failed to inform PCU about cdclk change (%d)\n", ret);
1098 return;
1099 }
1100
1101 freq_select = skl_cdclk_freq_sel(dev_priv, cdclk, vco);
1102
1103 if (dev_priv->display.cdclk.hw.vco != 0 &&
1104 dev_priv->display.cdclk.hw.vco != vco)
1105 skl_dpll0_disable(dev_priv);
1106
1107 cdclk_ctl = intel_de_read(dev_priv, CDCLK_CTL);
1108
1109 if (dev_priv->display.cdclk.hw.vco != vco) {
1110 /* Wa Display #1183: skl,kbl,cfl */
1111 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1112 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1113 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1114 }
1115
1116 /* Wa Display #1183: skl,kbl,cfl */
1117 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1118 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1119 intel_de_posting_read(dev_priv, CDCLK_CTL);
1120
1121 if (dev_priv->display.cdclk.hw.vco != vco)
1122 skl_dpll0_enable(dev_priv, vco);
1123
1124 /* Wa Display #1183: skl,kbl,cfl */
1125 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1126 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1127
1128 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1129 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1130
1131 /* Wa Display #1183: skl,kbl,cfl */
1132 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1133 intel_de_write(dev_priv, CDCLK_CTL, cdclk_ctl);
1134 intel_de_posting_read(dev_priv, CDCLK_CTL);
1135
1136 /* inform PCU of the change */
1137 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1138 cdclk_config->voltage_level);
1139
1140 intel_update_cdclk(dev_priv);
1141 }
1142
skl_sanitize_cdclk(struct drm_i915_private * dev_priv)1143 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
1144 {
1145 u32 cdctl, expected;
1146
1147 /*
1148 * check if the pre-os initialized the display
1149 * There is SWF18 scratchpad register defined which is set by the
1150 * pre-os which can be used by the OS drivers to check the status
1151 */
1152 if ((intel_de_read(dev_priv, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1153 goto sanitize;
1154
1155 intel_update_cdclk(dev_priv);
1156 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1157
1158 /* Is PLL enabled and locked ? */
1159 if (dev_priv->display.cdclk.hw.vco == 0 ||
1160 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1161 goto sanitize;
1162
1163 /* DPLL okay; verify the cdclock
1164 *
1165 * Noticed in some instances that the freq selection is correct but
1166 * decimal part is programmed wrong from BIOS where pre-os does not
1167 * enable display. Verify the same as well.
1168 */
1169 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1170 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1171 skl_cdclk_decimal(dev_priv->display.cdclk.hw.cdclk);
1172 if (cdctl == expected)
1173 /* All well; nothing to sanitize */
1174 return;
1175
1176 sanitize:
1177 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
1178
1179 /* force cdclk programming */
1180 dev_priv->display.cdclk.hw.cdclk = 0;
1181 /* force full PLL disable + enable */
1182 dev_priv->display.cdclk.hw.vco = -1;
1183 }
1184
skl_cdclk_init_hw(struct drm_i915_private * dev_priv)1185 static void skl_cdclk_init_hw(struct drm_i915_private *dev_priv)
1186 {
1187 struct intel_cdclk_config cdclk_config;
1188
1189 skl_sanitize_cdclk(dev_priv);
1190
1191 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
1192 dev_priv->display.cdclk.hw.vco != 0) {
1193 /*
1194 * Use the current vco as our initial
1195 * guess as to what the preferred vco is.
1196 */
1197 if (dev_priv->skl_preferred_vco_freq == 0)
1198 skl_set_preferred_cdclk_vco(dev_priv,
1199 dev_priv->display.cdclk.hw.vco);
1200 return;
1201 }
1202
1203 cdclk_config = dev_priv->display.cdclk.hw;
1204
1205 cdclk_config.vco = dev_priv->skl_preferred_vco_freq;
1206 if (cdclk_config.vco == 0)
1207 cdclk_config.vco = 8100000;
1208 cdclk_config.cdclk = skl_calc_cdclk(0, cdclk_config.vco);
1209 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1210
1211 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1212 }
1213
skl_cdclk_uninit_hw(struct drm_i915_private * dev_priv)1214 static void skl_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
1215 {
1216 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
1217
1218 cdclk_config.cdclk = cdclk_config.bypass;
1219 cdclk_config.vco = 0;
1220 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk_config.cdclk);
1221
1222 skl_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
1223 }
1224
1225 struct intel_cdclk_vals {
1226 u32 cdclk;
1227 u16 refclk;
1228 u16 waveform;
1229 u8 divider; /* CD2X divider * 2 */
1230 u8 ratio;
1231 };
1232
1233 static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1234 { .refclk = 19200, .cdclk = 144000, .divider = 8, .ratio = 60 },
1235 { .refclk = 19200, .cdclk = 288000, .divider = 4, .ratio = 60 },
1236 { .refclk = 19200, .cdclk = 384000, .divider = 3, .ratio = 60 },
1237 { .refclk = 19200, .cdclk = 576000, .divider = 2, .ratio = 60 },
1238 { .refclk = 19200, .cdclk = 624000, .divider = 2, .ratio = 65 },
1239 {}
1240 };
1241
1242 static const struct intel_cdclk_vals glk_cdclk_table[] = {
1243 { .refclk = 19200, .cdclk = 79200, .divider = 8, .ratio = 33 },
1244 { .refclk = 19200, .cdclk = 158400, .divider = 4, .ratio = 33 },
1245 { .refclk = 19200, .cdclk = 316800, .divider = 2, .ratio = 33 },
1246 {}
1247 };
1248
1249 static const struct intel_cdclk_vals icl_cdclk_table[] = {
1250 { .refclk = 19200, .cdclk = 172800, .divider = 2, .ratio = 18 },
1251 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1252 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1253 { .refclk = 19200, .cdclk = 326400, .divider = 4, .ratio = 68 },
1254 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1255 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1256
1257 { .refclk = 24000, .cdclk = 180000, .divider = 2, .ratio = 15 },
1258 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1259 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1260 { .refclk = 24000, .cdclk = 324000, .divider = 4, .ratio = 54 },
1261 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1262 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1263
1264 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 9 },
1265 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1266 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1267 { .refclk = 38400, .cdclk = 326400, .divider = 4, .ratio = 34 },
1268 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1269 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1270 {}
1271 };
1272
1273 static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1274 { .refclk = 19200, .cdclk = 172800, .divider = 4, .ratio = 36 },
1275 { .refclk = 19200, .cdclk = 192000, .divider = 4, .ratio = 40 },
1276 { .refclk = 19200, .cdclk = 307200, .divider = 4, .ratio = 64 },
1277 { .refclk = 19200, .cdclk = 326400, .divider = 8, .ratio = 136 },
1278 { .refclk = 19200, .cdclk = 556800, .divider = 4, .ratio = 116 },
1279 { .refclk = 19200, .cdclk = 652800, .divider = 4, .ratio = 136 },
1280
1281 { .refclk = 24000, .cdclk = 180000, .divider = 4, .ratio = 30 },
1282 { .refclk = 24000, .cdclk = 192000, .divider = 4, .ratio = 32 },
1283 { .refclk = 24000, .cdclk = 312000, .divider = 4, .ratio = 52 },
1284 { .refclk = 24000, .cdclk = 324000, .divider = 8, .ratio = 108 },
1285 { .refclk = 24000, .cdclk = 552000, .divider = 4, .ratio = 92 },
1286 { .refclk = 24000, .cdclk = 648000, .divider = 4, .ratio = 108 },
1287
1288 { .refclk = 38400, .cdclk = 172800, .divider = 4, .ratio = 18 },
1289 { .refclk = 38400, .cdclk = 192000, .divider = 4, .ratio = 20 },
1290 { .refclk = 38400, .cdclk = 307200, .divider = 4, .ratio = 32 },
1291 { .refclk = 38400, .cdclk = 326400, .divider = 8, .ratio = 68 },
1292 { .refclk = 38400, .cdclk = 556800, .divider = 4, .ratio = 58 },
1293 { .refclk = 38400, .cdclk = 652800, .divider = 4, .ratio = 68 },
1294 {}
1295 };
1296
1297 static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1298 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1299 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1300 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1301
1302 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1303 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1304 { .refclk = 24400, .cdclk = 648000, .divider = 2, .ratio = 54 },
1305
1306 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1307 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1308 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1309 {}
1310 };
1311
1312 static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1313 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 },
1314 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1315 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1316 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1317 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1318
1319 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 },
1320 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1321 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1322 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1323 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1324
1325 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 },
1326 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1327 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1328 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1329 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1330 {}
1331 };
1332
1333 static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1334 { .refclk = 19200, .cdclk = 172800, .divider = 3, .ratio = 27 },
1335 { .refclk = 19200, .cdclk = 192000, .divider = 2, .ratio = 20 },
1336 { .refclk = 19200, .cdclk = 307200, .divider = 2, .ratio = 32 },
1337 { .refclk = 19200, .cdclk = 480000, .divider = 2, .ratio = 50 },
1338 { .refclk = 19200, .cdclk = 556800, .divider = 2, .ratio = 58 },
1339 { .refclk = 19200, .cdclk = 652800, .divider = 2, .ratio = 68 },
1340
1341 { .refclk = 24000, .cdclk = 176000, .divider = 3, .ratio = 22 },
1342 { .refclk = 24000, .cdclk = 192000, .divider = 2, .ratio = 16 },
1343 { .refclk = 24000, .cdclk = 312000, .divider = 2, .ratio = 26 },
1344 { .refclk = 24000, .cdclk = 480000, .divider = 2, .ratio = 40 },
1345 { .refclk = 24000, .cdclk = 552000, .divider = 2, .ratio = 46 },
1346 { .refclk = 24000, .cdclk = 648000, .divider = 2, .ratio = 54 },
1347
1348 { .refclk = 38400, .cdclk = 179200, .divider = 3, .ratio = 14 },
1349 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 10 },
1350 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16 },
1351 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25 },
1352 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29 },
1353 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34 },
1354 {}
1355 };
1356
1357 static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1358 { .refclk = 38400, .cdclk = 163200, .divider = 2, .ratio = 34, .waveform = 0x8888 },
1359 { .refclk = 38400, .cdclk = 204000, .divider = 2, .ratio = 34, .waveform = 0x9248 },
1360 { .refclk = 38400, .cdclk = 244800, .divider = 2, .ratio = 34, .waveform = 0xa4a4 },
1361 { .refclk = 38400, .cdclk = 285600, .divider = 2, .ratio = 34, .waveform = 0xa54a },
1362 { .refclk = 38400, .cdclk = 326400, .divider = 2, .ratio = 34, .waveform = 0xaaaa },
1363 { .refclk = 38400, .cdclk = 367200, .divider = 2, .ratio = 34, .waveform = 0xad5a },
1364 { .refclk = 38400, .cdclk = 408000, .divider = 2, .ratio = 34, .waveform = 0xb6b6 },
1365 { .refclk = 38400, .cdclk = 448800, .divider = 2, .ratio = 34, .waveform = 0xdbb6 },
1366 { .refclk = 38400, .cdclk = 489600, .divider = 2, .ratio = 34, .waveform = 0xeeee },
1367 { .refclk = 38400, .cdclk = 530400, .divider = 2, .ratio = 34, .waveform = 0xf7de },
1368 { .refclk = 38400, .cdclk = 571200, .divider = 2, .ratio = 34, .waveform = 0xfefe },
1369 { .refclk = 38400, .cdclk = 612000, .divider = 2, .ratio = 34, .waveform = 0xfffe },
1370 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0xffff },
1371 {}
1372 };
1373
1374 static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1375 { .refclk = 38400, .cdclk = 172800, .divider = 2, .ratio = 16, .waveform = 0xad5a },
1376 { .refclk = 38400, .cdclk = 192000, .divider = 2, .ratio = 16, .waveform = 0xb6b6 },
1377 { .refclk = 38400, .cdclk = 307200, .divider = 2, .ratio = 16, .waveform = 0x0000 },
1378 { .refclk = 38400, .cdclk = 480000, .divider = 2, .ratio = 25, .waveform = 0x0000 },
1379 { .refclk = 38400, .cdclk = 556800, .divider = 2, .ratio = 29, .waveform = 0x0000 },
