1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <drm/drm_atomic_state_helper.h>
7
8 #include "i915_reg.h"
9 #include "i915_utils.h"
10 #include "intel_atomic.h"
11 #include "intel_bw.h"
12 #include "intel_cdclk.h"
13 #include "intel_display_types.h"
14 #include "intel_mchbar_regs.h"
15 #include "intel_pcode.h"
16 #include "intel_pm.h"
17
18 /* Parameters for Qclk Geyserville (QGV) */
19 struct intel_qgv_point {
20 u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
21 };
22
23 struct intel_psf_gv_point {
24 u8 clk; /* clock in multiples of 16.6666 MHz */
25 };
26
27 struct intel_qgv_info {
28 struct intel_qgv_point points[I915_NUM_QGV_POINTS];
29 struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
30 u8 num_points;
31 u8 num_psf_points;
32 u8 t_bl;
33 u8 max_numchannels;
34 u8 channel_width;
35 u8 deinterleave;
36 };
37
dg1_mchbar_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)38 static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
39 struct intel_qgv_point *sp,
40 int point)
41 {
42 u32 dclk_ratio, dclk_reference;
43 u32 val;
44
45 val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
46 dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
47 if (val & DG1_QCLK_REFERENCE)
48 dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
49 else
50 dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
51 sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
52
53 val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
54 if (val & DG1_GEAR_TYPE)
55 sp->dclk *= 2;
56
57 if (sp->dclk == 0)
58 return -EINVAL;
59
60 val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
61 sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
62 sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
63
64 val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
65 sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
66 sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
67
68 sp->t_rc = sp->t_rp + sp->t_ras;
69
70 return 0;
71 }
72
icl_pcode_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)73 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
74 struct intel_qgv_point *sp,
75 int point)
76 {
77 u32 val = 0, val2 = 0;
78 u16 dclk;
79 int ret;
80
81 ret = snb_pcode_read(dev_priv, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
82 ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
83 &val, &val2);
84 if (ret)
85 return ret;
86
87 dclk = val & 0xffff;
88 sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
89 sp->t_rp = (val & 0xff0000) >> 16;
90 sp->t_rcd = (val & 0xff000000) >> 24;
91
92 sp->t_rdpre = val2 & 0xff;
93 sp->t_ras = (val2 & 0xff00) >> 8;
94
95 sp->t_rc = sp->t_rp + sp->t_ras;
96
97 return 0;
98 }
99
adls_pcode_read_psf_gv_point_info(struct drm_i915_private * dev_priv,struct intel_psf_gv_point * points)100 static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
101 struct intel_psf_gv_point *points)
102 {
103 u32 val = 0;
104 int ret;
105 int i;
106
107 ret = snb_pcode_read(dev_priv, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
108 ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
109 if (ret)
110 return ret;
111
112 for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
113 points[i].clk = val & 0xff;
114 val >>= 8;
115 }
116
117 return 0;
118 }
119
icl_pcode_restrict_qgv_points(struct drm_i915_private * dev_priv,u32 points_mask)120 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
121 u32 points_mask)
122 {
123 int ret;
124
125 /* bspec says to keep retrying for at least 1 ms */
126 ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
127 points_mask,
128 ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
129 ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
130 1);
131
132 if (ret < 0) {
133 drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
134 return ret;
135 }
136
137 return 0;
138 }
139
icl_get_qgv_points(struct drm_i915_private * dev_priv,struct intel_qgv_info * qi,bool is_y_tile)140 static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
141 struct intel_qgv_info *qi,
142 bool is_y_tile)
143 {
144 const struct dram_info *dram_info = &dev_priv->dram_info;
145 int i, ret;
146
147 qi->num_points = dram_info->num_qgv_points;
148 qi->num_psf_points = dram_info->num_psf_gv_points;
149
150 if (DISPLAY_VER(dev_priv) >= 12)
151 switch (dram_info->type) {
152 case INTEL_DRAM_DDR4:
153 qi->t_bl = is_y_tile ? 8 : 4;
154 qi->max_numchannels = 2;
155 qi->channel_width = 64;
156 qi->deinterleave = is_y_tile ? 1 : 2;
157 break;
158 case INTEL_DRAM_DDR5:
159 qi->t_bl = is_y_tile ? 16 : 8;
160 qi->max_numchannels = 4;
