1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30
31 #include "display/intel_display.h"
32 #include "display/intel_display_types.h"
33 #include "display/intel_gmbus.h"
34
35 #include "i915_drv.h"
36 #include "i915_reg.h"
37
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40
41 /**
42 * DOC: Video BIOS Table (VBT)
43 *
44 * The Video BIOS Table, or VBT, provides platform and board specific
45 * configuration information to the driver that is not discoverable or available
46 * through other means. The configuration is mostly related to display
47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48 * the PCI ROM.
49 *
50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52 * contain the actual configuration information. The VBT Header, and thus the
53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54 * BDB Header. The data blocks are concatenated after the BDB Header. The data
55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56 * data. (Block 53, the MIPI Sequence Block is an exception.)
57 *
58 * The driver parses the VBT during load. The relevant information is stored in
59 * driver private data for ease of use, and the actual VBT is not read after
60 * that.
61 */
62
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65 struct drm_i915_private *i915;
66
67 struct child_device_config child;
68 struct dsc_compression_parameters_entry *dsc;
69 struct list_head node;
70 };
71
72 #define SLAVE_ADDR1 0x70
73 #define SLAVE_ADDR2 0x72
74
75 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)76 static u32 _get_blocksize(const u8 *block_base)
77 {
78 /* The MIPI Sequence Block v3+ has a separate size field. */
79 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 return *((const u32 *)(block_base + 4));
81 else
82 return *((const u16 *)(block_base + 1));
83 }
84
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)86 static u32 get_blocksize(const void *block_data)
87 {
88 return _get_blocksize(block_data - 3);
89 }
90
91 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94 const struct bdb_header *bdb = _bdb;
95 const u8 *base = _bdb;
96 int index = 0;
97 u32 total, current_size;
98 enum bdb_block_id current_id;
99
100 /* skip to first section */
101 index += bdb->header_size;
102 total = bdb->bdb_size;
103
104 /* walk the sections looking for section_id */
105 while (index + 3 < total) {
106 current_id = *(base + index);
107 current_size = _get_blocksize(base + index);
108 index += 3;
109
110 if (index + current_size > total)
111 return NULL;
112
113 if (current_id == section_id)
114 return base + index;
115
116 index += current_size;
117 }
118
119 return NULL;
120 }
121
122 /*
123 * Offset from the start of BDB to the start of the
124 * block data (just past the block header).
125 */
block_offset(const void * bdb,enum bdb_block_id section_id)126 static u32 block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128 const void *block;
129
130 block = find_raw_section(bdb, section_id);
131 if (!block)
132 return 0;
133
134 return block - bdb;
135 }
136
137 /* size of the block excluding the header */
block_size(const void * bdb,enum bdb_block_id section_id)138 static u32 block_size(const void *bdb, enum bdb_block_id section_id)
139 {
140 const void *block;
141
142 block = find_raw_section(bdb, section_id);
143 if (!block)
144 return 0;
145
146 return get_blocksize(block);
147 }
148
149 struct bdb_block_entry {
150 struct list_head node;
151 enum bdb_block_id section_id;
152 u8 data[];
153 };
154
155 static const void *
find_section(struct drm_i915_private * i915,enum bdb_block_id section_id)156 find_section(struct drm_i915_private *i915,
157 enum bdb_block_id section_id)
158 {
159 struct bdb_block_entry *entry;
160
161 list_for_each_entry(entry, &i915->vbt.bdb_blocks, node) {
162 if (entry->section_id == section_id)
163 return entry->data + 3;
164 }
165
166 return NULL;
167 }
168
169 static const struct {
170 enum bdb_block_id section_id;
171 size_t min_size;
172 } bdb_blocks[] = {
173 { .section_id = BDB_GENERAL_FEATURES,
174 .min_size = sizeof(struct bdb_general_features), },
175 { .section_id = BDB_GENERAL_DEFINITIONS,
176 .min_size = sizeof(struct bdb_general_definitions), },
177 { .section_id = BDB_PSR,
178 .min_size = sizeof(struct bdb_psr), },
179 { .section_id = BDB_DRIVER_FEATURES,
180 .min_size = sizeof(struct bdb_driver_features), },
181 { .section_id = BDB_SDVO_LVDS_OPTIONS,
182 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
183 { .section_id = BDB_SDVO_PANEL_DTDS,
184 .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
185 { .section_id = BDB_EDP,
186 .min_size = sizeof(struct bdb_edp), },
187 { .section_id = BDB_LVDS_OPTIONS,
188 .min_size = sizeof(struct bdb_lvds_options), },
189 /*
190 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
191 * so keep the two ordered.
192 */
193 { .section_id = BDB_LVDS_LFP_DATA_PTRS,
194 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
195 { .section_id = BDB_LVDS_LFP_DATA,
196 .min_size = 0, /* special case */ },
197 { .section_id = BDB_LVDS_BACKLIGHT,
198 .min_size = sizeof(struct bdb_lfp_backlight_data), },
199 { .section_id = BDB_LFP_POWER,
200 .min_size = sizeof(struct bdb_lfp_power), },
201 { .section_id = BDB_MIPI_CONFIG,
202 .min_size = sizeof(struct bdb_mipi_config), },
203 { .section_id = BDB_MIPI_SEQUENCE,
204 .min_size = sizeof(struct bdb_mipi_sequence) },
205 { .section_id = BDB_COMPRESSION_PARAMETERS,
206 .min_size = sizeof(struct bdb_compression_parameters), },
207 { .section_id = BDB_GENERIC_DTD,
208 .min_size = sizeof(struct bdb_generic_dtd), },
209 };
210
lfp_data_min_size(struct drm_i915_private * i915)211 static size_t lfp_data_min_size(struct drm_i915_private *i915)
212 {
213 const struct bdb_lvds_lfp_data_ptrs *ptrs;
214 size_t size;
215
216 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
217 if (!ptrs)
218 return 0;
219
220 size = sizeof(struct bdb_lvds_lfp_data);
221 if (ptrs->panel_name.table_size)
222 size = max(size, ptrs->panel_name.offset +
223 sizeof(struct bdb_lvds_lfp_data_tail));
224
225 return size;
226 }
227
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lvds_lfp_data_ptrs * ptrs)228 static bool validate_lfp_data_ptrs(const void *bdb,
229 const struct bdb_lvds_lfp_data_ptrs *ptrs)
230 {
231 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
232 int data_block_size, lfp_data_size;
233 int i;
234
235 data_block_size = block_size(bdb, BDB_LVDS_LFP_DATA);
236 if (data_block_size == 0)
237 return false;
238
239 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
240 if (ptrs->lvds_entries != 3)
241 return false;
242
243 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
244 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
245 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
246 panel_name_size = ptrs->panel_name.table_size;
247
248 /* fp_timing has variable size */
249 if (fp_timing_size < 32 ||
250 dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
251 panel_pnp_id_size != sizeof(struct lvds_pnp_id))
252 return false;
253
254 /* panel_name is not present in old VBTs */
255 if (panel_name_size != 0 &&
256 panel_name_size != sizeof(struct lvds_lfp_panel_name))
257 return false;
258
259 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
260 if (16 * lfp_data_size > data_block_size)
261 return false;
262
263 /*
264 * Except for vlv/chv machines all real VBTs seem to have 6
265 * unaccounted bytes in the fp_timing table. And it doesn't
266 * appear to be a really intentional hole as the fp_timing
267 * 0xffff terminator is always within those 6 missing bytes.
268 */
269 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size &&
270 fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
271 return false;
272
273 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size > ptrs->ptr[0].dvo_timing.offset ||
274 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
275 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
276 return false;
277
278 /* make sure the table entries have uniform size */
279 for (i = 1; i < 16; i++) {
280 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
281 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
282 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
283 return false;
284
285 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
286 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
287 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
288 return false;
289 }
290
291 /* make sure the tables fit inside the data block */
292 for (i = 0; i < 16; i++) {
293 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
294 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
295 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
296 return false;
297 }
298
299 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
300 return false;
301
302 return true;
303 }
304
305 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)306 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
307 {
308 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
309 u32 offset;
310 int i;
311
312 offset = block_offset(bdb, BDB_LVDS_LFP_DATA);
313
314 for (i = 0; i < 16; i++) {
315 if (ptrs->ptr[i].fp_timing.offset < offset ||
316 ptrs->ptr[i].dvo_timing.offset < offset ||
317 ptrs->ptr[i].panel_pnp_id.offset < offset)
318 return false;
319
320 ptrs->ptr[i].fp_timing.offset -= offset;
321 ptrs->ptr[i].dvo_timing.offset -= offset;
322 ptrs->ptr[i].panel_pnp_id.offset -= offset;
323 }
324
325 if (ptrs->panel_name.table_size) {
326 if (ptrs->panel_name.offset < offset)
327 return false;
328
329 ptrs->panel_name.offset -= offset;
330 }
331
332 return validate_lfp_data_ptrs(bdb, ptrs);
333 }
334
find_fp_timing_terminator(const u8 * data,int size)335 static const void *find_fp_timing_terminator(const u8 *data, int size)
336 {
337 int i;
338
339 for (i = 0; i < size - 1; i++) {
340 if (data[i] == 0xff && data[i+1] == 0xff)
341 return &data[i];
342 }
343
344 return NULL;
345 }
346
make_lfp_data_ptr(struct lvds_lfp_data_ptr_table * table,int table_size,int total_size)347 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
348 int table_size, int total_size)
349 {
350 if (total_size < table_size)
351 return total_size;
352
353 table->table_size = table_size;
354 table->offset = total_size - table_size;
355
356 return total_size - table_size;
357 }
358
next_lfp_data_ptr(struct lvds_lfp_data_ptr_table * next,const struct lvds_lfp_data_ptr_table * prev,int size)359 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
360 const struct lvds_lfp_data_ptr_table *prev,
361 int size)
362 {
363 next->table_size = prev->table_size;
364 next->offset = prev->offset + size;
365 }
366
generate_lfp_data_ptrs(struct drm_i915_private * i915,const void * bdb)367 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
368 const void *bdb)
369 {
370 int i, size, table_size, block_size, offset;
371 const void *t0, *t1, *block;
372 struct bdb_lvds_lfp_data_ptrs *ptrs;
373 void *ptrs_block;
374
375 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
376 if (!block)
377 return NULL;
378
379 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
380
381 block_size = get_blocksize(block);
382
383 size = block_size;
384 t0 = find_fp_timing_terminator(block, size);
385 if (!t0)
386 return NULL;
387
388 size -= t0 - block - 2;
389 t1 = find_fp_timing_terminator(t0 + 2, size);
390 if (!t1)
391 return NULL;
392
393 size = t1 - t0;
394 if (size * 16 > block_size)
395 return NULL;
396
397 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
398 if (!ptrs_block)
399 return NULL;
400
401 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
402 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
403 ptrs = ptrs_block + 3;
404
405 table_size = sizeof(struct lvds_pnp_id);
406 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
407
408 table_size = sizeof(struct lvds_dvo_timing);
409 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
410
411 table_size = t0 - block + 2;
412 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
413
414 if (ptrs->ptr[0].fp_timing.table_size)
415 ptrs->lvds_entries++;
416 if (ptrs->ptr[0].dvo_timing.table_size)
417 ptrs->lvds_entries++;
418 if (ptrs->ptr[0].panel_pnp_id.table_size)
419 ptrs->lvds_entries++;
420
421 if (size != 0 || ptrs->lvds_entries != 3) {
422 kfree(ptrs);
423 return NULL;
424 }
425
426 size = t1 - t0;
427 for (i = 1; i < 16; i++) {
428 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
429 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
430 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
431 }
432
433 size = t1 - t0;
434 table_size = sizeof(struct lvds_lfp_panel_name);
435
436 if (16 * (size + table_size) <= block_size) {
437 ptrs->panel_name.table_size = table_size;
438 ptrs->panel_name.offset = size * 16;
439 }
440
441 offset = block - bdb;
442
443 for (i = 0; i < 16; i++) {
444 ptrs->ptr[i].fp_timing.offset += offset;
445 ptrs->ptr[i].dvo_timing.offset += offset;
446 ptrs->ptr[i].panel_pnp_id.offset += offset;
447 }
448
449 if (ptrs->panel_name.table_size)
450 ptrs->panel_name.offset += offset;
451
452 return ptrs_block;
453 }
454
455 static void
init_bdb_block(struct drm_i915_private * i915,const void * bdb,enum bdb_block_id section_id,size_t min_size)456 init_bdb_block(struct drm_i915_private *i915,
457 const void *bdb, enum bdb_block_id section_id,
458 size_t min_size)
459 {
460 struct bdb_block_entry *entry;
461 void *temp_block = NULL;
462 const void *block;
463 size_t block_size;
464
465 block = find_raw_section(bdb, section_id);
466
467 /* Modern VBTs lack the LFP data table pointers block, make one up */
468 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
469 temp_block = generate_lfp_data_ptrs(i915, bdb);
470 if (temp_block)
471 block = temp_block + 3;
472 }
473 if (!block)
474 return;
475
476 drm_WARN(&i915->drm, min_size == 0,
477 "Block %d min_size is zero\n", section_id);
478
479 block_size = get_blocksize(block);
480
481 /*
482 * Version number and new block size are considered
483 * part of the header for MIPI sequenece block v3+.
