1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <drm/drm_atomic_state_helper.h>
7
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "i915_utils.h"
11 #include "intel_atomic.h"
12 #include "intel_bw.h"
13 #include "intel_cdclk.h"
14 #include "intel_display_core.h"
15 #include "intel_display_types.h"
16 #include "skl_watermark.h"
17 #include "intel_mchbar_regs.h"
18 #include "intel_pcode.h"
19
20 /* Parameters for Qclk Geyserville (QGV) */
21 struct intel_qgv_point {
22 u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
23 };
24
25 struct intel_psf_gv_point {
26 u8 clk; /* clock in multiples of 16.6666 MHz */
27 };
28
29 struct intel_qgv_info {
30 struct intel_qgv_point points[I915_NUM_QGV_POINTS];
31 struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
32 u8 num_points;
33 u8 num_psf_points;
34 u8 t_bl;
35 u8 max_numchannels;
36 u8 channel_width;
37 u8 deinterleave;
38 };
39
dg1_mchbar_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)40 static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
41 struct intel_qgv_point *sp,
42 int point)
43 {
44 u32 dclk_ratio, dclk_reference;
45 u32 val;
46
47 val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
48 dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
49 if (val & DG1_QCLK_REFERENCE)
50 dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
51 else
52 dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
53 sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
54
55 val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
56 if (val & DG1_GEAR_TYPE)
57 sp->dclk *= 2;
58
59 if (sp->dclk == 0)
60 return -EINVAL;
61
62 val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
63 sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
64 sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
65
66 val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
67 sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
68 sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
69
70 sp->t_rc = sp->t_rp + sp->t_ras;
71
72 return 0;
73 }
74
icl_pcode_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)75 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
76 struct intel_qgv_point *sp,
77 int point)
78 {
79 u32 val = 0, val2 = 0;
80 u16 dclk;
81 int ret;
82
83 ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
84 ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
85 &val, &val2);
86 if (ret)
87 return ret;
88
89 dclk = val & 0xffff;
90 sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
91 sp->t_rp = (val & 0xff0000) >> 16;
92 sp->t_rcd = (val & 0xff000000) >> 24;
93
94 sp->t_rdpre = val2 & 0xff;
95 sp->t_ras = (val2 & 0xff00) >> 8;
96
97 sp->t_rc = sp->t_rp + sp->t_ras;
98
99 return 0;
100 }
101
adls_pcode_read_psf_gv_point_info(struct drm_i915_private * dev_priv,struct intel_psf_gv_point * points)102 static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
103 struct intel_psf_gv_point *points)
104 {
105 u32 val = 0;
106 int ret;
107 int i;
108
109 ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
110 ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
111 if (ret)
112 return ret;
113
114 for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
115 points[i].clk = val & 0xff;
116 val >>= 8;
117 }
118
119 return 0;
120 }
121
icl_pcode_restrict_qgv_points(struct drm_i915_private * dev_priv,u32 points_mask)122 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
123 u32 points_mask)
124 {
125 int ret;
126
127 /* bspec says to keep retrying for at least 1 ms */
128 ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
129 points_mask,
130 ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
131 ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
132 1);
133
134 if (ret < 0) {
135 drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
136 return ret;
137 }
138
139 return 0;
140 }
141
mtl_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)142 static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv,
143 struct intel_qgv_point *sp, int point)
144 {
145 u32 val, val2;
146 u16 dclk;
147
148 val = intel_uncore_read(&dev_priv->uncore,
149 MTL_MEM_SS_INFO_QGV_POINT_LOW(point));
150 val2 = intel_uncore_read(&dev_priv->uncore,
151 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point));
152 dclk = REG_FIELD_GET(MTL_DCLK_MASK, val);
153 sp->dclk = DIV_ROUND_UP((16667 * dclk), 1000);
154 sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val);
155 sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val);
156
157 sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2);
158 sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2);
159
160 sp->t_rc = sp->t_rp + sp->t_ras;
161
162 return 0;
163 }
164
165 static int
intel_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)166 intel_read_qgv_point_info(struct drm_i915_private *dev_priv,