1380 { .refclk = 38400, .cdclk = 652800, .divider = 2, .ratio = 34, .waveform = 0x0000 },
1381 {}
1382 };
1383
bxt_calc_cdclk(struct drm_i915_private * dev_priv,int min_cdclk)1384 static int bxt_calc_cdclk(struct drm_i915_private *dev_priv, int min_cdclk)
1385 {
1386 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1387 int i;
1388
1389 for (i = 0; table[i].refclk; i++)
1390 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1391 table[i].cdclk >= min_cdclk)
1392 return table[i].cdclk;
1393
1394 drm_WARN(&dev_priv->drm, 1,
1395 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1396 min_cdclk, dev_priv->display.cdclk.hw.ref);
1397 return 0;
1398 }
1399
bxt_calc_cdclk_pll_vco(struct drm_i915_private * dev_priv,int cdclk)1400 static int bxt_calc_cdclk_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
1401 {
1402 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1403 int i;
1404
1405 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1406 return 0;
1407
1408 for (i = 0; table[i].refclk; i++)
1409 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1410 table[i].cdclk == cdclk)
1411 return dev_priv->display.cdclk.hw.ref * table[i].ratio;
1412
1413 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1414 cdclk, dev_priv->display.cdclk.hw.ref);
1415 return 0;
1416 }
1417
bxt_calc_voltage_level(int cdclk)1418 static u8 bxt_calc_voltage_level(int cdclk)
1419 {
1420 return DIV_ROUND_UP(cdclk, 25000);
1421 }
1422
icl_calc_voltage_level(int cdclk)1423 static u8 icl_calc_voltage_level(int cdclk)
1424 {
1425 if (cdclk > 556800)
1426 return 2;
1427 else if (cdclk > 312000)
1428 return 1;
1429 else
1430 return 0;
1431 }
1432
ehl_calc_voltage_level(int cdclk)1433 static u8 ehl_calc_voltage_level(int cdclk)
1434 {
1435 if (cdclk > 326400)
1436 return 3;
1437 else if (cdclk > 312000)
1438 return 2;
1439 else if (cdclk > 180000)
1440 return 1;
1441 else
1442 return 0;
1443 }
1444
tgl_calc_voltage_level(int cdclk)1445 static u8 tgl_calc_voltage_level(int cdclk)
1446 {
1447 if (cdclk > 556800)
1448 return 3;
1449 else if (cdclk > 326400)
1450 return 2;
1451 else if (cdclk > 312000)
1452 return 1;
1453 else
1454 return 0;
1455 }
1456
rplu_calc_voltage_level(int cdclk)1457 static u8 rplu_calc_voltage_level(int cdclk)
1458 {
1459 if (cdclk > 556800)
1460 return 3;
1461 else if (cdclk > 480000)
1462 return 2;
1463 else if (cdclk > 312000)
1464 return 1;
1465 else
1466 return 0;
1467 }
1468
icl_readout_refclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)1469 static void icl_readout_refclk(struct drm_i915_private *dev_priv,
1470 struct intel_cdclk_config *cdclk_config)
1471 {
1472 u32 dssm = intel_de_read(dev_priv, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1473
1474 switch (dssm) {
1475 default:
1476 MISSING_CASE(dssm);
1477 fallthrough;
1478 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1479 cdclk_config->ref = 24000;
1480 break;
1481 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1482 cdclk_config->ref = 19200;
1483 break;
1484 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1485 cdclk_config->ref = 38400;
1486 break;
1487 }
1488 }
1489
bxt_de_pll_readout(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)1490 static void bxt_de_pll_readout(struct drm_i915_private *dev_priv,
1491 struct intel_cdclk_config *cdclk_config)
1492 {
1493 u32 val, ratio;
1494
1495 if (IS_DG2(dev_priv))
1496 cdclk_config->ref = 38400;
1497 else if (DISPLAY_VER(dev_priv) >= 11)
1498 icl_readout_refclk(dev_priv, cdclk_config);
1499 else
1500 cdclk_config->ref = 19200;
1501
1502 val = intel_de_read(dev_priv, BXT_DE_PLL_ENABLE);
1503 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1504 (val & BXT_DE_PLL_LOCK) == 0) {
1505 /*
1506 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1507 * setting it to zero is a way to signal that.
1508 */
1509 cdclk_config->vco = 0;
1510 return;
1511 }
1512
1513 /*
1514 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1515 * gen9lp had it in a separate PLL control register.
1516 */
1517 if (DISPLAY_VER(dev_priv) >= 11)
1518 ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1519 else
1520 ratio = intel_de_read(dev_priv, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1521
1522 cdclk_config->vco = ratio * cdclk_config->ref;
1523 }
1524
bxt_get_cdclk(struct drm_i915_private * dev_priv,struct intel_cdclk_config * cdclk_config)1525 static void bxt_get_cdclk(struct drm_i915_private *dev_priv,
1526 struct intel_cdclk_config *cdclk_config)
1527 {
1528 u32 squash_ctl = 0;
1529 u32 divider;
1530 int div;
1531
1532 bxt_de_pll_readout(dev_priv, cdclk_config);
1533
1534 if (DISPLAY_VER(dev_priv) >= 12)
1535 cdclk_config->bypass = cdclk_config->ref / 2;
1536 else if (DISPLAY_VER(dev_priv) >= 11)
1537 cdclk_config->bypass = 50000;
1538 else
1539 cdclk_config->bypass = cdclk_config->ref;
1540
1541 if (cdclk_config->vco == 0) {
1542 cdclk_config->cdclk = cdclk_config->bypass;
1543 goto out;
1544 }
1545
1546 divider = intel_de_read(dev_priv, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1547
1548 switch (divider) {
1549 case BXT_CDCLK_CD2X_DIV_SEL_1:
1550 div = 2;
1551 break;
1552 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1553 div = 3;
1554 break;
1555 case BXT_CDCLK_CD2X_DIV_SEL_2:
1556 div = 4;
1557 break;
1558 case BXT_CDCLK_CD2X_DIV_SEL_4:
1559 div = 8;
1560 break;
1561 default:
1562 MISSING_CASE(divider);
1563 return;
1564 }
1565
1566 if (HAS_CDCLK_SQUASH(dev_priv))
1567 squash_ctl = intel_de_read(dev_priv, CDCLK_SQUASH_CTL);
1568
1569 if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1570 u16 waveform;
1571 int size;
1572
1573 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1574 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1575
1576 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1577 cdclk_config->vco, size * div);
1578 } else {
1579 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1580 }
1581
1582 out:
1583 /*
1584 * Can't read this out :( Let's assume it's
1585 * at least what the CDCLK frequency requires.
1586 */
1587 cdclk_config->voltage_level =
1588 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config->cdclk);
1589 }
1590
bxt_de_pll_disable(struct drm_i915_private * dev_priv)1591 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
1592 {
1593 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, 0);
1594
1595 /* Timeout 200us */
1596 if (intel_de_wait_for_clear(dev_priv,
1597 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1598 drm_err(&dev_priv->drm, "timeout waiting for DE PLL unlock\n");
1599
1600 dev_priv->display.cdclk.hw.vco = 0;
1601 }
1602
bxt_de_pll_enable(struct drm_i915_private * dev_priv,int vco)1603 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
1604 {
1605 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1606
1607 intel_de_rmw(dev_priv, BXT_DE_PLL_CTL,
1608 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1609
1610 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1611
1612 /* Timeout 200us */
1613 if (intel_de_wait_for_set(dev_priv,
1614 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1615 drm_err(&dev_priv->drm, "timeout waiting for DE PLL lock\n");
1616
1617 dev_priv->display.cdclk.hw.vco = vco;
1618 }
1619
icl_cdclk_pll_disable(struct drm_i915_private * dev_priv)1620 static void icl_cdclk_pll_disable(struct drm_i915_private *dev_priv)
1621 {
1622 intel_de_rmw(dev_priv, BXT_DE_PLL_ENABLE,
1623 BXT_DE_PLL_PLL_ENABLE, 0);
1624
1625 /* Timeout 200us */
1626 if (intel_de_wait_for_clear(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1627 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL unlock\n");
1628
1629 dev_priv->display.cdclk.hw.vco = 0;
1630 }
1631
icl_cdclk_pll_enable(struct drm_i915_private * dev_priv,int vco)1632 static void icl_cdclk_pll_enable(struct drm_i915_private *dev_priv, int vco)
1633 {
1634 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1635 u32 val;
1636
1637 val = ICL_CDCLK_PLL_RATIO(ratio);
1638 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1639
1640 val |= BXT_DE_PLL_PLL_ENABLE;
1641 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1642
1643 /* Timeout 200us */
1644 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 1))
1645 drm_err(&dev_priv->drm, "timeout waiting for CDCLK PLL lock\n");
1646
1647 dev_priv->display.cdclk.hw.vco = vco;
1648 }
1649
adlp_cdclk_pll_crawl(struct drm_i915_private * dev_priv,int vco)1650 static void adlp_cdclk_pll_crawl(struct drm_i915_private *dev_priv, int vco)
1651 {
1652 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->display.cdclk.hw.ref);
1653 u32 val;
1654
1655 /* Write PLL ratio without disabling */
1656 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1657 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1658
1659 /* Submit freq change request */
1660 val |= BXT_DE_PLL_FREQ_REQ;
1661 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1662
1663 /* Timeout 200us */
1664 if (intel_de_wait_for_set(dev_priv, BXT_DE_PLL_ENABLE,
1665 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, 1))
1666 drm_err(&dev_priv->drm, "timeout waiting for FREQ change request ack\n");
1667
1668 val &= ~BXT_DE_PLL_FREQ_REQ;
1669 intel_de_write(dev_priv, BXT_DE_PLL_ENABLE, val);
1670
1671 dev_priv->display.cdclk.hw.vco = vco;
1672 }
1673
bxt_cdclk_cd2x_pipe(struct drm_i915_private * dev_priv,enum pipe pipe)1674 static u32 bxt_cdclk_cd2x_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
1675 {
1676 if (DISPLAY_VER(dev_priv) >= 12) {
1677 if (pipe == INVALID_PIPE)
1678 return TGL_CDCLK_CD2X_PIPE_NONE;
1679 else
1680 return TGL_CDCLK_CD2X_PIPE(pipe);
1681 } else if (DISPLAY_VER(dev_priv) >= 11) {
1682 if (pipe == INVALID_PIPE)
1683 return ICL_CDCLK_CD2X_PIPE_NONE;
1684 else
1685 return ICL_CDCLK_CD2X_PIPE(pipe);
1686 } else {
1687 if (pipe == INVALID_PIPE)
1688 return BXT_CDCLK_CD2X_PIPE_NONE;
1689 else
1690 return BXT_CDCLK_CD2X_PIPE(pipe);
1691 }
1692 }
1693
bxt_cdclk_cd2x_div_sel(struct drm_i915_private * dev_priv,int cdclk,int vco)1694 static u32 bxt_cdclk_cd2x_div_sel(struct drm_i915_private *dev_priv,
1695 int cdclk, int vco)
1696 {
1697 /* cdclk = vco / 2 / div{1,1.5,2,4} */
1698 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
1699 default:
1700 drm_WARN_ON(&dev_priv->drm,
1701 cdclk != dev_priv->display.cdclk.hw.bypass);
1702 drm_WARN_ON(&dev_priv->drm, vco != 0);
1703 fallthrough;
1704 case 2:
1705 return BXT_CDCLK_CD2X_DIV_SEL_1;
1706 case 3:
1707 return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1708 case 4:
1709 return BXT_CDCLK_CD2X_DIV_SEL_2;
1710 case 8:
1711 return BXT_CDCLK_CD2X_DIV_SEL_4;
1712 }
1713 }
1714
cdclk_squash_waveform(struct drm_i915_private * dev_priv,int cdclk)1715 static u32 cdclk_squash_waveform(struct drm_i915_private *dev_priv,
1716 int cdclk)
1717 {
1718 const struct intel_cdclk_vals *table = dev_priv->display.cdclk.table;
1719 int i;
1720
1721 if (cdclk == dev_priv->display.cdclk.hw.bypass)
1722 return 0;
1723
1724 for (i = 0; table[i].refclk; i++)
1725 if (table[i].refclk == dev_priv->display.cdclk.hw.ref &&
1726 table[i].cdclk == cdclk)
1727 return table[i].waveform;
1728
1729 drm_WARN(&dev_priv->drm, 1, "cdclk %d not valid for refclk %u\n",
1730 cdclk, dev_priv->display.cdclk.hw.ref);
1731
1732 return 0xffff;
1733 }
1734
icl_cdclk_pll_update(struct drm_i915_private * i915,int vco)1735 static void icl_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1736 {
1737 if (i915->display.cdclk.hw.vco != 0 &&
1738 i915->display.cdclk.hw.vco != vco)
1739 icl_cdclk_pll_disable(i915);
1740
1741 if (i915->display.cdclk.hw.vco != vco)
1742 icl_cdclk_pll_enable(i915, vco);
1743 }
1744
bxt_cdclk_pll_update(struct drm_i915_private * i915,int vco)1745 static void bxt_cdclk_pll_update(struct drm_i915_private *i915, int vco)
1746 {
1747 if (i915->display.cdclk.hw.vco != 0 &&
1748 i915->display.cdclk.hw.vco != vco)
1749 bxt_de_pll_disable(i915);
1750
1751 if (i915->display.cdclk.hw.vco != vco)
1752 bxt_de_pll_enable(i915, vco);
1753 }
1754
dg2_cdclk_squash_program(struct drm_i915_private * i915,u16 waveform)1755 static void dg2_cdclk_squash_program(struct drm_i915_private *i915,
1756 u16 waveform)
1757 {
1758 u32 squash_ctl = 0;
1759
1760 if (waveform)
1761 squash_ctl = CDCLK_SQUASH_ENABLE |
1762 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1763
1764 intel_de_write(i915, CDCLK_SQUASH_CTL, squash_ctl);
1765 }
1766
cdclk_pll_is_unknown(unsigned int vco)1767 static bool cdclk_pll_is_unknown(unsigned int vco)
1768 {
1769 /*
1770 * Ensure driver does not take the crawl path for the
1771 * case when the vco is set to ~0 in the
1772 * sanitize path.