161 qi->channel_width = 32;
162 qi->deinterleave = is_y_tile ? 1 : 2;
163 break;
164 case INTEL_DRAM_LPDDR4:
165 if (IS_ROCKETLAKE(dev_priv)) {
166 qi->t_bl = 8;
167 qi->max_numchannels = 4;
168 qi->channel_width = 32;
169 qi->deinterleave = 2;
170 break;
171 }
172 fallthrough;
173 case INTEL_DRAM_LPDDR5:
174 qi->t_bl = 16;
175 qi->max_numchannels = 8;
176 qi->channel_width = 16;
177 qi->deinterleave = is_y_tile ? 2 : 4;
178 break;
179 default:
180 qi->t_bl = 16;
181 qi->max_numchannels = 1;
182 break;
183 }
184 else if (DISPLAY_VER(dev_priv) == 11) {
185 qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
186 qi->max_numchannels = 1;
187 }
188
189 if (drm_WARN_ON(&dev_priv->drm,
190 qi->num_points > ARRAY_SIZE(qi->points)))
191 qi->num_points = ARRAY_SIZE(qi->points);
192
193 for (i = 0; i < qi->num_points; i++) {
194 struct intel_qgv_point *sp = &qi->points[i];
195
196 if (IS_DG1(dev_priv))
197 ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
198 else
199 ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
200
201 if (ret)
202 return ret;
203
204 drm_dbg_kms(&dev_priv->drm,
205 "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
206 i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
207 sp->t_rcd, sp->t_rc);
208 }
209
210 if (qi->num_psf_points > 0) {
211 ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
212 if (ret) {
213 drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
214 qi->num_psf_points = 0;
215 }
216
217 for (i = 0; i < qi->num_psf_points; i++)
218 drm_dbg_kms(&dev_priv->drm,
219 "PSF GV %d: CLK=%d \n",
220 i, qi->psf_points[i].clk);
221 }
222
223 return 0;
224 }
225
adl_calc_psf_bw(int clk)226 static int adl_calc_psf_bw(int clk)
227 {
228 /*
229 * clk is multiples of 16.666MHz (100/6)
230 * According to BSpec PSF GV bandwidth is
231 * calculated as BW = 64 * clk * 16.666Mhz
232 */
233 return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
234 }
235
icl_sagv_max_dclk(const struct intel_qgv_info * qi)236 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
237 {
238 u16 dclk = 0;
239 int i;
240
241 for (i = 0; i < qi->num_points; i++)
242 dclk = max(dclk, qi->points[i].dclk);
243
244 return dclk;
245 }
246
247 struct intel_sa_info {
248 u16 displayrtids;
249 u8 deburst, deprogbwlimit, derating;
250 };
251
252 static const struct intel_sa_info icl_sa_info = {
253 .deburst = 8,
254 .deprogbwlimit = 25, /* GB/s */
255 .displayrtids = 128,
256 .derating = 10,
257 };
258
259 static const struct intel_sa_info tgl_sa_info = {
260 .deburst = 16,
261 .deprogbwlimit = 34, /* GB/s */
262 .displayrtids = 256,
263 .derating = 10,
264 };
265
266 static const struct intel_sa_info rkl_sa_info = {
267 .deburst = 8,
268 .deprogbwlimit = 20, /* GB/s */
269 .displayrtids = 128,
270 .derating = 10,
271 };
272
273 static const struct intel_sa_info adls_sa_info = {
274 .deburst = 16,
275 .deprogbwlimit = 38, /* GB/s */
276 .displayrtids = 256,
277 .derating = 10,
278 };
279
280 static const struct intel_sa_info adlp_sa_info = {
281 .deburst = 16,
282 .deprogbwlimit = 38, /* GB/s */
283 .displayrtids = 256,
284 .derating = 20,
285 };
286
icl_get_bw_info(struct drm_i915_private * dev_priv,const struct intel_sa_info * sa)287 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
288 {
289 struct intel_qgv_info qi = {};
290 bool is_y_tile = true; /* assume y tile may be used */
291 int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
292 int ipqdepth, ipqdepthpch = 16;
293 int dclk_max;
294 int maxdebw;
295 int num_groups = ARRAY_SIZE(dev_priv->max_bw);
296 int i, ret;
297
298 ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
299 if (ret) {
300 drm_dbg_kms(&dev_priv->drm,
301 "Failed to get memory subsystem information, ignoring bandwidth limits");
302 return ret;
303 }
304
305 dclk_max = icl_sagv_max_dclk(&qi);
306 maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
307 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
308 qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
309
310 for (i = 0; i < num_groups; i++) {
311 struct intel_bw_info *bi = &dev_priv->max_bw[i];
312 int clpchgroup;
313 int j;
314
315 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
316 bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
317
318 bi->num_qgv_points = qi.num_points;
319 bi->num_psf_gv_points = qi.num_psf_points;
320
321 for (j = 0; j < qi.num_points; j++) {
322 const struct intel_qgv_point *sp = &qi.points[j];
323 int ct, bw;
324
325 /*
326 * Max row cycle time
327 *
328 * FIXME what is the logic behind the
329 * assumed burst length?