167 struct intel_qgv_point *sp,
168 int point)
169 {
170 if (DISPLAY_VER(dev_priv) >= 14)
171 return mtl_read_qgv_point_info(dev_priv, sp, point);
172 else if (IS_DG1(dev_priv))
173 return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point);
174 else
175 return icl_pcode_read_qgv_point_info(dev_priv, sp, point);
176 }
177
icl_get_qgv_points(struct drm_i915_private * dev_priv,struct intel_qgv_info * qi,bool is_y_tile)178 static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
179 struct intel_qgv_info *qi,
180 bool is_y_tile)
181 {
182 const struct dram_info *dram_info = &dev_priv->dram_info;
183 int i, ret;
184
185 qi->num_points = dram_info->num_qgv_points;
186 qi->num_psf_points = dram_info->num_psf_gv_points;
187
188 if (DISPLAY_VER(dev_priv) >= 14) {
189 switch (dram_info->type) {
190 case INTEL_DRAM_DDR4:
191 qi->t_bl = 4;
192 qi->max_numchannels = 2;
193 qi->channel_width = 64;
194 qi->deinterleave = 2;
195 break;
196 case INTEL_DRAM_DDR5:
197 qi->t_bl = 8;
198 qi->max_numchannels = 4;
199 qi->channel_width = 32;
200 qi->deinterleave = 2;
201 break;
202 case INTEL_DRAM_LPDDR4:
203 case INTEL_DRAM_LPDDR5:
204 qi->t_bl = 16;
205 qi->max_numchannels = 8;
206 qi->channel_width = 16;
207 qi->deinterleave = 4;
208 break;
209 default:
210 MISSING_CASE(dram_info->type);
211 return -EINVAL;
212 }
213 } else if (DISPLAY_VER(dev_priv) >= 12) {
214 switch (dram_info->type) {
215 case INTEL_DRAM_DDR4:
216 qi->t_bl = is_y_tile ? 8 : 4;
217 qi->max_numchannels = 2;
218 qi->channel_width = 64;
219 qi->deinterleave = is_y_tile ? 1 : 2;
220 break;
221 case INTEL_DRAM_DDR5:
222 qi->t_bl = is_y_tile ? 16 : 8;
223 qi->max_numchannels = 4;
224 qi->channel_width = 32;
225 qi->deinterleave = is_y_tile ? 1 : 2;
226 break;
227 case INTEL_DRAM_LPDDR4:
228 if (IS_ROCKETLAKE(dev_priv)) {
229 qi->t_bl = 8;
230 qi->max_numchannels = 4;
231 qi->channel_width = 32;
232 qi->deinterleave = 2;
233 break;
234 }
235 fallthrough;
236 case INTEL_DRAM_LPDDR5:
237 qi->t_bl = 16;
238 qi->max_numchannels = 8;
239 qi->channel_width = 16;
240 qi->deinterleave = is_y_tile ? 2 : 4;
241 break;
242 default:
243 qi->t_bl = 16;
244 qi->max_numchannels = 1;
245 break;
246 }
247 } else if (DISPLAY_VER(dev_priv) == 11) {
248 qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
249 qi->max_numchannels = 1;
250 }
251
252 if (drm_WARN_ON(&dev_priv->drm,
253 qi->num_points > ARRAY_SIZE(qi->points)))
254 qi->num_points = ARRAY_SIZE(qi->points);
255
256 for (i = 0; i < qi->num_points; i++) {
257 struct intel_qgv_point *sp = &qi->points[i];
258
259 ret = intel_read_qgv_point_info(dev_priv, sp, i);
260 if (ret)
261 return ret;
262
263 drm_dbg_kms(&dev_priv->drm,
264 "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
265 i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
266 sp->t_rcd, sp->t_rc);
267 }
268
269 if (qi->num_psf_points > 0) {
270 ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
271 if (ret) {
272 drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
273 qi->num_psf_points = 0;
274 }
275
276 for (i = 0; i < qi->num_psf_points; i++)
277 drm_dbg_kms(&dev_priv->drm,
278 "PSF GV %d: CLK=%d \n",
279 i, qi->psf_points[i].clk);
280 }
281
282 return 0;
283 }
284
adl_calc_psf_bw(int clk)285 static int adl_calc_psf_bw(int clk)
286 {
287 /*
288 * clk is multiples of 16.666MHz (100/6)
289 * According to BSpec PSF GV bandwidth is
290 * calculated as BW = 64 * clk * 16.666Mhz
291 */
292 return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
293 }
294
icl_sagv_max_dclk(const struct intel_qgv_info * qi)295 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
296 {
297 u16 dclk = 0;
298 int i;
299
300 for (i = 0; i < qi->num_points; i++)
301 dclk = max(dclk, qi->points[i].dclk);
302
303 return dclk;
304 }
305
306 struct intel_sa_info {
307 u16 displayrtids;
308 u8 deburst, deprogbwlimit, derating;
309 };
310
311 static const struct intel_sa_info icl_sa_info = {
312 .deburst = 8,
313 .deprogbwlimit = 25, /* GB/s */
314 .displayrtids = 128,
315 .derating = 10,
316 };
317
318 static const struct intel_sa_info tgl_sa_info = {
319 .deburst = 16,
320 .deprogbwlimit = 34, /* GB/s */
321 .displayrtids = 256,
322 .derating = 10,
323 };
324
325 static const struct intel_sa_info rkl_sa_info = {
326 .deburst = 8,
327 .deprogbwlimit = 20, /* GB/s */
328 .displayrtids = 128,
329 .derating = 10,
330 };
331
332 static const struct intel_sa_info adls_sa_info = {
333 .deburst = 16,
334 .deprogbwlimit = 38, /* GB/s */
335 .displayrtids = 256,
336 .derating = 10,
337 };
338
339 static const struct intel_sa_info adlp_sa_info = {
340 .deburst = 16,
341 .deprogbwlimit = 38, /* GB/s */
342 .displayrtids = 256,
343 .derating = 20,
344 };
345
346 static const struct intel_sa_info mtl_sa_info = {
347 .deburst = 32,