484 */
485 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
486 block_size += 5;
487
488 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
489 GFP_KERNEL);
490 if (!entry) {
491 kfree(temp_block);
492 return;
493 }
494
495 entry->section_id = section_id;
496 memcpy(entry->data, block - 3, block_size + 3);
497
498 kfree(temp_block);
499
500 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
501 section_id, block_size, min_size);
502
503 if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
504 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
505 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
506 kfree(entry);
507 return;
508 }
509
510 list_add_tail(&entry->node, &i915->vbt.bdb_blocks);
511 }
512
init_bdb_blocks(struct drm_i915_private * i915,const void * bdb)513 static void init_bdb_blocks(struct drm_i915_private *i915,
514 const void *bdb)
515 {
516 int i;
517
518 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
519 enum bdb_block_id section_id = bdb_blocks[i].section_id;
520 size_t min_size = bdb_blocks[i].min_size;
521
522 if (section_id == BDB_LVDS_LFP_DATA)
523 min_size = lfp_data_min_size(i915);
524
525 init_bdb_block(i915, bdb, section_id, min_size);
526 }
527 }
528
529 static void
fill_detail_timing_data(struct drm_display_mode * panel_fixed_mode,const struct lvds_dvo_timing * dvo_timing)530 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
531 const struct lvds_dvo_timing *dvo_timing)
532 {
533 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
534 dvo_timing->hactive_lo;
535 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
536 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
537 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
538 ((dvo_timing->hsync_pulse_width_hi << 8) |
539 dvo_timing->hsync_pulse_width_lo);
540 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
541 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
542
543 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
544 dvo_timing->vactive_lo;
545 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
546 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
547 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
548 ((dvo_timing->vsync_pulse_width_hi << 4) |
549 dvo_timing->vsync_pulse_width_lo);
550 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
551 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
552 panel_fixed_mode->clock = dvo_timing->clock * 10;
553 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
554
555 if (dvo_timing->hsync_positive)
556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
557 else
558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
559
560 if (dvo_timing->vsync_positive)
561 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
562 else
563 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
564
565 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
566 dvo_timing->himage_lo;
567 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
568 dvo_timing->vimage_lo;
569
570 /* Some VBTs have bogus h/vtotal values */
571 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
572 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
573 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
574 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
575
576 drm_mode_set_name(panel_fixed_mode);
577 }
578
579 static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)580 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
581 const struct bdb_lvds_lfp_data_ptrs *ptrs,
582 int index)
583 {
584 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
585 }
586
587 static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)588 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
589 const struct bdb_lvds_lfp_data_ptrs *ptrs,
590 int index)
591 {
592 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
593 }
594
595 static const struct bdb_lvds_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs)596 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
597 const struct bdb_lvds_lfp_data_ptrs *ptrs)
598 {
599 if (ptrs->panel_name.table_size)
600 return (const void *)data + ptrs->panel_name.offset;
601 else
602 return NULL;
603 }
604
opregion_get_panel_type(struct drm_i915_private * i915)605 static int opregion_get_panel_type(struct drm_i915_private *i915)
606 {
607 return intel_opregion_get_panel_type(i915);
608 }
609
vbt_get_panel_type(struct drm_i915_private * i915)610 static int vbt_get_panel_type(struct drm_i915_private *i915)
611 {
612 const struct bdb_lvds_options *lvds_options;
613
614 lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
615 if (!lvds_options)
616 return -1;
617
618 if (lvds_options->panel_type > 0xf) {
619 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
620 lvds_options->panel_type);
621 return -1;
622 }
623
624 return lvds_options->panel_type;
625 }
626
fallback_get_panel_type(struct drm_i915_private * i915)627 static int fallback_get_panel_type(struct drm_i915_private *i915)
628 {
629 return 0;
630 }
631
632 enum panel_type {
633 PANEL_TYPE_OPREGION,
634 PANEL_TYPE_VBT,
635 PANEL_TYPE_FALLBACK,
636 };
637
get_panel_type(struct drm_i915_private * i915)638 static int get_panel_type(struct drm_i915_private *i915)
639 {
640 struct {
641 const char *name;
642 int (*get_panel_type)(struct drm_i915_private *i915);
643 int panel_type;
644 } panel_types[] = {
645 [PANEL_TYPE_OPREGION] = {
646 .name = "OpRegion",
647 .get_panel_type = opregion_get_panel_type,
648 },
649 [PANEL_TYPE_VBT] = {
650 .name = "VBT",
651 .get_panel_type = vbt_get_panel_type,
652 },
653 [PANEL_TYPE_FALLBACK] = {
654 .name = "fallback",
655 .get_panel_type = fallback_get_panel_type,
656 },
657 };
658 int i;
659
660 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
661 panel_types[i].panel_type = panel_types[i].get_panel_type(i915);
662
663 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf);
664
665 if (panel_types[i].panel_type >= 0)
666 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
667 panel_types[i].name, panel_types[i].panel_type);
668 }
669
670 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
671 i = PANEL_TYPE_OPREGION;
672 else if (panel_types[PANEL_TYPE_VBT].panel_type >= 0)
673 i = PANEL_TYPE_VBT;
674 else
675 i = PANEL_TYPE_FALLBACK;
676
677 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
678 panel_types[i].name, panel_types[i].panel_type);
679
680 return panel_types[i].panel_type;
681 }
682
683 /* Parse general panel options */
684 static void
parse_panel_options(struct drm_i915_private * i915)685 parse_panel_options(struct drm_i915_private *i915)
686 {
687 const struct bdb_lvds_options *lvds_options;
688 int panel_type;
689 int drrs_mode;
690
691 lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
692 if (!lvds_options)
693 return;
694
695 i915->vbt.lvds_dither = lvds_options->pixel_dither;
696
697 panel_type = get_panel_type(i915);
698
699 i915->vbt.panel_type = panel_type;
700
701 drrs_mode = (lvds_options->dps_panel_type_bits
702 >> (panel_type * 2)) & MODE_MASK;
703 /*
704 * VBT has static DRRS = 0 and seamless DRRS = 2.
705 * The below piece of code is required to adjust vbt.drrs_type
706 * to match the enum drrs_support_type.
707 */
708 switch (drrs_mode) {
709 case 0:
710 i915->vbt.drrs_type = DRRS_TYPE_STATIC;
711 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
712 break;
713 case 2:
714 i915->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
715 drm_dbg_kms(&i915->drm,
716 "DRRS supported mode is seamless\n");
717 break;
718 default:
719 i915->vbt.drrs_type = DRRS_TYPE_NONE;
720 drm_dbg_kms(&i915->drm,
721 "DRRS not supported (VBT input)\n");
722 break;
723 }
724 }
725
726 static void
parse_lfp_panel_dtd(struct drm_i915_private * i915,const struct bdb_lvds_lfp_data * lvds_lfp_data,const struct bdb_lvds_lfp_data_ptrs * lvds_lfp_data_ptrs)727 parse_lfp_panel_dtd(struct drm_i915_private *i915,
728 const struct bdb_lvds_lfp_data *lvds_lfp_data,
729 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
730 {
731 const struct lvds_dvo_timing *panel_dvo_timing;
732 const struct lvds_fp_timing *fp_timing;
733 struct drm_display_mode *panel_fixed_mode;
734 int panel_type = i915->vbt.panel_type;
735
736 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
737 lvds_lfp_data_ptrs,
738 panel_type);
739
740 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
741 if (!panel_fixed_mode)
742 return;
743
744 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
745
746 i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
747
748 drm_dbg_kms(&i915->drm,
749 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
750 DRM_MODE_ARG(panel_fixed_mode));
751
752 fp_timing = get_lvds_fp_timing(lvds_lfp_data,
753 lvds_lfp_data_ptrs,
754 panel_type);
755
756 /* check the resolution, just to be sure */
757 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
758 fp_timing->y_res == panel_fixed_mode->vdisplay) {
759 i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
760 drm_dbg_kms(&i915->drm,
761 "VBT initial LVDS value %x\n",
762 i915->vbt.bios_lvds_val);
763 }
764 }
765
766 static void
parse_lfp_data(struct drm_i915_private * i915)767 parse_lfp_data(struct drm_i915_private *i915)
768 {
769 const struct bdb_lvds_lfp_data *data;
770 const struct bdb_lvds_lfp_data_tail *tail;
771 const struct bdb_lvds_lfp_data_ptrs *ptrs;
772 int panel_type = i915->vbt.panel_type;
773
774 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
775 if (!ptrs)
776 return;
777
778 data = find_section(i915, BDB_LVDS_LFP_DATA);
779 if (!data)
780 return;
781
782 if (!i915->vbt.lfp_lvds_vbt_mode)
783 parse_lfp_panel_dtd(i915, data, ptrs);
784
785 tail = get_lfp_data_tail(data, ptrs);
786 if (!tail)
787 return;
788
789 if (i915->vbt.version >= 188) {
790 i915->vbt.seamless_drrs_min_refresh_rate =
791 tail->seamless_drrs_min_refresh_rate[panel_type];
792 drm_dbg_kms(&i915->drm,
793 "Seamless DRRS min refresh rate: %d Hz\n",
794 i915->vbt.seamless_drrs_min_refresh_rate);
795 }
796 }
797
798 static void
parse_generic_dtd(struct drm_i915_private * i915)799 parse_generic_dtd(struct drm_i915_private *i915)
800 {
801 const struct bdb_generic_dtd *generic_dtd;
802 const struct generic_dtd_entry *dtd;
803 struct drm_display_mode *panel_fixed_mode;
804 int num_dtd;
805
806 /*
807 * Older VBTs provided DTD information for internal displays through
808 * the "LFP panel tables" block (42). As of VBT revision 229 the
809 * DTD information should be provided via a newer "generic DTD"
810 * block (58). Just to be safe, we'll try the new generic DTD block
811 * first on VBT >= 229, but still fall back to trying the old LFP
812 * block if that fails.