330 */
331 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
332 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
333 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
334
335 bi->deratedbw[j] = min(maxdebw,
336 bw * (100 - sa->derating) / 100);
337
338 drm_dbg_kms(&dev_priv->drm,
339 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
340 i, j, bi->num_planes, bi->deratedbw[j]);
341 }
342 }
343 /*
344 * In case if SAGV is disabled in BIOS, we always get 1
345 * SAGV point, but we can't send PCode commands to restrict it
346 * as it will fail and pointless anyway.
347 */
348 if (qi.num_points == 1)
349 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
350 else
351 dev_priv->sagv_status = I915_SAGV_ENABLED;
352
353 return 0;
354 }
355
tgl_get_bw_info(struct drm_i915_private * dev_priv,const struct intel_sa_info * sa)356 static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
357 {
358 struct intel_qgv_info qi = {};
359 const struct dram_info *dram_info = &dev_priv->dram_info;
360 bool is_y_tile = true; /* assume y tile may be used */
361 int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
362 int ipqdepth, ipqdepthpch = 16;
363 int dclk_max;
364 int maxdebw, peakbw;
365 int clperchgroup;
366 int num_groups = ARRAY_SIZE(dev_priv->max_bw);
367 int i, ret;
368
369 ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
370 if (ret) {
371 drm_dbg_kms(&dev_priv->drm,
372 "Failed to get memory subsystem information, ignoring bandwidth limits");
373 return ret;
374 }
375
376 if (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)
377 num_channels *= 2;
378
379 qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
380
381 if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
382 qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
383
384 if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
385 drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
386 if (qi.max_numchannels != 0)
387 num_channels = min_t(u8, num_channels, qi.max_numchannels);
388
389 dclk_max = icl_sagv_max_dclk(&qi);
390
391 peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
392 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
393
394 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
395 /*
396 * clperchgroup = 4kpagespermempage * clperchperblock,
397 * clperchperblock = 8 / num_channels * interleave
398 */
399 clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
400
401 for (i = 0; i < num_groups; i++) {
402 struct intel_bw_info *bi = &dev_priv->max_bw[i];
403 struct intel_bw_info *bi_next;
404 int clpchgroup;
405 int j;
406
407 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
408
409 if (i < num_groups - 1) {
410 bi_next = &dev_priv->max_bw[i + 1];
411
412 if (clpchgroup < clperchgroup)
413 bi_next->num_planes = (ipqdepth - clpchgroup) /
414 clpchgroup + 1;
415 else
416 bi_next->num_planes = 0;
417 }
418
419 bi->num_qgv_points = qi.num_points;
420 bi->num_psf_gv_points = qi.num_psf_points;
421
422 for (j = 0; j < qi.num_points; j++) {
423 const struct intel_qgv_point *sp = &qi.points[j];
424 int ct, bw;
425
426 /*
427 * Max row cycle time
428 *
429 * FIXME what is the logic behind the
430 * assumed burst length?
431 */
432 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
433 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
434 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
435
436 bi->deratedbw[j] = min(maxdebw,
437 bw * (100 - sa->derating) / 100);
438
439 drm_dbg_kms(&dev_priv->drm,
440 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
441 i, j, bi->num_planes, bi->deratedbw[j]);
442 }
443
444 for (j = 0; j < qi.num_psf_points; j++) {
445 const struct intel_psf_gv_point *sp = &qi.psf_points[j];
446
447 bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
448
449 drm_dbg_kms(&dev_priv->drm,
450 "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
451 i, j, bi->num_planes, bi->psf_bw[j]);
452 }
453 }
454
455 /*
456 * In case if SAGV is disabled in BIOS, we always get 1
457 * SAGV point, but we can't send PCode commands to restrict it
458 * as it will fail and pointless anyway.