348 .deprogbwlimit = 38, /* GB/s */
349 .displayrtids = 256,
350 .derating = 20,
351 };
352
icl_get_bw_info(struct drm_i915_private * dev_priv,const struct intel_sa_info * sa)353 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
354 {
355 struct intel_qgv_info qi = {};
356 bool is_y_tile = true; /* assume y tile may be used */
357 int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
358 int ipqdepth, ipqdepthpch = 16;
359 int dclk_max;
360 int maxdebw;
361 int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
362 int i, ret;
363
364 ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
365 if (ret) {
366 drm_dbg_kms(&dev_priv->drm,
367 "Failed to get memory subsystem information, ignoring bandwidth limits");
368 return ret;
369 }
370
371 dclk_max = icl_sagv_max_dclk(&qi);
372 maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
373 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
374 qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
375
376 for (i = 0; i < num_groups; i++) {
377 struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
378 int clpchgroup;
379 int j;
380
381 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
382 bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
383
384 bi->num_qgv_points = qi.num_points;
385 bi->num_psf_gv_points = qi.num_psf_points;
386
387 for (j = 0; j < qi.num_points; j++) {
388 const struct intel_qgv_point *sp = &qi.points[j];
389 int ct, bw;
390
391 /*
392 * Max row cycle time
393 *
394 * FIXME what is the logic behind the
395 * assumed burst length?
396 */
397 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
398 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
399 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
400
401 bi->deratedbw[j] = min(maxdebw,
402 bw * (100 - sa->derating) / 100);
403
404 drm_dbg_kms(&dev_priv->drm,
405 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
406 i, j, bi->num_planes, bi->deratedbw[j]);
407 }
408 }
409 /*
410 * In case if SAGV is disabled in BIOS, we always get 1
411 * SAGV point, but we can't send PCode commands to restrict it
412 * as it will fail and pointless anyway.
413 */
414 if (qi.num_points == 1)
415 dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
416 else
417 dev_priv->display.sagv.status = I915_SAGV_ENABLED;
418
419 return 0;
420 }
421
tgl_get_bw_info(struct drm_i915_private * dev_priv,const struct intel_sa_info * sa)422 static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
423 {
424 struct intel_qgv_info qi = {};
425 const struct dram_info *dram_info = &dev_priv->dram_info;
426 bool is_y_tile = true; /* assume y tile may be used */
427 int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
428 int ipqdepth, ipqdepthpch = 16;
429 int dclk_max;
430 int maxdebw, peakbw;
431 int clperchgroup;
432 int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
433 int i, ret;
434
435 ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
436 if (ret) {
437 drm_dbg_kms(&dev_priv->drm,
438 "Failed to get memory subsystem information, ignoring bandwidth limits");
439 return ret;
440 }
441
442 if (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)
443 num_channels *= 2;
444
445 qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
446
447 if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
448 qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
449
450 if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
451 drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
452 if (qi.max_numchannels != 0)
453 num_channels = min_t(u8, num_channels, qi.max_numchannels);
454
455 dclk_max = icl_sagv_max_dclk(&qi);
456
457 peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
458 maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
459
460 ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
461 /*
462 * clperchgroup = 4kpagespermempage * clperchperblock,
463 * clperchperblock = 8 / num_channels * interleave
464 */
465 clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
466
467 for (i = 0; i < num_groups; i++) {
468 struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
469 struct intel_bw_info *bi_next;
470 int clpchgroup;
471 int j;
472
473 clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
474
475 if (i < num_groups - 1) {
476 bi_next = &dev_priv->display.bw.max[i + 1];
477
478 if (clpchgroup < clperchgroup)
479 bi_next->num_planes = (ipqdepth - clpchgroup) /
480 clpchgroup + 1;
481 else
482 bi_next->num_planes = 0;
483 }
484
485 bi->num_qgv_points = qi.num_points;
486 bi->num_psf_gv_points = qi.num_psf_points;
487
488 for (j = 0; j < qi.num_points; j++) {
489 const struct intel_qgv_point *sp = &qi.points[j];
490 int ct, bw;
491
492 /*
493 * Max row cycle time
494 *
495 * FIXME what is the logic behind the
496 * assumed burst length?