1773 */
1774 return vco == ~0;
1775 }
1776
cdclk_squash_divider(u16 waveform)1777 static int cdclk_squash_divider(u16 waveform)
1778 {
1779 return hweight16(waveform ?: 0xffff);
1780 }
1781
cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private * i915,const struct intel_cdclk_config * old_cdclk_config,const struct intel_cdclk_config * new_cdclk_config,struct intel_cdclk_config * mid_cdclk_config)1782 static bool cdclk_compute_crawl_and_squash_midpoint(struct drm_i915_private *i915,
1783 const struct intel_cdclk_config *old_cdclk_config,
1784 const struct intel_cdclk_config *new_cdclk_config,
1785 struct intel_cdclk_config *mid_cdclk_config)
1786 {
1787 u16 old_waveform, new_waveform, mid_waveform;
1788 int size = 16;
1789 int div = 2;
1790
1791 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */
1792 if (cdclk_pll_is_unknown(old_cdclk_config->vco))
1793 return false;
1794
1795 /* Return if both Squash and Crawl are not present */
1796 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
1797 return false;
1798
1799 old_waveform = cdclk_squash_waveform(i915, old_cdclk_config->cdclk);
1800 new_waveform = cdclk_squash_waveform(i915, new_cdclk_config->cdclk);
1801
1802 /* Return if Squash only or Crawl only is the desired action */
1803 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
1804 old_cdclk_config->vco == new_cdclk_config->vco ||
1805 old_waveform == new_waveform)
1806 return false;
1807
1808 *mid_cdclk_config = *new_cdclk_config;
1809
1810 /*
1811 * Populate the mid_cdclk_config accordingly.
1812 * - If moving to a higher cdclk, the desired action is squashing.
1813 * The mid cdclk config should have the new (squash) waveform.
1814 * - If moving to a lower cdclk, the desired action is crawling.
1815 * The mid cdclk config should have the new vco.
1816 */
1817
1818 if (cdclk_squash_divider(new_waveform) > cdclk_squash_divider(old_waveform)) {
1819 mid_cdclk_config->vco = old_cdclk_config->vco;
1820 mid_waveform = new_waveform;
1821 } else {
1822 mid_cdclk_config->vco = new_cdclk_config->vco;
1823 mid_waveform = old_waveform;
1824 }
1825
1826 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
1827 mid_cdclk_config->vco, size * div);
1828
1829 /* make sure the mid clock came out sane */
1830
1831 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk <
1832 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
1833 drm_WARN_ON(&i915->drm, mid_cdclk_config->cdclk >
1834 i915->display.cdclk.max_cdclk_freq);
1835 drm_WARN_ON(&i915->drm, cdclk_squash_waveform(i915, mid_cdclk_config->cdclk) !=
1836 mid_waveform);
1837
1838 return true;
1839 }
1840
pll_enable_wa_needed(struct drm_i915_private * dev_priv)1841 static bool pll_enable_wa_needed(struct drm_i915_private *dev_priv)
1842 {
1843 return ((IS_DG2(dev_priv) || IS_METEORLAKE(dev_priv)) &&
1844 dev_priv->display.cdclk.hw.vco > 0 &&
1845 HAS_CDCLK_SQUASH(dev_priv));
1846 }
1847
_bxt_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)1848 static void _bxt_set_cdclk(struct drm_i915_private *dev_priv,
1849 const struct intel_cdclk_config *cdclk_config,
1850 enum pipe pipe)
1851 {
1852 int cdclk = cdclk_config->cdclk;
1853 int vco = cdclk_config->vco;
1854 u32 val;
1855 u16 waveform;
1856 int clock;
1857
1858 if (HAS_CDCLK_CRAWL(dev_priv) && dev_priv->display.cdclk.hw.vco > 0 && vco > 0 &&
1859 !cdclk_pll_is_unknown(dev_priv->display.cdclk.hw.vco)) {
1860 if (dev_priv->display.cdclk.hw.vco != vco)
1861 adlp_cdclk_pll_crawl(dev_priv, vco);
1862 } else if (DISPLAY_VER(dev_priv) >= 11) {
1863 /* wa_15010685871: dg2, mtl */
1864 if (pll_enable_wa_needed(dev_priv))
1865 dg2_cdclk_squash_program(dev_priv, 0);
1866
1867 icl_cdclk_pll_update(dev_priv, vco);
1868 } else
1869 bxt_cdclk_pll_update(dev_priv, vco);
1870
1871 waveform = cdclk_squash_waveform(dev_priv, cdclk);
1872
1873 if (waveform)
1874 clock = vco / 2;
1875 else
1876 clock = cdclk;
1877
1878 if (HAS_CDCLK_SQUASH(dev_priv))
1879 dg2_cdclk_squash_program(dev_priv, waveform);
1880
1881 val = bxt_cdclk_cd2x_div_sel(dev_priv, clock, vco) |
1882 bxt_cdclk_cd2x_pipe(dev_priv, pipe) |
1883 skl_cdclk_decimal(cdclk);
1884
1885 /*
1886 * Disable SSA Precharge when CD clock frequency < 500 MHz,
1887 * enable otherwise.
1888 */
1889 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1890 cdclk >= 500000)
1891 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
1892 intel_de_write(dev_priv, CDCLK_CTL, val);
1893
1894 if (pipe != INVALID_PIPE)
1895 intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(dev_priv, pipe));
1896 }
1897
bxt_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)1898 static void bxt_set_cdclk(struct drm_i915_private *dev_priv,
1899 const struct intel_cdclk_config *cdclk_config,
1900 enum pipe pipe)
1901 {
1902 struct intel_cdclk_config mid_cdclk_config;
1903 int cdclk = cdclk_config->cdclk;
1904 int ret = 0;
1905
1906 /*
1907 * Inform power controller of upcoming frequency change.
1908 * Display versions 14 and beyond do not follow the PUnit
1909 * mailbox communication, skip
1910 * this step.
1911 */
1912 if (DISPLAY_VER(dev_priv) >= 14 || IS_DG2(dev_priv))
1913 /* NOOP */;
1914 else if (DISPLAY_VER(dev_priv) >= 11)
1915 ret = skl_pcode_request(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1916 SKL_CDCLK_PREPARE_FOR_CHANGE,
1917 SKL_CDCLK_READY_FOR_CHANGE,
1918 SKL_CDCLK_READY_FOR_CHANGE, 3);
1919 else
1920 /*
1921 * BSpec requires us to wait up to 150usec, but that leads to
1922 * timeouts; the 2ms used here is based on experiment.
1923 */
1924 ret = snb_pcode_write_timeout(&dev_priv->uncore,
1925 HSW_PCODE_DE_WRITE_FREQ_REQ,
1926 0x80000000, 150, 2);
1927
1928 if (ret) {
1929 drm_err(&dev_priv->drm,
1930 "Failed to inform PCU about cdclk change (err %d, freq %d)\n",
1931 ret, cdclk);
1932 return;
1933 }
1934
1935 if (cdclk_compute_crawl_and_squash_midpoint(dev_priv, &dev_priv->display.cdclk.hw,
1936 cdclk_config, &mid_cdclk_config)) {
1937 _bxt_set_cdclk(dev_priv, &mid_cdclk_config, pipe);
1938 _bxt_set_cdclk(dev_priv, cdclk_config, pipe);
1939 } else {
1940 _bxt_set_cdclk(dev_priv, cdclk_config, pipe);
1941 }
1942
1943 if (DISPLAY_VER(dev_priv) >= 14)
1944 /*
1945 * NOOP - No Pcode communication needed for
1946 * Display versions 14 and beyond
1947 */;
1948 else if (DISPLAY_VER(dev_priv) >= 11 && !IS_DG2(dev_priv))
1949 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1950 cdclk_config->voltage_level);
1951 if (DISPLAY_VER(dev_priv) < 11) {
1952 /*
1953 * The timeout isn't specified, the 2ms used here is based on
1954 * experiment.
1955 * FIXME: Waiting for the request completion could be delayed
1956 * until the next PCODE request based on BSpec.
1957 */
1958 ret = snb_pcode_write_timeout(&dev_priv->uncore,
1959 HSW_PCODE_DE_WRITE_FREQ_REQ,
1960 cdclk_config->voltage_level,
1961 150, 2);
1962 }
1963 if (ret) {
1964 drm_err(&dev_priv->drm,
1965 "PCode CDCLK freq set failed, (err %d, freq %d)\n",
1966 ret, cdclk);
1967 return;
1968 }
1969
1970 intel_update_cdclk(dev_priv);
1971
1972 if (DISPLAY_VER(dev_priv) >= 11)
1973 /*
1974 * Can't read out the voltage level :(
1975 * Let's just assume everything is as expected.
1976 */
1977 dev_priv->display.cdclk.hw.voltage_level = cdclk_config->voltage_level;
1978 }
1979
bxt_sanitize_cdclk(struct drm_i915_private * dev_priv)1980 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
1981 {
1982 u32 cdctl, expected;
1983 int cdclk, clock, vco;
1984
1985 intel_update_cdclk(dev_priv);
1986 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1987
1988 if (dev_priv->display.cdclk.hw.vco == 0 ||
1989 dev_priv->display.cdclk.hw.cdclk == dev_priv->display.cdclk.hw.bypass)
1990 goto sanitize;
1991
1992 /* DPLL okay; verify the cdclock
1993 *
1994 * Some BIOS versions leave an incorrect decimal frequency value and
1995 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
1996 * so sanitize this register.
1997 */
1998 cdctl = intel_de_read(dev_priv, CDCLK_CTL);
1999 /*
2000 * Let's ignore the pipe field, since BIOS could have configured the
2001 * dividers both synching to an active pipe, or asynchronously
2002 * (PIPE_NONE).
2003 */
2004 cdctl &= ~bxt_cdclk_cd2x_pipe(dev_priv, INVALID_PIPE);
2005
2006 /* Make sure this is a legal cdclk value for the platform */
2007 cdclk = bxt_calc_cdclk(dev_priv, dev_priv->display.cdclk.hw.cdclk);
2008 if (cdclk != dev_priv->display.cdclk.hw.cdclk)
2009 goto sanitize;
2010
2011 /* Make sure the VCO is correct for the cdclk */
2012 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2013 if (vco != dev_priv->display.cdclk.hw.vco)
2014 goto sanitize;
2015
2016 expected = skl_cdclk_decimal(cdclk);
2017
2018 /* Figure out what CD2X divider we should be using for this cdclk */
2019 if (HAS_CDCLK_SQUASH(dev_priv))
2020 clock = dev_priv->display.cdclk.hw.vco / 2;
2021 else
2022 clock = dev_priv->display.cdclk.hw.cdclk;
2023
2024 expected |= bxt_cdclk_cd2x_div_sel(dev_priv, clock,
2025 dev_priv->display.cdclk.hw.vco);
2026
2027 /*
2028 * Disable SSA Precharge when CD clock frequency < 500 MHz,
2029 * enable otherwise.
