1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-core-private.h"
28 #include "input-poller.h"
29
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33
34 #define INPUT_MAX_CHAR_DEVICES 1024
35 #define INPUT_FIRST_DYNAMIC_DEV 256
36 static DEFINE_IDA(input_ida);
37
38 static LIST_HEAD(input_dev_list);
39 static LIST_HEAD(input_handler_list);
40
41 /*
42 * input_mutex protects access to both input_dev_list and input_handler_list.
43 * This also causes input_[un]register_device and input_[un]register_handler
44 * be mutually exclusive which simplifies locking in drivers implementing
45 * input handlers.
46 */
47 static DEFINE_MUTEX(input_mutex);
48
49 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
50
51 static const unsigned int input_max_code[EV_CNT] = {
52 [EV_KEY] = KEY_MAX,
53 [EV_REL] = REL_MAX,
54 [EV_ABS] = ABS_MAX,
55 [EV_MSC] = MSC_MAX,
56 [EV_SW] = SW_MAX,
57 [EV_LED] = LED_MAX,
58 [EV_SND] = SND_MAX,
59 [EV_FF] = FF_MAX,
60 };
61
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)62 static inline int is_event_supported(unsigned int code,
63 unsigned long *bm, unsigned int max)
64 {
65 return code <= max && test_bit(code, bm);
66 }
67
input_defuzz_abs_event(int value,int old_val,int fuzz)68 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
69 {
70 if (fuzz) {
71 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
72 return old_val;
73
74 if (value > old_val - fuzz && value < old_val + fuzz)
75 return (old_val * 3 + value) / 4;
76
77 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
78 return (old_val + value) / 2;
79 }
80
81 return value;
82 }
83
input_start_autorepeat(struct input_dev * dev,int code)84 static void input_start_autorepeat(struct input_dev *dev, int code)
85 {
86 if (test_bit(EV_REP, dev->evbit) &&
87 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
88 dev->timer.function) {
89 dev->repeat_key = code;
90 mod_timer(&dev->timer,
91 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
92 }
93 }
94
input_stop_autorepeat(struct input_dev * dev)95 static void input_stop_autorepeat(struct input_dev *dev)
96 {
97 del_timer(&dev->timer);
98 }
99
100 /*
101 * Pass event first through all filters and then, if event has not been
102 * filtered out, through all open handles. This function is called with
103 * dev->event_lock held and interrupts disabled.
104 */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)105 static unsigned int input_to_handler(struct input_handle *handle,
106 struct input_value *vals, unsigned int count)
107 {
108 struct input_handler *handler = handle->handler;
109 struct input_value *end = vals;
110 struct input_value *v;
111
112 if (handler->filter) {
113 for (v = vals; v != vals + count; v++) {
114 if (handler->filter(handle, v->type, v->code, v->value))
115 continue;
116 if (end != v)
117 *end = *v;
118 end++;
119 }
120 count = end - vals;
121 }
122
123 if (!count)
124 return 0;
125
126 if (handler->events)
127 handler->events(handle, vals, count);
128 else if (handler->event)
129 for (v = vals; v != vals + count; v++)
130 handler->event(handle, v->type, v->code, v->value);
131
132 return count;
133 }
134
135 /*
136 * Pass values first through all filters and then, if event has not been
137 * filtered out, through all open handles. This function is called with
138 * dev->event_lock held and interrupts disabled.
139 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)140 static void input_pass_values(struct input_dev *dev,
141 struct input_value *vals, unsigned int count)
142 {
143 struct input_handle *handle;
144 struct input_value *v;
145
146 lockdep_assert_held(&dev->event_lock);
147
148 if (!count)
149 return;
150
151 rcu_read_lock();
152
153 handle = rcu_dereference(dev->grab);
154 if (handle) {
155 count = input_to_handler(handle, vals, count);
156 } else {
157 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
158 if (handle->open) {
159 count = input_to_handler(handle, vals, count);
160 if (!count)
161 break;
162 }
163 }
164
165 rcu_read_unlock();
166
167 /* trigger auto repeat for key events */
168 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
169 for (v = vals; v != vals + count; v++) {
170 if (v->type == EV_KEY && v->value != 2) {
171 if (v->value)
172 input_start_autorepeat(dev, v->code);
173 else
174 input_stop_autorepeat(dev);
175 }
176 }
177 }
178 }
179
180 #define INPUT_IGNORE_EVENT 0
181 #define INPUT_PASS_TO_HANDLERS 1
182 #define INPUT_PASS_TO_DEVICE 2
183 #define INPUT_SLOT 4
184 #define INPUT_FLUSH 8
185 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
186
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)187 static int input_handle_abs_event(struct input_dev *dev,
188 unsigned int code, int *pval)
189 {
190 struct input_mt *mt = dev->mt;
191 bool is_mt_event;
192 int *pold;
193
194 if (code == ABS_MT_SLOT) {
195 /*
196 * "Stage" the event; we'll flush it later, when we
197 * get actual touch data.
198 */
199 if (mt && *pval >= 0 && *pval < mt->num_slots)
200 mt->slot = *pval;
201
202 return INPUT_IGNORE_EVENT;
203 }
204
205 is_mt_event = input_is_mt_value(code);
206
207 if (!is_mt_event) {
208 pold = &dev->absinfo[code].value;
209 } else if (mt) {
210 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
211 } else {
212 /*
213 * Bypass filtering for multi-touch events when
214 * not employing slots.
215 */
216 pold = NULL;
217 }
218
219 if (pold) {
220 *pval = input_defuzz_abs_event(*pval, *pold,
221 dev->absinfo[code].fuzz);
222 if (*pold == *pval)
223 return INPUT_IGNORE_EVENT;
224
225 *pold = *pval;
226 }
227
228 /* Flush pending "slot" event */
229 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
230 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
231 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
232 }
233
234 return INPUT_PASS_TO_HANDLERS;
235 }
236
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)237 static int input_get_disposition(struct input_dev *dev,
238 unsigned int type, unsigned int code, int *pval)
239 {
240 int disposition = INPUT_IGNORE_EVENT;
241 int value = *pval;
242
243 /* filter-out events from inhibited devices */
244 if (dev->inhibited)
245 return INPUT_IGNORE_EVENT;
246
247 switch (type) {
248
249 case EV_SYN:
250 switch (code) {
251 case SYN_CONFIG:
252 disposition = INPUT_PASS_TO_ALL;
253 break;
254
255 case SYN_REPORT:
256 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
257 break;
258 case SYN_MT_REPORT:
259 disposition = INPUT_PASS_TO_HANDLERS;
260 break;
261 }
262 break;
263
264 case EV_KEY:
265 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
266
267 /* auto-repeat bypasses state updates */
268 if (value == 2) {
269 disposition = INPUT_PASS_TO_HANDLERS;
270 break;
271 }
272
273 if (!!test_bit(code, dev->key) != !!value) {
274
275 __change_bit(code, dev->key);
276 disposition = INPUT_PASS_TO_HANDLERS;
277 }
278 }
279 break;
280
281 case EV_SW:
282 if (is_event_supported(code, dev->swbit, SW_MAX) &&
283 !!test_bit(code, dev->sw) != !!value) {
284
285 __change_bit(code, dev->sw);
286 disposition = INPUT_PASS_TO_HANDLERS;
287 }
288 break;
289
290 case EV_ABS:
291 if (is_event_supported(code, dev->absbit, ABS_MAX))
292 disposition = input_handle_abs_event(dev, code, &value);
293
294 break;
295
296 case EV_REL:
297 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
298 disposition = INPUT_PASS_TO_HANDLERS;
299
300 break;
301
302 case EV_MSC:
303 if (is_event_supported(code, dev->mscbit, MSC_MAX))
304 disposition = INPUT_PASS_TO_ALL;
305
306 break;
307
308 case EV_LED:
309 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
310 !!test_bit(code, dev->led) != !!value) {
311
312 __change_bit(code, dev->led);
313 disposition = INPUT_PASS_TO_ALL;
314 }
315 break;
316
317 case EV_SND:
318 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
319
320 if (!!test_bit(code, dev->snd) != !!value)
321 __change_bit(code, dev->snd);
322 disposition = INPUT_PASS_TO_ALL;
323 }
324 break;
325
326 case EV_REP:
327 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
328 dev->rep[code] = value;
329 disposition = INPUT_PASS_TO_ALL;
330 }
331 break;
332
333 case EV_FF:
334 if (value >= 0)
335 disposition = INPUT_PASS_TO_ALL;
336 break;
337
338 case EV_PWR:
339 disposition = INPUT_PASS_TO_ALL;
340 break;
341 }
342
343 *pval = value;
344 return disposition;
345 }
346
input_event_dispose(struct input_dev * dev,int disposition,unsigned int type,unsigned int code,int value)347 static void input_event_dispose(struct input_dev *dev, int disposition,
348 unsigned int type, unsigned int code, int value)
349 {
350 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
351 dev->event(dev, type, code, value);
352
353 if (!dev->vals)
354 return;
355
356 if (disposition & INPUT_PASS_TO_HANDLERS) {
357 struct input_value *v;
358
359 if (disposition & INPUT_SLOT) {
360 v = &dev->vals[dev->num_vals++];
361 v->type = EV_ABS;
362 v->code = ABS_MT_SLOT;
363 v->value = dev->mt->slot;
364 }
365
366 v = &dev->vals[dev->num_vals++];
367 v->type = type;
368 v->code = code;
369 v->value = value;
370 }
371
372 if (disposition & INPUT_FLUSH) {
373 if (dev->num_vals >= 2)
374 input_pass_values(dev, dev->vals, dev->num_vals);
375 dev->num_vals = 0;
376 /*
377 * Reset the timestamp on flush so we won't end up
378 * with a stale one. Note we only need to reset the
379 * monolithic one as we use its presence when deciding
380 * whether to generate a synthetic timestamp.