459 */
460 if (qi.num_points == 1)
461 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
462 else
463 dev_priv->sagv_status = I915_SAGV_ENABLED;
464
465 return 0;
466 }
467
dg2_get_bw_info(struct drm_i915_private * i915)468 static void dg2_get_bw_info(struct drm_i915_private *i915)
469 {
470 unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
471 int num_groups = ARRAY_SIZE(i915->max_bw);
472 int i;
473
474 /*
475 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
476 * that doesn't depend on the number of planes enabled. So fill all the
477 * plane group with constant bw information for uniformity with other
478 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
479 * whereas DG2-G11 platforms have 38 GB/s.
480 */
481 for (i = 0; i < num_groups; i++) {
482 struct intel_bw_info *bi = &i915->max_bw[i];
483
484 bi->num_planes = 1;
485 /* Need only one dummy QGV point per group */
486 bi->num_qgv_points = 1;
487 bi->deratedbw[0] = deratedbw;
488 }
489
490 i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
491 }
492
icl_max_bw(struct drm_i915_private * dev_priv,int num_planes,int qgv_point)493 static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
494 int num_planes, int qgv_point)
495 {
496 int i;
497
498 /*
499 * Let's return max bw for 0 planes
500 */
501 num_planes = max(1, num_planes);
502
503 for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
504 const struct intel_bw_info *bi =
505 &dev_priv->max_bw[i];
506
507 /*
508 * Pcode will not expose all QGV points when
509 * SAGV is forced to off/min/med/max.
510 */
511 if (qgv_point >= bi->num_qgv_points)
512 return UINT_MAX;
513
514 if (num_planes >= bi->num_planes)
515 return bi->deratedbw[qgv_point];
516 }
517
518 return 0;
519 }
520
tgl_max_bw(struct drm_i915_private * dev_priv,int num_planes,int qgv_point)521 static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv,
522 int num_planes, int qgv_point)
523 {
524 int i;
525
526 /*
527 * Let's return max bw for 0 planes
528 */
529 num_planes = max(1, num_planes);
530
531 for (i = ARRAY_SIZE(dev_priv->max_bw) - 1; i >= 0; i--) {
532 const struct intel_bw_info *bi =
533 &dev_priv->max_bw[i];
534
535 /*
536 * Pcode will not expose all QGV points when
537 * SAGV is forced to off/min/med/max.
538 */
539 if (qgv_point >= bi->num_qgv_points)
540 return UINT_MAX;
541
542 if (num_planes <= bi->num_planes)
543 return bi->deratedbw[qgv_point];
544 }
545
546 return dev_priv->max_bw[0].deratedbw[qgv_point];
547 }
548
adl_psf_bw(struct drm_i915_private * dev_priv,int psf_gv_point)549 static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
550 int psf_gv_point)
551 {
552 const struct intel_bw_info *bi =
553 &dev_priv->max_bw[0];
554
555 return bi->psf_bw[psf_gv_point];
556 }
557
intel_bw_init_hw(struct drm_i915_private * dev_priv)558 void intel_bw_init_hw(struct drm_i915_private *dev_priv)
559 {
560 if (!HAS_DISPLAY(dev_priv))
561 return;
562
563 if (IS_DG2(dev_priv))
564 dg2_get_bw_info(dev_priv);
565 else if (IS_ALDERLAKE_P(dev_priv))
566 tgl_get_bw_info(dev_priv, &adlp_sa_info);
567 else if (IS_ALDERLAKE_S(dev_priv))
568 tgl_get_bw_info(dev_priv, &adls_sa_info);
569 else if (IS_ROCKETLAKE(dev_priv))
570 tgl_get_bw_info(dev_priv, &rkl_sa_info);
571 else if (DISPLAY_VER(dev_priv) == 12)
572 tgl_get_bw_info(dev_priv, &tgl_sa_info);
573 else if (DISPLAY_VER(dev_priv) == 11)
574 icl_get_bw_info(dev_priv, &icl_sa_info);
575 }
576
intel_bw_crtc_num_active_planes(const struct intel_crtc_state * crtc_state)577 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
578 {
579 /*
580 * We assume cursors are small enough
581 * to not not cause bandwidth problems.