497 */
498 ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
499 (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
500 bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
501
502 bi->deratedbw[j] = min(maxdebw,
503 bw * (100 - sa->derating) / 100);
504
505 drm_dbg_kms(&dev_priv->drm,
506 "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
507 i, j, bi->num_planes, bi->deratedbw[j]);
508 }
509
510 for (j = 0; j < qi.num_psf_points; j++) {
511 const struct intel_psf_gv_point *sp = &qi.psf_points[j];
512
513 bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
514
515 drm_dbg_kms(&dev_priv->drm,
516 "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
517 i, j, bi->num_planes, bi->psf_bw[j]);
518 }
519 }
520
521 /*
522 * In case if SAGV is disabled in BIOS, we always get 1
523 * SAGV point, but we can't send PCode commands to restrict it
524 * as it will fail and pointless anyway.
525 */
526 if (qi.num_points == 1)
527 dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
528 else
529 dev_priv->display.sagv.status = I915_SAGV_ENABLED;
530
531 return 0;
532 }
533
dg2_get_bw_info(struct drm_i915_private * i915)534 static void dg2_get_bw_info(struct drm_i915_private *i915)
535 {
536 unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
537 int num_groups = ARRAY_SIZE(i915->display.bw.max);
538 int i;
539
540 /*
541 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
542 * that doesn't depend on the number of planes enabled. So fill all the
543 * plane group with constant bw information for uniformity with other
544 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
545 * whereas DG2-G11 platforms have 38 GB/s.
546 */
547 for (i = 0; i < num_groups; i++) {
548 struct intel_bw_info *bi = &i915->display.bw.max[i];
549
550 bi->num_planes = 1;
551 /* Need only one dummy QGV point per group */
552 bi->num_qgv_points = 1;
553 bi->deratedbw[0] = deratedbw;
554 }
555
556 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
557 }
558
icl_max_bw(struct drm_i915_private * dev_priv,int num_planes,int qgv_point)559 static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
560 int num_planes, int qgv_point)
561 {
562 int i;
563
564 /*
565 * Let's return max bw for 0 planes
566 */
567 num_planes = max(1, num_planes);
568
569 for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) {
570 const struct intel_bw_info *bi =
571 &dev_priv->display.bw.max[i];
572
573 /*
574 * Pcode will not expose all QGV points when
575 * SAGV is forced to off/min/med/max.
576 */
577 if (qgv_point >= bi->num_qgv_points)
578 return UINT_MAX;
579
580 if (num_planes >= bi->num_planes)
581 return bi->deratedbw[qgv_point];
582 }
583
584 return 0;
585 }
586
tgl_max_bw(struct drm_i915_private * dev_priv,int num_planes,int qgv_point)587 static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv,
588 int num_planes, int qgv_point)
589 {
590 int i;
591
592 /*
593 * Let's return max bw for 0 planes
594 */
595 num_planes = max(1, num_planes);
596
597 for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) {
598 const struct intel_bw_info *bi =
599 &dev_priv->display.bw.max[i];
600
601 /*
602 * Pcode will not expose all QGV points when
603 * SAGV is forced to off/min/med/max.
604 */
605 if (qgv_point >= bi->num_qgv_points)
606 return UINT_MAX;
607
608 if (num_planes <= bi->num_planes)
609 return bi->deratedbw[qgv_point];
610 }
611
612 return dev_priv->display.bw.max[0].deratedbw[qgv_point];
613 }
614
adl_psf_bw(struct drm_i915_private * dev_priv,int psf_gv_point)615 static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
616 int psf_gv_point)
617 {
618 const struct intel_bw_info *bi =
619 &dev_priv->display.bw.max[0];
620
621 return bi->psf_bw[psf_gv_point];
622 }
623
intel_bw_init_hw(struct drm_i915_private * dev_priv)624 void intel_bw_init_hw(struct drm_i915_private *dev_priv)
625 {
626 if (!HAS_DISPLAY(dev_priv))
627 return;
628
629 if (DISPLAY_VER(dev_priv) >= 14)
630 tgl_get_bw_info(dev_priv, &mtl_sa_info);
631 else if (IS_DG2(dev_priv))
632 dg2_get_bw_info(dev_priv);
633 else if (IS_ALDERLAKE_P(dev_priv))
634 tgl_get_bw_info(dev_priv, &adlp_sa_info);
635 else if (IS_ALDERLAKE_S(dev_priv))
636 tgl_get_bw_info(dev_priv, &adls_sa_info);
637 else if (IS_ROCKETLAKE(dev_priv))
638 tgl_get_bw_info(dev_priv, &rkl_sa_info);
639 else if (DISPLAY_VER(dev_priv) == 12)
640 tgl_get_bw_info(dev_priv, &tgl_sa_info);
641 else if (DISPLAY_VER(dev_priv) == 11)
642 icl_get_bw_info(dev_priv, &icl_sa_info);
643 }
644
intel_bw_crtc_num_active_planes(const struct intel_crtc_state * crtc_state)645 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
646 {
647 /*
648 * We assume cursors are small enough
649 * to not not cause bandwidth problems.