381 */
382 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
383 } else if (dev->num_vals >= dev->max_vals - 2) {
384 dev->vals[dev->num_vals++] = input_value_sync;
385 input_pass_values(dev, dev->vals, dev->num_vals);
386 dev->num_vals = 0;
387 }
388 }
389
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)390 void input_handle_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
392 {
393 int disposition;
394
395 lockdep_assert_held(&dev->event_lock);
396
397 disposition = input_get_disposition(dev, type, code, &value);
398 if (disposition != INPUT_IGNORE_EVENT) {
399 if (type != EV_SYN)
400 add_input_randomness(type, code, value);
401
402 input_event_dispose(dev, disposition, type, code, value);
403 }
404 }
405
406 /**
407 * input_event() - report new input event
408 * @dev: device that generated the event
409 * @type: type of the event
410 * @code: event code
411 * @value: value of the event
412 *
413 * This function should be used by drivers implementing various input
414 * devices to report input events. See also input_inject_event().
415 *
416 * NOTE: input_event() may be safely used right after input device was
417 * allocated with input_allocate_device(), even before it is registered
418 * with input_register_device(), but the event will not reach any of the
419 * input handlers. Such early invocation of input_event() may be used
420 * to 'seed' initial state of a switch or initial position of absolute
421 * axis, etc.
422 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)423 void input_event(struct input_dev *dev,
424 unsigned int type, unsigned int code, int value)
425 {
426 unsigned long flags;
427
428 if (is_event_supported(type, dev->evbit, EV_MAX)) {
429
430 spin_lock_irqsave(&dev->event_lock, flags);
431 input_handle_event(dev, type, code, value);
432 spin_unlock_irqrestore(&dev->event_lock, flags);
433 }
434 }
435 EXPORT_SYMBOL(input_event);
436
437 /**
438 * input_inject_event() - send input event from input handler
439 * @handle: input handle to send event through
440 * @type: type of the event
441 * @code: event code
442 * @value: value of the event
443 *
444 * Similar to input_event() but will ignore event if device is
445 * "grabbed" and handle injecting event is not the one that owns
446 * the device.
447 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)448 void input_inject_event(struct input_handle *handle,
449 unsigned int type, unsigned int code, int value)
450 {
451 struct input_dev *dev = handle->dev;
452 struct input_handle *grab;
453 unsigned long flags;
454
455 if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 spin_lock_irqsave(&dev->event_lock, flags);
457
458 rcu_read_lock();
459 grab = rcu_dereference(dev->grab);
460 if (!grab || grab == handle)
461 input_handle_event(dev, type, code, value);
462 rcu_read_unlock();
463
464 spin_unlock_irqrestore(&dev->event_lock, flags);
465 }
466 }
467 EXPORT_SYMBOL(input_inject_event);
468
469 /**
470 * input_alloc_absinfo - allocates array of input_absinfo structs
471 * @dev: the input device emitting absolute events
472 *
473 * If the absinfo struct the caller asked for is already allocated, this
474 * functions will not do anything.
475 */
input_alloc_absinfo(struct input_dev * dev)476 void input_alloc_absinfo(struct input_dev *dev)
477 {
478 if (dev->absinfo)
479 return;
480
481 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
482 if (!dev->absinfo) {
483 dev_err(dev->dev.parent ?: &dev->dev,
484 "%s: unable to allocate memory\n", __func__);
485 /*
486 * We will handle this allocation failure in
487 * input_register_device() when we refuse to register input
488 * device with ABS bits but without absinfo.
489 */
490 }
491 }
492 EXPORT_SYMBOL(input_alloc_absinfo);
493
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)494 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
495 int min, int max, int fuzz, int flat)
496 {
497 struct input_absinfo *absinfo;
498
499 __set_bit(EV_ABS, dev->evbit);
500 __set_bit(axis, dev->absbit);
501
502 input_alloc_absinfo(dev);
503 if (!dev->absinfo)
504 return;
505
506 absinfo = &dev->absinfo[axis];
507 absinfo->minimum = min;
508 absinfo->maximum = max;
509 absinfo->fuzz = fuzz;
510 absinfo->flat = flat;
511 }
512 EXPORT_SYMBOL(input_set_abs_params);
513
514 /**
515 * input_copy_abs - Copy absinfo from one input_dev to another
516 * @dst: Destination input device to copy the abs settings to
517 * @dst_axis: ABS_* value selecting the destination axis
518 * @src: Source input device to copy the abs settings from
519 * @src_axis: ABS_* value selecting the source axis
520 *
521 * Set absinfo for the selected destination axis by copying it from
522 * the specified source input device's source axis.
523 * This is useful to e.g. setup a pen/stylus input-device for combined
524 * touchscreen/pen hardware where the pen uses the same coordinates as
525 * the touchscreen.
526 */
input_copy_abs(struct input_dev * dst,unsigned int dst_axis,const struct input_dev * src,unsigned int src_axis)527 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
528 const struct input_dev *src, unsigned int src_axis)
529 {
530 /* src must have EV_ABS and src_axis set */
531 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
532 test_bit(src_axis, src->absbit))))
533 return;
534
535 /*
536 * input_alloc_absinfo() may have failed for the source. Our caller is
537 * expected to catch this when registering the input devices, which may
538 * happen after the input_copy_abs() call.
539 */
540 if (!src->absinfo)
541 return;
542
543 input_set_capability(dst, EV_ABS, dst_axis);
544 if (!dst->absinfo)
545 return;
546
547 dst->absinfo[dst_axis] = src->absinfo[src_axis];
548 }
549 EXPORT_SYMBOL(input_copy_abs);
550
551 /**
552 * input_grab_device - grabs device for exclusive use
553 * @handle: input handle that wants to own the device
554 *
555 * When a device is grabbed by an input handle all events generated by
556 * the device are delivered only to this handle. Also events injected
557 * by other input handles are ignored while device is grabbed.
558 */
input_grab_device(struct input_handle * handle)559 int input_grab_device(struct input_handle *handle)
560 {
561 struct input_dev *dev = handle->dev;
562 int retval;
563
564 retval = mutex_lock_interruptible(&dev->mutex);
565 if (retval)
566 return retval;
567
568 if (dev->grab) {
569 retval = -EBUSY;
570 goto out;
571 }
572
573 rcu_assign_pointer(dev->grab, handle);
574
575 out:
576 mutex_unlock(&dev->mutex);
577 return retval;
578 }
579 EXPORT_SYMBOL(input_grab_device);
580
__input_release_device(struct input_handle * handle)581 static void __input_release_device(struct input_handle *handle)
582 {
583 struct input_dev *dev = handle->dev;
584 struct input_handle *grabber;
585
586 grabber = rcu_dereference_protected(dev->grab,
587 lockdep_is_held(&dev->mutex));
588 if (grabber == handle) {
589 rcu_assign_pointer(dev->grab, NULL);
590 /* Make sure input_pass_values() notices that grab is gone */
591 synchronize_rcu();
592
593 list_for_each_entry(handle, &dev->h_list, d_node)
594 if (handle->open && handle->handler->start)
595 handle->handler->start(handle);
596 }
597 }
598
599 /**
600 * input_release_device - release previously grabbed device
601 * @handle: input handle that owns the device
602 *
603 * Releases previously grabbed device so that other input handles can
604 * start receiving input events. Upon release all handlers attached
605 * to the device have their start() method called so they have a change
606 * to synchronize device state with the rest of the system.
607 */
input_release_device(struct input_handle * handle)608 void input_release_device(struct input_handle *handle)
609 {
610 struct input_dev *dev = handle->dev;
611
612 mutex_lock(&dev->mutex);
613 __input_release_device(handle);
614 mutex_unlock(&dev->mutex);
615 }
616 EXPORT_SYMBOL(input_release_device);
617
618 /**
619 * input_open_device - open input device
620 * @handle: handle through which device is being accessed
621 *
622 * This function should be called by input handlers when they
623 * want to start receive events from given input device.
624 */
input_open_device(struct input_handle * handle)625 int input_open_device(struct input_handle *handle)
626 {
627 struct input_dev *dev = handle->dev;
628 int retval;
629
630 retval = mutex_lock_interruptible(&dev->mutex);
631 if (retval)
632 return retval;
633
634 if (dev->going_away) {
635 retval = -ENODEV;
636 goto out;
637 }
638
639 handle->open++;
640
641 if (dev->users++ || dev->inhibited) {
642 /*
643 * Device is already opened and/or inhibited,
644 * so we can exit immediately and report success.
645 */
646 goto out;
647 }
648
649 if (dev->open) {
650 retval = dev->open(dev);
651 if (retval) {
652 dev->users--;
653 handle->open--;
654 /*
655 * Make sure we are not delivering any more events
656 * through this handle
657 */
658 synchronize_rcu();
659 goto out;
660 }
661 }
662
663 if (dev->poller)
664 input_dev_poller_start(dev->poller);
665
666 out:
667 mutex_unlock(&dev->mutex);
668 return retval;
669 }
670 EXPORT_SYMBOL(input_open_device);
671
input_flush_device(struct input_handle * handle,struct file * file)672 int input_flush_device(struct input_handle *handle, struct file *file)
673 {
674 struct input_dev *dev = handle->dev;
675 int retval;
676
677 retval = mutex_lock_interruptible(&dev->mutex);
678 if (retval)
679 return retval;
680
681 if (dev->flush)
682 retval = dev->flush(dev, file);
683
684 mutex_unlock(&dev->mutex);
685 return retval;
686 }
687 EXPORT_SYMBOL(input_flush_device);
688
689 /**
690 * input_close_device - close input device
691 * @handle: handle through which device is being accessed
692 *
693 * This function should be called by input handlers when they
694 * want to stop receive events from given input device.
695 */
input_close_device(struct input_handle * handle)696 void input_close_device(struct input_handle *handle)
697 {
698 struct input_dev *dev = handle->dev;
699
700 mutex_lock(&dev->mutex);
701
702 __input_release_device(handle);
703
704 if (!dev->inhibited && !--dev->users) {
705 if (dev->poller)
706 input_dev_poller_stop(dev->poller);
707 if (dev->close)
708 dev->close(dev);
709 }
710
711 if (!--handle->open) {
712 /*
713 * synchronize_rcu() makes sure that input_pass_values()
714 * completed and that no more input events are delivered
715 * through this handle
716 */
717 synchronize_rcu();
718 }
719
720 mutex_unlock(&dev->mutex);
721 }
722 EXPORT_SYMBOL(input_close_device);
723
724 /*
725 * Simulate keyup events for all keys that are marked as pressed.
