1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/display/drm_dp_helper.h>
29 #include <drm/display/drm_dsc_helper.h>
30 #include <drm/drm_edid.h>
31
32 #include "i915_drv.h"
33 #include "i915_reg.h"
34 #include "intel_display.h"
35 #include "intel_display_types.h"
36 #include "intel_gmbus.h"
37
38 #define _INTEL_BIOS_PRIVATE
39 #include "intel_vbt_defs.h"
40
41 /**
42 * DOC: Video BIOS Table (VBT)
43 *
44 * The Video BIOS Table, or VBT, provides platform and board specific
45 * configuration information to the driver that is not discoverable or available
46 * through other means. The configuration is mostly related to display
47 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
48 * the PCI ROM.
49 *
50 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
51 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
52 * contain the actual configuration information. The VBT Header, and thus the
53 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
54 * BDB Header. The data blocks are concatenated after the BDB Header. The data
55 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
56 * data. (Block 53, the MIPI Sequence Block is an exception.)
57 *
58 * The driver parses the VBT during load. The relevant information is stored in
59 * driver private data for ease of use, and the actual VBT is not read after
60 * that.
61 */
62
63 /* Wrapper for VBT child device config */
64 struct intel_bios_encoder_data {
65 struct drm_i915_private *i915;
66
67 struct child_device_config child;
68 struct dsc_compression_parameters_entry *dsc;
69 struct list_head node;
70 };
71
72 #define SLAVE_ADDR1 0x70
73 #define SLAVE_ADDR2 0x72
74
75 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)76 static u32 _get_blocksize(const u8 *block_base)
77 {
78 /* The MIPI Sequence Block v3+ has a separate size field. */
79 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
80 return *((const u32 *)(block_base + 4));
81 else
82 return *((const u16 *)(block_base + 1));
83 }
84
85 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)86 static u32 get_blocksize(const void *block_data)
87 {
88 return _get_blocksize(block_data - 3);
89 }
90
91 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)92 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
93 {
94 const struct bdb_header *bdb = _bdb;
95 const u8 *base = _bdb;
96 int index = 0;
97 u32 total, current_size;
98 enum bdb_block_id current_id;
99
100 /* skip to first section */
101 index += bdb->header_size;
102 total = bdb->bdb_size;
103
104 /* walk the sections looking for section_id */
105 while (index + 3 < total) {
106 current_id = *(base + index);
107 current_size = _get_blocksize(base + index);
108 index += 3;
109
110 if (index + current_size > total)
111 return NULL;
112
113 if (current_id == section_id)
114 return base + index;
115
116 index += current_size;
117 }
118
119 return NULL;
120 }
121
122 /*
123 * Offset from the start of BDB to the start of the
124 * block data (just past the block header).
125 */
raw_block_offset(const void * bdb,enum bdb_block_id section_id)126 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
127 {
128 const void *block;
129
130 block = find_raw_section(bdb, section_id);
131 if (!block)
132 return 0;
133
134 return block - bdb;
135 }
136
137 struct bdb_block_entry {
138 struct list_head node;
139 enum bdb_block_id section_id;
140 u8 data[];
141 };
142
143 static const void *
bdb_find_section(struct drm_i915_private * i915,enum bdb_block_id section_id)144 bdb_find_section(struct drm_i915_private *i915,
145 enum bdb_block_id section_id)
146 {
147 struct bdb_block_entry *entry;
148
149 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
150 if (entry->section_id == section_id)
151 return entry->data + 3;
152 }
153
154 return NULL;
155 }
156
157 static const struct {
158 enum bdb_block_id section_id;
159 size_t min_size;
160 } bdb_blocks[] = {
161 { .section_id = BDB_GENERAL_FEATURES,
162 .min_size = sizeof(struct bdb_general_features), },
163 { .section_id = BDB_GENERAL_DEFINITIONS,
164 .min_size = sizeof(struct bdb_general_definitions), },
165 { .section_id = BDB_PSR,
166 .min_size = sizeof(struct bdb_psr), },
167 { .section_id = BDB_DRIVER_FEATURES,
168 .min_size = sizeof(struct bdb_driver_features), },
169 { .section_id = BDB_SDVO_LVDS_OPTIONS,
170 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
171 { .section_id = BDB_SDVO_PANEL_DTDS,
172 .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
173 { .section_id = BDB_EDP,
174 .min_size = sizeof(struct bdb_edp), },
175 { .section_id = BDB_LVDS_OPTIONS,
176 .min_size = sizeof(struct bdb_lvds_options), },
177 /*
178 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
179 * so keep the two ordered.
180 */
181 { .section_id = BDB_LVDS_LFP_DATA_PTRS,
182 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
183 { .section_id = BDB_LVDS_LFP_DATA,
184 .min_size = 0, /* special case */ },
185 { .section_id = BDB_LVDS_BACKLIGHT,
186 .min_size = sizeof(struct bdb_lfp_backlight_data), },
187 { .section_id = BDB_LFP_POWER,
188 .min_size = sizeof(struct bdb_lfp_power), },
189 { .section_id = BDB_MIPI_CONFIG,
190 .min_size = sizeof(struct bdb_mipi_config), },
191 { .section_id = BDB_MIPI_SEQUENCE,
192 .min_size = sizeof(struct bdb_mipi_sequence) },
193 { .section_id = BDB_COMPRESSION_PARAMETERS,
194 .min_size = sizeof(struct bdb_compression_parameters), },
195 { .section_id = BDB_GENERIC_DTD,
196 .min_size = sizeof(struct bdb_generic_dtd), },
197 };
198
lfp_data_min_size(struct drm_i915_private * i915)199 static size_t lfp_data_min_size(struct drm_i915_private *i915)
200 {
201 const struct bdb_lvds_lfp_data_ptrs *ptrs;
202 size_t size;
203
204 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
205 if (!ptrs)
206 return 0;
207
208 size = sizeof(struct bdb_lvds_lfp_data);
209 if (ptrs->panel_name.table_size)
210 size = max(size, ptrs->panel_name.offset +
211 sizeof(struct bdb_lvds_lfp_data_tail));
212
213 return size;
214 }
215
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lvds_lfp_data_ptrs * ptrs)216 static bool validate_lfp_data_ptrs(const void *bdb,
217 const struct bdb_lvds_lfp_data_ptrs *ptrs)
218 {
219 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
220 int data_block_size, lfp_data_size;
221 const void *data_block;
222 int i;
223
224 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
225 if (!data_block)
226 return false;
227
228 data_block_size = get_blocksize(data_block);
229 if (data_block_size == 0)
230 return false;
231
232 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
233 if (ptrs->lvds_entries != 3)
234 return false;
235
236 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
237 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
238 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
239 panel_name_size = ptrs->panel_name.table_size;
240
241 /* fp_timing has variable size */
242 if (fp_timing_size < 32 ||
243 dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
244 panel_pnp_id_size != sizeof(struct lvds_pnp_id))
245 return false;
246
247 /* panel_name is not present in old VBTs */
248 if (panel_name_size != 0 &&
249 panel_name_size != sizeof(struct lvds_lfp_panel_name))
250 return false;
251
252 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
253 if (16 * lfp_data_size > data_block_size)
254 return false;
255
256 /* make sure the table entries have uniform size */
257 for (i = 1; i < 16; i++) {
258 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
259 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
260 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
261 return false;
262
263 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
264 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
265 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
266 return false;
267 }
268
269 /*
270 * Except for vlv/chv machines all real VBTs seem to have 6
271 * unaccounted bytes in the fp_timing table. And it doesn't
272 * appear to be a really intentional hole as the fp_timing
273 * 0xffff terminator is always within those 6 missing bytes.
274 */
275 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
276 fp_timing_size += 6;
277
278 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
279 return false;
280
281 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
282 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
283 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
284 return false;
285
286 /* make sure the tables fit inside the data block */
287 for (i = 0; i < 16; i++) {
288 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
289 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
290 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
291 return false;
292 }
293
294 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
295 return false;
296
297 /* make sure fp_timing terminators are present at expected locations */
298 for (i = 0; i < 16; i++) {
299 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
300 fp_timing_size - 2;
301
302 if (*t != 0xffff)
303 return false;
304 }
305
306 return true;
307 }
308
309 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)310 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
311 {
312 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
313 u32 offset;
314 int i;
315
316 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
317
318 for (i = 0; i < 16; i++) {
319 if (ptrs->ptr[i].fp_timing.offset < offset ||
320 ptrs->ptr[i].dvo_timing.offset < offset ||
321 ptrs->ptr[i].panel_pnp_id.offset < offset)
322 return false;
323
324 ptrs->ptr[i].fp_timing.offset -= offset;
325 ptrs->ptr[i].dvo_timing.offset -= offset;
326 ptrs->ptr[i].panel_pnp_id.offset -= offset;
327 }
328
329 if (ptrs->panel_name.table_size) {
330 if (ptrs->panel_name.offset < offset)
331 return false;
332
333 ptrs->panel_name.offset -= offset;
334 }
335
336 return validate_lfp_data_ptrs(bdb, ptrs);
337 }
338
make_lfp_data_ptr(struct lvds_lfp_data_ptr_table * table,int table_size,int total_size)339 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
340 int table_size, int total_size)
341 {
342 if (total_size < table_size)
343 return total_size;
344
345 table->table_size = table_size;
346 table->offset = total_size - table_size;
347
348 return total_size - table_size;
349 }
350
next_lfp_data_ptr(struct lvds_lfp_data_ptr_table * next,const struct lvds_lfp_data_ptr_table * prev,int size)351 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
352 const struct lvds_lfp_data_ptr_table *prev,
353 int size)
354 {
355 next->table_size = prev->table_size;
356 next->offset = prev->offset + size;
357 }
358
generate_lfp_data_ptrs(struct drm_i915_private * i915,const void * bdb)359 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
360 const void *bdb)
361 {
362 int i, size, table_size, block_size, offset, fp_timing_size;
363 struct bdb_lvds_lfp_data_ptrs *ptrs;
364 const void *block;
365 void *ptrs_block;
366
367 /*
368 * The hardcoded fp_timing_size is only valid for
369 * modernish VBTs. All older VBTs definitely should
370 * include block 41 and thus we don't need to
371 * generate one.
372 */
373 if (i915->display.vbt.version < 155)
374 return NULL;
375
376 fp_timing_size = 38;
377
378 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
379 if (!block)
380 return NULL;
381
382 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
383
384 block_size = get_blocksize(block);
385
386 size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
387 sizeof(struct lvds_pnp_id);
388 if (size * 16 > block_size)
389 return NULL;
390
391 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
392 if (!ptrs_block)
393 return NULL;
394
395 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
396 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
397 ptrs = ptrs_block + 3;
398
399 table_size = sizeof(struct lvds_pnp_id);
400 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
401
402 table_size = sizeof(struct lvds_dvo_timing);
403 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
404
405 table_size = fp_timing_size;
406 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
407
408 if (ptrs->ptr[0].fp_timing.table_size)
409 ptrs->lvds_entries++;
410 if (ptrs->ptr[0].dvo_timing.table_size)
411 ptrs->lvds_entries++;
412 if (ptrs->ptr[0].panel_pnp_id.table_size)
413 ptrs->lvds_entries++;
414
415 if (size != 0 || ptrs->lvds_entries != 3) {
416 kfree(ptrs_block);
417 return NULL;
418 }
419
420 size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
421 sizeof(struct lvds_pnp_id);
422 for (i = 1; i < 16; i++) {
423 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
424 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
425 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
426 }
427
428 table_size = sizeof(struct lvds_lfp_panel_name);
429
430 if (16 * (size + table_size) <= block_size) {
431 ptrs->panel_name.table_size = table_size;
432 ptrs->panel_name.offset = size * 16;
433 }
434
435 offset = block - bdb;
436
437 for (i = 0; i < 16; i++) {
438 ptrs->ptr[i].fp_timing.offset += offset;
439 ptrs->ptr[i].dvo_timing.offset += offset;
440 ptrs->ptr[i].panel_pnp_id.offset += offset;
441 }
442
443 if (ptrs->panel_name.table_size)
444 ptrs->panel_name.offset += offset;
445
446 return ptrs_block;
447 }
448
449 static void
init_bdb_block(struct drm_i915_private * i915,const void * bdb,enum bdb_block_id section_id,size_t min_size)450 init_bdb_block(struct drm_i915_private *i915,
451 const void *bdb, enum bdb_block_id section_id,
452 size_t min_size)
453 {
454 struct bdb_block_entry *entry;
455 void *temp_block = NULL;
456 const void *block;
457 size_t block_size;
458
459 block = find_raw_section(bdb, section_id);
460
461 /* Modern VBTs lack the LFP data table pointers block, make one up */
462 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
463 temp_block = generate_lfp_data_ptrs(i915, bdb);
464 if (temp_block)
465 block = temp_block + 3;
466 }
467 if (!block)
468 return;
469
470 drm_WARN(&i915->drm, min_size == 0,
471 "Block %d min_size is zero\n", section_id);
472
473 block_size = get_blocksize(block);
474
475 /*
476 * Version number and new block size are considered
477 * part of the header for MIPI sequenece block v3+.