813 */
814 if (i915->vbt.version < 229)
815 return;
816
817 generic_dtd = find_section(i915, BDB_GENERIC_DTD);
818 if (!generic_dtd)
819 return;
820
821 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
822 drm_err(&i915->drm, "GDTD size %u is too small.\n",
823 generic_dtd->gdtd_size);
824 return;
825 } else if (generic_dtd->gdtd_size !=
826 sizeof(struct generic_dtd_entry)) {
827 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
828 generic_dtd->gdtd_size);
829 /* DTD has unknown fields, but keep going */
830 }
831
832 num_dtd = (get_blocksize(generic_dtd) -
833 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
834 if (i915->vbt.panel_type >= num_dtd) {
835 drm_err(&i915->drm,
836 "Panel type %d not found in table of %d DTD's\n",
837 i915->vbt.panel_type, num_dtd);
838 return;
839 }
840
841 dtd = &generic_dtd->dtd[i915->vbt.panel_type];
842
843 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
844 if (!panel_fixed_mode)
845 return;
846
847 panel_fixed_mode->hdisplay = dtd->hactive;
848 panel_fixed_mode->hsync_start =
849 panel_fixed_mode->hdisplay + dtd->hfront_porch;
850 panel_fixed_mode->hsync_end =
851 panel_fixed_mode->hsync_start + dtd->hsync;
852 panel_fixed_mode->htotal =
853 panel_fixed_mode->hdisplay + dtd->hblank;
854
855 panel_fixed_mode->vdisplay = dtd->vactive;
856 panel_fixed_mode->vsync_start =
857 panel_fixed_mode->vdisplay + dtd->vfront_porch;
858 panel_fixed_mode->vsync_end =
859 panel_fixed_mode->vsync_start + dtd->vsync;
860 panel_fixed_mode->vtotal =
861 panel_fixed_mode->vdisplay + dtd->vblank;
862
863 panel_fixed_mode->clock = dtd->pixel_clock;
864 panel_fixed_mode->width_mm = dtd->width_mm;
865 panel_fixed_mode->height_mm = dtd->height_mm;
866
867 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
868 drm_mode_set_name(panel_fixed_mode);
869
870 if (dtd->hsync_positive_polarity)
871 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
872 else
873 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
874
875 if (dtd->vsync_positive_polarity)
876 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
877 else
878 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
879
880 drm_dbg_kms(&i915->drm,
881 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
882 DRM_MODE_ARG(panel_fixed_mode));
883
884 i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
885 }
886
887 static void
parse_lfp_backlight(struct drm_i915_private * i915)888 parse_lfp_backlight(struct drm_i915_private *i915)
889 {
890 const struct bdb_lfp_backlight_data *backlight_data;
891 const struct lfp_backlight_data_entry *entry;
892 int panel_type = i915->vbt.panel_type;
893 u16 level;
894
895 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
896 if (!backlight_data)
897 return;
898
899 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
900 drm_dbg_kms(&i915->drm,
901 "Unsupported backlight data entry size %u\n",
902 backlight_data->entry_size);
903 return;
904 }
905
906 entry = &backlight_data->data[panel_type];
907
908 i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
909 if (!i915->vbt.backlight.present) {
910 drm_dbg_kms(&i915->drm,
911 "PWM backlight not present in VBT (type %u)\n",
912 entry->type);
913 return;
914 }
915
916 i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
917 if (i915->vbt.version >= 191) {
918 size_t exp_size;
919
920 if (i915->vbt.version >= 236)
921 exp_size = sizeof(struct bdb_lfp_backlight_data);
922 else if (i915->vbt.version >= 234)
923 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
924 else
925 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
926
927 if (get_blocksize(backlight_data) >= exp_size) {
928 const struct lfp_backlight_control_method *method;
929
930 method = &backlight_data->backlight_control[panel_type];
931 i915->vbt.backlight.type = method->type;
932 i915->vbt.backlight.controller = method->controller;
933 }
934 }
935
936 i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
937 i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
938
939 if (i915->vbt.version >= 234) {
940 u16 min_level;
941 bool scale;
942
943 level = backlight_data->brightness_level[panel_type].level;
944 min_level = backlight_data->brightness_min_level[panel_type].level;
945
946 if (i915->vbt.version >= 236)
947 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
948 else
949 scale = level > 255;
950
951 if (scale)
952 min_level = min_level / 255;
953
954 if (min_level > 255) {
955 drm_warn(&i915->drm, "Brightness min level > 255\n");
956 level = 255;
957 }
958 i915->vbt.backlight.min_brightness = min_level;
959
960 i915->vbt.backlight.brightness_precision_bits =
961 backlight_data->brightness_precision_bits[panel_type];
962 } else {
963 level = backlight_data->level[panel_type];
964 i915->vbt.backlight.min_brightness = entry->min_brightness;
965 }
966
967 drm_dbg_kms(&i915->drm,
968 "VBT backlight PWM modulation frequency %u Hz, "
969 "active %s, min brightness %u, level %u, controller %u\n",
970 i915->vbt.backlight.pwm_freq_hz,
971 i915->vbt.backlight.active_low_pwm ? "low" : "high",
972 i915->vbt.backlight.min_brightness,
973 level,
974 i915->vbt.backlight.controller);
975 }
976
977 /* Try to find sdvo panel data */
978 static void
parse_sdvo_panel_data(struct drm_i915_private * i915)979 parse_sdvo_panel_data(struct drm_i915_private *i915)
980 {
981 const struct bdb_sdvo_panel_dtds *dtds;
982 struct drm_display_mode *panel_fixed_mode;
983 int index;
984
985 index = i915->params.vbt_sdvo_panel_type;
986 if (index == -2) {
987 drm_dbg_kms(&i915->drm,
988 "Ignore SDVO panel mode from BIOS VBT tables.\n");
989 return;
990 }
991
992 if (index == -1) {
993 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
994
995 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
996 if (!sdvo_lvds_options)
997 return;
998
999 index = sdvo_lvds_options->panel_type;
1000 }
1001
1002 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1003 if (!dtds)
1004 return;
1005
1006 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1007 if (!panel_fixed_mode)
1008 return;
1009
1010 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1011
1012 i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1013
1014 drm_dbg_kms(&i915->drm,
1015 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1016 DRM_MODE_ARG(panel_fixed_mode));
1017 }
1018
intel_bios_ssc_frequency(struct drm_i915_private * i915,bool alternate)1019 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1020 bool alternate)
1021 {
1022 switch (DISPLAY_VER(i915)) {
1023 case 2:
1024 return alternate ? 66667 : 48000;
1025 case 3:
1026 case 4:
1027 return alternate ? 100000 : 96000;
1028 default:
1029 return alternate ? 100000 : 120000;
1030 }
1031 }
1032
1033 static void
parse_general_features(struct drm_i915_private * i915)1034 parse_general_features(struct drm_i915_private *i915)
1035 {
1036 const struct bdb_general_features *general;
1037
1038 general = find_section(i915, BDB_GENERAL_FEATURES);
1039 if (!general)
1040 return;
1041
1042 i915->vbt.int_tv_support = general->int_tv_support;
1043 /* int_crt_support can't be trusted on earlier platforms */
1044 if (i915->vbt.version >= 155 &&
1045 (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1046 i915->vbt.int_crt_support = general->int_crt_support;
1047 i915->vbt.lvds_use_ssc = general->enable_ssc;
1048 i915->vbt.lvds_ssc_freq =
1049 intel_bios_ssc_frequency(i915, general->ssc_freq);
1050 i915->vbt.display_clock_mode = general->display_clock_mode;
1051 i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1052 if (i915->vbt.version >= 181) {
1053 i915->vbt.orientation = general->rotate_180 ?
1054 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1055 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1056 } else {
1057 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1058 }
1059
1060 if (i915->vbt.version >= 249 && general->afc_startup_config) {
1061 i915->vbt.override_afc_startup = true;
1062 i915->vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1063 }
1064
1065 drm_dbg_kms(&i915->drm,
1066 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1067 i915->vbt.int_tv_support,
1068 i915->vbt.int_crt_support,
1069 i915->vbt.lvds_use_ssc,
1070 i915->vbt.lvds_ssc_freq,
1071 i915->vbt.display_clock_mode,
1072 i915->vbt.fdi_rx_polarity_inverted);
1073 }
1074
1075 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1076 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1077 {
1078 return (const void *) &defs->devices[i * defs->child_dev_size];
1079 }
1080
1081 static void
parse_sdvo_device_mapping(struct drm_i915_private * i915)1082 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1083 {
1084 struct sdvo_device_mapping *mapping;
1085 const struct intel_bios_encoder_data *devdata;
1086 const struct child_device_config *child;
1087 int count = 0;
1088
1089 /*
1090 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1091 * accurate and doesn't have to be, as long as it's not too strict.
1092 */
1093 if (!IS_DISPLAY_VER(i915, 3, 7)) {
1094 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1095 return;
1096 }
1097
1098 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1099 child = &devdata->child;
1100
1101 if (child->slave_addr != SLAVE_ADDR1 &&
1102 child->slave_addr != SLAVE_ADDR2) {
1103 /*
1104 * If the slave address is neither 0x70 nor 0x72,
1105 * it is not a SDVO device. Skip it.
1106 */
1107 continue;
1108 }
1109 if (child->dvo_port != DEVICE_PORT_DVOB &&
1110 child->dvo_port != DEVICE_PORT_DVOC) {
1111 /* skip the incorrect SDVO port */
1112 drm_dbg_kms(&i915->drm,
1113 "Incorrect SDVO port. Skip it\n");
1114 continue;
1115 }
1116 drm_dbg_kms(&i915->drm,
1117 "the SDVO device with slave addr %2x is found on"
1118 " %s port\n",
1119 child->slave_addr,
1120 (child->dvo_port == DEVICE_PORT_DVOB) ?
1121 "SDVOB" : "SDVOC");
1122 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
1123 if (!mapping->initialized) {
1124 mapping->dvo_port = child->dvo_port;
1125 mapping->slave_addr = child->slave_addr;
1126 mapping->dvo_wiring = child->dvo_wiring;
1127 mapping->ddc_pin = child->ddc_pin;
1128 mapping->i2c_pin = child->i2c_pin;
1129 mapping->initialized = 1;
1130 drm_dbg_kms(&i915->drm,
1131 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1132 mapping->dvo_port, mapping->slave_addr,
1133 mapping->dvo_wiring, mapping->ddc_pin,
1134 mapping->i2c_pin);
1135 } else {
1136 drm_dbg_kms(&i915->drm,
1137 "Maybe one SDVO port is shared by "
1138 "two SDVO device.\n");
1139 }
1140 if (child->slave2_addr) {
1141 /* Maybe this is a SDVO device with multiple inputs */
1142 /* And the mapping info is not added */
1143 drm_dbg_kms(&i915->drm,
1144 "there exists the slave2_addr. Maybe this"
1145 " is a SDVO device with multiple inputs.\n");
1146 }
1147 count++;
1148 }
1149
1150 if (!count) {
1151 /* No SDVO device info is found */
1152 drm_dbg_kms(&i915->drm,
1153 "No SDVO device info is found in VBT\n");
1154 }
1155 }
1156
1157 static void
parse_driver_features(struct drm_i915_private * i915)1158 parse_driver_features(struct drm_i915_private *i915)
1159 {
1160 const struct bdb_driver_features *driver;
1161
1162 driver = find_section(i915, BDB_DRIVER_FEATURES);
1163 if (!driver)
1164 return;
1165
1166 if (DISPLAY_VER(i915) >= 5) {
1167 /*
1168 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1169 * to mean "eDP". The VBT spec doesn't agree with that
1170 * interpretation, but real world VBTs seem to.
1171 */
1172 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1173 i915->vbt.int_lvds_support = 0;
1174 } else {
1175 /*
1176 * FIXME it's not clear which BDB version has the LVDS config
1177 * bits defined. Revision history in the VBT spec says:
1178 * "0.92 | Add two definitions for VBT value of LVDS Active
1179 * Config (00b and 11b values defined) | 06/13/2005"
1180 * but does not the specify the BDB version.
1181 *
1182 * So far version 134 (on i945gm) is the oldest VBT observed
1183 * in the wild with the bits correctly populated. Version
1184 * 108 (on i85x) does not have the bits correctly populated.
1185 */
1186 if (i915->vbt.version >= 134 &&
1187 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1188 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1189 i915->vbt.int_lvds_support = 0;
1190 }
1191
1192 if (i915->vbt.version < 228) {
1193 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1194 driver->drrs_enabled);
1195 /*
1196 * If DRRS is not supported, drrs_type has to be set to 0.
1197 * This is because, VBT is configured in such a way that
1198 * static DRRS is 0 and DRRS not supported is represented by
1199 * driver->drrs_enabled=false
1200 */
1201 if (!driver->drrs_enabled)
1202 i915->vbt.drrs_type = DRRS_TYPE_NONE;
1203
1204 i915->vbt.psr.enable = driver->psr_enabled;
1205 }
1206 }
1207
1208 static void
parse_power_conservation_features(struct drm_i915_private * i915)1209 parse_power_conservation_features(struct drm_i915_private *i915)
1210 {
1211 const struct bdb_lfp_power *power;
1212 u8 panel_type = i915->vbt.panel_type;
1213
1214 if (i915->vbt.version < 228)
1215 return;
1216
1217 power = find_section(i915, BDB_LFP_POWER);
1218 if (!power)
1219 return;
1220
1221 i915->vbt.psr.enable = power->psr & BIT(panel_type);
1222
1223 /*
1224 * If DRRS is not supported, drrs_type has to be set to 0.