726 * The function must be called with dev->event_lock held.
727 */
input_dev_release_keys(struct input_dev * dev)728 static bool input_dev_release_keys(struct input_dev *dev)
729 {
730 bool need_sync = false;
731 int code;
732
733 lockdep_assert_held(&dev->event_lock);
734
735 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
736 for_each_set_bit(code, dev->key, KEY_CNT) {
737 input_handle_event(dev, EV_KEY, code, 0);
738 need_sync = true;
739 }
740 }
741
742 return need_sync;
743 }
744
745 /*
746 * Prepare device for unregistering
747 */
input_disconnect_device(struct input_dev * dev)748 static void input_disconnect_device(struct input_dev *dev)
749 {
750 struct input_handle *handle;
751
752 /*
753 * Mark device as going away. Note that we take dev->mutex here
754 * not to protect access to dev->going_away but rather to ensure
755 * that there are no threads in the middle of input_open_device()
756 */
757 mutex_lock(&dev->mutex);
758 dev->going_away = true;
759 mutex_unlock(&dev->mutex);
760
761 spin_lock_irq(&dev->event_lock);
762
763 /*
764 * Simulate keyup events for all pressed keys so that handlers
765 * are not left with "stuck" keys. The driver may continue
766 * generate events even after we done here but they will not
767 * reach any handlers.
768 */
769 if (input_dev_release_keys(dev))
770 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
771
772 list_for_each_entry(handle, &dev->h_list, d_node)
773 handle->open = 0;
774
775 spin_unlock_irq(&dev->event_lock);
776 }
777
778 /**
779 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
780 * @ke: keymap entry containing scancode to be converted.
781 * @scancode: pointer to the location where converted scancode should
782 * be stored.
783 *
784 * This function is used to convert scancode stored in &struct keymap_entry
785 * into scalar form understood by legacy keymap handling methods. These
786 * methods expect scancodes to be represented as 'unsigned int'.
787 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)788 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
789 unsigned int *scancode)
790 {
791 switch (ke->len) {
792 case 1:
793 *scancode = *((u8 *)ke->scancode);
794 break;
795
796 case 2:
797 *scancode = *((u16 *)ke->scancode);
798 break;
799
800 case 4:
801 *scancode = *((u32 *)ke->scancode);
802 break;
803
804 default:
805 return -EINVAL;
806 }
807
808 return 0;
809 }
810 EXPORT_SYMBOL(input_scancode_to_scalar);
811
812 /*
813 * Those routines handle the default case where no [gs]etkeycode() is
814 * defined. In this case, an array indexed by the scancode is used.
815 */
816
input_fetch_keycode(struct input_dev * dev,unsigned int index)817 static unsigned int input_fetch_keycode(struct input_dev *dev,
818 unsigned int index)
819 {
820 switch (dev->keycodesize) {
821 case 1:
822 return ((u8 *)dev->keycode)[index];
823
824 case 2:
825 return ((u16 *)dev->keycode)[index];
826
827 default:
828 return ((u32 *)dev->keycode)[index];
829 }
830 }
831
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)832 static int input_default_getkeycode(struct input_dev *dev,
833 struct input_keymap_entry *ke)
834 {
835 unsigned int index;
836 int error;
837
838 if (!dev->keycodesize)
839 return -EINVAL;
840
841 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
842 index = ke->index;
843 else {
844 error = input_scancode_to_scalar(ke, &index);
845 if (error)
846 return error;
847 }
848
849 if (index >= dev->keycodemax)
850 return -EINVAL;
851
852 ke->keycode = input_fetch_keycode(dev, index);
853 ke->index = index;
854 ke->len = sizeof(index);
855 memcpy(ke->scancode, &index, sizeof(index));
856
857 return 0;
858 }
859
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)860 static int input_default_setkeycode(struct input_dev *dev,
861 const struct input_keymap_entry *ke,
862 unsigned int *old_keycode)
863 {
864 unsigned int index;
865 int error;
866 int i;
867
868 if (!dev->keycodesize)
869 return -EINVAL;
870
871 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
872 index = ke->index;
873 } else {
874 error = input_scancode_to_scalar(ke, &index);
875 if (error)
876 return error;
877 }
878
879 if (index >= dev->keycodemax)
880 return -EINVAL;
881
882 if (dev->keycodesize < sizeof(ke->keycode) &&
883 (ke->keycode >> (dev->keycodesize * 8)))
884 return -EINVAL;
885
886 switch (dev->keycodesize) {
887 case 1: {
888 u8 *k = (u8 *)dev->keycode;
889 *old_keycode = k[index];
890 k[index] = ke->keycode;
891 break;
892 }
893 case 2: {
894 u16 *k = (u16 *)dev->keycode;
895 *old_keycode = k[index];
896 k[index] = ke->keycode;
897 break;
898 }
899 default: {
900 u32 *k = (u32 *)dev->keycode;
901 *old_keycode = k[index];
902 k[index] = ke->keycode;
903 break;
904 }
905 }
906
907 if (*old_keycode <= KEY_MAX) {
908 __clear_bit(*old_keycode, dev->keybit);
909 for (i = 0; i < dev->keycodemax; i++) {
910 if (input_fetch_keycode(dev, i) == *old_keycode) {
911 __set_bit(*old_keycode, dev->keybit);
912 /* Setting the bit twice is useless, so break */
913 break;
914 }
915 }
916 }
917
918 __set_bit(ke->keycode, dev->keybit);
919 return 0;
920 }
921
922 /**
923 * input_get_keycode - retrieve keycode currently mapped to a given scancode
924 * @dev: input device which keymap is being queried
925 * @ke: keymap entry
926 *
927 * This function should be called by anyone interested in retrieving current
928 * keymap. Presently evdev handlers use it.
929 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)930 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
931 {
932 unsigned long flags;
933 int retval;
934
935 spin_lock_irqsave(&dev->event_lock, flags);
936 retval = dev->getkeycode(dev, ke);
937 spin_unlock_irqrestore(&dev->event_lock, flags);
938
939 return retval;
940 }
941 EXPORT_SYMBOL(input_get_keycode);
942
943 /**
944 * input_set_keycode - attribute a keycode to a given scancode
945 * @dev: input device which keymap is being updated
946 * @ke: new keymap entry
947 *
948 * This function should be called by anyone needing to update current
949 * keymap. Presently keyboard and evdev handlers use it.
950 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)951 int input_set_keycode(struct input_dev *dev,
952 const struct input_keymap_entry *ke)
953 {
954 unsigned long flags;
955 unsigned int old_keycode;
956 int retval;
957
958 if (ke->keycode > KEY_MAX)
959 return -EINVAL;
960
961 spin_lock_irqsave(&dev->event_lock, flags);
962
963 retval = dev->setkeycode(dev, ke, &old_keycode);
964 if (retval)
965 goto out;
966
967 /* Make sure KEY_RESERVED did not get enabled. */
968 __clear_bit(KEY_RESERVED, dev->keybit);
969
970 /*
971 * Simulate keyup event if keycode is not present
972 * in the keymap anymore
973 */
974 if (old_keycode > KEY_MAX) {
975 dev_warn(dev->dev.parent ?: &dev->dev,
976 "%s: got too big old keycode %#x\n",
977 __func__, old_keycode);
978 } else if (test_bit(EV_KEY, dev->evbit) &&
979 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
980 __test_and_clear_bit(old_keycode, dev->key)) {
981 /*
982 * We have to use input_event_dispose() here directly instead
983 * of input_handle_event() because the key we want to release
984 * here is considered no longer supported by the device and
985 * input_handle_event() will ignore it.
986 */
987 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
988 EV_KEY, old_keycode, 0);
989 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
990 EV_SYN, SYN_REPORT, 1);
991 }
992
993 out:
994 spin_unlock_irqrestore(&dev->event_lock, flags);
995
996 return retval;
997 }
998 EXPORT_SYMBOL(input_set_keycode);
999
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)1000 bool input_match_device_id(const struct input_dev *dev,
1001 const struct input_device_id *id)
1002 {
1003 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1004 if (id->bustype != dev->id.bustype)
1005 return false;
1006
1007 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1008 if (id->vendor != dev->id.vendor)
1009 return false;
1010
1011 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1012 if (id->product != dev->id.product)
1013 return false;
1014
1015 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1016 if (id->version != dev->id.version)
1017 return false;
1018
1019 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1020 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1021 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1022 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1023 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1024 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1025 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1026 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1027 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1028 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1029 return false;
1030 }
1031
1032 return true;
1033 }
1034 EXPORT_SYMBOL(input_match_device_id);
1035
input_match_device(struct input_handler * handler,struct input_dev * dev)1036 static const struct input_device_id *input_match_device(struct input_handler *handler,
1037 struct input_dev *dev)
1038 {
1039 const struct input_device_id *id;
1040
1041 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1042 if (input_match_device_id(dev, id) &&
1043 (!handler->match || handler->match(handler, dev))) {
1044 return id;
1045 }
1046 }
1047
1048 return NULL;
1049 }
1050
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1051 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1052 {
1053 const struct input_device_id *id;
1054 int error;
1055
1056 id = input_match_device(handler, dev);
1057 if (!id)
1058 return -ENODEV;
1059
1060 error = handler->connect(handler, dev, id);
1061 if (error && error != -ENODEV)
1062 pr_err("failed to attach handler %s to device %s, error: %d\n",
1063 handler->name, kobject_name(&dev->dev.kobj), error);
1064
1065 return error;
1066 }
1067
1068 #ifdef CONFIG_COMPAT
1069
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1070 static int input_bits_to_string(char *buf, int buf_size,
1071 unsigned long bits, bool skip_empty)
1072 {
1073 int len = 0;
1074
1075 if (in_compat_syscall()) {
1076 u32 dword = bits >> 32;
1077 if (dword || !skip_empty)
1078 len += snprintf(buf, buf_size, "%x ", dword);
1079
1080 dword = bits & 0xffffffffUL;
1081 if (dword || !skip_empty || len)
1082 len += snprintf(buf + len, max(buf_size - len, 0),
1083 "%x", dword);
1084 } else {
1085 if (bits || !skip_empty)
1086 len += snprintf(buf, buf_size, "%lx", bits);
1087 }
1088
1089 return len;
1090 }
1091
1092 #else /* !CONFIG_COMPAT */
1093
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1094 static int input_bits_to_string(char *buf, int buf_size,
1095 unsigned long bits, bool skip_empty)
1096 {
1097 return bits || !skip_empty ?