650 */
651 return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
652 }
653
intel_bw_crtc_data_rate(const struct intel_crtc_state * crtc_state)654 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
655 {
656 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
657 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
658 unsigned int data_rate = 0;
659 enum plane_id plane_id;
660
661 for_each_plane_id_on_crtc(crtc, plane_id) {
662 /*
663 * We assume cursors are small enough
664 * to not not cause bandwidth problems.
665 */
666 if (plane_id == PLANE_CURSOR)
667 continue;
668
669 data_rate += crtc_state->data_rate[plane_id];
670
671 if (DISPLAY_VER(i915) < 11)
672 data_rate += crtc_state->data_rate_y[plane_id];
673 }
674
675 return data_rate;
676 }
677
678 /* "Maximum Pipe Read Bandwidth" */
intel_bw_crtc_min_cdclk(const struct intel_crtc_state * crtc_state)679 static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
680 {
681 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
682 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
683
684 if (DISPLAY_VER(i915) < 12)
685 return 0;
686
687 return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
688 }
689
intel_bw_crtc_update(struct intel_bw_state * bw_state,const struct intel_crtc_state * crtc_state)690 void intel_bw_crtc_update(struct intel_bw_state *bw_state,
691 const struct intel_crtc_state *crtc_state)
692 {
693 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
694 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
695
696 bw_state->data_rate[crtc->pipe] =
697 intel_bw_crtc_data_rate(crtc_state);
698 bw_state->num_active_planes[crtc->pipe] =
699 intel_bw_crtc_num_active_planes(crtc_state);
700
701 drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
702 pipe_name(crtc->pipe),
703 bw_state->data_rate[crtc->pipe],
704 bw_state->num_active_planes[crtc->pipe]);
705 }
706
intel_bw_num_active_planes(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)707 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
708 const struct intel_bw_state *bw_state)
709 {
710 unsigned int num_active_planes = 0;
711 enum pipe pipe;
712
713 for_each_pipe(dev_priv, pipe)
714 num_active_planes += bw_state->num_active_planes[pipe];
715
716 return num_active_planes;
717 }
718
intel_bw_data_rate(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)719 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
720 const struct intel_bw_state *bw_state)
721 {
722 unsigned int data_rate = 0;
723 enum pipe pipe;
724
725 for_each_pipe(dev_priv, pipe)
726 data_rate += bw_state->data_rate[pipe];
727
728 if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
729 data_rate = DIV_ROUND_UP(data_rate * 105, 100);
730
731 return data_rate;
732 }
733
734 struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state * state)735 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
736 {
737 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
738 struct intel_global_state *bw_state;
739
740 bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj);
741
742 return to_intel_bw_state(bw_state);
743 }
744
745 struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state * state)746 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
747 {
748 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
749 struct intel_global_state *bw_state;
750
751 bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj);
752
753 return to_intel_bw_state(bw_state);
754 }
755
756 struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state * state)757 intel_atomic_get_bw_state(struct intel_atomic_state *state)
758 {
759 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
760 struct intel_global_state *bw_state;
761
762 bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj);
763 if (IS_ERR(bw_state))
764 return ERR_CAST(bw_state);
765
766 return to_intel_bw_state(bw_state);
767 }
768
intel_bw_state_changed(struct drm_i915_private * i915,const struct intel_bw_state * old_bw_state,const struct intel_bw_state * new_bw_state)769 static bool intel_bw_state_changed(struct drm_i915_private *i915,
770 const struct intel_bw_state *old_bw_state,
771 const struct intel_bw_state *new_bw_state)
772 {
773 enum pipe pipe;
774
775 for_each_pipe(i915, pipe) {
776 const struct intel_dbuf_bw *old_crtc_bw =
777 &old_bw_state->dbuf_bw[pipe];
778 const struct intel_dbuf_bw *new_crtc_bw =
779 &new_bw_state->dbuf_bw[pipe];
780 enum dbuf_slice slice;
781
782 for_each_dbuf_slice(i915, slice) {
783 if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
784 old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
785 return true;
786 }
787
788 if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
789 return true;
790 }
791
792 return false;
793 }
794
skl_plane_calc_dbuf_bw(struct intel_bw_state * bw_state,struct intel_crtc * crtc,enum plane_id plane_id,const struct skl_ddb_entry * ddb,unsigned int data_rate)795 static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
796 struct intel_crtc *crtc,
797 enum plane_id plane_id,
798 const struct skl_ddb_entry *ddb,
799 unsigned int data_rate)
800 {
801 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
802 struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
803 unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
804 enum dbuf_slice slice;
805
806 /*
807 * The arbiter can only really guarantee an
808 * equal share of the total bw to each plane.