1225 * This is because, VBT is configured in such a way that
1226 * static DRRS is 0 and DRRS not supported is represented by
1227 * power->drrs & BIT(panel_type)=false
1228 */
1229 if (!(power->drrs & BIT(panel_type)))
1230 i915->vbt.drrs_type = DRRS_TYPE_NONE;
1231
1232 if (i915->vbt.version >= 232)
1233 i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
1234 }
1235
1236 static void
parse_edp(struct drm_i915_private * i915)1237 parse_edp(struct drm_i915_private *i915)
1238 {
1239 const struct bdb_edp *edp;
1240 const struct edp_power_seq *edp_pps;
1241 const struct edp_fast_link_params *edp_link_params;
1242 int panel_type = i915->vbt.panel_type;
1243
1244 edp = find_section(i915, BDB_EDP);
1245 if (!edp)
1246 return;
1247
1248 switch ((edp->color_depth >> (panel_type * 2)) & 3) {
1249 case EDP_18BPP:
1250 i915->vbt.edp.bpp = 18;
1251 break;
1252 case EDP_24BPP:
1253 i915->vbt.edp.bpp = 24;
1254 break;
1255 case EDP_30BPP:
1256 i915->vbt.edp.bpp = 30;
1257 break;
1258 }
1259
1260 /* Get the eDP sequencing and link info */
1261 edp_pps = &edp->power_seqs[panel_type];
1262 edp_link_params = &edp->fast_link_params[panel_type];
1263
1264 i915->vbt.edp.pps = *edp_pps;
1265
1266 switch (edp_link_params->rate) {
1267 case EDP_RATE_1_62:
1268 i915->vbt.edp.rate = DP_LINK_BW_1_62;
1269 break;
1270 case EDP_RATE_2_7:
1271 i915->vbt.edp.rate = DP_LINK_BW_2_7;
1272 break;
1273 default:
1274 drm_dbg_kms(&i915->drm,
1275 "VBT has unknown eDP link rate value %u\n",
1276 edp_link_params->rate);
1277 break;
1278 }
1279
1280 switch (edp_link_params->lanes) {
1281 case EDP_LANE_1:
1282 i915->vbt.edp.lanes = 1;
1283 break;
1284 case EDP_LANE_2:
1285 i915->vbt.edp.lanes = 2;
1286 break;
1287 case EDP_LANE_4:
1288 i915->vbt.edp.lanes = 4;
1289 break;
1290 default:
1291 drm_dbg_kms(&i915->drm,
1292 "VBT has unknown eDP lane count value %u\n",
1293 edp_link_params->lanes);
1294 break;
1295 }
1296
1297 switch (edp_link_params->preemphasis) {
1298 case EDP_PREEMPHASIS_NONE:
1299 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1300 break;
1301 case EDP_PREEMPHASIS_3_5dB:
1302 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1303 break;
1304 case EDP_PREEMPHASIS_6dB:
1305 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1306 break;
1307 case EDP_PREEMPHASIS_9_5dB:
1308 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1309 break;
1310 default:
1311 drm_dbg_kms(&i915->drm,
1312 "VBT has unknown eDP pre-emphasis value %u\n",
1313 edp_link_params->preemphasis);
1314 break;
1315 }
1316
1317 switch (edp_link_params->vswing) {
1318 case EDP_VSWING_0_4V:
1319 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1320 break;
1321 case EDP_VSWING_0_6V:
1322 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1323 break;
1324 case EDP_VSWING_0_8V:
1325 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1326 break;
1327 case EDP_VSWING_1_2V:
1328 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1329 break;
1330 default:
1331 drm_dbg_kms(&i915->drm,
1332 "VBT has unknown eDP voltage swing value %u\n",
1333 edp_link_params->vswing);
1334 break;
1335 }
1336
1337 if (i915->vbt.version >= 173) {
1338 u8 vswing;
1339
1340 /* Don't read from VBT if module parameter has valid value*/
1341 if (i915->params.edp_vswing) {
1342 i915->vbt.edp.low_vswing =
1343 i915->params.edp_vswing == 1;
1344 } else {
1345 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1346 i915->vbt.edp.low_vswing = vswing == 0;
1347 }
1348 }
1349
1350 i915->vbt.edp.drrs_msa_timing_delay =
1351 (edp->sdrrs_msa_timing_delay >> (panel_type * 2)) & 3;
1352 }
1353
1354 static void
parse_psr(struct drm_i915_private * i915)1355 parse_psr(struct drm_i915_private *i915)
1356 {
1357 const struct bdb_psr *psr;
1358 const struct psr_table *psr_table;
1359 int panel_type = i915->vbt.panel_type;
1360
1361 psr = find_section(i915, BDB_PSR);
1362 if (!psr) {
1363 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1364 return;
1365 }
1366
1367 psr_table = &psr->psr_table[panel_type];
1368
1369 i915->vbt.psr.full_link = psr_table->full_link;
1370 i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1371
1372 /* Allowed VBT values goes from 0 to 15 */
1373 i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1374 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1375
1376 /*
1377 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1378 * Old decimal value is wake up time in multiples of 100 us.
1379 */
1380 if (i915->vbt.version >= 205 &&
1381 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1382 switch (psr_table->tp1_wakeup_time) {
1383 case 0:
1384 i915->vbt.psr.tp1_wakeup_time_us = 500;
1385 break;
1386 case 1:
1387 i915->vbt.psr.tp1_wakeup_time_us = 100;
1388 break;
1389 case 3:
1390 i915->vbt.psr.tp1_wakeup_time_us = 0;
1391 break;
1392 default:
1393 drm_dbg_kms(&i915->drm,
1394 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1395 psr_table->tp1_wakeup_time);
1396 fallthrough;
1397 case 2:
1398 i915->vbt.psr.tp1_wakeup_time_us = 2500;
1399 break;
1400 }
1401
1402 switch (psr_table->tp2_tp3_wakeup_time) {
1403 case 0:
1404 i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1405 break;
1406 case 1:
1407 i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1408 break;
1409 case 3:
1410 i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1411 break;
1412 default:
1413 drm_dbg_kms(&i915->drm,
1414 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1415 psr_table->tp2_tp3_wakeup_time);
1416 fallthrough;
1417 case 2:
1418 i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1419 break;
1420 }
1421 } else {
1422 i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1423 i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1424 }
1425
1426 if (i915->vbt.version >= 226) {
1427 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1428
1429 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
1430 switch (wakeup_time) {
1431 case 0:
1432 wakeup_time = 500;
1433 break;
1434 case 1:
1435 wakeup_time = 100;
1436 break;
1437 case 3:
1438 wakeup_time = 50;
1439 break;
1440 default:
1441 case 2:
1442 wakeup_time = 2500;
1443 break;
1444 }
1445 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1446 } else {
1447 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1448 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
1449 }
1450 }
1451
parse_dsi_backlight_ports(struct drm_i915_private * i915,u16 version,enum port port)1452 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1453 u16 version, enum port port)
1454 {
1455 if (!i915->vbt.dsi.config->dual_link || version < 197) {
1456 i915->vbt.dsi.bl_ports = BIT(port);
1457 if (i915->vbt.dsi.config->cabc_supported)
1458 i915->vbt.dsi.cabc_ports = BIT(port);
1459
1460 return;
1461 }
1462
1463 switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1464 case DL_DCS_PORT_A:
1465 i915->vbt.dsi.bl_ports = BIT(PORT_A);
1466 break;
1467 case DL_DCS_PORT_C:
1468 i915->vbt.dsi.bl_ports = BIT(PORT_C);
1469 break;
1470 default:
1471 case DL_DCS_PORT_A_AND_C:
1472 i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1473 break;
1474 }
1475
1476 if (!i915->vbt.dsi.config->cabc_supported)
1477 return;
1478
1479 switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1480 case DL_DCS_PORT_A:
1481 i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1482 break;
1483 case DL_DCS_PORT_C:
1484 i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1485 break;
1486 default:
1487 case DL_DCS_PORT_A_AND_C:
1488 i915->vbt.dsi.cabc_ports =
1489 BIT(PORT_A) | BIT(PORT_C);
1490 break;
1491 }
1492 }
1493
1494 static void
parse_mipi_config(struct drm_i915_private * i915)1495 parse_mipi_config(struct drm_i915_private *i915)
1496 {
1497 const struct bdb_mipi_config *start;
1498 const struct mipi_config *config;
1499 const struct mipi_pps_data *pps;
1500 int panel_type = i915->vbt.panel_type;
1501 enum port port;
1502
1503 /* parse MIPI blocks only if LFP type is MIPI */
1504 if (!intel_bios_is_dsi_present(i915, &port))
1505 return;
1506
1507 /* Initialize this to undefined indicating no generic MIPI support */
1508 i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1509
1510 /* Block #40 is already parsed and panel_fixed_mode is
1511 * stored in i915->lfp_lvds_vbt_mode
1512 * resuse this when needed
1513 */
1514
1515 /* Parse #52 for panel index used from panel_type already
1516 * parsed
1517 */
1518 start = find_section(i915, BDB_MIPI_CONFIG);
1519 if (!start) {
1520 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1521 return;
1522 }
1523
1524 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1525 panel_type);
1526
1527 /*
1528 * get hold of the correct configuration block and pps data as per
1529 * the panel_type as index
1530 */
1531 config = &start->config[panel_type];
1532 pps = &start->pps[panel_type];
1533
1534 /* store as of now full data. Trim when we realise all is not needed */
1535 i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1536 if (!i915->vbt.dsi.config)
1537 return;
1538
1539 i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1540 if (!i915->vbt.dsi.pps) {
1541 kfree(i915->vbt.dsi.config);
1542 return;
1543 }
1544
1545 parse_dsi_backlight_ports(i915, i915->vbt.version, port);
1546
1547 /* FIXME is the 90 vs. 270 correct? */
1548 switch (config->rotation) {
1549 case ENABLE_ROTATION_0:
1550 /*
1551 * Most (all?) VBTs claim 0 degrees despite having
1552 * an upside down panel, thus we do not trust this.
1553 */
1554 i915->vbt.dsi.orientation =
1555 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1556 break;
1557 case ENABLE_ROTATION_90:
1558 i915->vbt.dsi.orientation =
1559 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1560 break;
1561 case ENABLE_ROTATION_180:
1562 i915->vbt.dsi.orientation =
1563 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1564 break;
1565 case ENABLE_ROTATION_270:
1566 i915->vbt.dsi.orientation =
1567 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1568 break;
1569 }
1570
1571 /* We have mandatory mipi config blocks. Initialize as generic panel */
1572 i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1573 }
1574
1575 /* Find the sequence block and size for the given panel. */
1576 static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1577 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1578 u16 panel_id, u32 *seq_size)
1579 {
1580 u32 total = get_blocksize(sequence);
1581 const u8 *data = &sequence->data[0];
1582 u8 current_id;
1583 u32 current_size;
1584 int header_size = sequence->version >= 3 ? 5 : 3;
1585 int index = 0;
1586 int i;
1587
1588 /* skip new block size */
1589 if (sequence->version >= 3)
1590 data += 4;
1591
1592 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1593 if (index + header_size > total) {
1594 DRM_ERROR("Invalid sequence block (header)\n");
1595 return NULL;
1596 }
1597
1598 current_id = *(data + index);
1599 if (sequence->version >= 3)
1600 current_size = *((const u32 *)(data + index + 1));
1601 else
1602 current_size = *((const u16 *)(data + index + 1));
1603
1604 index += header_size;
1605
1606 if (index + current_size > total) {
1607 DRM_ERROR("Invalid sequence block\n");
1608 return NULL;
1609 }
1610
1611 if (current_id == panel_id) {
1612 *seq_size = current_size;
1613 return data + index;
1614 }
1615
1616 index += current_size;
1617 }
1618
1619 DRM_ERROR("Sequence block detected but no valid configuration\n");
1620
1621 return NULL;
1622 }
1623
goto_next_sequence(const u8 * data,int index,int total)1624 static int goto_next_sequence(const u8 *data, int index, int total)
1625 {
1626 u16 len;
1627
1628 /* Skip Sequence Byte. */
1629 for (index = index + 1; index < total; index += len) {
1630 u8 operation_byte = *(data + index);
1631 index++;
1632
1633 switch (operation_byte) {
1634 case MIPI_SEQ_ELEM_END:
1635 return index;
1636 case MIPI_SEQ_ELEM_SEND_PKT:
1637 if (index + 4 > total)
1638 return 0;
1639
1640 len = *((const u16 *)(data + index + 2)) + 4;
1641 break;
1642 case MIPI_SEQ_ELEM_DELAY:
1643 len = 4;
1644 break;
1645 case MIPI_SEQ_ELEM_GPIO:
1646 len = 2;
1647 break;
1648 case MIPI_SEQ_ELEM_I2C:
1649 if (index + 7 > total)
1650 return 0;
1651 len = *(data + index + 6) + 7;
1652 break;
1653 default:
1654 DRM_ERROR("Unknown operation byte\n");
1655 return 0;
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
goto_next_sequence_v3(const u8 * data,int index,int total)1662 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1663 {
1664 int seq_end;
1665 u16 len;
1666 u32 size_of_sequence;
1667
1668 /*
1669 * Could skip sequence based on Size of Sequence alone, but also do some
1670 * checking on the structure.
1671 */
1672 if (total < 5) {
1673 DRM_ERROR("Too small sequence size\n");
1674 return 0;
1675 }
1676
1677 /* Skip Sequence Byte. */
1678 index++;
1679
1680 /*
1681 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1682 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1683 * byte.
1684 */
1685 size_of_sequence = *((const u32 *)(data + index));
1686 index += 4;
1687
1688 seq_end = index + size_of_sequence;
1689 if (seq_end > total) {
1690 DRM_ERROR("Invalid sequence size\n");
1691 return 0;
1692 }
1693
1694 for (; index < total; index += len) {
1695 u8 operation_byte = *(data + index);
1696 index++;
1697
1698 if (operation_byte == MIPI_SEQ_ELEM_END) {
1699 if (index != seq_end) {
1700 DRM_ERROR("Invalid element structure\n");
1701 return 0;
1702 }
1703 return index;
1704 }
1705
1706 len = *(data + index);
1707 index++;
1708
1709 /*
1710 * FIXME: Would be nice to check elements like for v1/v2 in
1711 * goto_next_sequence() above.