1098 snprintf(buf, buf_size, "%lx", bits) : 0;
1099 }
1100
1101 #endif
1102
1103 #ifdef CONFIG_PROC_FS
1104
1105 static struct proc_dir_entry *proc_bus_input_dir;
1106 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1107 static int input_devices_state;
1108
input_wakeup_procfs_readers(void)1109 static inline void input_wakeup_procfs_readers(void)
1110 {
1111 input_devices_state++;
1112 wake_up(&input_devices_poll_wait);
1113 }
1114
input_proc_devices_poll(struct file * file,poll_table * wait)1115 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1116 {
1117 poll_wait(file, &input_devices_poll_wait, wait);
1118 if (file->f_version != input_devices_state) {
1119 file->f_version = input_devices_state;
1120 return EPOLLIN | EPOLLRDNORM;
1121 }
1122
1123 return 0;
1124 }
1125
1126 union input_seq_state {
1127 struct {
1128 unsigned short pos;
1129 bool mutex_acquired;
1130 };
1131 void *p;
1132 };
1133
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1134 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1135 {
1136 union input_seq_state *state = (union input_seq_state *)&seq->private;
1137 int error;
1138
1139 /* We need to fit into seq->private pointer */
1140 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1141
1142 error = mutex_lock_interruptible(&input_mutex);
1143 if (error) {
1144 state->mutex_acquired = false;
1145 return ERR_PTR(error);
1146 }
1147
1148 state->mutex_acquired = true;
1149
1150 return seq_list_start(&input_dev_list, *pos);
1151 }
1152
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1153 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1154 {
1155 return seq_list_next(v, &input_dev_list, pos);
1156 }
1157
input_seq_stop(struct seq_file * seq,void * v)1158 static void input_seq_stop(struct seq_file *seq, void *v)
1159 {
1160 union input_seq_state *state = (union input_seq_state *)&seq->private;
1161
1162 if (state->mutex_acquired)
1163 mutex_unlock(&input_mutex);
1164 }
1165
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1166 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1167 unsigned long *bitmap, int max)
1168 {
1169 int i;
1170 bool skip_empty = true;
1171 char buf[18];
1172
1173 seq_printf(seq, "B: %s=", name);
1174
1175 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1176 if (input_bits_to_string(buf, sizeof(buf),
1177 bitmap[i], skip_empty)) {
1178 skip_empty = false;
1179 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1180 }
1181 }
1182
1183 /*
1184 * If no output was produced print a single 0.
1185 */
1186 if (skip_empty)
1187 seq_putc(seq, '0');
1188
1189 seq_putc(seq, '\n');
1190 }
1191
input_devices_seq_show(struct seq_file * seq,void * v)1192 static int input_devices_seq_show(struct seq_file *seq, void *v)
1193 {
1194 struct input_dev *dev = container_of(v, struct input_dev, node);
1195 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1196 struct input_handle *handle;
1197
1198 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1199 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1200
1201 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1202 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1203 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1204 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1205 seq_puts(seq, "H: Handlers=");
1206
1207 list_for_each_entry(handle, &dev->h_list, d_node)
1208 seq_printf(seq, "%s ", handle->name);
1209 seq_putc(seq, '\n');
1210
1211 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1212
1213 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1214 if (test_bit(EV_KEY, dev->evbit))
1215 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1216 if (test_bit(EV_REL, dev->evbit))
1217 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1218 if (test_bit(EV_ABS, dev->evbit))
1219 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1220 if (test_bit(EV_MSC, dev->evbit))
1221 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1222 if (test_bit(EV_LED, dev->evbit))
1223 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1224 if (test_bit(EV_SND, dev->evbit))
1225 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1226 if (test_bit(EV_FF, dev->evbit))
1227 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1228 if (test_bit(EV_SW, dev->evbit))
1229 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1230
1231 seq_putc(seq, '\n');
1232
1233 kfree(path);
1234 return 0;
1235 }
1236
1237 static const struct seq_operations input_devices_seq_ops = {
1238 .start = input_devices_seq_start,
1239 .next = input_devices_seq_next,
1240 .stop = input_seq_stop,
1241 .show = input_devices_seq_show,
1242 };
1243
input_proc_devices_open(struct inode * inode,struct file * file)1244 static int input_proc_devices_open(struct inode *inode, struct file *file)
1245 {
1246 return seq_open(file, &input_devices_seq_ops);
1247 }
1248
1249 static const struct proc_ops input_devices_proc_ops = {
1250 .proc_open = input_proc_devices_open,
1251 .proc_poll = input_proc_devices_poll,
1252 .proc_read = seq_read,
1253 .proc_lseek = seq_lseek,
1254 .proc_release = seq_release,
1255 };
1256
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1257 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1258 {
1259 union input_seq_state *state = (union input_seq_state *)&seq->private;
1260 int error;
1261
1262 /* We need to fit into seq->private pointer */
1263 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1264
1265 error = mutex_lock_interruptible(&input_mutex);
1266 if (error) {
1267 state->mutex_acquired = false;
1268 return ERR_PTR(error);
1269 }
1270
1271 state->mutex_acquired = true;
1272 state->pos = *pos;
1273
1274 return seq_list_start(&input_handler_list, *pos);
1275 }
1276
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1277 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1278 {
1279 union input_seq_state *state = (union input_seq_state *)&seq->private;
1280
1281 state->pos = *pos + 1;
1282 return seq_list_next(v, &input_handler_list, pos);
1283 }
1284
input_handlers_seq_show(struct seq_file * seq,void * v)1285 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1286 {
1287 struct input_handler *handler = container_of(v, struct input_handler, node);
1288 union input_seq_state *state = (union input_seq_state *)&seq->private;
1289
1290 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1291 if (handler->filter)
1292 seq_puts(seq, " (filter)");
1293 if (handler->legacy_minors)
1294 seq_printf(seq, " Minor=%d", handler->minor);
1295 seq_putc(seq, '\n');
1296
1297 return 0;
1298 }
1299
1300 static const struct seq_operations input_handlers_seq_ops = {
1301 .start = input_handlers_seq_start,
1302 .next = input_handlers_seq_next,
1303 .stop = input_seq_stop,
1304 .show = input_handlers_seq_show,
1305 };
1306
input_proc_handlers_open(struct inode * inode,struct file * file)1307 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1308 {
1309 return seq_open(file, &input_handlers_seq_ops);
1310 }
1311
1312 static const struct proc_ops input_handlers_proc_ops = {
1313 .proc_open = input_proc_handlers_open,
1314 .proc_read = seq_read,
1315 .proc_lseek = seq_lseek,
1316 .proc_release = seq_release,
1317 };
1318
input_proc_init(void)1319 static int __init input_proc_init(void)
1320 {
1321 struct proc_dir_entry *entry;
1322
1323 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1324 if (!proc_bus_input_dir)
1325 return -ENOMEM;
1326
1327 entry = proc_create("devices", 0, proc_bus_input_dir,
1328 &input_devices_proc_ops);
1329 if (!entry)
1330 goto fail1;
1331
1332 entry = proc_create("handlers", 0, proc_bus_input_dir,
1333 &input_handlers_proc_ops);
1334 if (!entry)
1335 goto fail2;
1336
1337 return 0;
1338
1339 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1340 fail1: remove_proc_entry("bus/input", NULL);
1341 return -ENOMEM;
1342 }
1343
input_proc_exit(void)1344 static void input_proc_exit(void)
1345 {
1346 remove_proc_entry("devices", proc_bus_input_dir);
1347 remove_proc_entry("handlers", proc_bus_input_dir);
1348 remove_proc_entry("bus/input", NULL);
1349 }
1350
1351 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1352 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1353 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1354 static inline void input_proc_exit(void) { }
1355 #endif
1356
1357 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1358 static ssize_t input_dev_show_##name(struct device *dev, \
1359 struct device_attribute *attr, \
1360 char *buf) \
1361 { \
1362 struct input_dev *input_dev = to_input_dev(dev); \
1363 \
1364 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1365 input_dev->name ? input_dev->name : ""); \
1366 } \
1367 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1368
1369 INPUT_DEV_STRING_ATTR_SHOW(name);
1370 INPUT_DEV_STRING_ATTR_SHOW(phys);
1371 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1372
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1373 static int input_print_modalias_bits(char *buf, int size,
1374 char name, unsigned long *bm,
1375 unsigned int min_bit, unsigned int max_bit)
1376 {
1377 int len = 0, i;
1378
1379 len += snprintf(buf, max(size, 0), "%c", name);
1380 for (i = min_bit; i < max_bit; i++)
1381 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1382 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1383 return len;
1384 }
1385
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1386 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1387 int add_cr)
1388 {
1389 int len;
1390
1391 len = snprintf(buf, max(size, 0),
1392 "input:b%04Xv%04Xp%04Xe%04X-",
1393 id->id.bustype, id->id.vendor,
1394 id->id.product, id->id.version);
1395
1396 len += input_print_modalias_bits(buf + len, size - len,
1397 'e', id->evbit, 0, EV_MAX);
1398 len += input_print_modalias_bits(buf + len, size - len,
1399 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1400 len += input_print_modalias_bits(buf + len, size - len,
1401 'r', id->relbit, 0, REL_MAX);
1402 len += input_print_modalias_bits(buf + len, size - len,
1403 'a', id->absbit, 0, ABS_MAX);
1404 len += input_print_modalias_bits(buf + len, size - len,
1405 'm', id->mscbit, 0, MSC_MAX);
1406 len += input_print_modalias_bits(buf + len, size - len,
1407 'l', id->ledbit, 0, LED_MAX);
1408 len += input_print_modalias_bits(buf + len, size - len,
1409 's', id->sndbit, 0, SND_MAX);