2030 */
2031 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
2032 dev_priv->display.cdclk.hw.cdclk >= 500000)
2033 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
2034
2035 if (cdctl == expected)
2036 /* All well; nothing to sanitize */
2037 return;
2038
2039 sanitize:
2040 drm_dbg_kms(&dev_priv->drm, "Sanitizing cdclk programmed by pre-os\n");
2041
2042 /* force cdclk programming */
2043 dev_priv->display.cdclk.hw.cdclk = 0;
2044
2045 /* force full PLL disable + enable */
2046 dev_priv->display.cdclk.hw.vco = -1;
2047 }
2048
bxt_cdclk_init_hw(struct drm_i915_private * dev_priv)2049 static void bxt_cdclk_init_hw(struct drm_i915_private *dev_priv)
2050 {
2051 struct intel_cdclk_config cdclk_config;
2052
2053 bxt_sanitize_cdclk(dev_priv);
2054
2055 if (dev_priv->display.cdclk.hw.cdclk != 0 &&
2056 dev_priv->display.cdclk.hw.vco != 0)
2057 return;
2058
2059 cdclk_config = dev_priv->display.cdclk.hw;
2060
2061 /*
2062 * FIXME:
2063 * - The initial CDCLK needs to be read from VBT.
2064 * Need to make this change after VBT has changes for BXT.
2065 */
2066 cdclk_config.cdclk = bxt_calc_cdclk(dev_priv, 0);
2067 cdclk_config.vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk_config.cdclk);
2068 cdclk_config.voltage_level =
2069 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2070
2071 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2072 }
2073
bxt_cdclk_uninit_hw(struct drm_i915_private * dev_priv)2074 static void bxt_cdclk_uninit_hw(struct drm_i915_private *dev_priv)
2075 {
2076 struct intel_cdclk_config cdclk_config = dev_priv->display.cdclk.hw;
2077
2078 cdclk_config.cdclk = cdclk_config.bypass;
2079 cdclk_config.vco = 0;
2080 cdclk_config.voltage_level =
2081 intel_cdclk_calc_voltage_level(dev_priv, cdclk_config.cdclk);
2082
2083 bxt_set_cdclk(dev_priv, &cdclk_config, INVALID_PIPE);
2084 }
2085
2086 /**
2087 * intel_cdclk_init_hw - Initialize CDCLK hardware
2088 * @i915: i915 device
2089 *
2090 * Initialize CDCLK. This consists mainly of initializing dev_priv->display.cdclk.hw and
2091 * sanitizing the state of the hardware if needed. This is generally done only
2092 * during the display core initialization sequence, after which the DMC will
2093 * take care of turning CDCLK off/on as needed.
2094 */
intel_cdclk_init_hw(struct drm_i915_private * i915)2095 void intel_cdclk_init_hw(struct drm_i915_private *i915)
2096 {
2097 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2098 bxt_cdclk_init_hw(i915);
2099 else if (DISPLAY_VER(i915) == 9)
2100 skl_cdclk_init_hw(i915);
2101 }
2102
2103 /**
2104 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2105 * @i915: i915 device
2106 *
2107 * Uninitialize CDCLK. This is done only during the display core
2108 * uninitialization sequence.
2109 */
intel_cdclk_uninit_hw(struct drm_i915_private * i915)2110 void intel_cdclk_uninit_hw(struct drm_i915_private *i915)
2111 {
2112 if (DISPLAY_VER(i915) >= 10 || IS_BROXTON(i915))
2113 bxt_cdclk_uninit_hw(i915);
2114 else if (DISPLAY_VER(i915) == 9)
2115 skl_cdclk_uninit_hw(i915);
2116 }
2117
intel_cdclk_can_crawl_and_squash(struct drm_i915_private * i915,const struct intel_cdclk_config * a,const struct intel_cdclk_config * b)2118 static bool intel_cdclk_can_crawl_and_squash(struct drm_i915_private *i915,
2119 const struct intel_cdclk_config *a,
2120 const struct intel_cdclk_config *b)
2121 {
2122 u16 old_waveform;
2123 u16 new_waveform;
2124
2125 drm_WARN_ON(&i915->drm, cdclk_pll_is_unknown(a->vco));
2126
2127 if (a->vco == 0 || b->vco == 0)
2128 return false;
2129
2130 if (!HAS_CDCLK_CRAWL(i915) || !HAS_CDCLK_SQUASH(i915))
2131 return false;
2132
2133 old_waveform = cdclk_squash_waveform(i915, a->cdclk);
2134 new_waveform = cdclk_squash_waveform(i915, b->cdclk);
2135
2136 return a->vco != b->vco &&
2137 old_waveform != new_waveform;
2138 }
2139
intel_cdclk_can_crawl(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * a,const struct intel_cdclk_config * b)2140 static bool intel_cdclk_can_crawl(struct drm_i915_private *dev_priv,
2141 const struct intel_cdclk_config *a,
2142 const struct intel_cdclk_config *b)
2143 {
2144 int a_div, b_div;
2145
2146 if (!HAS_CDCLK_CRAWL(dev_priv))
2147 return false;
2148
2149 /*
2150 * The vco and cd2x divider will change independently
2151 * from each, so we disallow cd2x change when crawling.
2152 */
2153 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2154 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2155
2156 return a->vco != 0 && b->vco != 0 &&
2157 a->vco != b->vco &&
2158 a_div == b_div &&
2159 a->ref == b->ref;
2160 }
2161
intel_cdclk_can_squash(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * a,const struct intel_cdclk_config * b)2162 static bool intel_cdclk_can_squash(struct drm_i915_private *dev_priv,
2163 const struct intel_cdclk_config *a,
2164 const struct intel_cdclk_config *b)
2165 {
2166 /*
2167 * FIXME should store a bit more state in intel_cdclk_config
2168 * to differentiate squasher vs. cd2x divider properly. For
2169 * the moment all platforms with squasher use a fixed cd2x
2170 * divider.
2171 */
2172 if (!HAS_CDCLK_SQUASH(dev_priv))
2173 return false;
2174
2175 return a->cdclk != b->cdclk &&
2176 a->vco != 0 &&
2177 a->vco == b->vco &&
2178 a->ref == b->ref;
2179 }
2180
2181 /**
2182 * intel_cdclk_needs_modeset - Determine if changong between the CDCLK
2183 * configurations requires a modeset on all pipes
2184 * @a: first CDCLK configuration
2185 * @b: second CDCLK configuration
2186 *
2187 * Returns:
2188 * True if changing between the two CDCLK configurations
2189 * requires all pipes to be off, false if not.
2190 */
intel_cdclk_needs_modeset(const struct intel_cdclk_config * a,const struct intel_cdclk_config * b)2191 bool intel_cdclk_needs_modeset(const struct intel_cdclk_config *a,
2192 const struct intel_cdclk_config *b)
2193 {
2194 return a->cdclk != b->cdclk ||
2195 a->vco != b->vco ||
2196 a->ref != b->ref;
2197 }
2198
2199 /**
2200 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2201 * configurations requires only a cd2x divider update
2202 * @dev_priv: i915 device
2203 * @a: first CDCLK configuration
2204 * @b: second CDCLK configuration
2205 *
2206 * Returns:
2207 * True if changing between the two CDCLK configurations
2208 * can be done with just a cd2x divider update, false if not.
2209 */
intel_cdclk_can_cd2x_update(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * a,const struct intel_cdclk_config * b)2210 static bool intel_cdclk_can_cd2x_update(struct drm_i915_private *dev_priv,
2211 const struct intel_cdclk_config *a,
2212 const struct intel_cdclk_config *b)
2213 {
2214 /* Older hw doesn't have the capability */
2215 if (DISPLAY_VER(dev_priv) < 10 && !IS_BROXTON(dev_priv))
2216 return false;
2217
2218 /*
2219 * FIXME should store a bit more state in intel_cdclk_config
2220 * to differentiate squasher vs. cd2x divider properly. For
2221 * the moment all platforms with squasher use a fixed cd2x
2222 * divider.
2223 */
2224 if (HAS_CDCLK_SQUASH(dev_priv))
2225 return false;
2226
2227 return a->cdclk != b->cdclk &&
2228 a->vco != 0 &&
2229 a->vco == b->vco &&
2230 a->ref == b->ref;
2231 }
2232
2233 /**
2234 * intel_cdclk_changed - Determine if two CDCLK configurations are different
2235 * @a: first CDCLK configuration
2236 * @b: second CDCLK configuration
2237 *
2238 * Returns:
2239 * True if the CDCLK configurations don't match, false if they do.
2240 */
intel_cdclk_changed(const struct intel_cdclk_config * a,const struct intel_cdclk_config * b)2241 static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2242 const struct intel_cdclk_config *b)
2243 {
2244 return intel_cdclk_needs_modeset(a, b) ||
2245 a->voltage_level != b->voltage_level;
2246 }
2247
intel_cdclk_dump_config(struct drm_i915_private * i915,const struct intel_cdclk_config * cdclk_config,const char * context)2248 void intel_cdclk_dump_config(struct drm_i915_private *i915,
2249 const struct intel_cdclk_config *cdclk_config,
2250 const char *context)
2251 {
2252 drm_dbg_kms(&i915->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2253 context, cdclk_config->cdclk, cdclk_config->vco,
2254 cdclk_config->ref, cdclk_config->bypass,
2255 cdclk_config->voltage_level);
2256 }
2257
intel_pcode_notify(struct drm_i915_private * i915,u8 voltage_level,u8 active_pipe_count,u16 cdclk,bool cdclk_update_valid,bool pipe_count_update_valid)2258 static void intel_pcode_notify(struct drm_i915_private *i915,
2259 u8 voltage_level,
2260 u8 active_pipe_count,
2261 u16 cdclk,
2262 bool cdclk_update_valid,
2263 bool pipe_count_update_valid)
2264 {
2265 int ret;
2266 u32 update_mask = 0;
2267
2268 if (!IS_DG2(i915))
2269 return;
2270
2271 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2272
2273 if (cdclk_update_valid)
2274 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2275
2276 if (pipe_count_update_valid)
2277 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2278
2279 ret = skl_pcode_request(&i915->uncore, SKL_PCODE_CDCLK_CONTROL,
2280 SKL_CDCLK_PREPARE_FOR_CHANGE |
2281 update_mask,
2282 SKL_CDCLK_READY_FOR_CHANGE,
2283 SKL_CDCLK_READY_FOR_CHANGE, 3);
2284 if (ret)
2285 drm_err(&i915->drm,
2286 "Failed to inform PCU about display config (err %d)\n",
2287 ret);
2288 }
2289
2290 /**
2291 * intel_set_cdclk - Push the CDCLK configuration to the hardware
2292 * @dev_priv: i915 device
2293 * @cdclk_config: new CDCLK configuration
2294 * @pipe: pipe with which to synchronize the update
2295 *
2296 * Program the hardware based on the passed in CDCLK state,
2297 * if necessary.
2298 */
intel_set_cdclk(struct drm_i915_private * dev_priv,const struct intel_cdclk_config * cdclk_config,enum pipe pipe)2299 static void intel_set_cdclk(struct drm_i915_private *dev_priv,
2300 const struct intel_cdclk_config *cdclk_config,
2301 enum pipe pipe)
2302 {
2303 struct intel_encoder *encoder;
2304
2305 if (!intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config))
2306 return;
2307
2308 if (drm_WARN_ON_ONCE(&dev_priv->drm, !dev_priv->display.funcs.cdclk->set_cdclk))
2309 return;
2310
2311 intel_cdclk_dump_config(dev_priv, cdclk_config, "Changing CDCLK to");
2312
2313 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2314 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2315
2316 intel_psr_pause(intel_dp);
2317 }
2318
2319 intel_audio_cdclk_change_pre(dev_priv);
2320
2321 /*
2322 * Lock aux/gmbus while we change cdclk in case those
2323 * functions use cdclk. Not all platforms/ports do,
2324 * but we'll lock them all for simplicity.