582 */
583 return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
584 }
585
intel_bw_crtc_data_rate(const struct intel_crtc_state * crtc_state)586 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
587 {
588 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
589 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
590 unsigned int data_rate = 0;
591 enum plane_id plane_id;
592
593 for_each_plane_id_on_crtc(crtc, plane_id) {
594 /*
595 * We assume cursors are small enough
596 * to not not cause bandwidth problems.
597 */
598 if (plane_id == PLANE_CURSOR)
599 continue;
600
601 data_rate += crtc_state->data_rate[plane_id];
602
603 if (DISPLAY_VER(i915) < 11)
604 data_rate += crtc_state->data_rate_y[plane_id];
605 }
606
607 return data_rate;
608 }
609
610 /* "Maximum Pipe Read Bandwidth" */
intel_bw_crtc_min_cdclk(const struct intel_crtc_state * crtc_state)611 static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
612 {
613 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
614 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
615
616 if (DISPLAY_VER(i915) < 12)
617 return 0;
618
619 return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
620 }
621
intel_bw_crtc_update(struct intel_bw_state * bw_state,const struct intel_crtc_state * crtc_state)622 void intel_bw_crtc_update(struct intel_bw_state *bw_state,
623 const struct intel_crtc_state *crtc_state)
624 {
625 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
626 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
627
628 bw_state->data_rate[crtc->pipe] =
629 intel_bw_crtc_data_rate(crtc_state);
630 bw_state->num_active_planes[crtc->pipe] =
631 intel_bw_crtc_num_active_planes(crtc_state);
632
633 drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
634 pipe_name(crtc->pipe),
635 bw_state->data_rate[crtc->pipe],
636 bw_state->num_active_planes[crtc->pipe]);
637 }
638
intel_bw_num_active_planes(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)639 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
640 const struct intel_bw_state *bw_state)
641 {
642 unsigned int num_active_planes = 0;
643 enum pipe pipe;
644
645 for_each_pipe(dev_priv, pipe)
646 num_active_planes += bw_state->num_active_planes[pipe];
647
648 return num_active_planes;
649 }
650
intel_bw_data_rate(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)651 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
652 const struct intel_bw_state *bw_state)
653 {
654 unsigned int data_rate = 0;
655 enum pipe pipe;
656
657 for_each_pipe(dev_priv, pipe)
658 data_rate += bw_state->data_rate[pipe];
659
660 if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
661 data_rate = DIV_ROUND_UP(data_rate * 105, 100);
662
663 return data_rate;
664 }
665
666 struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state * state)667 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
668 {
669 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
670 struct intel_global_state *bw_state;
671
672 bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);
673
674 return to_intel_bw_state(bw_state);
675 }
676
677 struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state * state)678 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
679 {
680 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
681 struct intel_global_state *bw_state;
682
683 bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);
684
685 return to_intel_bw_state(bw_state);
686 }
687
688 struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state * state)689 intel_atomic_get_bw_state(struct intel_atomic_state *state)
690 {
691 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
692 struct intel_global_state *bw_state;
693
694 bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
695 if (IS_ERR(bw_state))
696 return ERR_CAST(bw_state);
697
698 return to_intel_bw_state(bw_state);
699 }
700
intel_bw_state_changed(struct drm_i915_private * i915,const struct intel_bw_state * old_bw_state,const struct intel_bw_state * new_bw_state)701 static bool intel_bw_state_changed(struct drm_i915_private *i915,
702 const struct intel_bw_state *old_bw_state,
703 const struct intel_bw_state *new_bw_state)
704 {
705 enum pipe pipe;
706
707 for_each_pipe(i915, pipe) {
708 const struct intel_dbuf_bw *old_crtc_bw =
709 &old_bw_state->dbuf_bw[pipe];
710 const struct intel_dbuf_bw *new_crtc_bw =
711 &new_bw_state->dbuf_bw[pipe];
712 enum dbuf_slice slice;
713
714 for_each_dbuf_slice(i915, slice) {
715 if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
716 old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
717 return true;
718 }
719
720 if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
721 return true;
722 }
723
724 return false;
725 }
726
skl_plane_calc_dbuf_bw(struct intel_bw_state * bw_state,struct intel_crtc * crtc,enum plane_id plane_id,const struct skl_ddb_entry * ddb,unsigned int data_rate)727 static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
728 struct intel_crtc *crtc,
729 enum plane_id plane_id,
730 const struct skl_ddb_entry *ddb,
731 unsigned int data_rate)
732 {
733 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
734 struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
735 unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
736 enum dbuf_slice slice;
737
738 /*
739 * The arbiter can only really guarantee an
740 * equal share of the total bw to each plane.