1712 */
1713 switch (operation_byte) {
1714 case MIPI_SEQ_ELEM_SEND_PKT:
1715 case MIPI_SEQ_ELEM_DELAY:
1716 case MIPI_SEQ_ELEM_GPIO:
1717 case MIPI_SEQ_ELEM_I2C:
1718 case MIPI_SEQ_ELEM_SPI:
1719 case MIPI_SEQ_ELEM_PMIC:
1720 break;
1721 default:
1722 DRM_ERROR("Unknown operation byte %u\n",
1723 operation_byte);
1724 break;
1725 }
1726 }
1727
1728 return 0;
1729 }
1730
1731 /*
1732 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1733 * skip all delay + gpio operands and stop at the first DSI packet op.
1734 */
get_init_otp_deassert_fragment_len(struct drm_i915_private * i915)1735 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1736 {
1737 const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1738 int index, len;
1739
1740 if (drm_WARN_ON(&i915->drm,
1741 !data || i915->vbt.dsi.seq_version != 1))
1742 return 0;
1743
1744 /* index = 1 to skip sequence byte */
1745 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1746 switch (data[index]) {
1747 case MIPI_SEQ_ELEM_SEND_PKT:
1748 return index == 1 ? 0 : index;
1749 case MIPI_SEQ_ELEM_DELAY:
1750 len = 5; /* 1 byte for operand + uint32 */
1751 break;
1752 case MIPI_SEQ_ELEM_GPIO:
1753 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1754 break;
1755 default:
1756 return 0;
1757 }
1758 }
1759
1760 return 0;
1761 }
1762
1763 /*
1764 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1765 * The deassert must be done before calling intel_dsi_device_ready, so for
1766 * these devices we split the init OTP sequence into a deassert sequence and
1767 * the actual init OTP part.
1768 */
fixup_mipi_sequences(struct drm_i915_private * i915)1769 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1770 {
1771 u8 *init_otp;
1772 int len;
1773
1774 /* Limit this to VLV for now. */
1775 if (!IS_VALLEYVIEW(i915))
1776 return;
1777
1778 /* Limit this to v1 vid-mode sequences */
1779 if (i915->vbt.dsi.config->is_cmd_mode ||
1780 i915->vbt.dsi.seq_version != 1)
1781 return;
1782
1783 /* Only do this if there are otp and assert seqs and no deassert seq */
1784 if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1785 !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1786 i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1787 return;
1788
1789 /* The deassert-sequence ends at the first DSI packet */
1790 len = get_init_otp_deassert_fragment_len(i915);
1791 if (!len)
1792 return;
1793
1794 drm_dbg_kms(&i915->drm,
1795 "Using init OTP fragment to deassert reset\n");
1796
1797 /* Copy the fragment, update seq byte and terminate it */
1798 init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1799 i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1800 if (!i915->vbt.dsi.deassert_seq)
1801 return;
1802 i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1803 i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1804 /* Use the copy for deassert */
1805 i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1806 i915->vbt.dsi.deassert_seq;
1807 /* Replace the last byte of the fragment with init OTP seq byte */
1808 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1809 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1810 i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1811 }
1812
1813 static void
parse_mipi_sequence(struct drm_i915_private * i915)1814 parse_mipi_sequence(struct drm_i915_private *i915)
1815 {
1816 int panel_type = i915->vbt.panel_type;
1817 const struct bdb_mipi_sequence *sequence;
1818 const u8 *seq_data;
1819 u32 seq_size;
1820 u8 *data;
1821 int index = 0;
1822
1823 /* Only our generic panel driver uses the sequence block. */
1824 if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1825 return;
1826
1827 sequence = find_section(i915, BDB_MIPI_SEQUENCE);
1828 if (!sequence) {
1829 drm_dbg_kms(&i915->drm,
1830 "No MIPI Sequence found, parsing complete\n");
1831 return;
1832 }
1833
1834 /* Fail gracefully for forward incompatible sequence block. */
1835 if (sequence->version >= 4) {
1836 drm_err(&i915->drm,
1837 "Unable to parse MIPI Sequence Block v%u\n",
1838 sequence->version);
1839 return;
1840 }
1841
1842 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1843 sequence->version);
1844
1845 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1846 if (!seq_data)
1847 return;
1848
1849 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1850 if (!data)
1851 return;
1852
1853 /* Parse the sequences, store pointers to each sequence. */
1854 for (;;) {
1855 u8 seq_id = *(data + index);
1856 if (seq_id == MIPI_SEQ_END)
1857 break;
1858
1859 if (seq_id >= MIPI_SEQ_MAX) {
1860 drm_err(&i915->drm, "Unknown sequence %u\n",
1861 seq_id);
1862 goto err;
1863 }
1864
1865 /* Log about presence of sequences we won't run. */
1866 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1867 drm_dbg_kms(&i915->drm,
1868 "Unsupported sequence %u\n", seq_id);
1869
1870 i915->vbt.dsi.sequence[seq_id] = data + index;
1871
1872 if (sequence->version >= 3)
1873 index = goto_next_sequence_v3(data, index, seq_size);
1874 else
1875 index = goto_next_sequence(data, index, seq_size);
1876 if (!index) {
1877 drm_err(&i915->drm, "Invalid sequence %u\n",
1878 seq_id);
1879 goto err;
1880 }
1881 }
1882
1883 i915->vbt.dsi.data = data;
1884 i915->vbt.dsi.size = seq_size;
1885 i915->vbt.dsi.seq_version = sequence->version;
1886
1887 fixup_mipi_sequences(i915);
1888
1889 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1890 return;
1891
1892 err:
1893 kfree(data);
1894 memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1895 }
1896
1897 static void
parse_compression_parameters(struct drm_i915_private * i915)1898 parse_compression_parameters(struct drm_i915_private *i915)
1899 {
1900 const struct bdb_compression_parameters *params;
1901 struct intel_bios_encoder_data *devdata;
1902 const struct child_device_config *child;
1903 u16 block_size;
1904 int index;
1905
1906 if (i915->vbt.version < 198)
1907 return;
1908
1909 params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
1910 if (params) {
1911 /* Sanity checks */
1912 if (params->entry_size != sizeof(params->data[0])) {
1913 drm_dbg_kms(&i915->drm,
1914 "VBT: unsupported compression param entry size\n");
1915 return;
1916 }
1917
1918 block_size = get_blocksize(params);
1919 if (block_size < sizeof(*params)) {
1920 drm_dbg_kms(&i915->drm,
1921 "VBT: expected 16 compression param entries\n");
1922 return;
1923 }
1924 }
1925
1926 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1927 child = &devdata->child;
1928
1929 if (!child->compression_enable)
1930 continue;
1931
1932 if (!params) {
1933 drm_dbg_kms(&i915->drm,
1934 "VBT: compression params not available\n");
1935 continue;
1936 }
1937
1938 if (child->compression_method_cps) {
1939 drm_dbg_kms(&i915->drm,
1940 "VBT: CPS compression not supported\n");
1941 continue;
1942 }
1943
1944 index = child->compression_structure_index;
1945
1946 devdata->dsc = kmemdup(¶ms->data[index],
1947 sizeof(*devdata->dsc), GFP_KERNEL);
1948 }
1949 }
1950
translate_iboost(u8 val)1951 static u8 translate_iboost(u8 val)
1952 {
1953 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1954
1955 if (val >= ARRAY_SIZE(mapping)) {
1956 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1957 return 0;
1958 }
1959 return mapping[val];
1960 }
1961
1962 static const u8 cnp_ddc_pin_map[] = {
1963 [0] = 0, /* N/A */
1964 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1965 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1966 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1967 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1968 };
1969
1970 static const u8 icp_ddc_pin_map[] = {
1971 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1972 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1973 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1974 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1975 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1976 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1977 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1978 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1979 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1980 };
1981
1982 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1983 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1984 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1985 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1986 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1987 };
1988
1989 static const u8 adls_ddc_pin_map[] = {
1990 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1991 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1992 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1993 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1994 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1995 };
1996
1997 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1998 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1999 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2000 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2001 };
2002
2003 static const u8 adlp_ddc_pin_map[] = {
2004 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2005 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2006 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2007 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2008 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2009 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2010 };
2011
map_ddc_pin(struct drm_i915_private * i915,u8 vbt_pin)2012 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2013 {
2014 const u8 *ddc_pin_map;
2015 int n_entries;
2016
2017 if (IS_ALDERLAKE_P(i915)) {
2018 ddc_pin_map = adlp_ddc_pin_map;
2019 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2020 } else if (IS_ALDERLAKE_S(i915)) {
2021 ddc_pin_map = adls_ddc_pin_map;
2022 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2023 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2024 return vbt_pin;
2025 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2026 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2027 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2028 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2029 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2030 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2031 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2032 ddc_pin_map = icp_ddc_pin_map;
2033 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2034 } else if (HAS_PCH_CNP(i915)) {
2035 ddc_pin_map = cnp_ddc_pin_map;
2036 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2037 } else {
2038 /* Assuming direct map */
2039 return vbt_pin;
2040 }
2041
2042 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2043 return ddc_pin_map[vbt_pin];
2044
2045 drm_dbg_kms(&i915->drm,
2046 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2047 vbt_pin);
2048 return 0;
2049 }
2050
get_port_by_ddc_pin(struct drm_i915_private * i915,u8 ddc_pin)2051 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2052 {
2053 const struct intel_bios_encoder_data *devdata;
2054 enum port port;
2055
2056 if (!ddc_pin)
2057 return PORT_NONE;
2058
2059 for_each_port(port) {
2060 devdata = i915->vbt.ports[port];
2061
2062 if (devdata && ddc_pin == devdata->child.ddc_pin)
2063 return port;
2064 }
2065
2066 return PORT_NONE;
2067 }
2068
sanitize_ddc_pin(struct intel_bios_encoder_data * devdata,enum port port)2069 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2070 enum port port)
2071 {
2072 struct drm_i915_private *i915 = devdata->i915;
2073 struct child_device_config *child;
2074 u8 mapped_ddc_pin;
2075 enum port p;
2076
2077 if (!devdata->child.ddc_pin)
2078 return;
2079
2080 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2081 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2082 drm_dbg_kms(&i915->drm,
2083 "Port %c has invalid DDC pin %d, "
2084 "sticking to defaults\n",
2085 port_name(port), mapped_ddc_pin);
2086 devdata->child.ddc_pin = 0;
2087 return;
2088 }
2089
2090 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2091 if (p == PORT_NONE)
2092 return;
2093
2094 drm_dbg_kms(&i915->drm,
2095 "port %c trying to use the same DDC pin (0x%x) as port %c, "
2096 "disabling port %c DVI/HDMI support\n",
2097 port_name(port), mapped_ddc_pin,
2098 port_name(p), port_name(p));
2099
2100 /*
2101 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2102 * couldn't exist on the shared port. Otherwise they share the same ddc
2103 * pin and system couldn't communicate with them separately.
2104 *
2105 * Give inverse child device order the priority, last one wins. Yes,
2106 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2107 * port A and port E with the same AUX ch and we must pick port E :(
2108 */
2109 child = &i915->vbt.ports[p]->child;
2110
2111 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2112 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2113
2114 child->ddc_pin = 0;
2115 }
2116
get_port_by_aux_ch(struct drm_i915_private * i915,u8 aux_ch)2117 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2118 {
2119 const struct intel_bios_encoder_data *devdata;
2120 enum port port;
2121
2122 if (!aux_ch)
2123 return PORT_NONE;
2124
2125 for_each_port(port) {
2126 devdata = i915->vbt.ports[port];
2127
2128 if (devdata && aux_ch == devdata->child.aux_channel)
2129 return port;
2130 }
2131
2132 return PORT_NONE;
2133 }
2134
sanitize_aux_ch(struct intel_bios_encoder_data * devdata,enum port port)2135 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2136 enum port port)
2137 {
2138 struct drm_i915_private *i915 = devdata->i915;
2139 struct child_device_config *child;
2140 enum port p;
2141
2142 p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2143 if (p == PORT_NONE)
2144 return;
2145
2146 drm_dbg_kms(&i915->drm,
2147 "port %c trying to use the same AUX CH (0x%x) as port %c, "
2148 "disabling port %c DP support\n",
2149 port_name(port), devdata->child.aux_channel,
2150 port_name(p), port_name(p));
2151
2152 /*
2153 * If we have multiple ports supposedly sharing the aux channel, then DP
2154 * couldn't exist on the shared port. Otherwise they share the same aux
2155 * channel and system couldn't communicate with them separately.