809 */
810 for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
811 crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
812 crtc_bw->active_planes[slice] |= BIT(plane_id);
813 }
814 }
815
skl_crtc_calc_dbuf_bw(struct intel_bw_state * bw_state,const struct intel_crtc_state * crtc_state)816 static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
817 const struct intel_crtc_state *crtc_state)
818 {
819 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
820 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
821 struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
822 enum plane_id plane_id;
823
824 memset(crtc_bw, 0, sizeof(*crtc_bw));
825
826 if (!crtc_state->hw.active)
827 return;
828
829 for_each_plane_id_on_crtc(crtc, plane_id) {
830 /*
831 * We assume cursors are small enough
832 * to not cause bandwidth problems.
833 */
834 if (plane_id == PLANE_CURSOR)
835 continue;
836
837 skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
838 &crtc_state->wm.skl.plane_ddb[plane_id],
839 crtc_state->data_rate[plane_id]);
840
841 if (DISPLAY_VER(i915) < 11)
842 skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
843 &crtc_state->wm.skl.plane_ddb_y[plane_id],
844 crtc_state->data_rate[plane_id]);
845 }
846 }
847
848 /* "Maximum Data Buffer Bandwidth" */
849 static int
intel_bw_dbuf_min_cdclk(struct drm_i915_private * i915,const struct intel_bw_state * bw_state)850 intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
851 const struct intel_bw_state *bw_state)
852 {
853 unsigned int total_max_bw = 0;
854 enum dbuf_slice slice;
855
856 for_each_dbuf_slice(i915, slice) {
857 int num_active_planes = 0;
858 unsigned int max_bw = 0;
859 enum pipe pipe;
860
861 /*
862 * The arbiter can only really guarantee an
863 * equal share of the total bw to each plane.
864 */
865 for_each_pipe(i915, pipe) {
866 const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];
867
868 max_bw = max(crtc_bw->max_bw[slice], max_bw);
869 num_active_planes += hweight8(crtc_bw->active_planes[slice]);
870 }
871 max_bw *= num_active_planes;
872
873 total_max_bw = max(total_max_bw, max_bw);
874 }
875
876 return DIV_ROUND_UP(total_max_bw, 64);
877 }
878
intel_bw_min_cdclk(struct drm_i915_private * i915,const struct intel_bw_state * bw_state)879 int intel_bw_min_cdclk(struct drm_i915_private *i915,
880 const struct intel_bw_state *bw_state)
881 {
882 enum pipe pipe;
883 int min_cdclk;
884
885 min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);
886
887 for_each_pipe(i915, pipe)
888 min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);
889
890 return min_cdclk;
891 }
892
intel_bw_calc_min_cdclk(struct intel_atomic_state * state,bool * need_cdclk_calc)893 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
894 bool *need_cdclk_calc)
895 {
896 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
897 struct intel_bw_state *new_bw_state = NULL;
898 const struct intel_bw_state *old_bw_state = NULL;
899 const struct intel_cdclk_state *cdclk_state;
900 const struct intel_crtc_state *crtc_state;
901 int old_min_cdclk, new_min_cdclk;
902 struct intel_crtc *crtc;
903 int i;
904
905 if (DISPLAY_VER(dev_priv) < 9)
906 return 0;
907
908 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
909 new_bw_state = intel_atomic_get_bw_state(state);
910 if (IS_ERR(new_bw_state))
911 return PTR_ERR(new_bw_state);
912
913 old_bw_state = intel_atomic_get_old_bw_state(state);
914
915 skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
916
917 new_bw_state->min_cdclk[crtc->pipe] =
918 intel_bw_crtc_min_cdclk(crtc_state);
919 }
920
921 if (!old_bw_state)
922 return 0;
923
924 if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
925 int ret = intel_atomic_lock_global_state(&new_bw_state->base);
926 if (ret)
927 return ret;
928 }
929
930 old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
931 new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);
932
933 /*
934 * No need to check against the cdclk state if
935 * the min cdclk doesn't increase.