1410 len += input_print_modalias_bits(buf + len, size - len,
1411 'f', id->ffbit, 0, FF_MAX);
1412 len += input_print_modalias_bits(buf + len, size - len,
1413 'w', id->swbit, 0, SW_MAX);
1414
1415 if (add_cr)
1416 len += snprintf(buf + len, max(size - len, 0), "\n");
1417
1418 return len;
1419 }
1420
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1421 static ssize_t input_dev_show_modalias(struct device *dev,
1422 struct device_attribute *attr,
1423 char *buf)
1424 {
1425 struct input_dev *id = to_input_dev(dev);
1426 ssize_t len;
1427
1428 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1429
1430 return min_t(int, len, PAGE_SIZE);
1431 }
1432 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1433
1434 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1435 int max, int add_cr);
1436
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1437 static ssize_t input_dev_show_properties(struct device *dev,
1438 struct device_attribute *attr,
1439 char *buf)
1440 {
1441 struct input_dev *input_dev = to_input_dev(dev);
1442 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1443 INPUT_PROP_MAX, true);
1444 return min_t(int, len, PAGE_SIZE);
1445 }
1446 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1447
1448 static int input_inhibit_device(struct input_dev *dev);
1449 static int input_uninhibit_device(struct input_dev *dev);
1450
inhibited_show(struct device * dev,struct device_attribute * attr,char * buf)1451 static ssize_t inhibited_show(struct device *dev,
1452 struct device_attribute *attr,
1453 char *buf)
1454 {
1455 struct input_dev *input_dev = to_input_dev(dev);
1456
1457 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1458 }
1459
inhibited_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1460 static ssize_t inhibited_store(struct device *dev,
1461 struct device_attribute *attr, const char *buf,
1462 size_t len)
1463 {
1464 struct input_dev *input_dev = to_input_dev(dev);
1465 ssize_t rv;
1466 bool inhibited;
1467
1468 if (strtobool(buf, &inhibited))
1469 return -EINVAL;
1470
1471 if (inhibited)
1472 rv = input_inhibit_device(input_dev);
1473 else
1474 rv = input_uninhibit_device(input_dev);
1475
1476 if (rv != 0)
1477 return rv;
1478
1479 return len;
1480 }
1481
1482 static DEVICE_ATTR_RW(inhibited);
1483
1484 static struct attribute *input_dev_attrs[] = {
1485 &dev_attr_name.attr,
1486 &dev_attr_phys.attr,
1487 &dev_attr_uniq.attr,
1488 &dev_attr_modalias.attr,
1489 &dev_attr_properties.attr,
1490 &dev_attr_inhibited.attr,
1491 NULL
1492 };
1493
1494 static const struct attribute_group input_dev_attr_group = {
1495 .attrs = input_dev_attrs,
1496 };
1497
1498 #define INPUT_DEV_ID_ATTR(name) \
1499 static ssize_t input_dev_show_id_##name(struct device *dev, \
1500 struct device_attribute *attr, \
1501 char *buf) \
1502 { \
1503 struct input_dev *input_dev = to_input_dev(dev); \
1504 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1505 } \
1506 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1507
1508 INPUT_DEV_ID_ATTR(bustype);
1509 INPUT_DEV_ID_ATTR(vendor);
1510 INPUT_DEV_ID_ATTR(product);
1511 INPUT_DEV_ID_ATTR(version);
1512
1513 static struct attribute *input_dev_id_attrs[] = {
1514 &dev_attr_bustype.attr,
1515 &dev_attr_vendor.attr,
1516 &dev_attr_product.attr,
1517 &dev_attr_version.attr,
1518 NULL
1519 };
1520
1521 static const struct attribute_group input_dev_id_attr_group = {
1522 .name = "id",
1523 .attrs = input_dev_id_attrs,
1524 };
1525
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1526 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1527 int max, int add_cr)
1528 {
1529 int i;
1530 int len = 0;
1531 bool skip_empty = true;
1532
1533 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1534 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1535 bitmap[i], skip_empty);
1536 if (len) {
1537 skip_empty = false;
1538 if (i > 0)
1539 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1540 }
1541 }
1542
1543 /*
1544 * If no output was produced print a single 0.
1545 */
1546 if (len == 0)
1547 len = snprintf(buf, buf_size, "%d", 0);
1548
1549 if (add_cr)
1550 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1551
1552 return len;
1553 }
1554
1555 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1556 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1557 struct device_attribute *attr, \
1558 char *buf) \
1559 { \
1560 struct input_dev *input_dev = to_input_dev(dev); \
1561 int len = input_print_bitmap(buf, PAGE_SIZE, \
1562 input_dev->bm##bit, ev##_MAX, \
1563 true); \
1564 return min_t(int, len, PAGE_SIZE); \
1565 } \
1566 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1567
1568 INPUT_DEV_CAP_ATTR(EV, ev);
1569 INPUT_DEV_CAP_ATTR(KEY, key);
1570 INPUT_DEV_CAP_ATTR(REL, rel);
1571 INPUT_DEV_CAP_ATTR(ABS, abs);
1572 INPUT_DEV_CAP_ATTR(MSC, msc);
1573 INPUT_DEV_CAP_ATTR(LED, led);
1574 INPUT_DEV_CAP_ATTR(SND, snd);
1575 INPUT_DEV_CAP_ATTR(FF, ff);
1576 INPUT_DEV_CAP_ATTR(SW, sw);
1577
1578 static struct attribute *input_dev_caps_attrs[] = {
1579 &dev_attr_ev.attr,
1580 &dev_attr_key.attr,
1581 &dev_attr_rel.attr,
1582 &dev_attr_abs.attr,
1583 &dev_attr_msc.attr,
1584 &dev_attr_led.attr,
1585 &dev_attr_snd.attr,
1586 &dev_attr_ff.attr,
1587 &dev_attr_sw.attr,
1588 NULL
1589 };
1590
1591 static const struct attribute_group input_dev_caps_attr_group = {
1592 .name = "capabilities",
1593 .attrs = input_dev_caps_attrs,
1594 };
1595
1596 static const struct attribute_group *input_dev_attr_groups[] = {
1597 &input_dev_attr_group,
1598 &input_dev_id_attr_group,
1599 &input_dev_caps_attr_group,
1600 &input_poller_attribute_group,
1601 NULL
1602 };
1603
input_dev_release(struct device * device)1604 static void input_dev_release(struct device *device)
1605 {
1606 struct input_dev *dev = to_input_dev(device);
1607
1608 input_ff_destroy(dev);
1609 input_mt_destroy_slots(dev);
1610 kfree(dev->poller);
1611 kfree(dev->absinfo);
1612 kfree(dev->vals);
1613 kfree(dev);
1614
1615 module_put(THIS_MODULE);
1616 }
1617
1618 /*
1619 * Input uevent interface - loading event handlers based on
1620 * device bitfields.
1621 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1622 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1623 const char *name, unsigned long *bitmap, int max)
1624 {
1625 int len;
1626
1627 if (add_uevent_var(env, "%s", name))
1628 return -ENOMEM;
1629
1630 len = input_print_bitmap(&env->buf[env->buflen - 1],
1631 sizeof(env->buf) - env->buflen,
1632 bitmap, max, false);
1633 if (len >= (sizeof(env->buf) - env->buflen))
1634 return -ENOMEM;
1635
1636 env->buflen += len;
1637 return 0;
1638 }
1639
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1640 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1641 struct input_dev *dev)
1642 {
1643 int len;
1644
1645 if (add_uevent_var(env, "MODALIAS="))
1646 return -ENOMEM;
1647
1648 len = input_print_modalias(&env->buf[env->buflen - 1],
1649 sizeof(env->buf) - env->buflen,
1650 dev, 0);
1651 if (len >= (sizeof(env->buf) - env->buflen))
1652 return -ENOMEM;
1653
1654 env->buflen += len;
1655 return 0;
1656 }
1657
1658 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1659 do { \
1660 int err = add_uevent_var(env, fmt, val); \
1661 if (err) \
1662 return err; \
1663 } while (0)
1664
1665 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1666 do { \
1667 int err = input_add_uevent_bm_var(env, name, bm, max); \
1668 if (err) \
1669 return err; \
1670 } while (0)
1671
1672 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1673 do { \
1674 int err = input_add_uevent_modalias_var(env, dev); \
1675 if (err) \
1676 return err; \
1677 } while (0)
1678
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1679 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1680 {
1681 struct input_dev *dev = to_input_dev(device);
1682
1683 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1684 dev->id.bustype, dev->id.vendor,
1685 dev->id.product, dev->id.version);
1686 if (dev->name)
1687 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1688 if (dev->phys)
1689 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1690 if (dev->uniq)
1691 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1692
1693 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1694
1695 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1696 if (test_bit(EV_KEY, dev->evbit))
1697 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1698 if (test_bit(EV_REL, dev->evbit))
1699 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1700 if (test_bit(EV_ABS, dev->evbit))
1701 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1702 if (test_bit(EV_MSC, dev->evbit))
1703 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1704 if (test_bit(EV_LED, dev->evbit))
1705 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1706 if (test_bit(EV_SND, dev->evbit))
1707 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1708 if (test_bit(EV_FF, dev->evbit))
1709 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1710 if (test_bit(EV_SW, dev->evbit))
1711 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1712
1713 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1714
1715 return 0;
1716 }
1717
1718 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1719 do { \
1720 int i; \
1721 bool active; \
1722 \
1723 if (!test_bit(EV_##type, dev->evbit)) \
1724 break; \
1725 \
1726 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1727 active = test_bit(i, dev->bits); \
1728 if (!active && !on) \
1729 continue; \
1730 \
1731 dev->event(dev, EV_##type, i, on ? active : 0); \
1732 } \
1733 } while (0)
1734
input_dev_toggle(struct input_dev * dev,bool activate)1735 static void input_dev_toggle(struct input_dev *dev, bool activate)
1736 {
1737 if (!dev->event)
1738 return;
1739
1740 INPUT_DO_TOGGLE(dev, LED, led, activate);
1741 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1742
1743 if (activate && test_bit(EV_REP, dev->evbit)) {
1744 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1745 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1746 }
1747 }
1748
1749 /**
1750 * input_reset_device() - reset/restore the state of input device
1751 * @dev: input device whose state needs to be reset
1752 *
1753 * This function tries to reset the state of an opened input device and
1754 * bring internal state and state if the hardware in sync with each other.