478 */
479 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
480 block_size += 5;
481
482 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
483 GFP_KERNEL);
484 if (!entry) {
485 kfree(temp_block);
486 return;
487 }
488
489 entry->section_id = section_id;
490 memcpy(entry->data, block - 3, block_size + 3);
491
492 kfree(temp_block);
493
494 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
495 section_id, block_size, min_size);
496
497 if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
498 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
499 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
500 kfree(entry);
501 return;
502 }
503
504 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
505 }
506
init_bdb_blocks(struct drm_i915_private * i915,const void * bdb)507 static void init_bdb_blocks(struct drm_i915_private *i915,
508 const void *bdb)
509 {
510 int i;
511
512 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
513 enum bdb_block_id section_id = bdb_blocks[i].section_id;
514 size_t min_size = bdb_blocks[i].min_size;
515
516 if (section_id == BDB_LVDS_LFP_DATA)
517 min_size = lfp_data_min_size(i915);
518
519 init_bdb_block(i915, bdb, section_id, min_size);
520 }
521 }
522
523 static void
fill_detail_timing_data(struct drm_display_mode * panel_fixed_mode,const struct lvds_dvo_timing * dvo_timing)524 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
525 const struct lvds_dvo_timing *dvo_timing)
526 {
527 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
528 dvo_timing->hactive_lo;
529 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
530 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
531 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
532 ((dvo_timing->hsync_pulse_width_hi << 8) |
533 dvo_timing->hsync_pulse_width_lo);
534 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
535 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
536
537 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
538 dvo_timing->vactive_lo;
539 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
540 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
541 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
542 ((dvo_timing->vsync_pulse_width_hi << 4) |
543 dvo_timing->vsync_pulse_width_lo);
544 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
545 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
546 panel_fixed_mode->clock = dvo_timing->clock * 10;
547 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
548
549 if (dvo_timing->hsync_positive)
550 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
551 else
552 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
553
554 if (dvo_timing->vsync_positive)
555 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
556 else
557 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
558
559 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
560 dvo_timing->himage_lo;
561 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
562 dvo_timing->vimage_lo;
563
564 /* Some VBTs have bogus h/vtotal values */
565 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
566 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
567 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
568 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
569
570 drm_mode_set_name(panel_fixed_mode);
571 }
572
573 static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)574 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
575 const struct bdb_lvds_lfp_data_ptrs *ptrs,
576 int index)
577 {
578 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
579 }
580
581 static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)582 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
583 const struct bdb_lvds_lfp_data_ptrs *ptrs,
584 int index)
585 {
586 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
587 }
588
589 static const struct lvds_pnp_id *
get_lvds_pnp_id(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)590 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
591 const struct bdb_lvds_lfp_data_ptrs *ptrs,
592 int index)
593 {
594 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
595 }
596
597 static const struct bdb_lvds_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs)598 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
599 const struct bdb_lvds_lfp_data_ptrs *ptrs)
600 {
601 if (ptrs->panel_name.table_size)
602 return (const void *)data + ptrs->panel_name.offset;
603 else
604 return NULL;
605 }
606
dump_pnp_id(struct drm_i915_private * i915,const struct lvds_pnp_id * pnp_id,const char * name)607 static void dump_pnp_id(struct drm_i915_private *i915,
608 const struct lvds_pnp_id *pnp_id,
609 const char *name)
610 {
611 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
612 char vend[4];
613
614 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
615 name, drm_edid_decode_mfg_id(mfg_name, vend),
616 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
617 pnp_id->mfg_week, pnp_id->mfg_year + 1990);
618 }
619
opregion_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)620 static int opregion_get_panel_type(struct drm_i915_private *i915,
621 const struct intel_bios_encoder_data *devdata,
622 const struct drm_edid *drm_edid, bool use_fallback)
623 {
624 return intel_opregion_get_panel_type(i915);
625 }
626
vbt_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)627 static int vbt_get_panel_type(struct drm_i915_private *i915,
628 const struct intel_bios_encoder_data *devdata,
629 const struct drm_edid *drm_edid, bool use_fallback)
630 {
631 const struct bdb_lvds_options *lvds_options;
632
633 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
634 if (!lvds_options)
635 return -1;
636
637 if (lvds_options->panel_type > 0xf &&
638 lvds_options->panel_type != 0xff) {
639 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
640 lvds_options->panel_type);
641 return -1;
642 }
643
644 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
645 return lvds_options->panel_type2;
646
647 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
648
649 return lvds_options->panel_type;
650 }
651
pnpid_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)652 static int pnpid_get_panel_type(struct drm_i915_private *i915,
653 const struct intel_bios_encoder_data *devdata,
654 const struct drm_edid *drm_edid, bool use_fallback)
655 {
656 const struct bdb_lvds_lfp_data *data;
657 const struct bdb_lvds_lfp_data_ptrs *ptrs;
658 const struct lvds_pnp_id *edid_id;
659 struct lvds_pnp_id edid_id_nodate;
660 const struct edid *edid = drm_edid_raw(drm_edid); /* FIXME */
661 int i, best = -1;
662
663 if (!edid)
664 return -1;
665
666 edid_id = (const void *)&edid->mfg_id[0];
667
668 edid_id_nodate = *edid_id;
669 edid_id_nodate.mfg_week = 0;
670 edid_id_nodate.mfg_year = 0;
671
672 dump_pnp_id(i915, edid_id, "EDID");
673
674 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675 if (!ptrs)
676 return -1;
677
678 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
679 if (!data)
680 return -1;
681
682 for (i = 0; i < 16; i++) {
683 const struct lvds_pnp_id *vbt_id =
684 get_lvds_pnp_id(data, ptrs, i);
685
686 /* full match? */
687 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688 return i;
689
690 /*
691 * Accept a match w/o date if no full match is found,
692 * and the VBT entry does not specify a date.
693 */
694 if (best < 0 &&
695 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696 best = i;
697 }
698
699 return best;
700 }
701
fallback_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)702 static int fallback_get_panel_type(struct drm_i915_private *i915,
703 const struct intel_bios_encoder_data *devdata,
704 const struct drm_edid *drm_edid, bool use_fallback)
705 {
706 return use_fallback ? 0 : -1;
707 }
708
709 enum panel_type {
710 PANEL_TYPE_OPREGION,
711 PANEL_TYPE_VBT,
712 PANEL_TYPE_PNPID,
713 PANEL_TYPE_FALLBACK,
714 };
715
get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)716 static int get_panel_type(struct drm_i915_private *i915,
717 const struct intel_bios_encoder_data *devdata,
718 const struct drm_edid *drm_edid, bool use_fallback)
719 {
720 struct {
721 const char *name;
722 int (*get_panel_type)(struct drm_i915_private *i915,
723 const struct intel_bios_encoder_data *devdata,
724 const struct drm_edid *drm_edid, bool use_fallback);
725 int panel_type;
726 } panel_types[] = {
727 [PANEL_TYPE_OPREGION] = {
728 .name = "OpRegion",
729 .get_panel_type = opregion_get_panel_type,
730 },
731 [PANEL_TYPE_VBT] = {
732 .name = "VBT",
733 .get_panel_type = vbt_get_panel_type,
734 },
735 [PANEL_TYPE_PNPID] = {
736 .name = "PNPID",
737 .get_panel_type = pnpid_get_panel_type,
738 },
739 [PANEL_TYPE_FALLBACK] = {
740 .name = "fallback",
741 .get_panel_type = fallback_get_panel_type,
742 },
743 };
744 int i;
745
746 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
748 drm_edid, use_fallback);
749
750 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
751 panel_types[i].panel_type != 0xff);
752
753 if (panel_types[i].panel_type >= 0)
754 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
755 panel_types[i].name, panel_types[i].panel_type);
756 }
757
758 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
759 i = PANEL_TYPE_OPREGION;
760 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
761 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
762 i = PANEL_TYPE_PNPID;
763 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
764 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
765 i = PANEL_TYPE_VBT;
766 else
767 i = PANEL_TYPE_FALLBACK;
768
769 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
770 panel_types[i].name, panel_types[i].panel_type);
771
772 return panel_types[i].panel_type;
773 }
774
panel_bits(unsigned int value,int panel_type,int num_bits)775 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
776 {
777 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
778 }
779
panel_bool(unsigned int value,int panel_type)780 static bool panel_bool(unsigned int value, int panel_type)
781 {
782 return panel_bits(value, panel_type, 1);
783 }
784
785 /* Parse general panel options */
786 static void
parse_panel_options(struct drm_i915_private * i915,struct intel_panel * panel)787 parse_panel_options(struct drm_i915_private *i915,
788 struct intel_panel *panel)
789 {
790 const struct bdb_lvds_options *lvds_options;
791 int panel_type = panel->vbt.panel_type;
792 int drrs_mode;
793
794 lvds_options = bdb_find_section(i915, BDB_LVDS_OPTIONS);
795 if (!lvds_options)
796 return;
797
798 panel->vbt.lvds_dither = lvds_options->pixel_dither;
799
800 /*
801 * Empirical evidence indicates the block size can be
802 * either 4,14,16,24+ bytes. For older VBTs no clear
803 * relationship between the block size vs. BDB version.
804 */
805 if (get_blocksize(lvds_options) < 16)
806 return;
807
808 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
809 panel_type, 2);
810 /*
811 * VBT has static DRRS = 0 and seamless DRRS = 2.
812 * The below piece of code is required to adjust vbt.drrs_type
813 * to match the enum drrs_support_type.
814 */
815 switch (drrs_mode) {
816 case 0:
817 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
818 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
819 break;
820 case 2:
821 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
822 drm_dbg_kms(&i915->drm,
823 "DRRS supported mode is seamless\n");
824 break;
825 default:
826 panel->vbt.drrs_type = DRRS_TYPE_NONE;
827 drm_dbg_kms(&i915->drm,
828 "DRRS not supported (VBT input)\n");
829 break;
830 }
831 }
832
833 static void
parse_lfp_panel_dtd(struct drm_i915_private * i915,struct intel_panel * panel,const struct bdb_lvds_lfp_data * lvds_lfp_data,const struct bdb_lvds_lfp_data_ptrs * lvds_lfp_data_ptrs)834 parse_lfp_panel_dtd(struct drm_i915_private *i915,
835 struct intel_panel *panel,
836 const struct bdb_lvds_lfp_data *lvds_lfp_data,
837 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
838 {
839 const struct lvds_dvo_timing *panel_dvo_timing;
840 const struct lvds_fp_timing *fp_timing;
841 struct drm_display_mode *panel_fixed_mode;
842 int panel_type = panel->vbt.panel_type;
843
844 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
845 lvds_lfp_data_ptrs,
846 panel_type);
847
848 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
849 if (!panel_fixed_mode)
850 return;
851
852 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
853
854 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
855
856 drm_dbg_kms(&i915->drm,
857 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
858 DRM_MODE_ARG(panel_fixed_mode));
859
860 fp_timing = get_lvds_fp_timing(lvds_lfp_data,
861 lvds_lfp_data_ptrs,
862 panel_type);
863
864 /* check the resolution, just to be sure */
865 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
866 fp_timing->y_res == panel_fixed_mode->vdisplay) {
867 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
868 drm_dbg_kms(&i915->drm,
869 "VBT initial LVDS value %x\n",
870 panel->vbt.bios_lvds_val);
871 }
872 }
873
874 static void
parse_lfp_data(struct drm_i915_private * i915,struct intel_panel * panel)875 parse_lfp_data(struct drm_i915_private *i915,
876 struct intel_panel *panel)
877 {
878 const struct bdb_lvds_lfp_data *data;
879 const struct bdb_lvds_lfp_data_tail *tail;
880 const struct bdb_lvds_lfp_data_ptrs *ptrs;
881 const struct lvds_pnp_id *pnp_id;
882 int panel_type = panel->vbt.panel_type;
883
884 ptrs = bdb_find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
885 if (!ptrs)
886 return;
887
888 data = bdb_find_section(i915, BDB_LVDS_LFP_DATA);
889 if (!data)
890 return;
891
892 if (!panel->vbt.lfp_lvds_vbt_mode)
893 parse_lfp_panel_dtd(i915, panel, data, ptrs);
894
895 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
896 dump_pnp_id(i915, pnp_id, "Panel");
897
898 tail = get_lfp_data_tail(data, ptrs);
899 if (!tail)
900 return;
901
902 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
903 (int)sizeof(tail->panel_name[0].name),
904 tail->panel_name[panel_type].name);
905
906 if (i915->display.vbt.version >= 188) {
907 panel->vbt.seamless_drrs_min_refresh_rate =
908 tail->seamless_drrs_min_refresh_rate[panel_type];
909 drm_dbg_kms(&i915->drm,
910 "Seamless DRRS min refresh rate: %d Hz\n",
911 panel->vbt.seamless_drrs_min_refresh_rate);
912 }
913 }
914
915 static void
parse_generic_dtd(struct drm_i915_private * i915,struct intel_panel * panel)916 parse_generic_dtd(struct drm_i915_private *i915,
917 struct intel_panel *panel)
918 {
919 const struct bdb_generic_dtd *generic_dtd;
920 const struct generic_dtd_entry *dtd;
921 struct drm_display_mode *panel_fixed_mode;
922 int num_dtd;
923
924 /*
925 * Older VBTs provided DTD information for internal displays through
926 * the "LFP panel tables" block (42). As of VBT revision 229 the
927 * DTD information should be provided via a newer "generic DTD"
928 * block (58). Just to be safe, we'll try the new generic DTD block
929 * first on VBT >= 229, but still fall back to trying the old LFP
930 * block if that fails.