936 *
937 * Ie. we only ever increase the cdclk due to bandwidth
938 * requirements. This can reduce back and forth
939 * display blinking due to constant cdclk changes.
940 */
941 if (new_min_cdclk <= old_min_cdclk)
942 return 0;
943
944 cdclk_state = intel_atomic_get_cdclk_state(state);
945 if (IS_ERR(cdclk_state))
946 return PTR_ERR(cdclk_state);
947
948 /*
949 * No need to recalculate the cdclk state if
950 * the min cdclk doesn't increase.
951 *
952 * Ie. we only ever increase the cdclk due to bandwidth
953 * requirements. This can reduce back and forth
954 * display blinking due to constant cdclk changes.
955 */
956 if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
957 return 0;
958
959 drm_dbg_kms(&dev_priv->drm,
960 "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
961 new_min_cdclk, cdclk_state->bw_min_cdclk);
962 *need_cdclk_calc = true;
963
964 return 0;
965 }
966
icl_qgv_points_mask(struct drm_i915_private * i915)967 static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
968 {
969 unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
970 unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
971 u16 qgv_points = 0, psf_points = 0;
972
973 /*
974 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
975 * it with failure if we try masking any unadvertised points.
976 * So need to operate only with those returned from PCode.
977 */
978 if (num_qgv_points > 0)
979 qgv_points = GENMASK(num_qgv_points - 1, 0);
980
981 if (num_psf_gv_points > 0)
982 psf_points = GENMASK(num_psf_gv_points - 1, 0);
983
984 return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
985 }
986
intel_bw_check_data_rate(struct intel_atomic_state * state,bool * changed)987 static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
988 {
989 struct drm_i915_private *i915 = to_i915(state->base.dev);
990 const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
991 struct intel_crtc *crtc;
992 int i;
993
994 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
995 new_crtc_state, i) {
996 unsigned int old_data_rate =
997 intel_bw_crtc_data_rate(old_crtc_state);
998 unsigned int new_data_rate =
999 intel_bw_crtc_data_rate(new_crtc_state);
1000 unsigned int old_active_planes =
1001 intel_bw_crtc_num_active_planes(old_crtc_state);
1002 unsigned int new_active_planes =
1003 intel_bw_crtc_num_active_planes(new_crtc_state);
1004 struct intel_bw_state *new_bw_state;
1005
1006 /*
1007 * Avoid locking the bw state when
1008 * nothing significant has changed.
1009 */
1010 if (old_data_rate == new_data_rate &&
1011 old_active_planes == new_active_planes)
1012 continue;
1013
1014 new_bw_state = intel_atomic_get_bw_state(state);
1015 if (IS_ERR(new_bw_state))
1016 return PTR_ERR(new_bw_state);
1017
1018 new_bw_state->data_rate[crtc->pipe] = new_data_rate;
1019 new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
1020
1021 *changed = true;
1022
1023 drm_dbg_kms(&i915->drm,
1024 "[CRTC:%d:%s] data rate %u num active planes %u\n",
1025 crtc->base.base.id, crtc->base.name,
1026 new_bw_state->data_rate[crtc->pipe],
1027 new_bw_state->num_active_planes[crtc->pipe]);
1028 }
1029
1030 return 0;
1031 }
1032
intel_bw_atomic_check(struct intel_atomic_state * state)1033 int intel_bw_atomic_check(struct intel_atomic_state *state)
1034 {
1035 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1036 const struct intel_bw_state *old_bw_state;
1037 struct intel_bw_state *new_bw_state;
1038 unsigned int data_rate;
1039 unsigned int num_active_planes;
1040 int i, ret;
1041 u16 qgv_points = 0, psf_points = 0;
1042 unsigned int max_bw_point = 0, max_bw = 0;
1043 unsigned int num_qgv_points = dev_priv->display.bw.max[0].num_qgv_points;
1044 unsigned int num_psf_gv_points = dev_priv->display.bw.max[0].num_psf_gv_points;
1045 bool changed = false;
1046
1047 /* FIXME earlier gens need some checks too */
1048 if (DISPLAY_VER(dev_priv) < 11)
1049 return 0;
1050
1051 ret = intel_bw_check_data_rate(state, &changed);
1052 if (ret)
1053 return ret;
1054
1055 old_bw_state = intel_atomic_get_old_bw_state(state);
1056 new_bw_state = intel_atomic_get_new_bw_state(state);
1057
1058 if (new_bw_state &&
1059 intel_can_enable_sagv(dev_priv, old_bw_state) !=
1060 intel_can_enable_sagv(dev_priv, new_bw_state))
1061 changed = true;
1062
1063 /*
1064 * If none of our inputs (data rates, number of active
1065 * planes, SAGV yes/no) changed then nothing to do here.