2156 *
2157 * Give inverse child device order the priority, last one wins. Yes,
2158 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2159 * port A and port E with the same AUX ch and we must pick port E :(
2160 */
2161 child = &i915->vbt.ports[p]->child;
2162
2163 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2164 child->aux_channel = 0;
2165 }
2166
dvo_port_type(u8 dvo_port)2167 static u8 dvo_port_type(u8 dvo_port)
2168 {
2169 switch (dvo_port) {
2170 case DVO_PORT_HDMIA:
2171 case DVO_PORT_HDMIB:
2172 case DVO_PORT_HDMIC:
2173 case DVO_PORT_HDMID:
2174 case DVO_PORT_HDMIE:
2175 case DVO_PORT_HDMIF:
2176 case DVO_PORT_HDMIG:
2177 case DVO_PORT_HDMIH:
2178 case DVO_PORT_HDMII:
2179 return DVO_PORT_HDMIA;
2180 case DVO_PORT_DPA:
2181 case DVO_PORT_DPB:
2182 case DVO_PORT_DPC:
2183 case DVO_PORT_DPD:
2184 case DVO_PORT_DPE:
2185 case DVO_PORT_DPF:
2186 case DVO_PORT_DPG:
2187 case DVO_PORT_DPH:
2188 case DVO_PORT_DPI:
2189 return DVO_PORT_DPA;
2190 case DVO_PORT_MIPIA:
2191 case DVO_PORT_MIPIB:
2192 case DVO_PORT_MIPIC:
2193 case DVO_PORT_MIPID:
2194 return DVO_PORT_MIPIA;
2195 default:
2196 return dvo_port;
2197 }
2198 }
2199
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2200 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2201 const int port_mapping[][3], u8 dvo_port)
2202 {
2203 enum port port;
2204 int i;
2205
2206 for (port = PORT_A; port < n_ports; port++) {
2207 for (i = 0; i < n_dvo; i++) {
2208 if (port_mapping[port][i] == -1)
2209 break;
2210
2211 if (dvo_port == port_mapping[port][i])
2212 return port;
2213 }
2214 }
2215
2216 return PORT_NONE;
2217 }
2218
dvo_port_to_port(struct drm_i915_private * i915,u8 dvo_port)2219 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2220 u8 dvo_port)
2221 {
2222 /*
2223 * Each DDI port can have more than one value on the "DVO Port" field,
2224 * so look for all the possible values for each port.
2225 */
2226 static const int port_mapping[][3] = {
2227 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2228 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2229 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2230 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2231 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2232 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2233 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2234 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2235 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2236 };
2237 /*
2238 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2239 * map to DDI A,B,TC1,TC2 respectively.
2240 */
2241 static const int rkl_port_mapping[][3] = {
2242 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2243 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2244 [PORT_C] = { -1 },
2245 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2246 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2247 };
2248 /*
2249 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2250 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2251 */
2252 static const int adls_port_mapping[][3] = {
2253 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2254 [PORT_B] = { -1 },
2255 [PORT_C] = { -1 },
2256 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2257 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2258 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2259 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2260 };
2261 static const int xelpd_port_mapping[][3] = {
2262 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2263 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2264 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2265 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2266 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2267 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2268 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2269 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2270 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2271 };
2272
2273 if (DISPLAY_VER(i915) == 13)
2274 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2275 ARRAY_SIZE(xelpd_port_mapping[0]),
2276 xelpd_port_mapping,
2277 dvo_port);
2278 else if (IS_ALDERLAKE_S(i915))
2279 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2280 ARRAY_SIZE(adls_port_mapping[0]),
2281 adls_port_mapping,
2282 dvo_port);
2283 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2284 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2285 ARRAY_SIZE(rkl_port_mapping[0]),
2286 rkl_port_mapping,
2287 dvo_port);
2288 else
2289 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2290 ARRAY_SIZE(port_mapping[0]),
2291 port_mapping,
2292 dvo_port);
2293 }
2294
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2295 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2296 {
2297 switch (vbt_max_link_rate) {
2298 default:
2299 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2300 return 0;
2301 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2302 return 2000000;
2303 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2304 return 1350000;
2305 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2306 return 1000000;
2307 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2308 return 810000;
2309 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2310 return 540000;
2311 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2312 return 270000;
2313 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2314 return 162000;
2315 }
2316 }
2317
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2318 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2319 {
2320 switch (vbt_max_link_rate) {
2321 default:
2322 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2323 return 810000;
2324 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2325 return 540000;
2326 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2327 return 270000;
2328 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2329 return 162000;
2330 }
2331 }
2332
_intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2333 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2334 {
2335 if (!devdata || devdata->i915->vbt.version < 216)
2336 return 0;
2337
2338 if (devdata->i915->vbt.version >= 230)
2339 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2340 else
2341 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2342 }
2343
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2344 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2345 enum port port)
2346 {
2347 struct drm_i915_private *i915 = devdata->i915;
2348 bool is_hdmi;
2349
2350 if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2351 return;
2352
2353 if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
2354 return;
2355
2356 is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
2357
2358 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2359 is_hdmi ? "/HDMI" : "");
2360
2361 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2362 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2363 }
2364
2365 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2366 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2367 {
2368 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2369 }
2370
2371 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2372 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2373 {
2374 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2375 }
2376
2377 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2378 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2379 {
2380 return intel_bios_encoder_supports_dvi(devdata) &&
2381 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2382 }
2383
2384 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2385 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2386 {
2387 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2388 }
2389
2390 static bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2391 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2392 {
2393 return intel_bios_encoder_supports_dp(devdata) &&
2394 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2395 }
2396
_intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2397 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2398 {
2399 if (!devdata || devdata->i915->vbt.version < 158)
2400 return -1;
2401
2402 return devdata->child.hdmi_level_shifter_value;
2403 }
2404
_intel_bios_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2405 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2406 {
2407 if (!devdata || devdata->i915->vbt.version < 204)
2408 return 0;
2409
2410 switch (devdata->child.hdmi_max_data_rate) {
2411 default:
2412 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2413 fallthrough;
2414 case HDMI_MAX_DATA_RATE_PLATFORM:
2415 return 0;
2416 case HDMI_MAX_DATA_RATE_594:
2417 return 594000;
2418 case HDMI_MAX_DATA_RATE_340:
2419 return 340000;
2420 case HDMI_MAX_DATA_RATE_300:
2421 return 300000;
2422 case HDMI_MAX_DATA_RATE_297:
2423 return 297000;
2424 case HDMI_MAX_DATA_RATE_165:
2425 return 165000;
2426 }
2427 }
2428
is_port_valid(struct drm_i915_private * i915,enum port port)2429 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2430 {
2431 /*
2432 * On some ICL SKUs port F is not present, but broken VBTs mark
2433 * the port as present. Only try to initialize port F for the
2434 * SKUs that may actually have it.
2435 */
2436 if (port == PORT_F && IS_ICELAKE(i915))
2437 return IS_ICL_WITH_PORT_F(i915);
2438
2439 return true;
2440 }
2441
parse_ddi_port(struct drm_i915_private * i915,struct intel_bios_encoder_data * devdata)2442 static void parse_ddi_port(struct drm_i915_private *i915,
2443 struct intel_bios_encoder_data *devdata)
2444 {
2445 const struct child_device_config *child = &devdata->child;
2446 bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2447 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2448 enum port port;
2449
2450 port = dvo_port_to_port(i915, child->dvo_port);
2451 if (port == PORT_NONE)
2452 return;
2453
2454 if (!is_port_valid(i915, port)) {
2455 drm_dbg_kms(&i915->drm,
2456 "VBT reports port %c as supported, but that can't be true: skipping\n",
2457 port_name(port));
2458 return;
2459 }
2460
2461 if (i915->vbt.ports[port]) {
2462 drm_dbg_kms(&i915->drm,
2463 "More than one child device for port %c in VBT, using the first.\n",
2464 port_name(port));
2465 return;
2466 }
2467
2468 sanitize_device_type(devdata, port);
2469
2470 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2471 is_dp = intel_bios_encoder_supports_dp(devdata);
2472 is_crt = intel_bios_encoder_supports_crt(devdata);
2473 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2474 is_edp = intel_bios_encoder_supports_edp(devdata);
2475
2476 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2477 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2478
2479 drm_dbg_kms(&i915->drm,
2480 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2481 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2482 HAS_LSPCON(i915) && child->lspcon,
2483 supports_typec_usb, supports_tbt,
2484 devdata->dsc != NULL);
2485
2486 if (is_dvi)
2487 sanitize_ddc_pin(devdata, port);
2488
2489 if (is_dp)
2490 sanitize_aux_ch(devdata, port);
2491
2492 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2493 if (hdmi_level_shift >= 0) {
2494 drm_dbg_kms(&i915->drm,
2495 "Port %c VBT HDMI level shift: %d\n",
2496 port_name(port), hdmi_level_shift);
2497 }
2498
2499 max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2500 if (max_tmds_clock)
2501 drm_dbg_kms(&i915->drm,
2502 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2503 port_name(port), max_tmds_clock);
2504
2505 /* I_boost config for SKL and above */
2506 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2507 if (dp_boost_level)
2508 drm_dbg_kms(&i915->drm,
2509 "Port %c VBT (e)DP boost level: %d\n",
2510 port_name(port), dp_boost_level);
2511
2512 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2513 if (hdmi_boost_level)
2514 drm_dbg_kms(&i915->drm,
2515 "Port %c VBT HDMI boost level: %d\n",
2516 port_name(port), hdmi_boost_level);
2517
2518 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2519 if (dp_max_link_rate)
2520 drm_dbg_kms(&i915->drm,
2521 "Port %c VBT DP max link rate: %d\n",
2522 port_name(port), dp_max_link_rate);
2523
2524 i915->vbt.ports[port] = devdata;
2525 }
2526
has_ddi_port_info(struct drm_i915_private * i915)2527 static bool has_ddi_port_info(struct drm_i915_private *i915)
2528 {
2529 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2530 }
2531
parse_ddi_ports(struct drm_i915_private * i915)2532 static void parse_ddi_ports(struct drm_i915_private *i915)
2533 {
2534 struct intel_bios_encoder_data *devdata;
2535
2536 if (!has_ddi_port_info(i915))
2537 return;
2538
2539 list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2540 parse_ddi_port(i915, devdata);
2541 }
2542
2543 static void
parse_general_definitions(struct drm_i915_private * i915)2544 parse_general_definitions(struct drm_i915_private *i915)
2545 {
2546 const struct bdb_general_definitions *defs;
2547 struct intel_bios_encoder_data *devdata;
2548 const struct child_device_config *child;
2549 int i, child_device_num;
2550 u8 expected_size;
2551 u16 block_size;
2552 int bus_pin;
2553
2554 defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2555 if (!defs) {
2556 drm_dbg_kms(&i915->drm,
2557 "No general definition block is found, no devices defined.\n");
2558 return;
2559 }
2560
2561 block_size = get_blocksize(defs);
2562 if (block_size < sizeof(*defs)) {
2563 drm_dbg_kms(&i915->drm,
2564 "General definitions block too small (%u)\n",
2565 block_size);
2566 return;
2567 }
2568
2569 bus_pin = defs->crt_ddc_gmbus_pin;
2570 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2571 if (intel_gmbus_is_valid_pin(i915, bus_pin))
2572 i915->vbt.crt_ddc_pin = bus_pin;
2573
2574 if (i915->vbt.version < 106) {
2575 expected_size = 22;
2576 } else if (i915->vbt.version < 111) {
2577 expected_size = 27;
2578 } else if (i915->vbt.version < 195) {
2579 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2580 } else if (i915->vbt.version == 195) {
2581 expected_size = 37;
2582 } else if (i915->vbt.version <= 215) {
2583 expected_size = 38;
2584 } else if (i915->vbt.version <= 237) {
2585 expected_size = 39;
2586 } else {
2587 expected_size = sizeof(*child);
2588 BUILD_BUG_ON(sizeof(*child) < 39);
2589 drm_dbg(&i915->drm,
2590 "Expected child device config size for VBT version %u not known; assuming %u\n",
2591 i915->vbt.version, expected_size);
2592 }
2593
2594 /* Flag an error for unexpected size, but continue anyway. */
2595 if (defs->child_dev_size != expected_size)
2596 drm_err(&i915->drm,
2597 "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2598 defs->child_dev_size, expected_size, i915->vbt.version);
2599
2600 /* The legacy sized child device config is the minimum we need. */
2601 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2602 drm_dbg_kms(&i915->drm,
2603 "Child device config size %u is too small.\n",
2604 defs->child_dev_size);
2605 return;
2606 }
2607
2608 /* get the number of child device */
2609 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2610
2611 for (i = 0; i < child_device_num; i++) {
2612 child = child_device_ptr(defs, i);
2613 if (!child->device_type)
2614 continue;
2615
2616 drm_dbg_kms(&i915->drm,
2617 "Found VBT child device with type 0x%x\n",
2618 child->device_type);
2619
2620 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2621 if (!devdata)
2622 break;
2623
2624 devdata->i915 = i915;
2625
2626 /*
2627 * Copy as much as we know (sizeof) and is available
2628 * (child_dev_size) of the child device config. Accessing the
2629 * data must depend on VBT version.