931 */
932 if (i915->display.vbt.version < 229)
933 return;
934
935 generic_dtd = bdb_find_section(i915, BDB_GENERIC_DTD);
936 if (!generic_dtd)
937 return;
938
939 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
940 drm_err(&i915->drm, "GDTD size %u is too small.\n",
941 generic_dtd->gdtd_size);
942 return;
943 } else if (generic_dtd->gdtd_size !=
944 sizeof(struct generic_dtd_entry)) {
945 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
946 generic_dtd->gdtd_size);
947 /* DTD has unknown fields, but keep going */
948 }
949
950 num_dtd = (get_blocksize(generic_dtd) -
951 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
952 if (panel->vbt.panel_type >= num_dtd) {
953 drm_err(&i915->drm,
954 "Panel type %d not found in table of %d DTD's\n",
955 panel->vbt.panel_type, num_dtd);
956 return;
957 }
958
959 dtd = &generic_dtd->dtd[panel->vbt.panel_type];
960
961 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
962 if (!panel_fixed_mode)
963 return;
964
965 panel_fixed_mode->hdisplay = dtd->hactive;
966 panel_fixed_mode->hsync_start =
967 panel_fixed_mode->hdisplay + dtd->hfront_porch;
968 panel_fixed_mode->hsync_end =
969 panel_fixed_mode->hsync_start + dtd->hsync;
970 panel_fixed_mode->htotal =
971 panel_fixed_mode->hdisplay + dtd->hblank;
972
973 panel_fixed_mode->vdisplay = dtd->vactive;
974 panel_fixed_mode->vsync_start =
975 panel_fixed_mode->vdisplay + dtd->vfront_porch;
976 panel_fixed_mode->vsync_end =
977 panel_fixed_mode->vsync_start + dtd->vsync;
978 panel_fixed_mode->vtotal =
979 panel_fixed_mode->vdisplay + dtd->vblank;
980
981 panel_fixed_mode->clock = dtd->pixel_clock;
982 panel_fixed_mode->width_mm = dtd->width_mm;
983 panel_fixed_mode->height_mm = dtd->height_mm;
984
985 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
986 drm_mode_set_name(panel_fixed_mode);
987
988 if (dtd->hsync_positive_polarity)
989 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
990 else
991 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
992
993 if (dtd->vsync_positive_polarity)
994 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
995 else
996 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
997
998 drm_dbg_kms(&i915->drm,
999 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1000 DRM_MODE_ARG(panel_fixed_mode));
1001
1002 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1003 }
1004
1005 static void
parse_lfp_backlight(struct drm_i915_private * i915,struct intel_panel * panel)1006 parse_lfp_backlight(struct drm_i915_private *i915,
1007 struct intel_panel *panel)
1008 {
1009 const struct bdb_lfp_backlight_data *backlight_data;
1010 const struct lfp_backlight_data_entry *entry;
1011 int panel_type = panel->vbt.panel_type;
1012 u16 level;
1013
1014 backlight_data = bdb_find_section(i915, BDB_LVDS_BACKLIGHT);
1015 if (!backlight_data)
1016 return;
1017
1018 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1019 drm_dbg_kms(&i915->drm,
1020 "Unsupported backlight data entry size %u\n",
1021 backlight_data->entry_size);
1022 return;
1023 }
1024
1025 entry = &backlight_data->data[panel_type];
1026
1027 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1028 if (!panel->vbt.backlight.present) {
1029 drm_dbg_kms(&i915->drm,
1030 "PWM backlight not present in VBT (type %u)\n",
1031 entry->type);
1032 return;
1033 }
1034
1035 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1036 panel->vbt.backlight.controller = 0;
1037 if (i915->display.vbt.version >= 191) {
1038 size_t exp_size;
1039
1040 if (i915->display.vbt.version >= 236)
1041 exp_size = sizeof(struct bdb_lfp_backlight_data);
1042 else if (i915->display.vbt.version >= 234)
1043 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1044 else
1045 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1046
1047 if (get_blocksize(backlight_data) >= exp_size) {
1048 const struct lfp_backlight_control_method *method;
1049
1050 method = &backlight_data->backlight_control[panel_type];
1051 panel->vbt.backlight.type = method->type;
1052 panel->vbt.backlight.controller = method->controller;
1053 }
1054 }
1055
1056 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1057 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1058
1059 if (i915->display.vbt.version >= 234) {
1060 u16 min_level;
1061 bool scale;
1062
1063 level = backlight_data->brightness_level[panel_type].level;
1064 min_level = backlight_data->brightness_min_level[panel_type].level;
1065
1066 if (i915->display.vbt.version >= 236)
1067 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1068 else
1069 scale = level > 255;
1070
1071 if (scale)
1072 min_level = min_level / 255;
1073
1074 if (min_level > 255) {
1075 drm_warn(&i915->drm, "Brightness min level > 255\n");
1076 level = 255;
1077 }
1078 panel->vbt.backlight.min_brightness = min_level;
1079
1080 panel->vbt.backlight.brightness_precision_bits =
1081 backlight_data->brightness_precision_bits[panel_type];
1082 } else {
1083 level = backlight_data->level[panel_type];
1084 panel->vbt.backlight.min_brightness = entry->min_brightness;
1085 }
1086
1087 if (i915->display.vbt.version >= 239)
1088 panel->vbt.backlight.hdr_dpcd_refresh_timeout =
1089 DIV_ROUND_UP(backlight_data->hdr_dpcd_refresh_timeout[panel_type], 100);
1090 else
1091 panel->vbt.backlight.hdr_dpcd_refresh_timeout = 30;
1092
1093 drm_dbg_kms(&i915->drm,
1094 "VBT backlight PWM modulation frequency %u Hz, "
1095 "active %s, min brightness %u, level %u, controller %u\n",
1096 panel->vbt.backlight.pwm_freq_hz,
1097 panel->vbt.backlight.active_low_pwm ? "low" : "high",
1098 panel->vbt.backlight.min_brightness,
1099 level,
1100 panel->vbt.backlight.controller);
1101 }
1102
1103 /* Try to find sdvo panel data */
1104 static void
parse_sdvo_panel_data(struct drm_i915_private * i915,struct intel_panel * panel)1105 parse_sdvo_panel_data(struct drm_i915_private *i915,
1106 struct intel_panel *panel)
1107 {
1108 const struct bdb_sdvo_panel_dtds *dtds;
1109 struct drm_display_mode *panel_fixed_mode;
1110 int index;
1111
1112 index = i915->params.vbt_sdvo_panel_type;
1113 if (index == -2) {
1114 drm_dbg_kms(&i915->drm,
1115 "Ignore SDVO panel mode from BIOS VBT tables.\n");
1116 return;
1117 }
1118
1119 if (index == -1) {
1120 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1121
1122 sdvo_lvds_options = bdb_find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1123 if (!sdvo_lvds_options)
1124 return;
1125
1126 index = sdvo_lvds_options->panel_type;
1127 }
1128
1129 dtds = bdb_find_section(i915, BDB_SDVO_PANEL_DTDS);
1130 if (!dtds)
1131 return;
1132
1133 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1134 if (!panel_fixed_mode)
1135 return;
1136
1137 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1138
1139 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1140
1141 drm_dbg_kms(&i915->drm,
1142 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1143 DRM_MODE_ARG(panel_fixed_mode));
1144 }
1145
intel_bios_ssc_frequency(struct drm_i915_private * i915,bool alternate)1146 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1147 bool alternate)
1148 {
1149 switch (DISPLAY_VER(i915)) {
1150 case 2:
1151 return alternate ? 66667 : 48000;
1152 case 3:
1153 case 4:
1154 return alternate ? 100000 : 96000;
1155 default:
1156 return alternate ? 100000 : 120000;
1157 }
1158 }
1159
1160 static void
parse_general_features(struct drm_i915_private * i915)1161 parse_general_features(struct drm_i915_private *i915)
1162 {
1163 const struct bdb_general_features *general;
1164
1165 general = bdb_find_section(i915, BDB_GENERAL_FEATURES);
1166 if (!general)
1167 return;
1168
1169 i915->display.vbt.int_tv_support = general->int_tv_support;
1170 /* int_crt_support can't be trusted on earlier platforms */
1171 if (i915->display.vbt.version >= 155 &&
1172 (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1173 i915->display.vbt.int_crt_support = general->int_crt_support;
1174 i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1175 i915->display.vbt.lvds_ssc_freq =
1176 intel_bios_ssc_frequency(i915, general->ssc_freq);
1177 i915->display.vbt.display_clock_mode = general->display_clock_mode;
1178 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1179 if (i915->display.vbt.version >= 181) {
1180 i915->display.vbt.orientation = general->rotate_180 ?
1181 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1182 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1183 } else {
1184 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1185 }
1186
1187 if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1188 i915->display.vbt.override_afc_startup = true;
1189 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1190 }
1191
1192 drm_dbg_kms(&i915->drm,
1193 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1194 i915->display.vbt.int_tv_support,
1195 i915->display.vbt.int_crt_support,
1196 i915->display.vbt.lvds_use_ssc,
1197 i915->display.vbt.lvds_ssc_freq,
1198 i915->display.vbt.display_clock_mode,
1199 i915->display.vbt.fdi_rx_polarity_inverted);
1200 }
1201
1202 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1203 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1204 {
1205 return (const void *) &defs->devices[i * defs->child_dev_size];
1206 }
1207
1208 static void
parse_sdvo_device_mapping(struct drm_i915_private * i915)1209 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1210 {
1211 const struct intel_bios_encoder_data *devdata;
1212 int count = 0;
1213
1214 /*
1215 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1216 * accurate and doesn't have to be, as long as it's not too strict.
1217 */
1218 if (!IS_DISPLAY_VER(i915, 3, 7)) {
1219 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1220 return;
1221 }
1222
1223 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1224 const struct child_device_config *child = &devdata->child;
1225 struct sdvo_device_mapping *mapping;
1226
1227 if (child->slave_addr != SLAVE_ADDR1 &&
1228 child->slave_addr != SLAVE_ADDR2) {
1229 /*
1230 * If the slave address is neither 0x70 nor 0x72,
1231 * it is not a SDVO device. Skip it.
1232 */
1233 continue;
1234 }
1235 if (child->dvo_port != DEVICE_PORT_DVOB &&
1236 child->dvo_port != DEVICE_PORT_DVOC) {
1237 /* skip the incorrect SDVO port */
1238 drm_dbg_kms(&i915->drm,
1239 "Incorrect SDVO port. Skip it\n");
1240 continue;
1241 }
1242 drm_dbg_kms(&i915->drm,
1243 "the SDVO device with slave addr %2x is found on"
1244 " %s port\n",
1245 child->slave_addr,
1246 (child->dvo_port == DEVICE_PORT_DVOB) ?
1247 "SDVOB" : "SDVOC");
1248 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1249 if (!mapping->initialized) {
1250 mapping->dvo_port = child->dvo_port;
1251 mapping->slave_addr = child->slave_addr;
1252 mapping->dvo_wiring = child->dvo_wiring;
1253 mapping->ddc_pin = child->ddc_pin;
1254 mapping->i2c_pin = child->i2c_pin;
1255 mapping->initialized = 1;
1256 drm_dbg_kms(&i915->drm,
1257 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1258 mapping->dvo_port, mapping->slave_addr,
1259 mapping->dvo_wiring, mapping->ddc_pin,
1260 mapping->i2c_pin);
1261 } else {
1262 drm_dbg_kms(&i915->drm,
1263 "Maybe one SDVO port is shared by "
1264 "two SDVO device.\n");
1265 }
1266 if (child->slave2_addr) {
1267 /* Maybe this is a SDVO device with multiple inputs */
1268 /* And the mapping info is not added */
1269 drm_dbg_kms(&i915->drm,
1270 "there exists the slave2_addr. Maybe this"
1271 " is a SDVO device with multiple inputs.\n");
1272 }
1273 count++;
1274 }
1275
1276 if (!count) {
1277 /* No SDVO device info is found */
1278 drm_dbg_kms(&i915->drm,
1279 "No SDVO device info is found in VBT\n");
1280 }
1281 }
1282
1283 static void
parse_driver_features(struct drm_i915_private * i915)1284 parse_driver_features(struct drm_i915_private *i915)
1285 {
1286 const struct bdb_driver_features *driver;
1287
1288 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1289 if (!driver)
1290 return;
1291
1292 if (DISPLAY_VER(i915) >= 5) {
1293 /*
1294 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1295 * to mean "eDP". The VBT spec doesn't agree with that
1296 * interpretation, but real world VBTs seem to.
1297 */
1298 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1299 i915->display.vbt.int_lvds_support = 0;
1300 } else {
1301 /*
1302 * FIXME it's not clear which BDB version has the LVDS config
1303 * bits defined. Revision history in the VBT spec says:
1304 * "0.92 | Add two definitions for VBT value of LVDS Active
1305 * Config (00b and 11b values defined) | 06/13/2005"
1306 * but does not the specify the BDB version.
1307 *
1308 * So far version 134 (on i945gm) is the oldest VBT observed
1309 * in the wild with the bits correctly populated. Version
1310 * 108 (on i85x) does not have the bits correctly populated.
1311 */
1312 if (i915->display.vbt.version >= 134 &&
1313 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1314 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1315 i915->display.vbt.int_lvds_support = 0;
1316 }
1317 }
1318
1319 static void
parse_panel_driver_features(struct drm_i915_private * i915,struct intel_panel * panel)1320 parse_panel_driver_features(struct drm_i915_private *i915,
1321 struct intel_panel *panel)
1322 {
1323 const struct bdb_driver_features *driver;
1324
1325 driver = bdb_find_section(i915, BDB_DRIVER_FEATURES);
1326 if (!driver)
1327 return;
1328
1329 if (i915->display.vbt.version < 228) {
1330 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1331 driver->drrs_enabled);
1332 /*
1333 * If DRRS is not supported, drrs_type has to be set to 0.
1334 * This is because, VBT is configured in such a way that
1335 * static DRRS is 0 and DRRS not supported is represented by
1336 * driver->drrs_enabled=false
1337 */
1338 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1339 /*
1340 * FIXME Should DMRRS perhaps be treated as seamless
1341 * but without the automatic downclocking?
1342 */
1343 if (driver->dmrrs_enabled)
1344 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1345 else
1346 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1347 }
1348
1349 panel->vbt.psr.enable = driver->psr_enabled;
1350 }
1351 }
1352
1353 static void
parse_power_conservation_features(struct drm_i915_private * i915,struct intel_panel * panel)1354 parse_power_conservation_features(struct drm_i915_private *i915,
1355 struct intel_panel *panel)
1356 {
1357 const struct bdb_lfp_power *power;
1358 u8 panel_type = panel->vbt.panel_type;
1359
1360 panel->vbt.vrr = true; /* matches Windows behaviour */
1361
1362 if (i915->display.vbt.version < 228)
1363 return;
1364
1365 power = bdb_find_section(i915, BDB_LFP_POWER);
1366 if (!power)
1367 return;
1368
1369 panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1370
1371 /*
1372 * If DRRS is not supported, drrs_type has to be set to 0.
1373 * This is because, VBT is configured in such a way that
1374 * static DRRS is 0 and DRRS not supported is represented by
1375 * power->drrs & BIT(panel_type)=false
1376 */
1377 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1378 /*
1379 * FIXME Should DMRRS perhaps be treated as seamless
1380 * but without the automatic downclocking?