1066 */
1067 if (!changed)
1068 return 0;
1069
1070 ret = intel_atomic_lock_global_state(&new_bw_state->base);
1071 if (ret)
1072 return ret;
1073
1074 data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
1075 data_rate = DIV_ROUND_UP(data_rate, 1000);
1076
1077 num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
1078
1079 for (i = 0; i < num_qgv_points; i++) {
1080 unsigned int max_data_rate;
1081
1082 if (DISPLAY_VER(dev_priv) > 11)
1083 max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i);
1084 else
1085 max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
1086 /*
1087 * We need to know which qgv point gives us
1088 * maximum bandwidth in order to disable SAGV
1089 * if we find that we exceed SAGV block time
1090 * with watermarks. By that moment we already
1091 * have those, as it is calculated earlier in
1092 * intel_atomic_check,
1093 */
1094 if (max_data_rate > max_bw) {
1095 max_bw_point = i;
1096 max_bw = max_data_rate;
1097 }
1098 if (max_data_rate >= data_rate)
1099 qgv_points |= BIT(i);
1100
1101 drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
1102 i, max_data_rate, data_rate);
1103 }
1104
1105 for (i = 0; i < num_psf_gv_points; i++) {
1106 unsigned int max_data_rate = adl_psf_bw(dev_priv, i);
1107
1108 if (max_data_rate >= data_rate)
1109 psf_points |= BIT(i);
1110
1111 drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
1112 " required %d\n",
1113 i, max_data_rate, data_rate);
1114 }
1115
1116 /*
1117 * BSpec states that we always should have at least one allowed point
1118 * left, so if we couldn't - simply reject the configuration for obvious
1119 * reasons.
1120 */
1121 if (qgv_points == 0) {
1122 drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
1123 " bandwidth %d for display configuration(%d active planes).\n",
1124 data_rate, num_active_planes);
1125 return -EINVAL;
1126 }
1127
1128 if (num_psf_gv_points > 0 && psf_points == 0) {
1129 drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
1130 " bandwidth %d for display configuration(%d active planes).\n",
1131 data_rate, num_active_planes);
1132 return -EINVAL;
1133 }
1134
1135 /*
1136 * Leave only single point with highest bandwidth, if
1137 * we can't enable SAGV due to the increased memory latency it may
1138 * cause.
1139 */
1140 if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
1141 qgv_points = BIT(max_bw_point);
1142 drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
1143 max_bw_point);
1144 }
1145
1146 /*
1147 * We store the ones which need to be masked as that is what PCode
1148 * actually accepts as a parameter.
1149 */
1150 new_bw_state->qgv_points_mask =
1151 ~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
1152 ADLS_PCODE_REQ_PSF_PT(psf_points)) &
1153 icl_qgv_points_mask(dev_priv);
1154
1155 /*
1156 * If the actual mask had changed we need to make sure that
1157 * the commits are serialized(in case this is a nomodeset, nonblocking)
1158 */
1159 if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
1160 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
1161 if (ret)
1162 return ret;
1163 }
1164
1165 return 0;
1166 }
1167
1168 static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj * obj)1169 intel_bw_duplicate_state(struct intel_global_obj *obj)
1170 {
1171 struct intel_bw_state *state;
1172
1173 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
1174 if (!state)
1175 return NULL;
1176
1177 return &state->base;
1178 }
1179
intel_bw_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)1180 static void intel_bw_destroy_state(struct intel_global_obj *obj,
1181 struct intel_global_state *state)
1182 {
1183 kfree(state);
1184 }
1185
1186 static const struct intel_global_state_funcs intel_bw_funcs = {
1187 .atomic_duplicate_state = intel_bw_duplicate_state,
1188 .atomic_destroy_state = intel_bw_destroy_state,
1189 };
1190
intel_bw_init(struct drm_i915_private * dev_priv)1191 int intel_bw_init(struct drm_i915_private *dev_priv)
1192 {
1193 struct intel_bw_state *state;
1194
1195 state = kzalloc(sizeof(*state), GFP_KERNEL);
1196 if (!state)
1197 return -ENOMEM;
1198
1199 intel_atomic_global_obj_init(dev_priv, &dev_priv->display.bw.obj,
1200 &state->base, &intel_bw_funcs);
1201
1202 return 0;
1203 }
1204