2630 */
2631 memcpy(&devdata->child, child,
2632 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2633
2634 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2635 }
2636
2637 if (list_empty(&i915->vbt.display_devices))
2638 drm_dbg_kms(&i915->drm,
2639 "no child dev is parsed from VBT\n");
2640 }
2641
2642 /* Common defaults which may be overridden by VBT. */
2643 static void
init_vbt_defaults(struct drm_i915_private * i915)2644 init_vbt_defaults(struct drm_i915_private *i915)
2645 {
2646 i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2647
2648 /* Default to having backlight */
2649 i915->vbt.backlight.present = true;
2650
2651 /* LFP panel data */
2652 i915->vbt.lvds_dither = 1;
2653
2654 /* SDVO panel data */
2655 i915->vbt.sdvo_lvds_vbt_mode = NULL;
2656
2657 /* general features */
2658 i915->vbt.int_tv_support = 1;
2659 i915->vbt.int_crt_support = 1;
2660
2661 /* driver features */
2662 i915->vbt.int_lvds_support = 1;
2663
2664 /* Default to using SSC */
2665 i915->vbt.lvds_use_ssc = 1;
2666 /*
2667 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2668 * clock for LVDS.
2669 */
2670 i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2671 !HAS_PCH_SPLIT(i915));
2672 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2673 i915->vbt.lvds_ssc_freq);
2674 }
2675
2676 /* Defaults to initialize only if there is no VBT. */
2677 static void
init_vbt_missing_defaults(struct drm_i915_private * i915)2678 init_vbt_missing_defaults(struct drm_i915_private *i915)
2679 {
2680 enum port port;
2681 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2682 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2683
2684 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2685 return;
2686
2687 for_each_port_masked(port, ports) {
2688 struct intel_bios_encoder_data *devdata;
2689 struct child_device_config *child;
2690 enum phy phy = intel_port_to_phy(i915, port);
2691
2692 /*
2693 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2694 * to detect it.
2695 */
2696 if (intel_phy_is_tc(i915, phy))
2697 continue;
2698
2699 /* Create fake child device config */
2700 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2701 if (!devdata)
2702 break;
2703
2704 devdata->i915 = i915;
2705 child = &devdata->child;
2706
2707 if (port == PORT_F)
2708 child->dvo_port = DVO_PORT_HDMIF;
2709 else if (port == PORT_E)
2710 child->dvo_port = DVO_PORT_HDMIE;
2711 else
2712 child->dvo_port = DVO_PORT_HDMIA + port;
2713
2714 if (port != PORT_A && port != PORT_E)
2715 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2716
2717 if (port != PORT_E)
2718 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2719
2720 if (port == PORT_A)
2721 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2722
2723 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2724
2725 drm_dbg_kms(&i915->drm,
2726 "Generating default VBT child device with type 0x04%x on port %c\n",
2727 child->device_type, port_name(port));
2728 }
2729
2730 /* Bypass some minimum baseline VBT version checks */
2731 i915->vbt.version = 155;
2732 }
2733
get_bdb_header(const struct vbt_header * vbt)2734 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2735 {
2736 const void *_vbt = vbt;
2737
2738 return _vbt + vbt->bdb_offset;
2739 }
2740
2741 /**
2742 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2743 * @buf: pointer to a buffer to validate
2744 * @size: size of the buffer
2745 *
2746 * Returns true on valid VBT.
2747 */
intel_bios_is_valid_vbt(const void * buf,size_t size)2748 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2749 {
2750 const struct vbt_header *vbt = buf;
2751 const struct bdb_header *bdb;
2752
2753 if (!vbt)
2754 return false;
2755
2756 if (sizeof(struct vbt_header) > size) {
2757 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2758 return false;
2759 }
2760
2761 if (memcmp(vbt->signature, "$VBT", 4)) {
2762 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2763 return false;
2764 }
2765
2766 if (vbt->vbt_size > size) {
2767 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2768 return false;
2769 }
2770
2771 size = vbt->vbt_size;
2772
2773 if (range_overflows_t(size_t,
2774 vbt->bdb_offset,
2775 sizeof(struct bdb_header),
2776 size)) {
2777 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2778 return false;
2779 }
2780
2781 bdb = get_bdb_header(vbt);
2782 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2783 DRM_DEBUG_DRIVER("BDB incomplete\n");
2784 return false;
2785 }
2786
2787 return vbt;
2788 }
2789
spi_oprom_get_vbt(struct drm_i915_private * i915)2790 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2791 {
2792 u32 count, data, found, store = 0;
2793 u32 static_region, oprom_offset;
2794 u32 oprom_size = 0x200000;
2795 u16 vbt_size;
2796 u32 *vbt;
2797
2798 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2799 static_region &= OPTIONROM_SPI_REGIONID_MASK;
2800 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2801
2802 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2803 oprom_offset &= OROM_OFFSET_MASK;
2804
2805 for (count = 0; count < oprom_size; count += 4) {
2806 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
2807 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2808
2809 if (data == *((const u32 *)"$VBT")) {
2810 found = oprom_offset + count;
2811 break;
2812 }
2813 }
2814
2815 if (count >= oprom_size)
2816 goto err_not_found;
2817
2818 /* Get VBT size and allocate space for the VBT */
2819 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
2820 offsetof(struct vbt_header, vbt_size));
2821 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2822 vbt_size &= 0xffff;
2823
2824 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2825 if (!vbt)
2826 goto err_not_found;
2827
2828 for (count = 0; count < vbt_size; count += 4) {
2829 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
2830 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
2831 *(vbt + store++) = data;
2832 }
2833
2834 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2835 goto err_free_vbt;
2836
2837 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2838
2839 return (struct vbt_header *)vbt;
2840
2841 err_free_vbt:
2842 kfree(vbt);
2843 err_not_found:
2844 return NULL;
2845 }
2846
oprom_get_vbt(struct drm_i915_private * i915)2847 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2848 {
2849 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2850 void __iomem *p = NULL, *oprom;
2851 struct vbt_header *vbt;
2852 u16 vbt_size;
2853 size_t i, size;
2854
2855 oprom = pci_map_rom(pdev, &size);
2856 if (!oprom)
2857 return NULL;
2858
2859 /* Scour memory looking for the VBT signature. */
2860 for (i = 0; i + 4 < size; i += 4) {
2861 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2862 continue;
2863
2864 p = oprom + i;
2865 size -= i;
2866 break;
2867 }
2868
2869 if (!p)
2870 goto err_unmap_oprom;
2871
2872 if (sizeof(struct vbt_header) > size) {
2873 drm_dbg(&i915->drm, "VBT header incomplete\n");
2874 goto err_unmap_oprom;
2875 }
2876
2877 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2878 if (vbt_size > size) {
2879 drm_dbg(&i915->drm,
2880 "VBT incomplete (vbt_size overflows)\n");
2881 goto err_unmap_oprom;
2882 }
2883
2884 /* The rest will be validated by intel_bios_is_valid_vbt() */
2885 vbt = kmalloc(vbt_size, GFP_KERNEL);
2886 if (!vbt)
2887 goto err_unmap_oprom;
2888
2889 memcpy_fromio(vbt, p, vbt_size);
2890
2891 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2892 goto err_free_vbt;
2893
2894 pci_unmap_rom(pdev, oprom);
2895
2896 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2897
2898 return vbt;
2899
2900 err_free_vbt:
2901 kfree(vbt);
2902 err_unmap_oprom:
2903 pci_unmap_rom(pdev, oprom);
2904
2905 return NULL;
2906 }
2907
2908 /**
2909 * intel_bios_init - find VBT and initialize settings from the BIOS
2910 * @i915: i915 device instance
2911 *
2912 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2913 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2914 * initialize some defaults if the VBT is not present at all.
2915 */
intel_bios_init(struct drm_i915_private * i915)2916 void intel_bios_init(struct drm_i915_private *i915)
2917 {
2918 const struct vbt_header *vbt = i915->opregion.vbt;
2919 struct vbt_header *oprom_vbt = NULL;
2920 const struct bdb_header *bdb;
2921
2922 INIT_LIST_HEAD(&i915->vbt.display_devices);
2923 INIT_LIST_HEAD(&i915->vbt.bdb_blocks);
2924
2925 if (!HAS_DISPLAY(i915)) {
2926 drm_dbg_kms(&i915->drm,
2927 "Skipping VBT init due to disabled display.\n");
2928 return;
2929 }
2930
2931 init_vbt_defaults(i915);
2932
2933 /*
2934 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
2935 * PCI mapping
2936 */
2937 if (!vbt && IS_DGFX(i915)) {
2938 oprom_vbt = spi_oprom_get_vbt(i915);
2939 vbt = oprom_vbt;
2940 }
2941
2942 if (!vbt) {
2943 oprom_vbt = oprom_get_vbt(i915);
2944 vbt = oprom_vbt;
2945 }
2946
2947 if (!vbt)
2948 goto out;
2949
2950 bdb = get_bdb_header(vbt);
2951 i915->vbt.version = bdb->version;
2952
2953 drm_dbg_kms(&i915->drm,
2954 "VBT signature \"%.*s\", BDB version %d\n",
2955 (int)sizeof(vbt->signature), vbt->signature, i915->vbt.version);
2956
2957 init_bdb_blocks(i915, bdb);
2958
2959 /* Grab useful general definitions */
2960 parse_general_features(i915);
2961 parse_general_definitions(i915);
2962 parse_panel_options(i915);
2963 parse_generic_dtd(i915);
2964 parse_lfp_data(i915);
2965 parse_lfp_backlight(i915);
2966 parse_sdvo_panel_data(i915);
2967 parse_driver_features(i915);
2968 parse_power_conservation_features(i915);
2969 parse_edp(i915);
2970 parse_psr(i915);
2971 parse_mipi_config(i915);
2972 parse_mipi_sequence(i915);
2973
2974 /* Depends on child device list */
2975 parse_compression_parameters(i915);
2976
2977 out:
2978 if (!vbt) {
2979 drm_info(&i915->drm,
2980 "Failed to find VBIOS tables (VBT)\n");
2981 init_vbt_missing_defaults(i915);
2982 }
2983
2984 /* Further processing on pre-parsed or generated child device data */
2985 parse_sdvo_device_mapping(i915);
2986 parse_ddi_ports(i915);
2987
2988 kfree(oprom_vbt);
2989 }
2990
2991 /**
2992 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2993 * @i915: i915 device instance
2994 */
intel_bios_driver_remove(struct drm_i915_private * i915)2995 void intel_bios_driver_remove(struct drm_i915_private *i915)
2996 {
2997 struct intel_bios_encoder_data *devdata, *nd;
2998 struct bdb_block_entry *entry, *ne;
2999
3000 list_for_each_entry_safe(devdata, nd, &i915->vbt.display_devices, node) {
3001 list_del(&devdata->node);
3002 kfree(devdata->dsc);
3003 kfree(devdata);
3004 }
3005
3006 list_for_each_entry_safe(entry, ne, &i915->vbt.bdb_blocks, node) {
3007 list_del(&entry->node);
3008 kfree(entry);
3009 }
3010
3011 kfree(i915->vbt.sdvo_lvds_vbt_mode);
3012 i915->vbt.sdvo_lvds_vbt_mode = NULL;
3013 kfree(i915->vbt.lfp_lvds_vbt_mode);
3014 i915->vbt.lfp_lvds_vbt_mode = NULL;
3015 kfree(i915->vbt.dsi.data);
3016 i915->vbt.dsi.data = NULL;
3017 kfree(i915->vbt.dsi.pps);
3018 i915->vbt.dsi.pps = NULL;
3019 kfree(i915->vbt.dsi.config);
3020 i915->vbt.dsi.config = NULL;
3021 kfree(i915->vbt.dsi.deassert_seq);
3022 i915->vbt.dsi.deassert_seq = NULL;
3023 }
3024
3025 /**
3026 * intel_bios_is_tv_present - is integrated TV present in VBT
3027 * @i915: i915 device instance
3028 *
3029 * Return true if TV is present. If no child devices were parsed from VBT,
3030 * assume TV is present.
3031 */
intel_bios_is_tv_present(struct drm_i915_private * i915)3032 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3033 {
3034 const struct intel_bios_encoder_data *devdata;
3035 const struct child_device_config *child;
3036
3037 if (!i915->vbt.int_tv_support)
3038 return false;
3039
3040 if (list_empty(&i915->vbt.display_devices))
3041 return true;
3042
3043 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3044 child = &devdata->child;
3045
3046 /*
3047 * If the device type is not TV, continue.
3048 */
3049 switch (child->device_type) {
3050 case DEVICE_TYPE_INT_TV:
3051 case DEVICE_TYPE_TV:
3052 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3053 break;
3054 default:
3055 continue;
3056 }
3057 /* Only when the addin_offset is non-zero, it is regarded
3058 * as present.