1755 * We mark all keys as released, restore LED state, repeat rate, etc.
1756 */
input_reset_device(struct input_dev * dev)1757 void input_reset_device(struct input_dev *dev)
1758 {
1759 unsigned long flags;
1760
1761 mutex_lock(&dev->mutex);
1762 spin_lock_irqsave(&dev->event_lock, flags);
1763
1764 input_dev_toggle(dev, true);
1765 if (input_dev_release_keys(dev))
1766 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1767
1768 spin_unlock_irqrestore(&dev->event_lock, flags);
1769 mutex_unlock(&dev->mutex);
1770 }
1771 EXPORT_SYMBOL(input_reset_device);
1772
input_inhibit_device(struct input_dev * dev)1773 static int input_inhibit_device(struct input_dev *dev)
1774 {
1775 mutex_lock(&dev->mutex);
1776
1777 if (dev->inhibited)
1778 goto out;
1779
1780 if (dev->users) {
1781 if (dev->close)
1782 dev->close(dev);
1783 if (dev->poller)
1784 input_dev_poller_stop(dev->poller);
1785 }
1786
1787 spin_lock_irq(&dev->event_lock);
1788 input_mt_release_slots(dev);
1789 input_dev_release_keys(dev);
1790 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1791 input_dev_toggle(dev, false);
1792 spin_unlock_irq(&dev->event_lock);
1793
1794 dev->inhibited = true;
1795
1796 out:
1797 mutex_unlock(&dev->mutex);
1798 return 0;
1799 }
1800
input_uninhibit_device(struct input_dev * dev)1801 static int input_uninhibit_device(struct input_dev *dev)
1802 {
1803 int ret = 0;
1804
1805 mutex_lock(&dev->mutex);
1806
1807 if (!dev->inhibited)
1808 goto out;
1809
1810 if (dev->users) {
1811 if (dev->open) {
1812 ret = dev->open(dev);
1813 if (ret)
1814 goto out;
1815 }
1816 if (dev->poller)
1817 input_dev_poller_start(dev->poller);
1818 }
1819
1820 dev->inhibited = false;
1821 spin_lock_irq(&dev->event_lock);
1822 input_dev_toggle(dev, true);
1823 spin_unlock_irq(&dev->event_lock);
1824
1825 out:
1826 mutex_unlock(&dev->mutex);
1827 return ret;
1828 }
1829
1830 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1831 static int input_dev_suspend(struct device *dev)
1832 {
1833 struct input_dev *input_dev = to_input_dev(dev);
1834
1835 spin_lock_irq(&input_dev->event_lock);
1836
1837 /*
1838 * Keys that are pressed now are unlikely to be
1839 * still pressed when we resume.
1840 */
1841 if (input_dev_release_keys(input_dev))
1842 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1843
1844 /* Turn off LEDs and sounds, if any are active. */
1845 input_dev_toggle(input_dev, false);
1846
1847 spin_unlock_irq(&input_dev->event_lock);
1848
1849 return 0;
1850 }
1851
input_dev_resume(struct device * dev)1852 static int input_dev_resume(struct device *dev)
1853 {
1854 struct input_dev *input_dev = to_input_dev(dev);
1855
1856 spin_lock_irq(&input_dev->event_lock);
1857
1858 /* Restore state of LEDs and sounds, if any were active. */
1859 input_dev_toggle(input_dev, true);
1860
1861 spin_unlock_irq(&input_dev->event_lock);
1862
1863 return 0;
1864 }
1865
input_dev_freeze(struct device * dev)1866 static int input_dev_freeze(struct device *dev)
1867 {
1868 struct input_dev *input_dev = to_input_dev(dev);
1869
1870 spin_lock_irq(&input_dev->event_lock);
1871
1872 /*
1873 * Keys that are pressed now are unlikely to be
1874 * still pressed when we resume.
1875 */
1876 if (input_dev_release_keys(input_dev))
1877 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1878
1879 spin_unlock_irq(&input_dev->event_lock);
1880
1881 return 0;
1882 }
1883
input_dev_poweroff(struct device * dev)1884 static int input_dev_poweroff(struct device *dev)
1885 {
1886 struct input_dev *input_dev = to_input_dev(dev);
1887
1888 spin_lock_irq(&input_dev->event_lock);
1889
1890 /* Turn off LEDs and sounds, if any are active. */
1891 input_dev_toggle(input_dev, false);
1892
1893 spin_unlock_irq(&input_dev->event_lock);
1894
1895 return 0;
1896 }
1897
1898 static const struct dev_pm_ops input_dev_pm_ops = {
1899 .suspend = input_dev_suspend,
1900 .resume = input_dev_resume,
1901 .freeze = input_dev_freeze,
1902 .poweroff = input_dev_poweroff,
1903 .restore = input_dev_resume,
1904 };
1905 #endif /* CONFIG_PM */
1906
1907 static const struct device_type input_dev_type = {
1908 .groups = input_dev_attr_groups,
1909 .release = input_dev_release,
1910 .uevent = input_dev_uevent,
1911 #ifdef CONFIG_PM_SLEEP
1912 .pm = &input_dev_pm_ops,
1913 #endif
1914 };
1915
input_devnode(struct device * dev,umode_t * mode)1916 static char *input_devnode(struct device *dev, umode_t *mode)
1917 {
1918 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1919 }
1920
1921 struct class input_class = {
1922 .name = "input",
1923 .devnode = input_devnode,
1924 };
1925 EXPORT_SYMBOL_GPL(input_class);
1926
1927 /**
1928 * input_allocate_device - allocate memory for new input device
1929 *
1930 * Returns prepared struct input_dev or %NULL.
1931 *
1932 * NOTE: Use input_free_device() to free devices that have not been
1933 * registered; input_unregister_device() should be used for already
1934 * registered devices.
1935 */
input_allocate_device(void)1936 struct input_dev *input_allocate_device(void)
1937 {
1938 static atomic_t input_no = ATOMIC_INIT(-1);
1939 struct input_dev *dev;
1940
1941 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1942 if (dev) {
1943 dev->dev.type = &input_dev_type;
1944 dev->dev.class = &input_class;
1945 device_initialize(&dev->dev);
1946 mutex_init(&dev->mutex);
1947 spin_lock_init(&dev->event_lock);
1948 timer_setup(&dev->timer, NULL, 0);
1949 INIT_LIST_HEAD(&dev->h_list);
1950 INIT_LIST_HEAD(&dev->node);
1951
1952 dev_set_name(&dev->dev, "input%lu",
1953 (unsigned long)atomic_inc_return(&input_no));
1954
1955 __module_get(THIS_MODULE);
1956 }
1957
1958 return dev;
1959 }
1960 EXPORT_SYMBOL(input_allocate_device);
1961
1962 struct input_devres {
1963 struct input_dev *input;
1964 };
1965
devm_input_device_match(struct device * dev,void * res,void * data)1966 static int devm_input_device_match(struct device *dev, void *res, void *data)
1967 {
1968 struct input_devres *devres = res;
1969
1970 return devres->input == data;
1971 }
1972
devm_input_device_release(struct device * dev,void * res)1973 static void devm_input_device_release(struct device *dev, void *res)
1974 {
1975 struct input_devres *devres = res;
1976 struct input_dev *input = devres->input;
1977
1978 dev_dbg(dev, "%s: dropping reference to %s\n",
1979 __func__, dev_name(&input->dev));
1980 input_put_device(input);
1981 }
1982
1983 /**
1984 * devm_input_allocate_device - allocate managed input device
1985 * @dev: device owning the input device being created
1986 *
1987 * Returns prepared struct input_dev or %NULL.
1988 *
1989 * Managed input devices do not need to be explicitly unregistered or
1990 * freed as it will be done automatically when owner device unbinds from
1991 * its driver (or binding fails). Once managed input device is allocated,
1992 * it is ready to be set up and registered in the same fashion as regular
1993 * input device. There are no special devm_input_device_[un]register()
1994 * variants, regular ones work with both managed and unmanaged devices,
1995 * should you need them. In most cases however, managed input device need
1996 * not be explicitly unregistered or freed.
1997 *
1998 * NOTE: the owner device is set up as parent of input device and users
1999 * should not override it.
2000 */
devm_input_allocate_device(struct device * dev)2001 struct input_dev *devm_input_allocate_device(struct device *dev)
2002 {
2003 struct input_dev *input;
2004 struct input_devres *devres;
2005
2006 devres = devres_alloc(devm_input_device_release,
2007 sizeof(*devres), GFP_KERNEL);
2008 if (!devres)
2009 return NULL;
2010
2011 input = input_allocate_device();
2012 if (!input) {
2013 devres_free(devres);
2014 return NULL;
2015 }
2016
2017 input->dev.parent = dev;
2018 input->devres_managed = true;
2019
2020 devres->input = input;
2021 devres_add(dev, devres);
2022
2023 return input;
2024 }
2025 EXPORT_SYMBOL(devm_input_allocate_device);
2026
2027 /**
2028 * input_free_device - free memory occupied by input_dev structure
2029 * @dev: input device to free
2030 *
2031 * This function should only be used if input_register_device()
2032 * was not called yet or if it failed. Once device was registered
2033 * use input_unregister_device() and memory will be freed once last
2034 * reference to the device is dropped.
2035 *
2036 * Device should be allocated by input_allocate_device().
2037 *
2038 * NOTE: If there are references to the input device then memory
2039 * will not be freed until last reference is dropped.