741 */
742 for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
743 crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
744 crtc_bw->active_planes[slice] |= BIT(plane_id);
745 }
746 }
747
skl_crtc_calc_dbuf_bw(struct intel_bw_state * bw_state,const struct intel_crtc_state * crtc_state)748 static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
749 const struct intel_crtc_state *crtc_state)
750 {
751 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
752 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
753 struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
754 enum plane_id plane_id;
755
756 memset(crtc_bw, 0, sizeof(*crtc_bw));
757
758 if (!crtc_state->hw.active)
759 return;
760
761 for_each_plane_id_on_crtc(crtc, plane_id) {
762 /*
763 * We assume cursors are small enough
764 * to not cause bandwidth problems.
765 */
766 if (plane_id == PLANE_CURSOR)
767 continue;
768
769 skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
770 &crtc_state->wm.skl.plane_ddb[plane_id],
771 crtc_state->data_rate[plane_id]);
772
773 if (DISPLAY_VER(i915) < 11)
774 skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
775 &crtc_state->wm.skl.plane_ddb_y[plane_id],
776 crtc_state->data_rate[plane_id]);
777 }
778 }
779
780 /* "Maximum Data Buffer Bandwidth" */
781 static int
intel_bw_dbuf_min_cdclk(struct drm_i915_private * i915,const struct intel_bw_state * bw_state)782 intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
783 const struct intel_bw_state *bw_state)
784 {
785 unsigned int total_max_bw = 0;
786 enum dbuf_slice slice;
787
788 for_each_dbuf_slice(i915, slice) {
789 int num_active_planes = 0;
790 unsigned int max_bw = 0;
791 enum pipe pipe;
792
793 /*
794 * The arbiter can only really guarantee an
795 * equal share of the total bw to each plane.
796 */
797 for_each_pipe(i915, pipe) {
798 const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];
799
800 max_bw = max(crtc_bw->max_bw[slice], max_bw);
801 num_active_planes += hweight8(crtc_bw->active_planes[slice]);
802 }
803 max_bw *= num_active_planes;
804
805 total_max_bw = max(total_max_bw, max_bw);
806 }
807
808 return DIV_ROUND_UP(total_max_bw, 64);
809 }
810
intel_bw_min_cdclk(struct drm_i915_private * i915,const struct intel_bw_state * bw_state)811 int intel_bw_min_cdclk(struct drm_i915_private *i915,
812 const struct intel_bw_state *bw_state)
813 {
814 enum pipe pipe;
815 int min_cdclk;
816
817 min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);
818
819 for_each_pipe(i915, pipe)
820 min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);
821
822 return min_cdclk;
823 }
824
intel_bw_calc_min_cdclk(struct intel_atomic_state * state,bool * need_cdclk_calc)825 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
826 bool *need_cdclk_calc)
827 {
828 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
829 struct intel_bw_state *new_bw_state = NULL;
830 const struct intel_bw_state *old_bw_state = NULL;
831 const struct intel_cdclk_state *cdclk_state;
832 const struct intel_crtc_state *crtc_state;
833 int old_min_cdclk, new_min_cdclk;
834 struct intel_crtc *crtc;
835 int i;
836
837 if (DISPLAY_VER(dev_priv) < 9)
838 return 0;
839
840 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
841 new_bw_state = intel_atomic_get_bw_state(state);
842 if (IS_ERR(new_bw_state))
843 return PTR_ERR(new_bw_state);
844
845 old_bw_state = intel_atomic_get_old_bw_state(state);
846
847 skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
848
849 new_bw_state->min_cdclk[crtc->pipe] =
850 intel_bw_crtc_min_cdclk(crtc_state);
851 }
852
853 if (!old_bw_state)
854 return 0;
855
856 if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
857 int ret = intel_atomic_lock_global_state(&new_bw_state->base);
858 if (ret)
859 return ret;
860 }
861
862 old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
863 new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);
864
865 /*
866 * No need to check against the cdclk state if
867 * the min cdclk doesn't increase.