3059 */
3060 if (child->addin_offset)
3061 return true;
3062 }
3063
3064 return false;
3065 }
3066
3067 /**
3068 * intel_bios_is_lvds_present - is LVDS present in VBT
3069 * @i915: i915 device instance
3070 * @i2c_pin: i2c pin for LVDS if present
3071 *
3072 * Return true if LVDS is present. If no child devices were parsed from VBT,
3073 * assume LVDS is present.
3074 */
intel_bios_is_lvds_present(struct drm_i915_private * i915,u8 * i2c_pin)3075 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3076 {
3077 const struct intel_bios_encoder_data *devdata;
3078 const struct child_device_config *child;
3079
3080 if (list_empty(&i915->vbt.display_devices))
3081 return true;
3082
3083 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3084 child = &devdata->child;
3085
3086 /* If the device type is not LFP, continue.
3087 * We have to check both the new identifiers as well as the
3088 * old for compatibility with some BIOSes.
3089 */
3090 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3091 child->device_type != DEVICE_TYPE_LFP)
3092 continue;
3093
3094 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3095 *i2c_pin = child->i2c_pin;
3096
3097 /* However, we cannot trust the BIOS writers to populate
3098 * the VBT correctly. Since LVDS requires additional
3099 * information from AIM blocks, a non-zero addin offset is
3100 * a good indicator that the LVDS is actually present.
3101 */
3102 if (child->addin_offset)
3103 return true;
3104
3105 /* But even then some BIOS writers perform some black magic
3106 * and instantiate the device without reference to any
3107 * additional data. Trust that if the VBT was written into
3108 * the OpRegion then they have validated the LVDS's existence.
3109 */
3110 if (i915->opregion.vbt)
3111 return true;
3112 }
3113
3114 return false;
3115 }
3116
3117 /**
3118 * intel_bios_is_port_present - is the specified digital port present
3119 * @i915: i915 device instance
3120 * @port: port to check
3121 *
3122 * Return true if the device in %port is present.
3123 */
intel_bios_is_port_present(struct drm_i915_private * i915,enum port port)3124 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3125 {
3126 if (WARN_ON(!has_ddi_port_info(i915)))
3127 return true;
3128
3129 return i915->vbt.ports[port];
3130 }
3131
3132 /**
3133 * intel_bios_is_port_edp - is the device in given port eDP
3134 * @i915: i915 device instance
3135 * @port: port to check
3136 *
3137 * Return true if the device in %port is eDP.
3138 */
intel_bios_is_port_edp(struct drm_i915_private * i915,enum port port)3139 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3140 {
3141 const struct intel_bios_encoder_data *devdata =
3142 intel_bios_encoder_data_lookup(i915, port);
3143
3144 return devdata && intel_bios_encoder_supports_edp(devdata);
3145 }
3146
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3147 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3148 {
3149 const struct child_device_config *child = &devdata->child;
3150
3151 if (!intel_bios_encoder_supports_dp(devdata) ||
3152 !intel_bios_encoder_supports_hdmi(devdata))
3153 return false;
3154
3155 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3156 return true;
3157
3158 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3159 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3160 child->aux_channel != 0)
3161 return true;
3162
3163 return false;
3164 }
3165
intel_bios_is_port_dp_dual_mode(struct drm_i915_private * i915,enum port port)3166 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3167 enum port port)
3168 {
3169 const struct intel_bios_encoder_data *devdata =
3170 intel_bios_encoder_data_lookup(i915, port);
3171
3172 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3173 }
3174
3175 /**
3176 * intel_bios_is_dsi_present - is DSI present in VBT
3177 * @i915: i915 device instance
3178 * @port: port for DSI if present
3179 *
3180 * Return true if DSI is present, and return the port in %port.
3181 */
intel_bios_is_dsi_present(struct drm_i915_private * i915,enum port * port)3182 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3183 enum port *port)
3184 {
3185 const struct intel_bios_encoder_data *devdata;
3186 const struct child_device_config *child;
3187 u8 dvo_port;
3188
3189 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3190 child = &devdata->child;
3191
3192 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3193 continue;
3194
3195 dvo_port = child->dvo_port;
3196
3197 if (dvo_port == DVO_PORT_MIPIA ||
3198 (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
3199 (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
3200 if (port)
3201 *port = dvo_port - DVO_PORT_MIPIA;
3202 return true;
3203 } else if (dvo_port == DVO_PORT_MIPIB ||
3204 dvo_port == DVO_PORT_MIPIC ||
3205 dvo_port == DVO_PORT_MIPID) {
3206 drm_dbg_kms(&i915->drm,
3207 "VBT has unsupported DSI port %c\n",
3208 port_name(dvo_port - DVO_PORT_MIPIA));
3209 }
3210 }
3211
3212 return false;
3213 }
3214
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3215 static void fill_dsc(struct intel_crtc_state *crtc_state,
3216 struct dsc_compression_parameters_entry *dsc,
3217 int dsc_max_bpc)
3218 {
3219 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3220 int bpc = 8;
3221
3222 vdsc_cfg->dsc_version_major = dsc->version_major;
3223 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3224
3225 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3226 bpc = 12;
3227 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3228 bpc = 10;
3229 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3230 bpc = 8;
3231 else
3232 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3233 dsc_max_bpc);
3234
3235 crtc_state->pipe_bpp = bpc * 3;
3236
3237 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3238 VBT_DSC_MAX_BPP(dsc->max_bpp));
3239
3240 /*
3241 * FIXME: This is ugly, and slice count should take DSC engine
3242 * throughput etc. into account.
3243 *
3244 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3245 */
3246 if (dsc->slices_per_line & BIT(2)) {
3247 crtc_state->dsc.slice_count = 4;
3248 } else if (dsc->slices_per_line & BIT(1)) {
3249 crtc_state->dsc.slice_count = 2;
3250 } else {
3251 /* FIXME */
3252 if (!(dsc->slices_per_line & BIT(0)))
3253 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3254
3255 crtc_state->dsc.slice_count = 1;
3256 }
3257
3258 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3259 crtc_state->dsc.slice_count != 0)
3260 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3261 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3262 crtc_state->dsc.slice_count);
3263
3264 /*
3265 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3266 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3267 */
3268 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3269 dsc->rc_buffer_size);
3270
3271 /* FIXME: DSI spec says bpc + 1 for this one */
3272 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3273
3274 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3275
3276 vdsc_cfg->slice_height = dsc->slice_height;
3277 }
3278
3279 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3280 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3281 struct intel_crtc_state *crtc_state,
3282 int dsc_max_bpc)
3283 {
3284 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3285 const struct intel_bios_encoder_data *devdata;
3286 const struct child_device_config *child;
3287
3288 list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
3289 child = &devdata->child;
3290
3291 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3292 continue;
3293
3294 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
3295 if (!devdata->dsc)
3296 return false;
3297
3298 if (crtc_state)
3299 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3300
3301 return true;
3302 }
3303 }
3304
3305 return false;
3306 }
3307
3308 /**
3309 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3310 * @i915: i915 device instance
3311 * @port: port to check
3312 *
3313 * Return true if HPD should be inverted for %port.
3314 */
3315 bool
intel_bios_is_port_hpd_inverted(const struct drm_i915_private * i915,enum port port)3316 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3317 enum port port)
3318 {
3319 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3320
3321 if (drm_WARN_ON_ONCE(&i915->drm,
3322 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3323 return false;
3324
3325 return devdata && devdata->child.hpd_invert;
3326 }
3327
3328 /**
3329 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3330 * @i915: i915 device instance
3331 * @port: port to check
3332 *
3333 * Return true if LSPCON is present on this port
3334 */
3335 bool
intel_bios_is_lspcon_present(const struct drm_i915_private * i915,enum port port)3336 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3337 enum port port)
3338 {
3339 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3340
3341 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3342 }
3343
3344 /**
3345 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3346 * @i915: i915 device instance
3347 * @port: port to check
3348 *
3349 * Return true if port requires lane reversal
3350 */
3351 bool
intel_bios_is_lane_reversal_needed(const struct drm_i915_private * i915,enum port port)3352 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3353 enum port port)
3354 {
3355 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3356
3357 return devdata && devdata->child.lane_reversal;
3358 }
3359
intel_bios_port_aux_ch(struct drm_i915_private * i915,enum port port)3360 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3361 enum port port)
3362 {
3363 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
3364 enum aux_ch aux_ch;
3365
3366 if (!devdata || !devdata->child.aux_channel) {
3367 aux_ch = (enum aux_ch)port;
3368
3369 drm_dbg_kms(&i915->drm,
3370 "using AUX %c for port %c (platform default)\n",
3371 aux_ch_name(aux_ch), port_name(port));
3372 return aux_ch;
3373 }
3374
3375 /*
3376 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3377 * map to DDI A,B,TC1,TC2 respectively.
3378 *
3379 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3380 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3381 */
3382 switch (devdata->child.aux_channel) {
3383 case DP_AUX_A:
3384 aux_ch = AUX_CH_A;
3385 break;
3386 case DP_AUX_B:
3387 if (IS_ALDERLAKE_S(i915))
3388 aux_ch = AUX_CH_USBC1;
3389 else
3390 aux_ch = AUX_CH_B;
3391 break;
3392 case DP_AUX_C:
3393 if (IS_ALDERLAKE_S(i915))
3394 aux_ch = AUX_CH_USBC2;
3395 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3396 aux_ch = AUX_CH_USBC1;
3397 else
3398 aux_ch = AUX_CH_C;
3399 break;
3400 case DP_AUX_D:
3401 if (DISPLAY_VER(i915) == 13)
3402 aux_ch = AUX_CH_D_XELPD;
3403 else if (IS_ALDERLAKE_S(i915))
3404 aux_ch = AUX_CH_USBC3;
3405 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3406 aux_ch = AUX_CH_USBC2;
3407 else
3408 aux_ch = AUX_CH_D;
3409 break;
3410 case DP_AUX_E:
3411 if (DISPLAY_VER(i915) == 13)
3412 aux_ch = AUX_CH_E_XELPD;
3413 else if (IS_ALDERLAKE_S(i915))
3414 aux_ch = AUX_CH_USBC4;
3415 else
3416 aux_ch = AUX_CH_E;
3417 break;
3418 case DP_AUX_F:
3419 if (DISPLAY_VER(i915) == 13)
3420 aux_ch = AUX_CH_USBC1;
3421 else
3422 aux_ch = AUX_CH_F;
3423 break;
3424 case DP_AUX_G:
3425 if (DISPLAY_VER(i915) == 13)
3426 aux_ch = AUX_CH_USBC2;
3427 else
3428 aux_ch = AUX_CH_G;
3429 break;
3430 case DP_AUX_H:
3431 if (DISPLAY_VER(i915) == 13)
3432 aux_ch = AUX_CH_USBC3;
3433 else
3434 aux_ch = AUX_CH_H;
3435 break;
3436 case DP_AUX_I:
3437 if (DISPLAY_VER(i915) == 13)
3438 aux_ch = AUX_CH_USBC4;
3439 else
3440 aux_ch = AUX_CH_I;
3441 break;
3442 default:
3443 MISSING_CASE(devdata->child.aux_channel);
3444 aux_ch = AUX_CH_A;
3445 break;
3446 }
3447
3448 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3449 aux_ch_name(aux_ch), port_name(port));
3450
3451 return aux_ch;
3452 }
3453
intel_bios_max_tmds_clock(struct intel_encoder * encoder)3454 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3455 {
3456 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3457 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3458
3459 return _intel_bios_max_tmds_clock(devdata);
3460 }
3461
3462 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(struct intel_encoder * encoder)3463 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3464 {
3465 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3466 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3467
3468 return _intel_bios_hdmi_level_shift(devdata);
3469 }
3470
intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data * devdata)3471 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3472 {
3473 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3474 return 0;
3475
3476 return translate_iboost(devdata->child.dp_iboost_level);
3477 }
3478
intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3479 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3480 {
3481 if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
3482 return 0;
3483
3484 return translate_iboost(devdata->child.hdmi_iboost_level);
3485 }
3486
intel_bios_dp_max_link_rate(struct intel_encoder * encoder)3487 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3488 {
3489 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3490 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3491
3492 return _intel_bios_dp_max_link_rate(devdata);
3493 }
3494
intel_bios_alternate_ddc_pin(struct intel_encoder * encoder)3495 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3496 {
3497 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3498 const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
3499
3500 if (!devdata || !devdata->child.ddc_pin)
3501 return 0;
3502
3503 return map_ddc_pin(i915, devdata->child.ddc_pin);
3504 }
3505
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3506 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3507 {
3508 return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3509 }
3510
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3511 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3512 {
3513 return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3514 }
3515
3516 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct drm_i915_private * i915,enum port port)3517 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3518 {
3519 return i915->vbt.ports[port];
3520 }
3521