2325 */
2326 mutex_lock(&dev_priv->display.gmbus.mutex);
2327 for_each_intel_dp(&dev_priv->drm, encoder) {
2328 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2329
2330 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2331 &dev_priv->display.gmbus.mutex);
2332 }
2333
2334 intel_cdclk_set_cdclk(dev_priv, cdclk_config, pipe);
2335
2336 for_each_intel_dp(&dev_priv->drm, encoder) {
2337 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2338
2339 mutex_unlock(&intel_dp->aux.hw_mutex);
2340 }
2341 mutex_unlock(&dev_priv->display.gmbus.mutex);
2342
2343 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2344 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2345
2346 intel_psr_resume(intel_dp);
2347 }
2348
2349 intel_audio_cdclk_change_post(dev_priv);
2350
2351 if (drm_WARN(&dev_priv->drm,
2352 intel_cdclk_changed(&dev_priv->display.cdclk.hw, cdclk_config),
2353 "cdclk state doesn't match!\n")) {
2354 intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "[hw state]");
2355 intel_cdclk_dump_config(dev_priv, cdclk_config, "[sw state]");
2356 }
2357 }
2358
intel_cdclk_pcode_pre_notify(struct intel_atomic_state * state)2359 static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2360 {
2361 struct drm_i915_private *i915 = to_i915(state->base.dev);
2362 const struct intel_cdclk_state *old_cdclk_state =
2363 intel_atomic_get_old_cdclk_state(state);
2364 const struct intel_cdclk_state *new_cdclk_state =
2365 intel_atomic_get_new_cdclk_state(state);
2366 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2367 bool change_cdclk, update_pipe_count;
2368
2369 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2370 &new_cdclk_state->actual) &&
2371 new_cdclk_state->active_pipes ==
2372 old_cdclk_state->active_pipes)
2373 return;
2374
2375 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2376 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2377
2378 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2379 update_pipe_count = hweight8(new_cdclk_state->active_pipes) >
2380 hweight8(old_cdclk_state->active_pipes);
2381
2382 /*
2383 * According to "Sequence Before Frequency Change",
2384 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2385 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2386 * which basically means we choose the maximum of old and new CDCLK, if we know both
2387 */
2388 if (change_cdclk)
2389 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2390
2391 /*
2392 * According to "Sequence For Pipe Count Change",
2393 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2394 * (power well is enabled)
2395 * no action if it is decreasing, before the change
2396 */
2397 if (update_pipe_count)
2398 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2399
2400 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2401 change_cdclk, update_pipe_count);
2402 }
2403
intel_cdclk_pcode_post_notify(struct intel_atomic_state * state)2404 static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2405 {
2406 struct drm_i915_private *i915 = to_i915(state->base.dev);
2407 const struct intel_cdclk_state *new_cdclk_state =
2408 intel_atomic_get_new_cdclk_state(state);
2409 const struct intel_cdclk_state *old_cdclk_state =
2410 intel_atomic_get_old_cdclk_state(state);
2411 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2412 bool update_cdclk, update_pipe_count;
2413
2414 /* According to "Sequence After Frequency Change", set voltage to used level */
2415 voltage_level = new_cdclk_state->actual.voltage_level;
2416
2417 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2418 update_pipe_count = hweight8(new_cdclk_state->active_pipes) <
2419 hweight8(old_cdclk_state->active_pipes);
2420
2421 /*
2422 * According to "Sequence After Frequency Change",
2423 * set bits 25:16 to current CDCLK
2424 */
2425 if (update_cdclk)
2426 cdclk = new_cdclk_state->actual.cdclk;
2427
2428 /*
2429 * According to "Sequence For Pipe Count Change",
2430 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2431 * after the change(power well is disabled)
2432 * no action if it is increasing, after the change
2433 */
2434 if (update_pipe_count)
2435 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2436
2437 intel_pcode_notify(i915, voltage_level, num_active_pipes, cdclk,
2438 update_cdclk, update_pipe_count);
2439 }
2440
2441 /**
2442 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2443 * @state: intel atomic state
2444 *
2445 * Program the hardware before updating the HW plane state based on the
2446 * new CDCLK state, if necessary.
2447 */
2448 void
intel_set_cdclk_pre_plane_update(struct intel_atomic_state * state)2449 intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2450 {
2451 struct drm_i915_private *i915 = to_i915(state->base.dev);
2452 const struct intel_cdclk_state *old_cdclk_state =
2453 intel_atomic_get_old_cdclk_state(state);
2454 const struct intel_cdclk_state *new_cdclk_state =
2455 intel_atomic_get_new_cdclk_state(state);
2456 enum pipe pipe = new_cdclk_state->pipe;
2457
2458 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2459 &new_cdclk_state->actual))
2460 return;
2461
2462 if (IS_DG2(i915))
2463 intel_cdclk_pcode_pre_notify(state);
2464
2465 if (pipe == INVALID_PIPE ||
2466 old_cdclk_state->actual.cdclk <= new_cdclk_state->actual.cdclk) {
2467 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2468
2469 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2470 }
2471 }
2472
2473 /**
2474 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2475 * @state: intel atomic state
2476 *
2477 * Program the hardware after updating the HW plane state based on the
2478 * new CDCLK state, if necessary.
2479 */
2480 void
intel_set_cdclk_post_plane_update(struct intel_atomic_state * state)2481 intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2482 {
2483 struct drm_i915_private *i915 = to_i915(state->base.dev);
2484 const struct intel_cdclk_state *old_cdclk_state =
2485 intel_atomic_get_old_cdclk_state(state);
2486 const struct intel_cdclk_state *new_cdclk_state =
2487 intel_atomic_get_new_cdclk_state(state);
2488 enum pipe pipe = new_cdclk_state->pipe;
2489
2490 if (!intel_cdclk_changed(&old_cdclk_state->actual,
2491 &new_cdclk_state->actual))
2492 return;
2493
2494 if (IS_DG2(i915))
2495 intel_cdclk_pcode_post_notify(state);
2496
2497 if (pipe != INVALID_PIPE &&
2498 old_cdclk_state->actual.cdclk > new_cdclk_state->actual.cdclk) {
2499 drm_WARN_ON(&i915->drm, !new_cdclk_state->base.changed);
2500
2501 intel_set_cdclk(i915, &new_cdclk_state->actual, pipe);
2502 }
2503 }
2504
intel_pixel_rate_to_cdclk(const struct intel_crtc_state * crtc_state)2505 static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2506 {
2507 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2508 int pixel_rate = crtc_state->pixel_rate;
2509
2510 if (DISPLAY_VER(dev_priv) >= 10)
2511 return DIV_ROUND_UP(pixel_rate, 2);
2512 else if (DISPLAY_VER(dev_priv) == 9 ||
2513 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
2514 return pixel_rate;
2515 else if (IS_CHERRYVIEW(dev_priv))
2516 return DIV_ROUND_UP(pixel_rate * 100, 95);
2517 else if (crtc_state->double_wide)
2518 return DIV_ROUND_UP(pixel_rate * 100, 90 * 2);
2519 else
2520 return DIV_ROUND_UP(pixel_rate * 100, 90);
2521 }
2522
intel_planes_min_cdclk(const struct intel_crtc_state * crtc_state)2523 static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2524 {
2525 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2526 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2527 struct intel_plane *plane;
2528 int min_cdclk = 0;
2529
2530 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
2531 min_cdclk = max(crtc_state->min_cdclk[plane->id], min_cdclk);
2532
2533 return min_cdclk;
2534 }
2535
intel_crtc_compute_min_cdclk(const struct intel_crtc_state * crtc_state)2536 int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2537 {
2538 struct drm_i915_private *dev_priv =
2539 to_i915(crtc_state->uapi.crtc->dev);
2540 int min_cdclk;
2541
2542 if (!crtc_state->hw.enable)
2543 return 0;
2544
2545 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2546
2547 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
2548 if (IS_BROADWELL(dev_priv) && hsw_crtc_state_ips_capable(crtc_state))
2549 min_cdclk = DIV_ROUND_UP(min_cdclk * 100, 95);
2550
2551 /* BSpec says "Do not use DisplayPort with CDCLK less than 432 MHz,
2552 * audio enabled, port width x4, and link rate HBR2 (5.4 GHz), or else
2553 * there may be audio corruption or screen corruption." This cdclk
2554 * restriction for GLK is 316.8 MHz.
2555 */
2556 if (intel_crtc_has_dp_encoder(crtc_state) &&
2557 crtc_state->has_audio &&
2558 crtc_state->port_clock >= 540000 &&
2559 crtc_state->lane_count == 4) {
2560 if (DISPLAY_VER(dev_priv) == 10) {
2561 /* Display WA #1145: glk */
2562 min_cdclk = max(316800, min_cdclk);
2563 } else if (DISPLAY_VER(dev_priv) == 9 || IS_BROADWELL(dev_priv)) {
2564 /* Display WA #1144: skl,bxt */
2565 min_cdclk = max(432000, min_cdclk);
2566 }
2567 }
2568
2569 /*
2570 * According to BSpec, "The CD clock frequency must be at least twice
2571 * the frequency of the Azalia BCLK." and BCLK is 96 MHz by default.
2572 */
2573 if (crtc_state->has_audio && DISPLAY_VER(dev_priv) >= 9)
2574 min_cdclk = max(2 * 96000, min_cdclk);
2575
2576 /*
2577 * "For DP audio configuration, cdclk frequency shall be set to
2578 * meet the following requirements:
2579 * DP Link Frequency(MHz) | Cdclk frequency(MHz)
2580 * 270 | 320 or higher
2581 * 162 | 200 or higher"
2582 */
2583 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
2584 intel_crtc_has_dp_encoder(crtc_state) && crtc_state->has_audio)
2585 min_cdclk = max(crtc_state->port_clock, min_cdclk);
2586
2587 /*
2588 * On Valleyview some DSI panels lose (v|h)sync when the clock is lower
2589 * than 320000KHz.
2590 */
2591 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2592 IS_VALLEYVIEW(dev_priv))
2593 min_cdclk = max(320000, min_cdclk);
2594
2595 /*
2596 * On Geminilake once the CDCLK gets as low as 79200
2597 * picture gets unstable, despite that values are
2598 * correct for DSI PLL and DE PLL.
2599 */
2600 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) &&
2601 IS_GEMINILAKE(dev_priv))
2602 min_cdclk = max(158400, min_cdclk);
2603
2604 /* Account for additional needs from the planes */
2605 min_cdclk = max(intel_planes_min_cdclk(crtc_state), min_cdclk);
2606
2607 /*
2608 * When we decide to use only one VDSC engine, since
2609 * each VDSC operates with 1 ppc throughput, pixel clock
2610 * cannot be higher than the VDSC clock (cdclk)
2611 * If there 2 VDSC engines, then pixel clock can't be higher than
2612 * VDSC clock(cdclk) * 2 and so on.
2613 */
2614 if (crtc_state->dsc.compression_enable) {
2615 int num_vdsc_instances = intel_dsc_get_num_vdsc_instances(crtc_state);
2616
2617 min_cdclk = max_t(int, min_cdclk,
2618 DIV_ROUND_UP(crtc_state->pixel_rate,
2619 num_vdsc_instances));
2620 }
2621
2622 /*
2623 * HACK. Currently for TGL/DG2 platforms we calculate
2624 * min_cdclk initially based on pixel_rate divided
2625 * by 2, accounting for also plane requirements,
2626 * however in some cases the lowest possible CDCLK
2627 * doesn't work and causing the underruns.
2628 * Explicitly stating here that this seems to be currently
2629 * rather a Hack, than final solution.
2630 */
2631 if (IS_TIGERLAKE(dev_priv) || IS_DG2(dev_priv)) {
2632 /*
2633 * Clamp to max_cdclk_freq in case pixel rate is higher,
2634 * in order not to break an 8K, but still leave W/A at place.