1381 */
1382 if (panel_bool(power->dmrrs, panel_type))
1383 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1384 else
1385 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1386 }
1387
1388 if (i915->display.vbt.version >= 232)
1389 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1390
1391 if (i915->display.vbt.version >= 233)
1392 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1393 panel_type);
1394 }
1395
1396 static void
parse_edp(struct drm_i915_private * i915,struct intel_panel * panel)1397 parse_edp(struct drm_i915_private *i915,
1398 struct intel_panel *panel)
1399 {
1400 const struct bdb_edp *edp;
1401 const struct edp_power_seq *edp_pps;
1402 const struct edp_fast_link_params *edp_link_params;
1403 int panel_type = panel->vbt.panel_type;
1404
1405 edp = bdb_find_section(i915, BDB_EDP);
1406 if (!edp)
1407 return;
1408
1409 switch (panel_bits(edp->color_depth, panel_type, 2)) {
1410 case EDP_18BPP:
1411 panel->vbt.edp.bpp = 18;
1412 break;
1413 case EDP_24BPP:
1414 panel->vbt.edp.bpp = 24;
1415 break;
1416 case EDP_30BPP:
1417 panel->vbt.edp.bpp = 30;
1418 break;
1419 }
1420
1421 /* Get the eDP sequencing and link info */
1422 edp_pps = &edp->power_seqs[panel_type];
1423 edp_link_params = &edp->fast_link_params[panel_type];
1424
1425 panel->vbt.edp.pps = *edp_pps;
1426
1427 if (i915->display.vbt.version >= 224) {
1428 panel->vbt.edp.rate =
1429 edp->edp_fast_link_training_rate[panel_type] * 20;
1430 } else {
1431 switch (edp_link_params->rate) {
1432 case EDP_RATE_1_62:
1433 panel->vbt.edp.rate = 162000;
1434 break;
1435 case EDP_RATE_2_7:
1436 panel->vbt.edp.rate = 270000;
1437 break;
1438 case EDP_RATE_5_4:
1439 panel->vbt.edp.rate = 540000;
1440 break;
1441 default:
1442 drm_dbg_kms(&i915->drm,
1443 "VBT has unknown eDP link rate value %u\n",
1444 edp_link_params->rate);
1445 break;
1446 }
1447 }
1448
1449 switch (edp_link_params->lanes) {
1450 case EDP_LANE_1:
1451 panel->vbt.edp.lanes = 1;
1452 break;
1453 case EDP_LANE_2:
1454 panel->vbt.edp.lanes = 2;
1455 break;
1456 case EDP_LANE_4:
1457 panel->vbt.edp.lanes = 4;
1458 break;
1459 default:
1460 drm_dbg_kms(&i915->drm,
1461 "VBT has unknown eDP lane count value %u\n",
1462 edp_link_params->lanes);
1463 break;
1464 }
1465
1466 switch (edp_link_params->preemphasis) {
1467 case EDP_PREEMPHASIS_NONE:
1468 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1469 break;
1470 case EDP_PREEMPHASIS_3_5dB:
1471 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1472 break;
1473 case EDP_PREEMPHASIS_6dB:
1474 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1475 break;
1476 case EDP_PREEMPHASIS_9_5dB:
1477 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1478 break;
1479 default:
1480 drm_dbg_kms(&i915->drm,
1481 "VBT has unknown eDP pre-emphasis value %u\n",
1482 edp_link_params->preemphasis);
1483 break;
1484 }
1485
1486 switch (edp_link_params->vswing) {
1487 case EDP_VSWING_0_4V:
1488 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1489 break;
1490 case EDP_VSWING_0_6V:
1491 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1492 break;
1493 case EDP_VSWING_0_8V:
1494 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1495 break;
1496 case EDP_VSWING_1_2V:
1497 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1498 break;
1499 default:
1500 drm_dbg_kms(&i915->drm,
1501 "VBT has unknown eDP voltage swing value %u\n",
1502 edp_link_params->vswing);
1503 break;
1504 }
1505
1506 if (i915->display.vbt.version >= 173) {
1507 u8 vswing;
1508
1509 /* Don't read from VBT if module parameter has valid value*/
1510 if (i915->params.edp_vswing) {
1511 panel->vbt.edp.low_vswing =
1512 i915->params.edp_vswing == 1;
1513 } else {
1514 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1515 panel->vbt.edp.low_vswing = vswing == 0;
1516 }
1517 }
1518
1519 panel->vbt.edp.drrs_msa_timing_delay =
1520 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1521
1522 if (i915->display.vbt.version >= 244)
1523 panel->vbt.edp.max_link_rate =
1524 edp->edp_max_port_link_rate[panel_type] * 20;
1525 }
1526
1527 static void
parse_psr(struct drm_i915_private * i915,struct intel_panel * panel)1528 parse_psr(struct drm_i915_private *i915,
1529 struct intel_panel *panel)
1530 {
1531 const struct bdb_psr *psr;
1532 const struct psr_table *psr_table;
1533 int panel_type = panel->vbt.panel_type;
1534
1535 psr = bdb_find_section(i915, BDB_PSR);
1536 if (!psr) {
1537 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1538 return;
1539 }
1540
1541 psr_table = &psr->psr_table[panel_type];
1542
1543 panel->vbt.psr.full_link = psr_table->full_link;
1544 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1545
1546 /* Allowed VBT values goes from 0 to 15 */
1547 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1548 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1549
1550 /*
1551 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1552 * Old decimal value is wake up time in multiples of 100 us.
1553 */
1554 if (i915->display.vbt.version >= 205 &&
1555 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1556 switch (psr_table->tp1_wakeup_time) {
1557 case 0:
1558 panel->vbt.psr.tp1_wakeup_time_us = 500;
1559 break;
1560 case 1:
1561 panel->vbt.psr.tp1_wakeup_time_us = 100;
1562 break;
1563 case 3:
1564 panel->vbt.psr.tp1_wakeup_time_us = 0;
1565 break;
1566 default:
1567 drm_dbg_kms(&i915->drm,
1568 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1569 psr_table->tp1_wakeup_time);
1570 fallthrough;
1571 case 2:
1572 panel->vbt.psr.tp1_wakeup_time_us = 2500;
1573 break;
1574 }
1575
1576 switch (psr_table->tp2_tp3_wakeup_time) {
1577 case 0:
1578 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1579 break;
1580 case 1:
1581 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1582 break;
1583 case 3:
1584 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1585 break;
1586 default:
1587 drm_dbg_kms(&i915->drm,
1588 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1589 psr_table->tp2_tp3_wakeup_time);
1590 fallthrough;
1591 case 2:
1592 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1593 break;
1594 }
1595 } else {
1596 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1597 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1598 }
1599
1600 if (i915->display.vbt.version >= 226) {
1601 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1602
1603 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1604 switch (wakeup_time) {
1605 case 0:
1606 wakeup_time = 500;
1607 break;
1608 case 1:
1609 wakeup_time = 100;
1610 break;
1611 case 3:
1612 wakeup_time = 50;
1613 break;
1614 default:
1615 case 2:
1616 wakeup_time = 2500;
1617 break;
1618 }
1619 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1620 } else {
1621 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1622 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1623 }
1624 }
1625
parse_dsi_backlight_ports(struct drm_i915_private * i915,struct intel_panel * panel,enum port port)1626 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1627 struct intel_panel *panel,
1628 enum port port)
1629 {
1630 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1631
1632 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1633 panel->vbt.dsi.bl_ports = BIT(port);
1634 if (panel->vbt.dsi.config->cabc_supported)
1635 panel->vbt.dsi.cabc_ports = BIT(port);
1636
1637 return;
1638 }
1639
1640 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1641 case DL_DCS_PORT_A:
1642 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1643 break;
1644 case DL_DCS_PORT_C:
1645 panel->vbt.dsi.bl_ports = BIT(port_bc);
1646 break;
1647 default:
1648 case DL_DCS_PORT_A_AND_C:
1649 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1650 break;
1651 }
1652
1653 if (!panel->vbt.dsi.config->cabc_supported)
1654 return;
1655
1656 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1657 case DL_DCS_PORT_A:
1658 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1659 break;
1660 case DL_DCS_PORT_C:
1661 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1662 break;
1663 default:
1664 case DL_DCS_PORT_A_AND_C:
1665 panel->vbt.dsi.cabc_ports =
1666 BIT(PORT_A) | BIT(port_bc);
1667 break;
1668 }
1669 }
1670
1671 static void
parse_mipi_config(struct drm_i915_private * i915,struct intel_panel * panel)1672 parse_mipi_config(struct drm_i915_private *i915,
1673 struct intel_panel *panel)
1674 {
1675 const struct bdb_mipi_config *start;
1676 const struct mipi_config *config;
1677 const struct mipi_pps_data *pps;
1678 int panel_type = panel->vbt.panel_type;
1679 enum port port;
1680
1681 /* parse MIPI blocks only if LFP type is MIPI */
1682 if (!intel_bios_is_dsi_present(i915, &port))
1683 return;
1684
1685 /* Initialize this to undefined indicating no generic MIPI support */
1686 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1687
1688 /* Block #40 is already parsed and panel_fixed_mode is
1689 * stored in i915->lfp_lvds_vbt_mode
1690 * resuse this when needed
1691 */
1692
1693 /* Parse #52 for panel index used from panel_type already
1694 * parsed
1695 */
1696 start = bdb_find_section(i915, BDB_MIPI_CONFIG);
1697 if (!start) {
1698 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1699 return;
1700 }
1701
1702 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1703 panel_type);
1704
1705 /*
1706 * get hold of the correct configuration block and pps data as per
1707 * the panel_type as index
1708 */
1709 config = &start->config[panel_type];
1710 pps = &start->pps[panel_type];
1711
1712 /* store as of now full data. Trim when we realise all is not needed */
1713 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1714 if (!panel->vbt.dsi.config)
1715 return;
1716
1717 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1718 if (!panel->vbt.dsi.pps) {
1719 kfree(panel->vbt.dsi.config);
1720 return;
1721 }
1722
1723 parse_dsi_backlight_ports(i915, panel, port);
1724
1725 /* FIXME is the 90 vs. 270 correct? */
1726 switch (config->rotation) {
1727 case ENABLE_ROTATION_0:
1728 /*
1729 * Most (all?) VBTs claim 0 degrees despite having
1730 * an upside down panel, thus we do not trust this.
1731 */
1732 panel->vbt.dsi.orientation =
1733 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1734 break;
1735 case ENABLE_ROTATION_90:
1736 panel->vbt.dsi.orientation =
1737 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1738 break;
1739 case ENABLE_ROTATION_180:
1740 panel->vbt.dsi.orientation =
1741 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1742 break;
1743 case ENABLE_ROTATION_270:
1744 panel->vbt.dsi.orientation =
1745 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1746 break;
1747 }
1748
1749 /* We have mandatory mipi config blocks. Initialize as generic panel */
1750 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1751 }
1752
1753 /* Find the sequence block and size for the given panel. */
1754 static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1755 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1756 u16 panel_id, u32 *seq_size)
1757 {
1758 u32 total = get_blocksize(sequence);
1759 const u8 *data = &sequence->data[0];
1760 u8 current_id;
1761 u32 current_size;
1762 int header_size = sequence->version >= 3 ? 5 : 3;
1763 int index = 0;
1764 int i;
1765
1766 /* skip new block size */
1767 if (sequence->version >= 3)
1768 data += 4;
1769
1770 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1771 if (index + header_size > total) {
1772 DRM_ERROR("Invalid sequence block (header)\n");
1773 return NULL;
1774 }
1775
1776 current_id = *(data + index);
1777 if (sequence->version >= 3)
1778 current_size = *((const u32 *)(data + index + 1));
1779 else
1780 current_size = *((const u16 *)(data + index + 1));
1781
1782 index += header_size;
1783
1784 if (index + current_size > total) {
1785 DRM_ERROR("Invalid sequence block\n");
1786 return NULL;
1787 }
1788
1789 if (current_id == panel_id) {
1790 *seq_size = current_size;
1791 return data + index;
1792 }
1793
1794 index += current_size;
1795 }
1796
1797 DRM_ERROR("Sequence block detected but no valid configuration\n");
1798
1799 return NULL;
1800 }
1801
goto_next_sequence(const u8 * data,int index,int total)1802 static int goto_next_sequence(const u8 *data, int index, int total)
1803 {
1804 u16 len;
1805
1806 /* Skip Sequence Byte. */
1807 for (index = index + 1; index < total; index += len) {
1808 u8 operation_byte = *(data + index);
1809 index++;
1810
1811 switch (operation_byte) {
1812 case MIPI_SEQ_ELEM_END:
1813 return index;
1814 case MIPI_SEQ_ELEM_SEND_PKT:
1815 if (index + 4 > total)
1816 return 0;
1817
1818 len = *((const u16 *)(data + index + 2)) + 4;
1819 break;
1820 case MIPI_SEQ_ELEM_DELAY:
1821 len = 4;
1822 break;
1823 case MIPI_SEQ_ELEM_GPIO:
1824 len = 2;
1825 break;
1826 case MIPI_SEQ_ELEM_I2C:
1827 if (index + 7 > total)
1828 return 0;
1829 len = *(data + index + 6) + 7;
1830 break;
1831 default:
1832 DRM_ERROR("Unknown operation byte\n");
1833 return 0;
1834 }
1835 }
1836
1837 return 0;
1838 }
1839
goto_next_sequence_v3(const u8 * data,int index,int total)1840 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1841 {
1842 int seq_end;
1843 u16 len;
1844 u32 size_of_sequence;
1845
1846 /*
1847 * Could skip sequence based on Size of Sequence alone, but also do some
1848 * checking on the structure.
1849 */
1850 if (total < 5) {
1851 DRM_ERROR("Too small sequence size\n");
1852 return 0;
1853 }
1854
1855 /* Skip Sequence Byte. */
1856 index++;
1857
1858 /*
1859 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1860 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1861 * byte.