2040 */
input_free_device(struct input_dev * dev)2041 void input_free_device(struct input_dev *dev)
2042 {
2043 if (dev) {
2044 if (dev->devres_managed)
2045 WARN_ON(devres_destroy(dev->dev.parent,
2046 devm_input_device_release,
2047 devm_input_device_match,
2048 dev));
2049 input_put_device(dev);
2050 }
2051 }
2052 EXPORT_SYMBOL(input_free_device);
2053
2054 /**
2055 * input_set_timestamp - set timestamp for input events
2056 * @dev: input device to set timestamp for
2057 * @timestamp: the time at which the event has occurred
2058 * in CLOCK_MONOTONIC
2059 *
2060 * This function is intended to provide to the input system a more
2061 * accurate time of when an event actually occurred. The driver should
2062 * call this function as soon as a timestamp is acquired ensuring
2063 * clock conversions in input_set_timestamp are done correctly.
2064 *
2065 * The system entering suspend state between timestamp acquisition and
2066 * calling input_set_timestamp can result in inaccurate conversions.
2067 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)2068 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2069 {
2070 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2071 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2072 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2073 TK_OFFS_BOOT);
2074 }
2075 EXPORT_SYMBOL(input_set_timestamp);
2076
2077 /**
2078 * input_get_timestamp - get timestamp for input events
2079 * @dev: input device to get timestamp from
2080 *
2081 * A valid timestamp is a timestamp of non-zero value.
2082 */
input_get_timestamp(struct input_dev * dev)2083 ktime_t *input_get_timestamp(struct input_dev *dev)
2084 {
2085 const ktime_t invalid_timestamp = ktime_set(0, 0);
2086
2087 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2088 input_set_timestamp(dev, ktime_get());
2089
2090 return dev->timestamp;
2091 }
2092 EXPORT_SYMBOL(input_get_timestamp);
2093
2094 /**
2095 * input_set_capability - mark device as capable of a certain event
2096 * @dev: device that is capable of emitting or accepting event
2097 * @type: type of the event (EV_KEY, EV_REL, etc...)
2098 * @code: event code
2099 *
2100 * In addition to setting up corresponding bit in appropriate capability
2101 * bitmap the function also adjusts dev->evbit.
2102 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)2103 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2104 {
2105 if (type < EV_CNT && input_max_code[type] &&
2106 code > input_max_code[type]) {
2107 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2108 type);
2109 dump_stack();
2110 return;
2111 }
2112
2113 switch (type) {
2114 case EV_KEY:
2115 __set_bit(code, dev->keybit);
2116 break;
2117
2118 case EV_REL:
2119 __set_bit(code, dev->relbit);
2120 break;
2121
2122 case EV_ABS:
2123 input_alloc_absinfo(dev);
2124 __set_bit(code, dev->absbit);
2125 break;
2126
2127 case EV_MSC:
2128 __set_bit(code, dev->mscbit);
2129 break;
2130
2131 case EV_SW:
2132 __set_bit(code, dev->swbit);
2133 break;
2134
2135 case EV_LED:
2136 __set_bit(code, dev->ledbit);
2137 break;
2138
2139 case EV_SND:
2140 __set_bit(code, dev->sndbit);
2141 break;
2142
2143 case EV_FF:
2144 __set_bit(code, dev->ffbit);
2145 break;
2146
2147 case EV_PWR:
2148 /* do nothing */
2149 break;
2150
2151 default:
2152 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2153 dump_stack();
2154 return;
2155 }
2156
2157 __set_bit(type, dev->evbit);
2158 }
2159 EXPORT_SYMBOL(input_set_capability);
2160
input_estimate_events_per_packet(struct input_dev * dev)2161 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2162 {
2163 int mt_slots;
2164 int i;
2165 unsigned int events;
2166
2167 if (dev->mt) {
2168 mt_slots = dev->mt->num_slots;
2169 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2170 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2171 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2172 mt_slots = clamp(mt_slots, 2, 32);
2173 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2174 mt_slots = 2;
2175 } else {
2176 mt_slots = 0;
2177 }
2178
2179 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2180
2181 if (test_bit(EV_ABS, dev->evbit))
2182 for_each_set_bit(i, dev->absbit, ABS_CNT)
2183 events += input_is_mt_axis(i) ? mt_slots : 1;
2184
2185 if (test_bit(EV_REL, dev->evbit))
2186 events += bitmap_weight(dev->relbit, REL_CNT);
2187
2188 /* Make room for KEY and MSC events */
2189 events += 7;
2190
2191 return events;
2192 }
2193
2194 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2195 do { \
2196 if (!test_bit(EV_##type, dev->evbit)) \
2197 memset(dev->bits##bit, 0, \
2198 sizeof(dev->bits##bit)); \
2199 } while (0)
2200
input_cleanse_bitmasks(struct input_dev * dev)2201 static void input_cleanse_bitmasks(struct input_dev *dev)
2202 {
2203 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2204 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2205 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2206 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2207 INPUT_CLEANSE_BITMASK(dev, LED, led);
2208 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2209 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2210 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2211 }
2212
__input_unregister_device(struct input_dev * dev)2213 static void __input_unregister_device(struct input_dev *dev)
2214 {
2215 struct input_handle *handle, *next;
2216
2217 input_disconnect_device(dev);
2218
2219 mutex_lock(&input_mutex);
2220
2221 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2222 handle->handler->disconnect(handle);
2223 WARN_ON(!list_empty(&dev->h_list));
2224
2225 del_timer_sync(&dev->timer);
2226 list_del_init(&dev->node);
2227
2228 input_wakeup_procfs_readers();
2229
2230 mutex_unlock(&input_mutex);
2231
2232 device_del(&dev->dev);
2233 }
2234
devm_input_device_unregister(struct device * dev,void * res)2235 static void devm_input_device_unregister(struct device *dev, void *res)
2236 {
2237 struct input_devres *devres = res;
2238 struct input_dev *input = devres->input;
2239
2240 dev_dbg(dev, "%s: unregistering device %s\n",
2241 __func__, dev_name(&input->dev));
2242 __input_unregister_device(input);
2243 }
2244
2245 /*
2246 * Generate software autorepeat event. Note that we take
2247 * dev->event_lock here to avoid racing with input_event
2248 * which may cause keys get "stuck".
2249 */
input_repeat_key(struct timer_list * t)2250 static void input_repeat_key(struct timer_list *t)
2251 {
2252 struct input_dev *dev = from_timer(dev, t, timer);
2253 unsigned long flags;
2254
2255 spin_lock_irqsave(&dev->event_lock, flags);
2256
2257 if (!dev->inhibited &&
2258 test_bit(dev->repeat_key, dev->key) &&
2259 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2260
2261 input_set_timestamp(dev, ktime_get());
2262 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2263 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2264
2265 if (dev->rep[REP_PERIOD])
2266 mod_timer(&dev->timer, jiffies +
2267 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2268 }
2269
2270 spin_unlock_irqrestore(&dev->event_lock, flags);
2271 }
2272
2273 /**
2274 * input_enable_softrepeat - enable software autorepeat
2275 * @dev: input device
2276 * @delay: repeat delay
2277 * @period: repeat period
2278 *
2279 * Enable software autorepeat on the input device.
2280 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2281 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2282 {
2283 dev->timer.function = input_repeat_key;
2284 dev->rep[REP_DELAY] = delay;
2285 dev->rep[REP_PERIOD] = period;
2286 }
2287 EXPORT_SYMBOL(input_enable_softrepeat);
2288
input_device_enabled(struct input_dev * dev)2289 bool input_device_enabled(struct input_dev *dev)
2290 {
2291 lockdep_assert_held(&dev->mutex);
2292
2293 return !dev->inhibited && dev->users > 0;
2294 }
2295 EXPORT_SYMBOL_GPL(input_device_enabled);
2296
2297 /**
2298 * input_register_device - register device with input core
2299 * @dev: device to be registered
2300 *
2301 * This function registers device with input core. The device must be
2302 * allocated with input_allocate_device() and all it's capabilities
2303 * set up before registering.
2304 * If function fails the device must be freed with input_free_device().
2305 * Once device has been successfully registered it can be unregistered
2306 * with input_unregister_device(); input_free_device() should not be
2307 * called in this case.
2308 *
2309 * Note that this function is also used to register managed input devices
2310 * (ones allocated with devm_input_allocate_device()). Such managed input
2311 * devices need not be explicitly unregistered or freed, their tear down
2312 * is controlled by the devres infrastructure. It is also worth noting
2313 * that tear down of managed input devices is internally a 2-step process:
2314 * registered managed input device is first unregistered, but stays in
2315 * memory and can still handle input_event() calls (although events will
2316 * not be delivered anywhere). The freeing of managed input device will
2317 * happen later, when devres stack is unwound to the point where device
2318 * allocation was made.
2319 */
input_register_device(struct input_dev * dev)2320 int input_register_device(struct input_dev *dev)
2321 {
2322 struct input_devres *devres = NULL;
2323 struct input_handler *handler;
2324 unsigned int packet_size;
2325 const char *path;
2326 int error;
2327
2328 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2329 dev_err(&dev->dev,
2330 "Absolute device without dev->absinfo, refusing to register\n");
2331 return -EINVAL;
2332 }
2333
2334 if (dev->devres_managed) {
2335 devres = devres_alloc(devm_input_device_unregister,
2336 sizeof(*devres), GFP_KERNEL);
2337 if (!devres)
2338 return -ENOMEM;
2339
2340 devres->input = dev;
2341 }
2342
2343 /* Every input device generates EV_SYN/SYN_REPORT events. */
2344 __set_bit(EV_SYN, dev->evbit);
2345
2346 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2347 __clear_bit(KEY_RESERVED, dev->keybit);
2348
2349 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2350 input_cleanse_bitmasks(dev);
2351
2352 packet_size = input_estimate_events_per_packet(dev);
2353 if (dev->hint_events_per_packet < packet_size)
2354 dev->hint_events_per_packet = packet_size;
2355
2356 dev->max_vals = dev->hint_events_per_packet + 2;
2357 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2358 if (!dev->vals) {
2359 error = -ENOMEM;
2360 goto err_devres_free;
2361 }
2362
2363 /*
2364 * If delay and period are pre-set by the driver, then autorepeating
2365 * is handled by the driver itself and we don't do it in input.c.