2635 */
2636 min_cdclk = max_t(int, min_cdclk,
2637 min_t(int, crtc_state->pixel_rate,
2638 dev_priv->display.cdclk.max_cdclk_freq));
2639 }
2640
2641 return min_cdclk;
2642 }
2643
intel_compute_min_cdclk(struct intel_cdclk_state * cdclk_state)2644 static int intel_compute_min_cdclk(struct intel_cdclk_state *cdclk_state)
2645 {
2646 struct intel_atomic_state *state = cdclk_state->base.state;
2647 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2648 const struct intel_bw_state *bw_state;
2649 struct intel_crtc *crtc;
2650 struct intel_crtc_state *crtc_state;
2651 int min_cdclk, i;
2652 enum pipe pipe;
2653
2654 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2655 int ret;
2656
2657 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2658 if (min_cdclk < 0)
2659 return min_cdclk;
2660
2661 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2662 continue;
2663
2664 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2665
2666 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2667 if (ret)
2668 return ret;
2669 }
2670
2671 bw_state = intel_atomic_get_new_bw_state(state);
2672 if (bw_state) {
2673 min_cdclk = intel_bw_min_cdclk(dev_priv, bw_state);
2674
2675 if (cdclk_state->bw_min_cdclk != min_cdclk) {
2676 int ret;
2677
2678 cdclk_state->bw_min_cdclk = min_cdclk;
2679
2680 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2681 if (ret)
2682 return ret;
2683 }
2684 }
2685
2686 min_cdclk = max(cdclk_state->force_min_cdclk,
2687 cdclk_state->bw_min_cdclk);
2688 for_each_pipe(dev_priv, pipe)
2689 min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
2690
2691 /*
2692 * Avoid glk_force_audio_cdclk() causing excessive screen
2693 * blinking when multiple pipes are active by making sure
2694 * CDCLK frequency is always high enough for audio. With a
2695 * single active pipe we can always change CDCLK frequency
2696 * by changing the cd2x divider (see glk_cdclk_table[]) and
2697 * thus a full modeset won't be needed then.
2698 */
2699 if (IS_GEMINILAKE(dev_priv) && cdclk_state->active_pipes &&
2700 !is_power_of_2(cdclk_state->active_pipes))
2701 min_cdclk = max(2 * 96000, min_cdclk);
2702
2703 if (min_cdclk > dev_priv->display.cdclk.max_cdclk_freq) {
2704 drm_dbg_kms(&dev_priv->drm,
2705 "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2706 min_cdclk, dev_priv->display.cdclk.max_cdclk_freq);
2707 return -EINVAL;
2708 }
2709
2710 return min_cdclk;
2711 }
2712
2713 /*
2714 * Account for port clock min voltage level requirements.
2715 * This only really does something on DISPLA_VER >= 11 but can be
2716 * called on earlier platforms as well.
2717 *
2718 * Note that this functions assumes that 0 is
2719 * the lowest voltage value, and higher values
2720 * correspond to increasingly higher voltages.
2721 *
2722 * Should that relationship no longer hold on
2723 * future platforms this code will need to be
2724 * adjusted.
2725 */
bxt_compute_min_voltage_level(struct intel_cdclk_state * cdclk_state)2726 static int bxt_compute_min_voltage_level(struct intel_cdclk_state *cdclk_state)
2727 {
2728 struct intel_atomic_state *state = cdclk_state->base.state;
2729 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2730 struct intel_crtc *crtc;
2731 struct intel_crtc_state *crtc_state;
2732 u8 min_voltage_level;
2733 int i;
2734 enum pipe pipe;
2735
2736 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2737 int ret;
2738
2739 if (crtc_state->hw.enable)
2740 min_voltage_level = crtc_state->min_voltage_level;
2741 else
2742 min_voltage_level = 0;
2743
2744 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
2745 continue;
2746
2747 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
2748
2749 ret = intel_atomic_lock_global_state(&cdclk_state->base);
2750 if (ret)
2751 return ret;
2752 }
2753
2754 min_voltage_level = 0;
2755 for_each_pipe(dev_priv, pipe)
2756 min_voltage_level = max(cdclk_state->min_voltage_level[pipe],
2757 min_voltage_level);
2758
2759 return min_voltage_level;
2760 }
2761
vlv_modeset_calc_cdclk(struct intel_cdclk_state * cdclk_state)2762 static int vlv_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2763 {
2764 struct intel_atomic_state *state = cdclk_state->base.state;
2765 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2766 int min_cdclk, cdclk;
2767
2768 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2769 if (min_cdclk < 0)
2770 return min_cdclk;
2771
2772 cdclk = vlv_calc_cdclk(dev_priv, min_cdclk);
2773
2774 cdclk_state->logical.cdclk = cdclk;
2775 cdclk_state->logical.voltage_level =
2776 vlv_calc_voltage_level(dev_priv, cdclk);
2777
2778 if (!cdclk_state->active_pipes) {
2779 cdclk = vlv_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2780
2781 cdclk_state->actual.cdclk = cdclk;
2782 cdclk_state->actual.voltage_level =
2783 vlv_calc_voltage_level(dev_priv, cdclk);
2784 } else {
2785 cdclk_state->actual = cdclk_state->logical;
2786 }
2787
2788 return 0;
2789 }
2790
bdw_modeset_calc_cdclk(struct intel_cdclk_state * cdclk_state)2791 static int bdw_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2792 {
2793 int min_cdclk, cdclk;
2794
2795 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2796 if (min_cdclk < 0)
2797 return min_cdclk;
2798
2799 cdclk = bdw_calc_cdclk(min_cdclk);
2800
2801 cdclk_state->logical.cdclk = cdclk;
2802 cdclk_state->logical.voltage_level =
2803 bdw_calc_voltage_level(cdclk);
2804
2805 if (!cdclk_state->active_pipes) {
2806 cdclk = bdw_calc_cdclk(cdclk_state->force_min_cdclk);
2807
2808 cdclk_state->actual.cdclk = cdclk;
2809 cdclk_state->actual.voltage_level =
2810 bdw_calc_voltage_level(cdclk);
2811 } else {
2812 cdclk_state->actual = cdclk_state->logical;
2813 }
2814
2815 return 0;
2816 }
2817
skl_dpll0_vco(struct intel_cdclk_state * cdclk_state)2818 static int skl_dpll0_vco(struct intel_cdclk_state *cdclk_state)
2819 {
2820 struct intel_atomic_state *state = cdclk_state->base.state;
2821 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2822 struct intel_crtc *crtc;
2823 struct intel_crtc_state *crtc_state;
2824 int vco, i;
2825
2826 vco = cdclk_state->logical.vco;
2827 if (!vco)
2828 vco = dev_priv->skl_preferred_vco_freq;
2829
2830 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2831 if (!crtc_state->hw.enable)
2832 continue;
2833
2834 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2835 continue;
2836
2837 /*
2838 * DPLL0 VCO may need to be adjusted to get the correct
2839 * clock for eDP. This will affect cdclk as well.
2840 */
2841 switch (crtc_state->port_clock / 2) {
2842 case 108000:
2843 case 216000:
2844 vco = 8640000;
2845 break;
2846 default:
2847 vco = 8100000;
2848 break;
2849 }
2850 }
2851
2852 return vco;
2853 }
2854
skl_modeset_calc_cdclk(struct intel_cdclk_state * cdclk_state)2855 static int skl_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2856 {
2857 int min_cdclk, cdclk, vco;
2858
2859 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2860 if (min_cdclk < 0)
2861 return min_cdclk;
2862
2863 vco = skl_dpll0_vco(cdclk_state);
2864
2865 cdclk = skl_calc_cdclk(min_cdclk, vco);
2866
2867 cdclk_state->logical.vco = vco;
2868 cdclk_state->logical.cdclk = cdclk;
2869 cdclk_state->logical.voltage_level =
2870 skl_calc_voltage_level(cdclk);
2871
2872 if (!cdclk_state->active_pipes) {
2873 cdclk = skl_calc_cdclk(cdclk_state->force_min_cdclk, vco);
2874
2875 cdclk_state->actual.vco = vco;
2876 cdclk_state->actual.cdclk = cdclk;
2877 cdclk_state->actual.voltage_level =
2878 skl_calc_voltage_level(cdclk);
2879 } else {
2880 cdclk_state->actual = cdclk_state->logical;
2881 }
2882
2883 return 0;
2884 }
2885
bxt_modeset_calc_cdclk(struct intel_cdclk_state * cdclk_state)2886 static int bxt_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2887 {
2888 struct intel_atomic_state *state = cdclk_state->base.state;
2889 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2890 int min_cdclk, min_voltage_level, cdclk, vco;
2891
2892 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2893 if (min_cdclk < 0)
2894 return min_cdclk;
2895
2896 min_voltage_level = bxt_compute_min_voltage_level(cdclk_state);
2897 if (min_voltage_level < 0)
2898 return min_voltage_level;
2899
2900 cdclk = bxt_calc_cdclk(dev_priv, min_cdclk);
2901 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2902
2903 cdclk_state->logical.vco = vco;
2904 cdclk_state->logical.cdclk = cdclk;
2905 cdclk_state->logical.voltage_level =
2906 max_t(int, min_voltage_level,
2907 intel_cdclk_calc_voltage_level(dev_priv, cdclk));
2908
2909 if (!cdclk_state->active_pipes) {
2910 cdclk = bxt_calc_cdclk(dev_priv, cdclk_state->force_min_cdclk);
2911 vco = bxt_calc_cdclk_pll_vco(dev_priv, cdclk);
2912
2913 cdclk_state->actual.vco = vco;
2914 cdclk_state->actual.cdclk = cdclk;
2915 cdclk_state->actual.voltage_level =
2916 intel_cdclk_calc_voltage_level(dev_priv, cdclk);
2917 } else {
2918 cdclk_state->actual = cdclk_state->logical;
2919 }
2920
2921 return 0;
2922 }
2923
fixed_modeset_calc_cdclk(struct intel_cdclk_state * cdclk_state)2924 static int fixed_modeset_calc_cdclk(struct intel_cdclk_state *cdclk_state)
2925 {
2926 int min_cdclk;
2927
2928 /*
2929 * We can't change the cdclk frequency, but we still want to
2930 * check that the required minimum frequency doesn't exceed
2931 * the actual cdclk frequency.
2932 */
2933 min_cdclk = intel_compute_min_cdclk(cdclk_state);
2934 if (min_cdclk < 0)
2935 return min_cdclk;
2936
2937 return 0;
2938 }
2939
intel_cdclk_duplicate_state(struct intel_global_obj * obj)2940 static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
2941 {
2942 struct intel_cdclk_state *cdclk_state;
2943
2944 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
2945 if (!cdclk_state)
2946 return NULL;
2947
2948 cdclk_state->pipe = INVALID_PIPE;
2949
2950 return &cdclk_state->base;
2951 }
2952
intel_cdclk_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)2953 static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
2954 struct intel_global_state *state)
2955 {
2956 kfree(state);
2957 }
2958
2959 static const struct intel_global_state_funcs intel_cdclk_funcs = {
2960 .atomic_duplicate_state = intel_cdclk_duplicate_state,
2961 .atomic_destroy_state = intel_cdclk_destroy_state,
2962 };
2963
2964 struct intel_cdclk_state *
intel_atomic_get_cdclk_state(struct intel_atomic_state * state)2965 intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
2966 {
2967 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2968 struct intel_global_state *cdclk_state;
2969
2970 cdclk_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.cdclk.obj);
2971 if (IS_ERR(cdclk_state))
2972 return ERR_CAST(cdclk_state);
2973
2974 return to_intel_cdclk_state(cdclk_state);
2975 }
2976
intel_cdclk_atomic_check(struct intel_atomic_state * state,bool * need_cdclk_calc)2977 int intel_cdclk_atomic_check(struct intel_atomic_state *state,
2978 bool *need_cdclk_calc)
2979 {
2980 const struct intel_cdclk_state *old_cdclk_state;
2981 const struct intel_cdclk_state *new_cdclk_state;
2982 struct intel_plane_state __maybe_unused *plane_state;
2983 struct intel_plane *plane;
2984 int ret;
2985 int i;
2986
2987 /*
2988 * active_planes bitmask has been updated, and potentially affected
2989 * planes are part of the state. We can now compute the minimum cdclk
2990 * for each plane.
2991 */
2992 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2993 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
2994 if (ret)
2995 return ret;
2996 }
2997
2998 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
2999 if (ret)
3000 return ret;
3001
3002 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3003 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3004
3005 if (new_cdclk_state &&
3006 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
3007 *need_cdclk_calc = true;
3008
3009 return 0;
3010 }
3011
intel_cdclk_init(struct drm_i915_private * dev_priv)3012 int intel_cdclk_init(struct drm_i915_private *dev_priv)
3013 {
3014 struct intel_cdclk_state *cdclk_state;
3015
3016 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3017 if (!cdclk_state)
3018 return -ENOMEM;
3019
3020 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.cdclk.obj,
3021 &cdclk_state->base, &intel_cdclk_funcs);
3022
3023 return 0;
3024 }
3025
intel_cdclk_need_serialize(struct drm_i915_private * i915,const struct intel_cdclk_state * old_cdclk_state,const struct intel_cdclk_state * new_cdclk_state)3026 static bool intel_cdclk_need_serialize(struct drm_i915_private *i915,
3027 const struct intel_cdclk_state *old_cdclk_state,
3028 const struct intel_cdclk_state *new_cdclk_state)
3029 {
3030 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) !=
3031 hweight8(new_cdclk_state->active_pipes);
3032 bool cdclk_changed = intel_cdclk_changed(&old_cdclk_state->actual,
3033 &new_cdclk_state->actual);
3034 /*
3035 * We need to poke hw for gen >= 12, because we notify PCode if
3036 * pipe power well count changes.