1862 */
1863 size_of_sequence = *((const u32 *)(data + index));
1864 index += 4;
1865
1866 seq_end = index + size_of_sequence;
1867 if (seq_end > total) {
1868 DRM_ERROR("Invalid sequence size\n");
1869 return 0;
1870 }
1871
1872 for (; index < total; index += len) {
1873 u8 operation_byte = *(data + index);
1874 index++;
1875
1876 if (operation_byte == MIPI_SEQ_ELEM_END) {
1877 if (index != seq_end) {
1878 DRM_ERROR("Invalid element structure\n");
1879 return 0;
1880 }
1881 return index;
1882 }
1883
1884 len = *(data + index);
1885 index++;
1886
1887 /*
1888 * FIXME: Would be nice to check elements like for v1/v2 in
1889 * goto_next_sequence() above.
1890 */
1891 switch (operation_byte) {
1892 case MIPI_SEQ_ELEM_SEND_PKT:
1893 case MIPI_SEQ_ELEM_DELAY:
1894 case MIPI_SEQ_ELEM_GPIO:
1895 case MIPI_SEQ_ELEM_I2C:
1896 case MIPI_SEQ_ELEM_SPI:
1897 case MIPI_SEQ_ELEM_PMIC:
1898 break;
1899 default:
1900 DRM_ERROR("Unknown operation byte %u\n",
1901 operation_byte);
1902 break;
1903 }
1904 }
1905
1906 return 0;
1907 }
1908
1909 /*
1910 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1911 * skip all delay + gpio operands and stop at the first DSI packet op.
1912 */
get_init_otp_deassert_fragment_len(struct drm_i915_private * i915,struct intel_panel * panel)1913 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1914 struct intel_panel *panel)
1915 {
1916 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1917 int index, len;
1918
1919 if (drm_WARN_ON(&i915->drm,
1920 !data || panel->vbt.dsi.seq_version != 1))
1921 return 0;
1922
1923 /* index = 1 to skip sequence byte */
1924 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1925 switch (data[index]) {
1926 case MIPI_SEQ_ELEM_SEND_PKT:
1927 return index == 1 ? 0 : index;
1928 case MIPI_SEQ_ELEM_DELAY:
1929 len = 5; /* 1 byte for operand + uint32 */
1930 break;
1931 case MIPI_SEQ_ELEM_GPIO:
1932 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1933 break;
1934 default:
1935 return 0;
1936 }
1937 }
1938
1939 return 0;
1940 }
1941
1942 /*
1943 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1944 * The deassert must be done before calling intel_dsi_device_ready, so for
1945 * these devices we split the init OTP sequence into a deassert sequence and
1946 * the actual init OTP part.
1947 */
fixup_mipi_sequences(struct drm_i915_private * i915,struct intel_panel * panel)1948 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1949 struct intel_panel *panel)
1950 {
1951 u8 *init_otp;
1952 int len;
1953
1954 /* Limit this to VLV for now. */
1955 if (!IS_VALLEYVIEW(i915))
1956 return;
1957
1958 /* Limit this to v1 vid-mode sequences */
1959 if (panel->vbt.dsi.config->is_cmd_mode ||
1960 panel->vbt.dsi.seq_version != 1)
1961 return;
1962
1963 /* Only do this if there are otp and assert seqs and no deassert seq */
1964 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1965 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1966 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1967 return;
1968
1969 /* The deassert-sequence ends at the first DSI packet */
1970 len = get_init_otp_deassert_fragment_len(i915, panel);
1971 if (!len)
1972 return;
1973
1974 drm_dbg_kms(&i915->drm,
1975 "Using init OTP fragment to deassert reset\n");
1976
1977 /* Copy the fragment, update seq byte and terminate it */
1978 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1979 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1980 if (!panel->vbt.dsi.deassert_seq)
1981 return;
1982 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1983 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1984 /* Use the copy for deassert */
1985 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1986 panel->vbt.dsi.deassert_seq;
1987 /* Replace the last byte of the fragment with init OTP seq byte */
1988 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1989 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1990 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1991 }
1992
1993 static void
parse_mipi_sequence(struct drm_i915_private * i915,struct intel_panel * panel)1994 parse_mipi_sequence(struct drm_i915_private *i915,
1995 struct intel_panel *panel)
1996 {
1997 int panel_type = panel->vbt.panel_type;
1998 const struct bdb_mipi_sequence *sequence;
1999 const u8 *seq_data;
2000 u32 seq_size;
2001 u8 *data;
2002 int index = 0;
2003
2004 /* Only our generic panel driver uses the sequence block. */
2005 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2006 return;
2007
2008 sequence = bdb_find_section(i915, BDB_MIPI_SEQUENCE);
2009 if (!sequence) {
2010 drm_dbg_kms(&i915->drm,
2011 "No MIPI Sequence found, parsing complete\n");
2012 return;
2013 }
2014
2015 /* Fail gracefully for forward incompatible sequence block. */
2016 if (sequence->version >= 4) {
2017 drm_err(&i915->drm,
2018 "Unable to parse MIPI Sequence Block v%u\n",
2019 sequence->version);
2020 return;
2021 }
2022
2023 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2024 sequence->version);
2025
2026 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2027 if (!seq_data)
2028 return;
2029
2030 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2031 if (!data)
2032 return;
2033
2034 /* Parse the sequences, store pointers to each sequence. */
2035 for (;;) {
2036 u8 seq_id = *(data + index);
2037 if (seq_id == MIPI_SEQ_END)
2038 break;
2039
2040 if (seq_id >= MIPI_SEQ_MAX) {
2041 drm_err(&i915->drm, "Unknown sequence %u\n",
2042 seq_id);
2043 goto err;
2044 }
2045
2046 /* Log about presence of sequences we won't run. */
2047 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2048 drm_dbg_kms(&i915->drm,
2049 "Unsupported sequence %u\n", seq_id);
2050
2051 panel->vbt.dsi.sequence[seq_id] = data + index;
2052
2053 if (sequence->version >= 3)
2054 index = goto_next_sequence_v3(data, index, seq_size);
2055 else
2056 index = goto_next_sequence(data, index, seq_size);
2057 if (!index) {
2058 drm_err(&i915->drm, "Invalid sequence %u\n",
2059 seq_id);
2060 goto err;
2061 }
2062 }
2063
2064 panel->vbt.dsi.data = data;
2065 panel->vbt.dsi.size = seq_size;
2066 panel->vbt.dsi.seq_version = sequence->version;
2067
2068 fixup_mipi_sequences(i915, panel);
2069
2070 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2071 return;
2072
2073 err:
2074 kfree(data);
2075 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2076 }
2077
2078 static void
parse_compression_parameters(struct drm_i915_private * i915)2079 parse_compression_parameters(struct drm_i915_private *i915)
2080 {
2081 const struct bdb_compression_parameters *params;
2082 struct intel_bios_encoder_data *devdata;
2083 u16 block_size;
2084 int index;
2085
2086 if (i915->display.vbt.version < 198)
2087 return;
2088
2089 params = bdb_find_section(i915, BDB_COMPRESSION_PARAMETERS);
2090 if (params) {
2091 /* Sanity checks */
2092 if (params->entry_size != sizeof(params->data[0])) {
2093 drm_dbg_kms(&i915->drm,
2094 "VBT: unsupported compression param entry size\n");
2095 return;
2096 }
2097
2098 block_size = get_blocksize(params);
2099 if (block_size < sizeof(*params)) {
2100 drm_dbg_kms(&i915->drm,
2101 "VBT: expected 16 compression param entries\n");
2102 return;
2103 }
2104 }
2105
2106 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2107 const struct child_device_config *child = &devdata->child;
2108
2109 if (!child->compression_enable)
2110 continue;
2111
2112 if (!params) {
2113 drm_dbg_kms(&i915->drm,
2114 "VBT: compression params not available\n");
2115 continue;
2116 }
2117
2118 if (child->compression_method_cps) {
2119 drm_dbg_kms(&i915->drm,
2120 "VBT: CPS compression not supported\n");
2121 continue;
2122 }
2123
2124 index = child->compression_structure_index;
2125
2126 devdata->dsc = kmemdup(¶ms->data[index],
2127 sizeof(*devdata->dsc), GFP_KERNEL);
2128 }
2129 }
2130
translate_iboost(u8 val)2131 static u8 translate_iboost(u8 val)
2132 {
2133 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2134
2135 if (val >= ARRAY_SIZE(mapping)) {
2136 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2137 return 0;
2138 }
2139 return mapping[val];
2140 }
2141
2142 static const u8 cnp_ddc_pin_map[] = {
2143 [0] = 0, /* N/A */
2144 [GMBUS_PIN_1_BXT] = DDC_BUS_DDI_B,
2145 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_C,
2146 [GMBUS_PIN_4_CNP] = DDC_BUS_DDI_D, /* sic */
2147 [GMBUS_PIN_3_BXT] = DDC_BUS_DDI_F, /* sic */
2148 };
2149
2150 static const u8 icp_ddc_pin_map[] = {
2151 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2152 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2153 [GMBUS_PIN_3_BXT] = TGL_DDC_BUS_DDI_C,
2154 [GMBUS_PIN_9_TC1_ICP] = ICL_DDC_BUS_PORT_1,
2155 [GMBUS_PIN_10_TC2_ICP] = ICL_DDC_BUS_PORT_2,
2156 [GMBUS_PIN_11_TC3_ICP] = ICL_DDC_BUS_PORT_3,
2157 [GMBUS_PIN_12_TC4_ICP] = ICL_DDC_BUS_PORT_4,
2158 [GMBUS_PIN_13_TC5_TGP] = TGL_DDC_BUS_PORT_5,
2159 [GMBUS_PIN_14_TC6_TGP] = TGL_DDC_BUS_PORT_6,
2160 };
2161
2162 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2163 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2164 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2165 [GMBUS_PIN_9_TC1_ICP] = RKL_DDC_BUS_DDI_D,
2166 [GMBUS_PIN_10_TC2_ICP] = RKL_DDC_BUS_DDI_E,
2167 };
2168
2169 static const u8 adls_ddc_pin_map[] = {
2170 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2171 [GMBUS_PIN_9_TC1_ICP] = ADLS_DDC_BUS_PORT_TC1,
2172 [GMBUS_PIN_10_TC2_ICP] = ADLS_DDC_BUS_PORT_TC2,
2173 [GMBUS_PIN_11_TC3_ICP] = ADLS_DDC_BUS_PORT_TC3,
2174 [GMBUS_PIN_12_TC4_ICP] = ADLS_DDC_BUS_PORT_TC4,
2175 };
2176
2177 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2178 [GMBUS_PIN_2_BXT] = DDC_BUS_DDI_B,
2179 [GMBUS_PIN_9_TC1_ICP] = DDC_BUS_DDI_C,
2180 [GMBUS_PIN_10_TC2_ICP] = DDC_BUS_DDI_D,
2181 };
2182
2183 static const u8 adlp_ddc_pin_map[] = {
2184 [GMBUS_PIN_1_BXT] = ICL_DDC_BUS_DDI_A,
2185 [GMBUS_PIN_2_BXT] = ICL_DDC_BUS_DDI_B,
2186 [GMBUS_PIN_9_TC1_ICP] = ADLP_DDC_BUS_PORT_TC1,
2187 [GMBUS_PIN_10_TC2_ICP] = ADLP_DDC_BUS_PORT_TC2,
2188 [GMBUS_PIN_11_TC3_ICP] = ADLP_DDC_BUS_PORT_TC3,
2189 [GMBUS_PIN_12_TC4_ICP] = ADLP_DDC_BUS_PORT_TC4,
2190 };
2191
map_ddc_pin(struct drm_i915_private * i915,u8 vbt_pin)2192 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2193 {
2194 const u8 *ddc_pin_map;
2195 int i, n_entries;
2196
2197 if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
2198 ddc_pin_map = adlp_ddc_pin_map;
2199 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2200 } else if (IS_ALDERLAKE_S(i915)) {
2201 ddc_pin_map = adls_ddc_pin_map;
2202 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2203 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2204 return vbt_pin;
2205 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2206 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2207 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2208 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2209 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2210 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2211 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2212 ddc_pin_map = icp_ddc_pin_map;
2213 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2214 } else if (HAS_PCH_CNP(i915)) {
2215 ddc_pin_map = cnp_ddc_pin_map;
2216 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2217 } else {
2218 /* Assuming direct map */
2219 return vbt_pin;
2220 }
2221
2222 for (i = 0; i < n_entries; i++) {
2223 if (ddc_pin_map[i] == vbt_pin)
2224 return i;
2225 }
2226
2227 drm_dbg_kms(&i915->drm,
2228 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2229 vbt_pin);
2230 return 0;
2231 }
2232
dvo_port_type(u8 dvo_port)2233 static u8 dvo_port_type(u8 dvo_port)
2234 {
2235 switch (dvo_port) {
2236 case DVO_PORT_HDMIA:
2237 case DVO_PORT_HDMIB:
2238 case DVO_PORT_HDMIC:
2239 case DVO_PORT_HDMID:
2240 case DVO_PORT_HDMIE:
2241 case DVO_PORT_HDMIF:
2242 case DVO_PORT_HDMIG:
2243 case DVO_PORT_HDMIH:
2244 case DVO_PORT_HDMII:
2245 return DVO_PORT_HDMIA;
2246 case DVO_PORT_DPA:
2247 case DVO_PORT_DPB:
2248 case DVO_PORT_DPC:
2249 case DVO_PORT_DPD:
2250 case DVO_PORT_DPE:
2251 case DVO_PORT_DPF:
2252 case DVO_PORT_DPG:
2253 case DVO_PORT_DPH:
2254 case DVO_PORT_DPI:
2255 return DVO_PORT_DPA;
2256 case DVO_PORT_MIPIA:
2257 case DVO_PORT_MIPIB:
2258 case DVO_PORT_MIPIC:
2259 case DVO_PORT_MIPID:
2260 return DVO_PORT_MIPIA;
2261 default:
2262 return dvo_port;
2263 }
2264 }
2265
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2266 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2267 const int port_mapping[][3], u8 dvo_port)
2268 {
2269 enum port port;
2270 int i;
2271
2272 for (port = PORT_A; port < n_ports; port++) {
2273 for (i = 0; i < n_dvo; i++) {
2274 if (port_mapping[port][i] == -1)
2275 break;
2276
2277 if (dvo_port == port_mapping[port][i])
2278 return port;
2279 }
2280 }
2281
2282 return PORT_NONE;
2283 }
2284
dvo_port_to_port(struct drm_i915_private * i915,u8 dvo_port)2285 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2286 u8 dvo_port)
2287 {
2288 /*
2289 * Each DDI port can have more than one value on the "DVO Port" field,
2290 * so look for all the possible values for each port.