2366 */
2367 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2368 input_enable_softrepeat(dev, 250, 33);
2369
2370 if (!dev->getkeycode)
2371 dev->getkeycode = input_default_getkeycode;
2372
2373 if (!dev->setkeycode)
2374 dev->setkeycode = input_default_setkeycode;
2375
2376 if (dev->poller)
2377 input_dev_poller_finalize(dev->poller);
2378
2379 error = device_add(&dev->dev);
2380 if (error)
2381 goto err_free_vals;
2382
2383 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2384 pr_info("%s as %s\n",
2385 dev->name ? dev->name : "Unspecified device",
2386 path ? path : "N/A");
2387 kfree(path);
2388
2389 error = mutex_lock_interruptible(&input_mutex);
2390 if (error)
2391 goto err_device_del;
2392
2393 list_add_tail(&dev->node, &input_dev_list);
2394
2395 list_for_each_entry(handler, &input_handler_list, node)
2396 input_attach_handler(dev, handler);
2397
2398 input_wakeup_procfs_readers();
2399
2400 mutex_unlock(&input_mutex);
2401
2402 if (dev->devres_managed) {
2403 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2404 __func__, dev_name(&dev->dev));
2405 devres_add(dev->dev.parent, devres);
2406 }
2407 return 0;
2408
2409 err_device_del:
2410 device_del(&dev->dev);
2411 err_free_vals:
2412 kfree(dev->vals);
2413 dev->vals = NULL;
2414 err_devres_free:
2415 devres_free(devres);
2416 return error;
2417 }
2418 EXPORT_SYMBOL(input_register_device);
2419
2420 /**
2421 * input_unregister_device - unregister previously registered device
2422 * @dev: device to be unregistered
2423 *
2424 * This function unregisters an input device. Once device is unregistered
2425 * the caller should not try to access it as it may get freed at any moment.
2426 */
input_unregister_device(struct input_dev * dev)2427 void input_unregister_device(struct input_dev *dev)
2428 {
2429 if (dev->devres_managed) {
2430 WARN_ON(devres_destroy(dev->dev.parent,
2431 devm_input_device_unregister,
2432 devm_input_device_match,
2433 dev));
2434 __input_unregister_device(dev);
2435 /*
2436 * We do not do input_put_device() here because it will be done
2437 * when 2nd devres fires up.
2438 */
2439 } else {
2440 __input_unregister_device(dev);
2441 input_put_device(dev);
2442 }
2443 }
2444 EXPORT_SYMBOL(input_unregister_device);
2445
2446 /**
2447 * input_register_handler - register a new input handler
2448 * @handler: handler to be registered
2449 *
2450 * This function registers a new input handler (interface) for input
2451 * devices in the system and attaches it to all input devices that
2452 * are compatible with the handler.
2453 */
input_register_handler(struct input_handler * handler)2454 int input_register_handler(struct input_handler *handler)
2455 {
2456 struct input_dev *dev;
2457 int error;
2458
2459 error = mutex_lock_interruptible(&input_mutex);
2460 if (error)
2461 return error;
2462
2463 INIT_LIST_HEAD(&handler->h_list);
2464
2465 list_add_tail(&handler->node, &input_handler_list);
2466
2467 list_for_each_entry(dev, &input_dev_list, node)
2468 input_attach_handler(dev, handler);
2469
2470 input_wakeup_procfs_readers();
2471
2472 mutex_unlock(&input_mutex);
2473 return 0;
2474 }
2475 EXPORT_SYMBOL(input_register_handler);
2476
2477 /**
2478 * input_unregister_handler - unregisters an input handler
2479 * @handler: handler to be unregistered
2480 *
2481 * This function disconnects a handler from its input devices and
2482 * removes it from lists of known handlers.
2483 */
input_unregister_handler(struct input_handler * handler)2484 void input_unregister_handler(struct input_handler *handler)
2485 {
2486 struct input_handle *handle, *next;
2487
2488 mutex_lock(&input_mutex);
2489
2490 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2491 handler->disconnect(handle);
2492 WARN_ON(!list_empty(&handler->h_list));
2493
2494 list_del_init(&handler->node);
2495
2496 input_wakeup_procfs_readers();
2497
2498 mutex_unlock(&input_mutex);
2499 }
2500 EXPORT_SYMBOL(input_unregister_handler);
2501
2502 /**
2503 * input_handler_for_each_handle - handle iterator
2504 * @handler: input handler to iterate
2505 * @data: data for the callback
2506 * @fn: function to be called for each handle
2507 *
2508 * Iterate over @bus's list of devices, and call @fn for each, passing
2509 * it @data and stop when @fn returns a non-zero value. The function is
2510 * using RCU to traverse the list and therefore may be using in atomic
2511 * contexts. The @fn callback is invoked from RCU critical section and
2512 * thus must not sleep.
2513 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2514 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2515 int (*fn)(struct input_handle *, void *))
2516 {
2517 struct input_handle *handle;
2518 int retval = 0;
2519
2520 rcu_read_lock();
2521
2522 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2523 retval = fn(handle, data);
2524 if (retval)
2525 break;
2526 }
2527
2528 rcu_read_unlock();
2529
2530 return retval;
2531 }
2532 EXPORT_SYMBOL(input_handler_for_each_handle);
2533
2534 /**
2535 * input_register_handle - register a new input handle
2536 * @handle: handle to register
2537 *
2538 * This function puts a new input handle onto device's
2539 * and handler's lists so that events can flow through
2540 * it once it is opened using input_open_device().
2541 *
2542 * This function is supposed to be called from handler's
2543 * connect() method.
2544 */
input_register_handle(struct input_handle * handle)2545 int input_register_handle(struct input_handle *handle)
2546 {
2547 struct input_handler *handler = handle->handler;
2548 struct input_dev *dev = handle->dev;
2549 int error;
2550
2551 /*
2552 * We take dev->mutex here to prevent race with
2553 * input_release_device().
2554 */
2555 error = mutex_lock_interruptible(&dev->mutex);
2556 if (error)
2557 return error;
2558
2559 /*
2560 * Filters go to the head of the list, normal handlers
2561 * to the tail.
2562 */
2563 if (handler->filter)
2564 list_add_rcu(&handle->d_node, &dev->h_list);
2565 else
2566 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2567
2568 mutex_unlock(&dev->mutex);
2569
2570 /*
2571 * Since we are supposed to be called from ->connect()
2572 * which is mutually exclusive with ->disconnect()
2573 * we can't be racing with input_unregister_handle()
2574 * and so separate lock is not needed here.
2575 */
2576 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2577
2578 if (handler->start)
2579 handler->start(handle);
2580
2581 return 0;
2582 }
2583 EXPORT_SYMBOL(input_register_handle);
2584
2585 /**
2586 * input_unregister_handle - unregister an input handle
2587 * @handle: handle to unregister
2588 *
2589 * This function removes input handle from device's
2590 * and handler's lists.
2591 *
2592 * This function is supposed to be called from handler's
2593 * disconnect() method.
2594 */
input_unregister_handle(struct input_handle * handle)2595 void input_unregister_handle(struct input_handle *handle)
2596 {
2597 struct input_dev *dev = handle->dev;
2598
2599 list_del_rcu(&handle->h_node);
2600
2601 /*
2602 * Take dev->mutex to prevent race with input_release_device().
2603 */
2604 mutex_lock(&dev->mutex);
2605 list_del_rcu(&handle->d_node);
2606 mutex_unlock(&dev->mutex);
2607
2608 synchronize_rcu();
2609 }
2610 EXPORT_SYMBOL(input_unregister_handle);
2611
2612 /**
2613 * input_get_new_minor - allocates a new input minor number
2614 * @legacy_base: beginning or the legacy range to be searched
2615 * @legacy_num: size of legacy range
2616 * @allow_dynamic: whether we can also take ID from the dynamic range
2617 *
2618 * This function allocates a new device minor for from input major namespace.
2619 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2620 * parameters and whether ID can be allocated from dynamic range if there are
2621 * no free IDs in legacy range.
2622 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2623 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2624 bool allow_dynamic)
2625 {
2626 /*
2627 * This function should be called from input handler's ->connect()
2628 * methods, which are serialized with input_mutex, so no additional
2629 * locking is needed here.
2630 */
2631 if (legacy_base >= 0) {
2632 int minor = ida_simple_get(&input_ida,
2633 legacy_base,
2634 legacy_base + legacy_num,
2635 GFP_KERNEL);
2636 if (minor >= 0 || !allow_dynamic)
2637 return minor;
2638 }
2639
2640 return ida_simple_get(&input_ida,
2641 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2642 GFP_KERNEL);
2643 }
2644 EXPORT_SYMBOL(input_get_new_minor);
2645
2646 /**
2647 * input_free_minor - release previously allocated minor
2648 * @minor: minor to be released
2649 *
2650 * This function releases previously allocated input minor so that it can be
2651 * reused later.
2652 */
input_free_minor(unsigned int minor)2653 void input_free_minor(unsigned int minor)
2654 {
2655 ida_simple_remove(&input_ida, minor);
2656 }
2657 EXPORT_SYMBOL(input_free_minor);
2658
input_init(void)2659 static int __init input_init(void)
2660 {
2661 int err;
2662
2663 err = class_register(&input_class);
2664 if (err) {
2665 pr_err("unable to register input_dev class\n");
2666 return err;
2667 }
2668
2669 err = input_proc_init();
2670 if (err)
2671 goto fail1;
2672
2673 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2674 INPUT_MAX_CHAR_DEVICES, "input");
2675 if (err) {
2676 pr_err("unable to register char major %d", INPUT_MAJOR);
2677 goto fail2;
2678 }
2679
2680 return 0;
2681
2682 fail2: input_proc_exit();
2683 fail1: class_unregister(&input_class);
2684 return err;
2685 }
2686
input_exit(void)2687 static void __exit input_exit(void)
2688 {
2689 input_proc_exit();
2690 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2691 INPUT_MAX_CHAR_DEVICES);
2692 class_unregister(&input_class);
2693 }
2694
2695 subsys_initcall(input_init);
2696 module_exit(input_exit);
2697