3037 */
3038 return cdclk_changed || (IS_DG2(i915) && power_well_cnt_changed);
3039 }
3040
intel_modeset_calc_cdclk(struct intel_atomic_state * state)3041 int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3042 {
3043 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3044 const struct intel_cdclk_state *old_cdclk_state;
3045 struct intel_cdclk_state *new_cdclk_state;
3046 enum pipe pipe = INVALID_PIPE;
3047 int ret;
3048
3049 new_cdclk_state = intel_atomic_get_cdclk_state(state);
3050 if (IS_ERR(new_cdclk_state))
3051 return PTR_ERR(new_cdclk_state);
3052
3053 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3054
3055 new_cdclk_state->active_pipes =
3056 intel_calc_active_pipes(state, old_cdclk_state->active_pipes);
3057
3058 ret = intel_cdclk_modeset_calc_cdclk(dev_priv, new_cdclk_state);
3059 if (ret)
3060 return ret;
3061
3062 if (intel_cdclk_need_serialize(dev_priv, old_cdclk_state, new_cdclk_state)) {
3063 /*
3064 * Also serialize commits across all crtcs
3065 * if the actual hw needs to be poked.
3066 */
3067 ret = intel_atomic_serialize_global_state(&new_cdclk_state->base);
3068 if (ret)
3069 return ret;
3070 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
3071 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
3072 intel_cdclk_changed(&old_cdclk_state->logical,
3073 &new_cdclk_state->logical)) {
3074 ret = intel_atomic_lock_global_state(&new_cdclk_state->base);
3075 if (ret)
3076 return ret;
3077 } else {
3078 return 0;
3079 }
3080
3081 if (is_power_of_2(new_cdclk_state->active_pipes) &&
3082 intel_cdclk_can_cd2x_update(dev_priv,
3083 &old_cdclk_state->actual,
3084 &new_cdclk_state->actual)) {
3085 struct intel_crtc *crtc;
3086 struct intel_crtc_state *crtc_state;
3087
3088 pipe = ilog2(new_cdclk_state->active_pipes);
3089 crtc = intel_crtc_for_pipe(dev_priv, pipe);
3090
3091 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
3092 if (IS_ERR(crtc_state))
3093 return PTR_ERR(crtc_state);
3094
3095 if (intel_crtc_needs_modeset(crtc_state))
3096 pipe = INVALID_PIPE;
3097 }
3098
3099 if (intel_cdclk_can_crawl_and_squash(dev_priv,
3100 &old_cdclk_state->actual,
3101 &new_cdclk_state->actual)) {
3102 drm_dbg_kms(&dev_priv->drm,
3103 "Can change cdclk via crawling and squashing\n");
3104 } else if (intel_cdclk_can_squash(dev_priv,
3105 &old_cdclk_state->actual,
3106 &new_cdclk_state->actual)) {
3107 drm_dbg_kms(&dev_priv->drm,
3108 "Can change cdclk via squashing\n");
3109 } else if (intel_cdclk_can_crawl(dev_priv,
3110 &old_cdclk_state->actual,
3111 &new_cdclk_state->actual)) {
3112 drm_dbg_kms(&dev_priv->drm,
3113 "Can change cdclk via crawling\n");
3114 } else if (pipe != INVALID_PIPE) {
3115 new_cdclk_state->pipe = pipe;
3116
3117 drm_dbg_kms(&dev_priv->drm,
3118 "Can change cdclk cd2x divider with pipe %c active\n",
3119 pipe_name(pipe));
3120 } else if (intel_cdclk_needs_modeset(&old_cdclk_state->actual,
3121 &new_cdclk_state->actual)) {
3122 /* All pipes must be switched off while we change the cdclk. */
3123 ret = intel_modeset_all_pipes(state, "CDCLK change");
3124 if (ret)
3125 return ret;
3126
3127 drm_dbg_kms(&dev_priv->drm,
3128 "Modeset required for cdclk change\n");
3129 }
3130
3131 drm_dbg_kms(&dev_priv->drm,
3132 "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3133 new_cdclk_state->logical.cdclk,
3134 new_cdclk_state->actual.cdclk);
3135 drm_dbg_kms(&dev_priv->drm,
3136 "New voltage level calculated to be logical %u, actual %u\n",
3137 new_cdclk_state->logical.voltage_level,
3138 new_cdclk_state->actual.voltage_level);
3139
3140 return 0;
3141 }
3142
intel_compute_max_dotclk(struct drm_i915_private * dev_priv)3143 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
3144 {
3145 int max_cdclk_freq = dev_priv->display.cdclk.max_cdclk_freq;
3146
3147 if (DISPLAY_VER(dev_priv) >= 10)
3148 return 2 * max_cdclk_freq;
3149 else if (DISPLAY_VER(dev_priv) == 9 ||
3150 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
3151 return max_cdclk_freq;
3152 else if (IS_CHERRYVIEW(dev_priv))
3153 return max_cdclk_freq*95/100;
3154 else if (DISPLAY_VER(dev_priv) < 4)
3155 return 2*max_cdclk_freq*90/100;
3156 else
3157 return max_cdclk_freq*90/100;
3158 }
3159
3160 /**
3161 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3162 * @dev_priv: i915 device
3163 *
3164 * Determine the maximum CDCLK frequency the platform supports, and also
3165 * derive the maximum dot clock frequency the maximum CDCLK frequency
3166 * allows.
3167 */
intel_update_max_cdclk(struct drm_i915_private * dev_priv)3168 void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
3169 {
3170 if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3171 if (dev_priv->display.cdclk.hw.ref == 24000)
3172 dev_priv->display.cdclk.max_cdclk_freq = 552000;
3173 else
3174 dev_priv->display.cdclk.max_cdclk_freq = 556800;
3175 } else if (DISPLAY_VER(dev_priv) >= 11) {
3176 if (dev_priv->display.cdclk.hw.ref == 24000)
3177 dev_priv->display.cdclk.max_cdclk_freq = 648000;
3178 else
3179 dev_priv->display.cdclk.max_cdclk_freq = 652800;
3180 } else if (IS_GEMINILAKE(dev_priv)) {
3181 dev_priv->display.cdclk.max_cdclk_freq = 316800;
3182 } else if (IS_BROXTON(dev_priv)) {
3183 dev_priv->display.cdclk.max_cdclk_freq = 624000;
3184 } else if (DISPLAY_VER(dev_priv) == 9) {
3185 u32 limit = intel_de_read(dev_priv, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3186 int max_cdclk, vco;
3187
3188 vco = dev_priv->skl_preferred_vco_freq;
3189 drm_WARN_ON(&dev_priv->drm, vco != 8100000 && vco != 8640000);
3190
3191 /*
3192 * Use the lower (vco 8640) cdclk values as a
3193 * first guess. skl_calc_cdclk() will correct it
3194 * if the preferred vco is 8100 instead.
3195 */
3196 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3197 max_cdclk = 617143;
3198 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3199 max_cdclk = 540000;
3200 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3201 max_cdclk = 432000;
3202 else
3203 max_cdclk = 308571;
3204
3205 dev_priv->display.cdclk.max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
3206 } else if (IS_BROADWELL(dev_priv)) {
3207 /*
3208 * FIXME with extra cooling we can allow
3209 * 540 MHz for ULX and 675 Mhz for ULT.
3210 * How can we know if extra cooling is
3211 * available? PCI ID, VTB, something else?
3212 */
3213 if (intel_de_read(dev_priv, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3214 dev_priv->display.cdclk.max_cdclk_freq = 450000;
3215 else if (IS_BROADWELL_ULX(dev_priv))
3216 dev_priv->display.cdclk.max_cdclk_freq = 450000;
3217 else if (IS_BROADWELL_ULT(dev_priv))
3218 dev_priv->display.cdclk.max_cdclk_freq = 540000;
3219 else
3220 dev_priv->display.cdclk.max_cdclk_freq = 675000;
3221 } else if (IS_CHERRYVIEW(dev_priv)) {
3222 dev_priv->display.cdclk.max_cdclk_freq = 320000;
3223 } else if (IS_VALLEYVIEW(dev_priv)) {
3224 dev_priv->display.cdclk.max_cdclk_freq = 400000;
3225 } else {
3226 /* otherwise assume cdclk is fixed */
3227 dev_priv->display.cdclk.max_cdclk_freq = dev_priv->display.cdclk.hw.cdclk;
3228 }
3229
3230 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
3231
3232 drm_dbg(&dev_priv->drm, "Max CD clock rate: %d kHz\n",
3233 dev_priv->display.cdclk.max_cdclk_freq);
3234
3235 drm_dbg(&dev_priv->drm, "Max dotclock rate: %d kHz\n",
3236 dev_priv->max_dotclk_freq);
3237 }
3238
3239 /**
3240 * intel_update_cdclk - Determine the current CDCLK frequency
3241 * @dev_priv: i915 device
3242 *
3243 * Determine the current CDCLK frequency.
3244 */
intel_update_cdclk(struct drm_i915_private * dev_priv)3245 void intel_update_cdclk(struct drm_i915_private *dev_priv)
3246 {
3247 intel_cdclk_get_cdclk(dev_priv, &dev_priv->display.cdclk.hw);
3248
3249 /*
3250 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3251 * Programmng [sic] note: bit[9:2] should be programmed to the number
3252 * of cdclk that generates 4MHz reference clock freq which is used to
3253 * generate GMBus clock. This will vary with the cdclk freq.
3254 */
3255 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3256 intel_de_write(dev_priv, GMBUSFREQ_VLV,
3257 DIV_ROUND_UP(dev_priv->display.cdclk.hw.cdclk, 1000));
3258 }
3259
dg1_rawclk(struct drm_i915_private * dev_priv)3260 static int dg1_rawclk(struct drm_i915_private *dev_priv)
3261 {
3262 /*
3263 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us
3264 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3265 */
3266 intel_de_write(dev_priv, PCH_RAWCLK_FREQ,
3267 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3268
3269 return 38400;
3270 }
3271
cnp_rawclk(struct drm_i915_private * dev_priv)3272 static int cnp_rawclk(struct drm_i915_private *dev_priv)
3273 {
3274 u32 rawclk;
3275 int divider, fraction;
3276
3277 if (intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3278 /* 24 MHz */
3279 divider = 24000;
3280 fraction = 0;
3281 } else {
3282 /* 19.2 MHz */
3283 divider = 19000;
3284 fraction = 200;
3285 }
3286
3287 rawclk = CNP_RAWCLK_DIV(divider / 1000);
3288 if (fraction) {
3289 int numerator = 1;
3290
3291 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3292 fraction) - 1);
3293 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3294 rawclk |= ICP_RAWCLK_NUM(numerator);
3295 }
3296
3297 intel_de_write(dev_priv, PCH_RAWCLK_FREQ, rawclk);
3298 return divider + fraction;
3299 }
3300
pch_rawclk(struct drm_i915_private * dev_priv)3301 static int pch_rawclk(struct drm_i915_private *dev_priv)
3302 {
3303 return (intel_de_read(dev_priv, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3304 }
3305
vlv_hrawclk(struct drm_i915_private * dev_priv)3306 static int vlv_hrawclk(struct drm_i915_private *dev_priv)
3307 {
3308 /* RAWCLK_FREQ_VLV register updated from power well code */
3309 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
3310 CCK_DISPLAY_REF_CLOCK_CONTROL);
3311 }
3312
i9xx_hrawclk(struct drm_i915_private * dev_priv)3313 static int i9xx_hrawclk(struct drm_i915_private *dev_priv)
3314 {
3315 u32 clkcfg;
3316
3317 /*
3318 * hrawclock is 1/4 the FSB frequency
3319 *
3320 * Note that this only reads the state of the FSB
3321 * straps, not the actual FSB frequency. Some BIOSen
3322 * let you configure each independently. Ideally we'd
3323 * read out the actual FSB frequency but sadly we
3324 * don't know which registers have that information,
3325 * and all the relevant docs have gone to bit heaven :(
3326 */
3327 clkcfg = intel_de_read(dev_priv, CLKCFG) & CLKCFG_FSB_MASK;
3328
3329 if (IS_MOBILE(dev_priv)) {
3330 switch (clkcfg) {
3331 case CLKCFG_FSB_400:
3332 return 100000;
3333 case CLKCFG_FSB_533:
3334 return 133333;
3335 case CLKCFG_FSB_667:
3336 return 166667;
3337 case CLKCFG_FSB_800:
3338 return 200000;
3339 case CLKCFG_FSB_1067:
3340 return 266667;
3341 case CLKCFG_FSB_1333:
3342 return 333333;
3343 default:
3344 MISSING_CASE(clkcfg);
3345 return 133333;
3346 }
3347 } else {
3348 switch (clkcfg) {
3349 case CLKCFG_FSB_400_ALT:
3350 return 100000;
3351 case CLKCFG_FSB_533:
3352 return 133333;
3353 case CLKCFG_FSB_667:
3354 return 166667;
3355 case CLKCFG_FSB_800:
3356 return 200000;
3357 case CLKCFG_FSB_1067_ALT:
3358 return 266667;
3359 case CLKCFG_FSB_1333_ALT:
3360 return 333333;
3361 case CLKCFG_FSB_1600_ALT:
3362 return 400000;
3363 default:
3364 return 133333;
3365 }
3366 }
3367 }
3368
3369 /**
3370 * intel_read_rawclk - Determine the current RAWCLK frequency
3371 * @dev_priv: i915 device
3372 *
3373 * Determine the current RAWCLK frequency. RAWCLK is a fixed
3374 * frequency clock so this needs to done only once.