2291 */
2292 static const int port_mapping[][3] = {
2293 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2294 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2295 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2296 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2297 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2298 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2299 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2300 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2301 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2302 };
2303 /*
2304 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2305 * map to DDI A,B,TC1,TC2 respectively.
2306 */
2307 static const int rkl_port_mapping[][3] = {
2308 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2309 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2310 [PORT_C] = { -1 },
2311 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2312 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2313 };
2314 /*
2315 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2316 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2317 */
2318 static const int adls_port_mapping[][3] = {
2319 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2320 [PORT_B] = { -1 },
2321 [PORT_C] = { -1 },
2322 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2323 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2324 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2325 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2326 };
2327 static const int xelpd_port_mapping[][3] = {
2328 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2329 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2330 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2331 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2332 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2333 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2334 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2335 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2336 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2337 };
2338
2339 if (DISPLAY_VER(i915) >= 13)
2340 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2341 ARRAY_SIZE(xelpd_port_mapping[0]),
2342 xelpd_port_mapping,
2343 dvo_port);
2344 else if (IS_ALDERLAKE_S(i915))
2345 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2346 ARRAY_SIZE(adls_port_mapping[0]),
2347 adls_port_mapping,
2348 dvo_port);
2349 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2350 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2351 ARRAY_SIZE(rkl_port_mapping[0]),
2352 rkl_port_mapping,
2353 dvo_port);
2354 else
2355 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2356 ARRAY_SIZE(port_mapping[0]),
2357 port_mapping,
2358 dvo_port);
2359 }
2360
2361 static enum port
dsi_dvo_port_to_port(struct drm_i915_private * i915,u8 dvo_port)2362 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2363 {
2364 switch (dvo_port) {
2365 case DVO_PORT_MIPIA:
2366 return PORT_A;
2367 case DVO_PORT_MIPIC:
2368 if (DISPLAY_VER(i915) >= 11)
2369 return PORT_B;
2370 else
2371 return PORT_C;
2372 default:
2373 return PORT_NONE;
2374 }
2375 }
2376
intel_bios_encoder_port(const struct intel_bios_encoder_data * devdata)2377 enum port intel_bios_encoder_port(const struct intel_bios_encoder_data *devdata)
2378 {
2379 struct drm_i915_private *i915 = devdata->i915;
2380 const struct child_device_config *child = &devdata->child;
2381 enum port port;
2382
2383 port = dvo_port_to_port(i915, child->dvo_port);
2384 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2385 port = dsi_dvo_port_to_port(i915, child->dvo_port);
2386
2387 return port;
2388 }
2389
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2390 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2391 {
2392 switch (vbt_max_link_rate) {
2393 default:
2394 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2395 return 0;
2396 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2397 return 2000000;
2398 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2399 return 1350000;
2400 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2401 return 1000000;
2402 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2403 return 810000;
2404 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2405 return 540000;
2406 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2407 return 270000;
2408 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2409 return 162000;
2410 }
2411 }
2412
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2413 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2414 {
2415 switch (vbt_max_link_rate) {
2416 default:
2417 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2418 return 810000;
2419 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2420 return 540000;
2421 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2422 return 270000;
2423 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2424 return 162000;
2425 }
2426 }
2427
intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2428 int intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2429 {
2430 if (!devdata || devdata->i915->display.vbt.version < 216)
2431 return 0;
2432
2433 if (devdata->i915->display.vbt.version >= 230)
2434 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2435 else
2436 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2437 }
2438
intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data * devdata)2439 int intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2440 {
2441 if (!devdata || devdata->i915->display.vbt.version < 244)
2442 return 0;
2443
2444 return devdata->child.dp_max_lane_count + 1;
2445 }
2446
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2447 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2448 enum port port)
2449 {
2450 struct drm_i915_private *i915 = devdata->i915;
2451 bool is_hdmi;
2452
2453 if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2454 return;
2455
2456 if (!intel_bios_encoder_supports_dvi(devdata))
2457 return;
2458
2459 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2460
2461 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2462 is_hdmi ? "/HDMI" : "");
2463
2464 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2465 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2466 }
2467
2468 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2469 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2470 {
2471 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2472 }
2473
2474 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2475 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2476 {
2477 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2478 }
2479
2480 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2481 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2482 {
2483 return intel_bios_encoder_supports_dvi(devdata) &&
2484 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2485 }
2486
2487 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2488 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2489 {
2490 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2491 }
2492
2493 bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2494 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2495 {
2496 return intel_bios_encoder_supports_dp(devdata) &&
2497 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2498 }
2499
2500 bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data * devdata)2501 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2502 {
2503 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2504 }
2505
2506 bool
intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data * devdata)2507 intel_bios_encoder_is_lspcon(const struct intel_bios_encoder_data *devdata)
2508 {
2509 return devdata && HAS_LSPCON(devdata->i915) && devdata->child.lspcon;
2510 }
2511
2512 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2513 int intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2514 {
2515 if (!devdata || devdata->i915->display.vbt.version < 158 ||
2516 DISPLAY_VER(devdata->i915) >= 14)
2517 return -1;
2518
2519 return devdata->child.hdmi_level_shifter_value;
2520 }
2521
intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2522 int intel_bios_hdmi_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2523 {
2524 if (!devdata || devdata->i915->display.vbt.version < 204)
2525 return 0;
2526
2527 switch (devdata->child.hdmi_max_data_rate) {
2528 default:
2529 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2530 fallthrough;
2531 case HDMI_MAX_DATA_RATE_PLATFORM:
2532 return 0;
2533 case HDMI_MAX_DATA_RATE_594:
2534 return 594000;
2535 case HDMI_MAX_DATA_RATE_340:
2536 return 340000;
2537 case HDMI_MAX_DATA_RATE_300:
2538 return 300000;
2539 case HDMI_MAX_DATA_RATE_297:
2540 return 297000;
2541 case HDMI_MAX_DATA_RATE_165:
2542 return 165000;
2543 }
2544 }
2545
is_port_valid(struct drm_i915_private * i915,enum port port)2546 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2547 {
2548 /*
2549 * On some ICL SKUs port F is not present, but broken VBTs mark
2550 * the port as present. Only try to initialize port F for the
2551 * SKUs that may actually have it.
2552 */
2553 if (port == PORT_F && IS_ICELAKE(i915))
2554 return IS_ICL_WITH_PORT_F(i915);
2555
2556 return true;
2557 }
2558
print_ddi_port(const struct intel_bios_encoder_data * devdata)2559 static void print_ddi_port(const struct intel_bios_encoder_data *devdata)
2560 {
2561 struct drm_i915_private *i915 = devdata->i915;
2562 const struct child_device_config *child = &devdata->child;
2563 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2564 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2565 enum port port;
2566
2567 port = intel_bios_encoder_port(devdata);
2568 if (port == PORT_NONE)
2569 return;
2570
2571 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2572 is_dp = intel_bios_encoder_supports_dp(devdata);
2573 is_crt = intel_bios_encoder_supports_crt(devdata);
2574 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2575 is_edp = intel_bios_encoder_supports_edp(devdata);
2576 is_dsi = intel_bios_encoder_supports_dsi(devdata);
2577
2578 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2579 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2580
2581 drm_dbg_kms(&i915->drm,
2582 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d DP++:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2583 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2584 intel_bios_encoder_supports_dp_dual_mode(devdata),
2585 intel_bios_encoder_is_lspcon(devdata),
2586 supports_typec_usb, supports_tbt,
2587 devdata->dsc != NULL);
2588
2589 hdmi_level_shift = intel_bios_hdmi_level_shift(devdata);
2590 if (hdmi_level_shift >= 0) {
2591 drm_dbg_kms(&i915->drm,
2592 "Port %c VBT HDMI level shift: %d\n",
2593 port_name(port), hdmi_level_shift);
2594 }
2595
2596 max_tmds_clock = intel_bios_hdmi_max_tmds_clock(devdata);
2597 if (max_tmds_clock)
2598 drm_dbg_kms(&i915->drm,
2599 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2600 port_name(port), max_tmds_clock);
2601
2602 /* I_boost config for SKL and above */
2603 dp_boost_level = intel_bios_dp_boost_level(devdata);
2604 if (dp_boost_level)
2605 drm_dbg_kms(&i915->drm,
2606 "Port %c VBT (e)DP boost level: %d\n",
2607 port_name(port), dp_boost_level);
2608
2609 hdmi_boost_level = intel_bios_hdmi_boost_level(devdata);
2610 if (hdmi_boost_level)
2611 drm_dbg_kms(&i915->drm,
2612 "Port %c VBT HDMI boost level: %d\n",
2613 port_name(port), hdmi_boost_level);
2614
2615 dp_max_link_rate = intel_bios_dp_max_link_rate(devdata);
2616 if (dp_max_link_rate)
2617 drm_dbg_kms(&i915->drm,
2618 "Port %c VBT DP max link rate: %d\n",
2619 port_name(port), dp_max_link_rate);
2620
2621 /*
2622 * FIXME need to implement support for VBT
2623 * vswing/preemph tables should this ever trigger.
2624 */
2625 drm_WARN(&i915->drm, child->use_vbt_vswing,
2626 "Port %c asks to use VBT vswing/preemph tables\n",
2627 port_name(port));
2628 }
2629
parse_ddi_port(struct intel_bios_encoder_data * devdata)2630 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2631 {
2632 struct drm_i915_private *i915 = devdata->i915;
2633 enum port port;
2634
2635 port = intel_bios_encoder_port(devdata);
2636 if (port == PORT_NONE)
2637 return;
2638
2639 if (!is_port_valid(i915, port)) {
2640 drm_dbg_kms(&i915->drm,
2641 "VBT reports port %c as supported, but that can't be true: skipping\n",
2642 port_name(port));
2643 return;
2644 }
2645
2646 sanitize_device_type(devdata, port);
2647 }
2648
has_ddi_port_info(struct drm_i915_private * i915)2649 static bool has_ddi_port_info(struct drm_i915_private *i915)
2650 {
2651 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2652 }
2653
parse_ddi_ports(struct drm_i915_private * i915)2654 static void parse_ddi_ports(struct drm_i915_private *i915)
2655 {
2656 struct intel_bios_encoder_data *devdata;
2657
2658 if (!has_ddi_port_info(i915))
2659 return;
2660
2661 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2662 parse_ddi_port(devdata);
2663
2664 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2665 print_ddi_port(devdata);
2666 }
2667
2668 static void
parse_general_definitions(struct drm_i915_private * i915)2669 parse_general_definitions(struct drm_i915_private *i915)
2670 {
2671 const struct bdb_general_definitions *defs;
2672 struct intel_bios_encoder_data *devdata;
2673 const struct child_device_config *child;
2674 int i, child_device_num;
2675 u8 expected_size;
2676 u16 block_size;
2677 int bus_pin;
2678
2679 defs = bdb_find_section(i915, BDB_GENERAL_DEFINITIONS);
2680 if (!defs) {
2681 drm_dbg_kms(&i915->drm,
2682 "No general definition block is found, no devices defined.\n");
2683 return;
2684 }
2685
2686 block_size = get_blocksize(defs);
2687 if (block_size < sizeof(*defs)) {
2688 drm_dbg_kms(&i915->drm,
2689 "General definitions block too small (%u)\n",
2690 block_size);
2691 return;
2692 }
2693
2694 bus_pin = defs->crt_ddc_gmbus_pin;
2695 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2696 if (intel_gmbus_is_valid_pin(i915, bus_pin))
2697 i915->display.vbt.crt_ddc_pin = bus_pin;
2698
2699 if (i915->display.vbt.version < 106) {
2700 expected_size = 22;
2701 } else if (i915->display.vbt.version < 111) {
2702 expected_size = 27;
2703 } else if (i915->display.vbt.version < 195) {
2704 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2705 } else if (i915->display.vbt.version == 195) {
2706 expected_size = 37;
2707 } else if (i915->display.vbt.version <= 215) {
2708 expected_size = 38;
2709 } else if (i915->display.vbt.version <= 250) {
2710 expected_size = 39;
2711 } else {
2712 expected_size = sizeof(*child);
2713 BUILD_BUG_ON(sizeof(*child) < 39);
2714 drm_dbg(&i915->drm,
2715 "Expected child device config size for VBT version %u not known; assuming %u\n",
2716 i915->display.vbt.version, expected_size);
2717 }
2718
2719 /* Flag an error for unexpected size, but continue anyway. */
2720 if (defs->child_dev_size != expected_size)
2721 drm_err(&i915->drm,
2722 "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2723 defs->child_dev_size, expected_size, i915->display.vbt.version);
2724
2725 /* The legacy sized child device config is the minimum we need. */
2726 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2727 drm_dbg_kms(&i915->drm,
2728 "Child device config size %u is too small.\n",
2729 defs->child_dev_size);
2730 return;
2731 }
2732
2733 /* get the number of child device */
2734 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2735
2736 for (i = 0; i < child_device_num; i++) {
2737 child = child_device_ptr(defs, i);
2738 if (!child->device_type)
2739 continue;
2740
2741 drm_dbg_kms(&i915->drm,
2742 "Found VBT child device with type 0x%x\n",
2743 child->device_type);
2744
2745 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2746 if (!devdata)
2747 break;
2748
2749 devdata->i915 = i915;
2750
2751 /*
2752 * Copy as much as we know (sizeof) and is available
2753 * (child_dev_size) of the child device config. Accessing the
2754 * data must depend on VBT version.