868 *
869 * Ie. we only ever increase the cdclk due to bandwidth
870 * requirements. This can reduce back and forth
871 * display blinking due to constant cdclk changes.
872 */
873 if (new_min_cdclk <= old_min_cdclk)
874 return 0;
875
876 cdclk_state = intel_atomic_get_cdclk_state(state);
877 if (IS_ERR(cdclk_state))
878 return PTR_ERR(cdclk_state);
879
880 /*
881 * No need to recalculate the cdclk state if
882 * the min cdclk doesn't increase.
883 *
884 * Ie. we only ever increase the cdclk due to bandwidth
885 * requirements. This can reduce back and forth
886 * display blinking due to constant cdclk changes.
887 */
888 if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
889 return 0;
890
891 drm_dbg_kms(&dev_priv->drm,
892 "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
893 new_min_cdclk, cdclk_state->bw_min_cdclk);
894 *need_cdclk_calc = true;
895
896 return 0;
897 }
898
icl_qgv_points_mask(struct drm_i915_private * i915)899 static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
900 {
901 unsigned int num_psf_gv_points = i915->max_bw[0].num_psf_gv_points;
902 unsigned int num_qgv_points = i915->max_bw[0].num_qgv_points;
903 u16 qgv_points = 0, psf_points = 0;
904
905 /*
906 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
907 * it with failure if we try masking any unadvertised points.
908 * So need to operate only with those returned from PCode.
909 */
910 if (num_qgv_points > 0)
911 qgv_points = GENMASK(num_qgv_points - 1, 0);
912
913 if (num_psf_gv_points > 0)
914 psf_points = GENMASK(num_psf_gv_points - 1, 0);
915
916 return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
917 }
918
intel_bw_check_data_rate(struct intel_atomic_state * state,bool * changed)919 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
920 {
921 struct drm_i915_private *i915 = to_i915(state->base.dev);
922 const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
923 struct intel_crtc *crtc;
924 int i;
925
926 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
927 new_crtc_state, i) {
928 unsigned int old_data_rate =
929 intel_bw_crtc_data_rate(old_crtc_state);
930 unsigned int new_data_rate =
931 intel_bw_crtc_data_rate(new_crtc_state);
932 unsigned int old_active_planes =
933 intel_bw_crtc_num_active_planes(old_crtc_state);
934 unsigned int new_active_planes =
935 intel_bw_crtc_num_active_planes(new_crtc_state);
936 struct intel_bw_state *new_bw_state;
937
938 /*
939 * Avoid locking the bw state when
940 * nothing significant has changed.
941 */
942 if (old_data_rate == new_data_rate &&
943 old_active_planes == new_active_planes)
944 continue;
945
946 new_bw_state = intel_atomic_get_bw_state(state);
947 if (IS_ERR(new_bw_state))
948 return PTR_ERR(new_bw_state);
949
950 new_bw_state->data_rate[crtc->pipe] = new_data_rate;
951 new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
952
953 *changed = true;
954
955 drm_dbg_kms(&i915->drm,
956 "[CRTC:%d:%s] data rate %u num active planes %u\n",
957 crtc->base.base.id, crtc->base.name,
958 new_bw_state->data_rate[crtc->pipe],
959 new_bw_state->num_active_planes[crtc->pipe]);
960 }
961
962 return 0;
963 }
964
intel_bw_atomic_check(struct intel_atomic_state * state)965 int intel_bw_atomic_check(struct intel_atomic_state *state)
966 {
967 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
968 const struct intel_bw_state *old_bw_state;
969 struct intel_bw_state *new_bw_state;
970 unsigned int data_rate;
971 unsigned int num_active_planes;
972 int i, ret;
973 u16 qgv_points = 0, psf_points = 0;
974 unsigned int max_bw_point = 0, max_bw = 0;
975 unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
976 unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
977 bool changed = false;
978
979 /* FIXME earlier gens need some checks too */
980 if (DISPLAY_VER(dev_priv) < 11)
981 return 0;
982
983 ret = intel_bw_check_data_rate(state, &changed);
984 if (ret)
985 return ret;
986
987 old_bw_state = intel_atomic_get_old_bw_state(state);
988 new_bw_state = intel_atomic_get_new_bw_state(state);
989
990 if (new_bw_state &&
991 intel_can_enable_sagv(dev_priv, old_bw_state) !=
992 intel_can_enable_sagv(dev_priv, new_bw_state))
993 changed = true;
994
995 /*
996 * If none of our inputs (data rates, number of active
997 * planes, SAGV yes/no) changed then nothing to do here.