3375 */
intel_read_rawclk(struct drm_i915_private * dev_priv)3376 u32 intel_read_rawclk(struct drm_i915_private *dev_priv)
3377 {
3378 u32 freq;
3379
3380 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
3381 freq = dg1_rawclk(dev_priv);
3382 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MTP)
3383 /*
3384 * MTL always uses a 38.4 MHz rawclk. The bspec tells us
3385 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3386 * not need to be programmed."
3387 */
3388 freq = 38400;
3389 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3390 freq = cnp_rawclk(dev_priv);
3391 else if (HAS_PCH_SPLIT(dev_priv))
3392 freq = pch_rawclk(dev_priv);
3393 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3394 freq = vlv_hrawclk(dev_priv);
3395 else if (DISPLAY_VER(dev_priv) >= 3)
3396 freq = i9xx_hrawclk(dev_priv);
3397 else
3398 /* no rawclk on other platforms, or no need to know it */
3399 return 0;
3400
3401 return freq;
3402 }
3403
i915_cdclk_info_show(struct seq_file * m,void * unused)3404 static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3405 {
3406 struct drm_i915_private *i915 = m->private;
3407
3408 seq_printf(m, "Current CD clock frequency: %d kHz\n", i915->display.cdclk.hw.cdclk);
3409 seq_printf(m, "Max CD clock frequency: %d kHz\n", i915->display.cdclk.max_cdclk_freq);
3410 seq_printf(m, "Max pixel clock frequency: %d kHz\n", i915->max_dotclk_freq);
3411
3412 return 0;
3413 }
3414
3415 DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3416
intel_cdclk_debugfs_register(struct drm_i915_private * i915)3417 void intel_cdclk_debugfs_register(struct drm_i915_private *i915)
3418 {
3419 struct drm_minor *minor = i915->drm.primary;
3420
3421 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root,
3422 i915, &i915_cdclk_info_fops);
3423 }
3424
3425 static const struct intel_cdclk_funcs mtl_cdclk_funcs = {
3426 .get_cdclk = bxt_get_cdclk,
3427 .set_cdclk = bxt_set_cdclk,
3428 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3429 .calc_voltage_level = tgl_calc_voltage_level,
3430 };
3431
3432 static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3433 .get_cdclk = bxt_get_cdclk,
3434 .set_cdclk = bxt_set_cdclk,
3435 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3436 .calc_voltage_level = rplu_calc_voltage_level,
3437 };
3438
3439 static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3440 .get_cdclk = bxt_get_cdclk,
3441 .set_cdclk = bxt_set_cdclk,
3442 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3443 .calc_voltage_level = tgl_calc_voltage_level,
3444 };
3445
3446 static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3447 .get_cdclk = bxt_get_cdclk,
3448 .set_cdclk = bxt_set_cdclk,
3449 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3450 .calc_voltage_level = ehl_calc_voltage_level,
3451 };
3452
3453 static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3454 .get_cdclk = bxt_get_cdclk,
3455 .set_cdclk = bxt_set_cdclk,
3456 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3457 .calc_voltage_level = icl_calc_voltage_level,
3458 };
3459
3460 static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3461 .get_cdclk = bxt_get_cdclk,
3462 .set_cdclk = bxt_set_cdclk,
3463 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3464 .calc_voltage_level = bxt_calc_voltage_level,
3465 };
3466
3467 static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3468 .get_cdclk = skl_get_cdclk,
3469 .set_cdclk = skl_set_cdclk,
3470 .modeset_calc_cdclk = skl_modeset_calc_cdclk,
3471 };
3472
3473 static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3474 .get_cdclk = bdw_get_cdclk,
3475 .set_cdclk = bdw_set_cdclk,
3476 .modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3477 };
3478
3479 static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3480 .get_cdclk = vlv_get_cdclk,
3481 .set_cdclk = chv_set_cdclk,
3482 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3483 };
3484
3485 static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3486 .get_cdclk = vlv_get_cdclk,
3487 .set_cdclk = vlv_set_cdclk,
3488 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3489 };
3490
3491 static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3492 .get_cdclk = hsw_get_cdclk,
3493 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3494 };
3495
3496 /* SNB, IVB, 965G, 945G */
3497 static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3498 .get_cdclk = fixed_400mhz_get_cdclk,
3499 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3500 };
3501
3502 static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3503 .get_cdclk = fixed_450mhz_get_cdclk,
3504 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3505 };
3506
3507 static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3508 .get_cdclk = gm45_get_cdclk,
3509 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3510 };
3511
3512 /* G45 uses G33 */
3513
3514 static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3515 .get_cdclk = i965gm_get_cdclk,
3516 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3517 };
3518
3519 /* i965G uses fixed 400 */
3520
3521 static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3522 .get_cdclk = pnv_get_cdclk,
3523 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3524 };
3525
3526 static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3527 .get_cdclk = g33_get_cdclk,
3528 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3529 };
3530
3531 static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3532 .get_cdclk = i945gm_get_cdclk,
3533 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3534 };
3535
3536 /* i945G uses fixed 400 */
3537
3538 static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3539 .get_cdclk = i915gm_get_cdclk,
3540 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3541 };
3542
3543 static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3544 .get_cdclk = fixed_333mhz_get_cdclk,
3545 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3546 };
3547
3548 static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3549 .get_cdclk = fixed_266mhz_get_cdclk,
3550 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3551 };
3552
3553 static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3554 .get_cdclk = i85x_get_cdclk,
3555 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3556 };
3557
3558 static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3559 .get_cdclk = fixed_200mhz_get_cdclk,
3560 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3561 };
3562
3563 static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3564 .get_cdclk = fixed_133mhz_get_cdclk,
3565 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3566 };
3567
3568 /**
3569 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3570 * @dev_priv: i915 device
3571 */
intel_init_cdclk_hooks(struct drm_i915_private * dev_priv)3572 void intel_init_cdclk_hooks(struct drm_i915_private *dev_priv)
3573 {
3574 if (IS_METEORLAKE(dev_priv)) {
3575 dev_priv->display.funcs.cdclk = &mtl_cdclk_funcs;
3576 dev_priv->display.cdclk.table = mtl_cdclk_table;
3577 } else if (IS_DG2(dev_priv)) {
3578 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3579 dev_priv->display.cdclk.table = dg2_cdclk_table;
3580 } else if (IS_ALDERLAKE_P(dev_priv)) {
3581 /* Wa_22011320316:adl-p[a0] */
3582 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
3583 dev_priv->display.cdclk.table = adlp_a_step_cdclk_table;
3584 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3585 } else if (IS_RAPTORLAKE_U(dev_priv)) {
3586 dev_priv->display.cdclk.table = rplu_cdclk_table;
3587 dev_priv->display.funcs.cdclk = &rplu_cdclk_funcs;
3588 } else {
3589 dev_priv->display.cdclk.table = adlp_cdclk_table;
3590 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3591 }
3592 } else if (IS_ROCKETLAKE(dev_priv)) {
3593 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3594 dev_priv->display.cdclk.table = rkl_cdclk_table;
3595 } else if (DISPLAY_VER(dev_priv) >= 12) {
3596 dev_priv->display.funcs.cdclk = &tgl_cdclk_funcs;
3597 dev_priv->display.cdclk.table = icl_cdclk_table;
3598 } else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
3599 dev_priv->display.funcs.cdclk = &ehl_cdclk_funcs;
3600 dev_priv->display.cdclk.table = icl_cdclk_table;
3601 } else if (DISPLAY_VER(dev_priv) >= 11) {
3602 dev_priv->display.funcs.cdclk = &icl_cdclk_funcs;
3603 dev_priv->display.cdclk.table = icl_cdclk_table;
3604 } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
3605 dev_priv->display.funcs.cdclk = &bxt_cdclk_funcs;
3606 if (IS_GEMINILAKE(dev_priv))
3607 dev_priv->display.cdclk.table = glk_cdclk_table;
3608 else
3609 dev_priv->display.cdclk.table = bxt_cdclk_table;
3610 } else if (DISPLAY_VER(dev_priv) == 9) {
3611 dev_priv->display.funcs.cdclk = &skl_cdclk_funcs;
3612 } else if (IS_BROADWELL(dev_priv)) {
3613 dev_priv->display.funcs.cdclk = &bdw_cdclk_funcs;
3614 } else if (IS_HASWELL(dev_priv)) {
3615 dev_priv->display.funcs.cdclk = &hsw_cdclk_funcs;
3616 } else if (IS_CHERRYVIEW(dev_priv)) {
3617 dev_priv->display.funcs.cdclk = &chv_cdclk_funcs;
3618 } else if (IS_VALLEYVIEW(dev_priv)) {
3619 dev_priv->display.funcs.cdclk = &vlv_cdclk_funcs;
3620 } else if (IS_SANDYBRIDGE(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
3621 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3622 } else if (IS_IRONLAKE(dev_priv)) {
3623 dev_priv->display.funcs.cdclk = &ilk_cdclk_funcs;
3624 } else if (IS_GM45(dev_priv)) {
3625 dev_priv->display.funcs.cdclk = &gm45_cdclk_funcs;
3626 } else if (IS_G45(dev_priv)) {
3627 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3628 } else if (IS_I965GM(dev_priv)) {
3629 dev_priv->display.funcs.cdclk = &i965gm_cdclk_funcs;
3630 } else if (IS_I965G(dev_priv)) {
3631 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3632 } else if (IS_PINEVIEW(dev_priv)) {
3633 dev_priv->display.funcs.cdclk = &pnv_cdclk_funcs;
3634 } else if (IS_G33(dev_priv)) {
3635 dev_priv->display.funcs.cdclk = &g33_cdclk_funcs;
3636 } else if (IS_I945GM(dev_priv)) {
3637 dev_priv->display.funcs.cdclk = &i945gm_cdclk_funcs;
3638 } else if (IS_I945G(dev_priv)) {
3639 dev_priv->display.funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3640 } else if (IS_I915GM(dev_priv)) {
3641 dev_priv->display.funcs.cdclk = &i915gm_cdclk_funcs;
3642 } else if (IS_I915G(dev_priv)) {
3643 dev_priv->display.funcs.cdclk = &i915g_cdclk_funcs;
3644 } else if (IS_I865G(dev_priv)) {
3645 dev_priv->display.funcs.cdclk = &i865g_cdclk_funcs;
3646 } else if (IS_I85X(dev_priv)) {
3647 dev_priv->display.funcs.cdclk = &i85x_cdclk_funcs;
3648 } else if (IS_I845G(dev_priv)) {
3649 dev_priv->display.funcs.cdclk = &i845g_cdclk_funcs;
3650 } else if (IS_I830(dev_priv)) {
3651 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3652 }
3653
3654 if (drm_WARN(&dev_priv->drm, !dev_priv->display.funcs.cdclk,
3655 "Unknown platform. Assuming i830\n"))
3656 dev_priv->display.funcs.cdclk = &i830_cdclk_funcs;
3657 }
3658