2755 */
2756 memcpy(&devdata->child, child,
2757 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2758
2759 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2760 }
2761
2762 if (list_empty(&i915->display.vbt.display_devices))
2763 drm_dbg_kms(&i915->drm,
2764 "no child dev is parsed from VBT\n");
2765 }
2766
2767 /* Common defaults which may be overridden by VBT. */
2768 static void
init_vbt_defaults(struct drm_i915_private * i915)2769 init_vbt_defaults(struct drm_i915_private *i915)
2770 {
2771 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2772
2773 /* general features */
2774 i915->display.vbt.int_tv_support = 1;
2775 i915->display.vbt.int_crt_support = 1;
2776
2777 /* driver features */
2778 i915->display.vbt.int_lvds_support = 1;
2779
2780 /* Default to using SSC */
2781 i915->display.vbt.lvds_use_ssc = 1;
2782 /*
2783 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2784 * clock for LVDS.
2785 */
2786 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2787 !HAS_PCH_SPLIT(i915));
2788 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2789 i915->display.vbt.lvds_ssc_freq);
2790 }
2791
2792 /* Common defaults which may be overridden by VBT. */
2793 static void
init_vbt_panel_defaults(struct intel_panel * panel)2794 init_vbt_panel_defaults(struct intel_panel *panel)
2795 {
2796 /* Default to having backlight */
2797 panel->vbt.backlight.present = true;
2798
2799 /* LFP panel data */
2800 panel->vbt.lvds_dither = true;
2801 }
2802
2803 /* Defaults to initialize only if there is no VBT. */
2804 static void
init_vbt_missing_defaults(struct drm_i915_private * i915)2805 init_vbt_missing_defaults(struct drm_i915_private *i915)
2806 {
2807 enum port port;
2808 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2809 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2810
2811 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2812 return;
2813
2814 for_each_port_masked(port, ports) {
2815 struct intel_bios_encoder_data *devdata;
2816 struct child_device_config *child;
2817 enum phy phy = intel_port_to_phy(i915, port);
2818
2819 /*
2820 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2821 * to detect it.
2822 */
2823 if (intel_phy_is_tc(i915, phy))
2824 continue;
2825
2826 /* Create fake child device config */
2827 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2828 if (!devdata)
2829 break;
2830
2831 devdata->i915 = i915;
2832 child = &devdata->child;
2833
2834 if (port == PORT_F)
2835 child->dvo_port = DVO_PORT_HDMIF;
2836 else if (port == PORT_E)
2837 child->dvo_port = DVO_PORT_HDMIE;
2838 else
2839 child->dvo_port = DVO_PORT_HDMIA + port;
2840
2841 if (port != PORT_A && port != PORT_E)
2842 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2843
2844 if (port != PORT_E)
2845 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2846
2847 if (port == PORT_A)
2848 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2849
2850 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2851
2852 drm_dbg_kms(&i915->drm,
2853 "Generating default VBT child device with type 0x04%x on port %c\n",
2854 child->device_type, port_name(port));
2855 }
2856
2857 /* Bypass some minimum baseline VBT version checks */
2858 i915->display.vbt.version = 155;
2859 }
2860
get_bdb_header(const struct vbt_header * vbt)2861 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2862 {
2863 const void *_vbt = vbt;
2864
2865 return _vbt + vbt->bdb_offset;
2866 }
2867
2868 /**
2869 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2870 * @buf: pointer to a buffer to validate
2871 * @size: size of the buffer
2872 *
2873 * Returns true on valid VBT.
2874 */
intel_bios_is_valid_vbt(const void * buf,size_t size)2875 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2876 {
2877 const struct vbt_header *vbt = buf;
2878 const struct bdb_header *bdb;
2879
2880 if (!vbt)
2881 return false;
2882
2883 if (sizeof(struct vbt_header) > size) {
2884 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2885 return false;
2886 }
2887
2888 if (memcmp(vbt->signature, "$VBT", 4)) {
2889 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2890 return false;
2891 }
2892
2893 if (vbt->vbt_size > size) {
2894 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2895 return false;
2896 }
2897
2898 size = vbt->vbt_size;
2899
2900 if (range_overflows_t(size_t,
2901 vbt->bdb_offset,
2902 sizeof(struct bdb_header),
2903 size)) {
2904 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2905 return false;
2906 }
2907
2908 bdb = get_bdb_header(vbt);
2909 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2910 DRM_DEBUG_DRIVER("BDB incomplete\n");
2911 return false;
2912 }
2913
2914 return vbt;
2915 }
2916
intel_spi_read(struct intel_uncore * uncore,u32 offset)2917 static u32 intel_spi_read(struct intel_uncore *uncore, u32 offset)
2918 {
2919 intel_uncore_write(uncore, PRIMARY_SPI_ADDRESS, offset);
2920
2921 return intel_uncore_read(uncore, PRIMARY_SPI_TRIGGER);
2922 }
2923
spi_oprom_get_vbt(struct drm_i915_private * i915)2924 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2925 {
2926 u32 count, data, found, store = 0;
2927 u32 static_region, oprom_offset;
2928 u32 oprom_size = 0x200000;
2929 u16 vbt_size;
2930 u32 *vbt;
2931
2932 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
2933 static_region &= OPTIONROM_SPI_REGIONID_MASK;
2934 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
2935
2936 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
2937 oprom_offset &= OROM_OFFSET_MASK;
2938
2939 for (count = 0; count < oprom_size; count += 4) {
2940 data = intel_spi_read(&i915->uncore, oprom_offset + count);
2941 if (data == *((const u32 *)"$VBT")) {
2942 found = oprom_offset + count;
2943 break;
2944 }
2945 }
2946
2947 if (count >= oprom_size)
2948 goto err_not_found;
2949
2950 /* Get VBT size and allocate space for the VBT */
2951 vbt_size = intel_spi_read(&i915->uncore,
2952 found + offsetof(struct vbt_header, vbt_size));
2953 vbt_size &= 0xffff;
2954
2955 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
2956 if (!vbt)
2957 goto err_not_found;
2958
2959 for (count = 0; count < vbt_size; count += 4)
2960 *(vbt + store++) = intel_spi_read(&i915->uncore, found + count);
2961
2962 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2963 goto err_free_vbt;
2964
2965 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
2966
2967 return (struct vbt_header *)vbt;
2968
2969 err_free_vbt:
2970 kfree(vbt);
2971 err_not_found:
2972 return NULL;
2973 }
2974
oprom_get_vbt(struct drm_i915_private * i915)2975 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2976 {
2977 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2978 void __iomem *p = NULL, *oprom;
2979 struct vbt_header *vbt;
2980 u16 vbt_size;
2981 size_t i, size;
2982
2983 oprom = pci_map_rom(pdev, &size);
2984 if (!oprom)
2985 return NULL;
2986
2987 /* Scour memory looking for the VBT signature. */
2988 for (i = 0; i + 4 < size; i += 4) {
2989 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2990 continue;
2991
2992 p = oprom + i;
2993 size -= i;
2994 break;
2995 }
2996
2997 if (!p)
2998 goto err_unmap_oprom;
2999
3000 if (sizeof(struct vbt_header) > size) {
3001 drm_dbg(&i915->drm, "VBT header incomplete\n");
3002 goto err_unmap_oprom;
3003 }
3004
3005 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3006 if (vbt_size > size) {
3007 drm_dbg(&i915->drm,
3008 "VBT incomplete (vbt_size overflows)\n");
3009 goto err_unmap_oprom;
3010 }
3011
3012 /* The rest will be validated by intel_bios_is_valid_vbt() */
3013 vbt = kmalloc(vbt_size, GFP_KERNEL);
3014 if (!vbt)
3015 goto err_unmap_oprom;
3016
3017 memcpy_fromio(vbt, p, vbt_size);
3018
3019 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3020 goto err_free_vbt;
3021
3022 pci_unmap_rom(pdev, oprom);
3023
3024 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3025
3026 return vbt;
3027
3028 err_free_vbt:
3029 kfree(vbt);
3030 err_unmap_oprom:
3031 pci_unmap_rom(pdev, oprom);
3032
3033 return NULL;
3034 }
3035
3036 /**
3037 * intel_bios_init - find VBT and initialize settings from the BIOS
3038 * @i915: i915 device instance
3039 *
3040 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3041 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3042 * initialize some defaults if the VBT is not present at all.
3043 */
intel_bios_init(struct drm_i915_private * i915)3044 void intel_bios_init(struct drm_i915_private *i915)
3045 {
3046 const struct vbt_header *vbt = i915->display.opregion.vbt;
3047 struct vbt_header *oprom_vbt = NULL;
3048 const struct bdb_header *bdb;
3049
3050 INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3051 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3052
3053 if (!HAS_DISPLAY(i915)) {
3054 drm_dbg_kms(&i915->drm,
3055 "Skipping VBT init due to disabled display.\n");
3056 return;
3057 }
3058
3059 init_vbt_defaults(i915);
3060
3061 /*
3062 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3063 * PCI mapping
3064 */
3065 if (!vbt && IS_DGFX(i915)) {
3066 oprom_vbt = spi_oprom_get_vbt(i915);
3067 vbt = oprom_vbt;
3068 }
3069
3070 if (!vbt) {
3071 oprom_vbt = oprom_get_vbt(i915);
3072 vbt = oprom_vbt;
3073 }
3074
3075 if (!vbt)
3076 goto out;
3077
3078 bdb = get_bdb_header(vbt);
3079 i915->display.vbt.version = bdb->version;
3080
3081 drm_dbg_kms(&i915->drm,
3082 "VBT signature \"%.*s\", BDB version %d\n",
3083 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3084
3085 init_bdb_blocks(i915, bdb);
3086
3087 /* Grab useful general definitions */
3088 parse_general_features(i915);
3089 parse_general_definitions(i915);
3090 parse_driver_features(i915);
3091
3092 /* Depends on child device list */
3093 parse_compression_parameters(i915);
3094
3095 out:
3096 if (!vbt) {
3097 drm_info(&i915->drm,
3098 "Failed to find VBIOS tables (VBT)\n");
3099 init_vbt_missing_defaults(i915);
3100 }
3101
3102 /* Further processing on pre-parsed or generated child device data */
3103 parse_sdvo_device_mapping(i915);
3104 parse_ddi_ports(i915);
3105
3106 kfree(oprom_vbt);
3107 }
3108
intel_bios_init_panel(struct drm_i915_private * i915,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid,bool use_fallback)3109 static void intel_bios_init_panel(struct drm_i915_private *i915,
3110 struct intel_panel *panel,
3111 const struct intel_bios_encoder_data *devdata,
3112 const struct drm_edid *drm_edid,
3113 bool use_fallback)
3114 {
3115 /* already have it? */
3116 if (panel->vbt.panel_type >= 0) {
3117 drm_WARN_ON(&i915->drm, !use_fallback);
3118 return;
3119 }
3120
3121 panel->vbt.panel_type = get_panel_type(i915, devdata,
3122 drm_edid, use_fallback);
3123 if (panel->vbt.panel_type < 0) {
3124 drm_WARN_ON(&i915->drm, use_fallback);
3125 return;
3126 }
3127
3128 init_vbt_panel_defaults(panel);
3129
3130 parse_panel_options(i915, panel);
3131 parse_generic_dtd(i915, panel);
3132 parse_lfp_data(i915, panel);
3133 parse_lfp_backlight(i915, panel);
3134 parse_sdvo_panel_data(i915, panel);
3135 parse_panel_driver_features(i915, panel);
3136 parse_power_conservation_features(i915, panel);
3137 parse_edp(i915, panel);
3138 parse_psr(i915, panel);
3139 parse_mipi_config(i915, panel);
3140 parse_mipi_sequence(i915, panel);
3141 }
3142
intel_bios_init_panel_early(struct drm_i915_private * i915,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata)3143 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3144 struct intel_panel *panel,
3145 const struct intel_bios_encoder_data *devdata)
3146 {
3147 intel_bios_init_panel(i915, panel, devdata, NULL, false);
3148 }
3149
intel_bios_init_panel_late(struct drm_i915_private * i915,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct drm_edid * drm_edid)3150 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3151 struct intel_panel *panel,
3152 const struct intel_bios_encoder_data *devdata,
3153 const struct drm_edid *drm_edid)
3154 {
3155 intel_bios_init_panel(i915, panel, devdata, drm_edid, true);
3156 }
3157
3158 /**
3159 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3160 * @i915: i915 device instance
3161 */
intel_bios_driver_remove(struct drm_i915_private * i915)3162 void intel_bios_driver_remove(struct drm_i915_private *i915)
3163 {
3164 struct intel_bios_encoder_data *devdata, *nd;
3165 struct bdb_block_entry *entry, *ne;
3166
3167 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3168 list_del(&devdata->node);
3169 kfree(devdata->dsc);
3170 kfree(devdata);
3171 }
3172
3173 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3174 list_del(&entry->node);
3175 kfree(entry);
3176 }
3177 }
3178
intel_bios_fini_panel(struct intel_panel * panel)3179 void intel_bios_fini_panel(struct intel_panel *panel)
3180 {
3181 kfree(panel->vbt.sdvo_lvds_vbt_mode);
3182 panel->vbt.sdvo_lvds_vbt_mode = NULL;
3183 kfree(panel->vbt.lfp_lvds_vbt_mode);
3184 panel->vbt.lfp_lvds_vbt_mode = NULL;
3185 kfree(panel->vbt.dsi.data);
3186 panel->vbt.dsi.data = NULL;
3187 kfree(panel->vbt.dsi.pps);
3188 panel->vbt.dsi.pps = NULL;
3189 kfree(panel->vbt.dsi.config);
3190 panel->vbt.dsi.config = NULL;
3191 kfree(panel->vbt.dsi.deassert_seq);
3192 panel->vbt.dsi.deassert_seq = NULL;
3193 }
3194
3195 /**
3196 * intel_bios_is_tv_present - is integrated TV present in VBT
3197 * @i915: i915 device instance
3198 *
3199 * Return true if TV is present. If no child devices were parsed from VBT,
3200 * assume TV is present.