998 */
999 if (!changed)
1000 return 0;
1001
1002 ret = intel_atomic_lock_global_state(&new_bw_state->base);
1003 if (ret)
1004 return ret;
1005
1006 data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
1007 data_rate = DIV_ROUND_UP(data_rate, 1000);
1008
1009 num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
1010
1011 for (i = 0; i < num_qgv_points; i++) {
1012 unsigned int max_data_rate;
1013
1014 if (DISPLAY_VER(dev_priv) > 11)
1015 max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i);
1016 else
1017 max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
1018 /*
1019 * We need to know which qgv point gives us
1020 * maximum bandwidth in order to disable SAGV
1021 * if we find that we exceed SAGV block time
1022 * with watermarks. By that moment we already
1023 * have those, as it is calculated earlier in
1024 * intel_atomic_check,
1025 */
1026 if (max_data_rate > max_bw) {
1027 max_bw_point = i;
1028 max_bw = max_data_rate;
1029 }
1030 if (max_data_rate >= data_rate)
1031 qgv_points |= BIT(i);
1032
1033 drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
1034 i, max_data_rate, data_rate);
1035 }
1036
1037 for (i = 0; i < num_psf_gv_points; i++) {
1038 unsigned int max_data_rate = adl_psf_bw(dev_priv, i);
1039
1040 if (max_data_rate >= data_rate)
1041 psf_points |= BIT(i);
1042
1043 drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
1044 " required %d\n",
1045 i, max_data_rate, data_rate);
1046 }
1047
1048 /*
1049 * BSpec states that we always should have at least one allowed point
1050 * left, so if we couldn't - simply reject the configuration for obvious
1051 * reasons.
1052 */
1053 if (qgv_points == 0) {
1054 drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
1055 " bandwidth %d for display configuration(%d active planes).\n",
1056 data_rate, num_active_planes);
1057 return -EINVAL;
1058 }
1059
1060 if (num_psf_gv_points > 0 && psf_points == 0) {
1061 drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
1062 " bandwidth %d for display configuration(%d active planes).\n",
1063 data_rate, num_active_planes);
1064 return -EINVAL;
1065 }
1066
1067 /*
1068 * Leave only single point with highest bandwidth, if
1069 * we can't enable SAGV due to the increased memory latency it may
1070 * cause.
1071 */
1072 if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
1073 qgv_points = BIT(max_bw_point);
1074 drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
1075 max_bw_point);
1076 }
1077
1078 /*
1079 * We store the ones which need to be masked as that is what PCode
1080 * actually accepts as a parameter.
1081 */
1082 new_bw_state->qgv_points_mask =
1083 ~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
1084 ADLS_PCODE_REQ_PSF_PT(psf_points)) &
1085 icl_qgv_points_mask(dev_priv);
1086
1087 /*
1088 * If the actual mask had changed we need to make sure that
1089 * the commits are serialized(in case this is a nomodeset, nonblocking)
1090 */
1091 if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
1092 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
1093 if (ret)
1094 return ret;
1095 }
1096
1097 return 0;
1098 }
1099
1100 static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj * obj)1101 intel_bw_duplicate_state(struct intel_global_obj *obj)
1102 {
1103 struct intel_bw_state *state;
1104
1105 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
1106 if (!state)
1107 return NULL;
1108
1109 return &state->base;
1110 }
1111
intel_bw_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)1112 static void intel_bw_destroy_state(struct intel_global_obj *obj,
1113 struct intel_global_state *state)
1114 {
1115 kfree(state);
1116 }
1117
1118 static const struct intel_global_state_funcs intel_bw_funcs = {
1119 .atomic_duplicate_state = intel_bw_duplicate_state,
1120 .atomic_destroy_state = intel_bw_destroy_state,
1121 };
1122
intel_bw_init(struct drm_i915_private * dev_priv)1123 int intel_bw_init(struct drm_i915_private *dev_priv)
1124 {
1125 struct intel_bw_state *state;
1126
1127 state = kzalloc(sizeof(*state), GFP_KERNEL);
1128 if (!state)
1129 return -ENOMEM;
1130
1131 intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
1132 &state->base, &intel_bw_funcs);
1133
1134 return 0;
1135 }
1136