3201 */
intel_bios_is_tv_present(struct drm_i915_private * i915)3202 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3203 {
3204 const struct intel_bios_encoder_data *devdata;
3205
3206 if (!i915->display.vbt.int_tv_support)
3207 return false;
3208
3209 if (list_empty(&i915->display.vbt.display_devices))
3210 return true;
3211
3212 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3213 const struct child_device_config *child = &devdata->child;
3214
3215 /*
3216 * If the device type is not TV, continue.
3217 */
3218 switch (child->device_type) {
3219 case DEVICE_TYPE_INT_TV:
3220 case DEVICE_TYPE_TV:
3221 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3222 break;
3223 default:
3224 continue;
3225 }
3226 /* Only when the addin_offset is non-zero, it is regarded
3227 * as present.
3228 */
3229 if (child->addin_offset)
3230 return true;
3231 }
3232
3233 return false;
3234 }
3235
3236 /**
3237 * intel_bios_is_lvds_present - is LVDS present in VBT
3238 * @i915: i915 device instance
3239 * @i2c_pin: i2c pin for LVDS if present
3240 *
3241 * Return true if LVDS is present. If no child devices were parsed from VBT,
3242 * assume LVDS is present.
3243 */
intel_bios_is_lvds_present(struct drm_i915_private * i915,u8 * i2c_pin)3244 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3245 {
3246 const struct intel_bios_encoder_data *devdata;
3247
3248 if (list_empty(&i915->display.vbt.display_devices))
3249 return true;
3250
3251 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3252 const struct child_device_config *child = &devdata->child;
3253
3254 /* If the device type is not LFP, continue.
3255 * We have to check both the new identifiers as well as the
3256 * old for compatibility with some BIOSes.
3257 */
3258 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3259 child->device_type != DEVICE_TYPE_LFP)
3260 continue;
3261
3262 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3263 *i2c_pin = child->i2c_pin;
3264
3265 /* However, we cannot trust the BIOS writers to populate
3266 * the VBT correctly. Since LVDS requires additional
3267 * information from AIM blocks, a non-zero addin offset is
3268 * a good indicator that the LVDS is actually present.
3269 */
3270 if (child->addin_offset)
3271 return true;
3272
3273 /* But even then some BIOS writers perform some black magic
3274 * and instantiate the device without reference to any
3275 * additional data. Trust that if the VBT was written into
3276 * the OpRegion then they have validated the LVDS's existence.
3277 */
3278 if (i915->display.opregion.vbt)
3279 return true;
3280 }
3281
3282 return false;
3283 }
3284
3285 /**
3286 * intel_bios_is_port_present - is the specified digital port present
3287 * @i915: i915 device instance
3288 * @port: port to check
3289 *
3290 * Return true if the device in %port is present.
3291 */
intel_bios_is_port_present(struct drm_i915_private * i915,enum port port)3292 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3293 {
3294 const struct intel_bios_encoder_data *devdata;
3295
3296 if (WARN_ON(!has_ddi_port_info(i915)))
3297 return true;
3298
3299 if (!is_port_valid(i915, port))
3300 return false;
3301
3302 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3303 const struct child_device_config *child = &devdata->child;
3304
3305 if (dvo_port_to_port(i915, child->dvo_port) == port)
3306 return true;
3307 }
3308
3309 return false;
3310 }
3311
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3312 bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3313 {
3314 const struct child_device_config *child = &devdata->child;
3315
3316 if (!intel_bios_encoder_supports_dp(devdata) ||
3317 !intel_bios_encoder_supports_hdmi(devdata))
3318 return false;
3319
3320 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3321 return true;
3322
3323 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3324 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3325 child->aux_channel != 0)
3326 return true;
3327
3328 return false;
3329 }
3330
3331 /**
3332 * intel_bios_is_dsi_present - is DSI present in VBT
3333 * @i915: i915 device instance
3334 * @port: port for DSI if present
3335 *
3336 * Return true if DSI is present, and return the port in %port.
3337 */
intel_bios_is_dsi_present(struct drm_i915_private * i915,enum port * port)3338 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3339 enum port *port)
3340 {
3341 const struct intel_bios_encoder_data *devdata;
3342
3343 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3344 const struct child_device_config *child = &devdata->child;
3345 u8 dvo_port = child->dvo_port;
3346
3347 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3348 continue;
3349
3350 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3351 drm_dbg_kms(&i915->drm,
3352 "VBT has unsupported DSI port %c\n",
3353 port_name(dvo_port - DVO_PORT_MIPIA));
3354 continue;
3355 }
3356
3357 if (port)
3358 *port = dsi_dvo_port_to_port(i915, dvo_port);
3359 return true;
3360 }
3361
3362 return false;
3363 }
3364
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3365 static void fill_dsc(struct intel_crtc_state *crtc_state,
3366 struct dsc_compression_parameters_entry *dsc,
3367 int dsc_max_bpc)
3368 {
3369 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3370 int bpc = 8;
3371
3372 vdsc_cfg->dsc_version_major = dsc->version_major;
3373 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3374
3375 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3376 bpc = 12;
3377 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3378 bpc = 10;
3379 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3380 bpc = 8;
3381 else
3382 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3383 dsc_max_bpc);
3384
3385 crtc_state->pipe_bpp = bpc * 3;
3386
3387 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3388 VBT_DSC_MAX_BPP(dsc->max_bpp));
3389
3390 /*
3391 * FIXME: This is ugly, and slice count should take DSC engine
3392 * throughput etc. into account.
3393 *
3394 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3395 */
3396 if (dsc->slices_per_line & BIT(2)) {
3397 crtc_state->dsc.slice_count = 4;
3398 } else if (dsc->slices_per_line & BIT(1)) {
3399 crtc_state->dsc.slice_count = 2;
3400 } else {
3401 /* FIXME */
3402 if (!(dsc->slices_per_line & BIT(0)))
3403 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3404
3405 crtc_state->dsc.slice_count = 1;
3406 }
3407
3408 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3409 crtc_state->dsc.slice_count != 0)
3410 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3411 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3412 crtc_state->dsc.slice_count);
3413
3414 /*
3415 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3416 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3417 */
3418 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3419 dsc->rc_buffer_size);
3420
3421 /* FIXME: DSI spec says bpc + 1 for this one */
3422 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3423
3424 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3425
3426 vdsc_cfg->slice_height = dsc->slice_height;
3427 }
3428
3429 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3430 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3431 struct intel_crtc_state *crtc_state,
3432 int dsc_max_bpc)
3433 {
3434 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3435 const struct intel_bios_encoder_data *devdata;
3436
3437 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3438 const struct child_device_config *child = &devdata->child;
3439
3440 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3441 continue;
3442
3443 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3444 if (!devdata->dsc)
3445 return false;
3446
3447 if (crtc_state)
3448 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3449
3450 return true;
3451 }
3452 }
3453
3454 return false;
3455 }
3456
3457 static const u8 adlp_aux_ch_map[] = {
3458 [AUX_CH_A] = DP_AUX_A,
3459 [AUX_CH_B] = DP_AUX_B,
3460 [AUX_CH_C] = DP_AUX_C,
3461 [AUX_CH_D_XELPD] = DP_AUX_D,
3462 [AUX_CH_E_XELPD] = DP_AUX_E,
3463 [AUX_CH_USBC1] = DP_AUX_F,
3464 [AUX_CH_USBC2] = DP_AUX_G,
3465 [AUX_CH_USBC3] = DP_AUX_H,
3466 [AUX_CH_USBC4] = DP_AUX_I,
3467 };
3468
3469 /*
3470 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3471 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3472 */
3473 static const u8 adls_aux_ch_map[] = {
3474 [AUX_CH_A] = DP_AUX_A,
3475 [AUX_CH_USBC1] = DP_AUX_B,
3476 [AUX_CH_USBC2] = DP_AUX_C,
3477 [AUX_CH_USBC3] = DP_AUX_D,
3478 [AUX_CH_USBC4] = DP_AUX_E,
3479 };
3480
3481 /*
3482 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3483 * map to DDI A,B,TC1,TC2 respectively.
3484 */
3485 static const u8 rkl_aux_ch_map[] = {
3486 [AUX_CH_A] = DP_AUX_A,
3487 [AUX_CH_B] = DP_AUX_B,
3488 [AUX_CH_USBC1] = DP_AUX_C,
3489 [AUX_CH_USBC2] = DP_AUX_D,
3490 };
3491
3492 static const u8 direct_aux_ch_map[] = {
3493 [AUX_CH_A] = DP_AUX_A,
3494 [AUX_CH_B] = DP_AUX_B,
3495 [AUX_CH_C] = DP_AUX_C,
3496 [AUX_CH_D] = DP_AUX_D, /* aka AUX_CH_USBC1 */
3497 [AUX_CH_E] = DP_AUX_E, /* aka AUX_CH_USBC2 */
3498 [AUX_CH_F] = DP_AUX_F, /* aka AUX_CH_USBC3 */
3499 [AUX_CH_G] = DP_AUX_G, /* aka AUX_CH_USBC4 */
3500 [AUX_CH_H] = DP_AUX_H, /* aka AUX_CH_USBC5 */
3501 [AUX_CH_I] = DP_AUX_I, /* aka AUX_CH_USBC6 */
3502 };
3503
map_aux_ch(struct drm_i915_private * i915,u8 aux_channel)3504 static enum aux_ch map_aux_ch(struct drm_i915_private *i915, u8 aux_channel)
3505 {
3506 const u8 *aux_ch_map;
3507 int i, n_entries;
3508
3509 if (DISPLAY_VER(i915) >= 13) {
3510 aux_ch_map = adlp_aux_ch_map;
3511 n_entries = ARRAY_SIZE(adlp_aux_ch_map);
3512 } else if (IS_ALDERLAKE_S(i915)) {
3513 aux_ch_map = adls_aux_ch_map;
3514 n_entries = ARRAY_SIZE(adls_aux_ch_map);
3515 } else if (IS_DG1(i915) || IS_ROCKETLAKE(i915)) {
3516 aux_ch_map = rkl_aux_ch_map;
3517 n_entries = ARRAY_SIZE(rkl_aux_ch_map);
3518 } else {
3519 aux_ch_map = direct_aux_ch_map;
3520 n_entries = ARRAY_SIZE(direct_aux_ch_map);
3521 }
3522
3523 for (i = 0; i < n_entries; i++) {
3524 if (aux_ch_map[i] == aux_channel)
3525 return i;
3526 }
3527
3528 drm_dbg_kms(&i915->drm,
3529 "Ignoring alternate AUX CH: VBT claims AUX 0x%x, which is not valid for this platform\n",
3530 aux_channel);
3531
3532 return AUX_CH_NONE;
3533 }
3534
intel_bios_dp_aux_ch(const struct intel_bios_encoder_data * devdata)3535 enum aux_ch intel_bios_dp_aux_ch(const struct intel_bios_encoder_data *devdata)
3536 {
3537 if (!devdata || !devdata->child.aux_channel)
3538 return AUX_CH_NONE;
3539
3540 return map_aux_ch(devdata->i915, devdata->child.aux_channel);
3541 }
3542
intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data * devdata)3543 bool intel_bios_dp_has_shared_aux_ch(const struct intel_bios_encoder_data *devdata)
3544 {
3545 struct drm_i915_private *i915;
3546 u8 aux_channel;
3547 int count = 0;
3548
3549 if (!devdata || !devdata->child.aux_channel)
3550 return false;
3551
3552 i915 = devdata->i915;
3553 aux_channel = devdata->child.aux_channel;
3554
3555 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3556 if (intel_bios_encoder_supports_dp(devdata) &&
3557 aux_channel == devdata->child.aux_channel)
3558 count++;
3559 }
3560
3561 return count > 1;
3562 }
3563
intel_bios_dp_boost_level(const struct intel_bios_encoder_data * devdata)3564 int intel_bios_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3565 {
3566 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3567 return 0;
3568
3569 return translate_iboost(devdata->child.dp_iboost_level);
3570 }
3571
intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3572 int intel_bios_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3573 {
3574 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3575 return 0;
3576
3577 return translate_iboost(devdata->child.hdmi_iboost_level);
3578 }
3579
intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data * devdata)3580 int intel_bios_hdmi_ddc_pin(const struct intel_bios_encoder_data *devdata)
3581 {
3582 if (!devdata || !devdata->child.ddc_pin)
3583 return 0;
3584
3585 return map_ddc_pin(devdata->i915, devdata->child.ddc_pin);
3586 }
3587
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3588 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3589 {
3590 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3591 }
3592
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3593 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3594 {
3595 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3596 }
3597
intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data * devdata)3598 bool intel_bios_encoder_lane_reversal(const struct intel_bios_encoder_data *devdata)
3599 {
3600 return devdata && devdata->child.lane_reversal;
3601 }
3602
intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data * devdata)3603 bool intel_bios_encoder_hpd_invert(const struct intel_bios_encoder_data *devdata)
3604 {
3605 return devdata && devdata->child.hpd_invert;
3606 }
3607
3608 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct drm_i915_private * i915,enum port port)3609 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3610 {
3611 struct intel_bios_encoder_data *devdata;
3612
3613 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3614 if (intel_bios_encoder_port(devdata) == port)
3615 return devdata;
3616 }
3617
3618 return NULL;
3619 }
3620
intel_bios_for_each_encoder(struct drm_i915_private * i915,void (* func)(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata))3621 void intel_bios_for_each_encoder(struct drm_i915_private *i915,
3622 void (*func)(struct drm_i915_private *i915,
3623 const struct intel_bios_encoder_data *devdata))
3624 {
3625 struct intel_bios_encoder_data *devdata;
3626
3627 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
3628 func(i915, devdata);
3629 }
3630